• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "피드백"에 대한 통합 검색 내용이 794개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
아키텍처 모델과 1D 모델의 전략적 연계
MBSE를 위한 아키텍처-1D 모델 연계의 중요성 및 적용 전략 (1)   제조산업에서 설계 효율 향상과 개발 기간 단축을 위해 모델 기반 개발(MBD)을 적극 도입하고 있지만, 아키텍처 모델과 1D 모델 간의 연계 부족으로 인해 개발 단계에서 모델의 실질적인 활용과 의사결정 지원이 어려운 경우도 많다. 이번 호에서는 MBD의 성과를 높이기 위한 아키텍처 모델과 1D 모델의 체계적인 연계 방안을 제시하고, 이를 통한 설계 효율 및 개발 정확성 향상의 전략적 방향을 살펴본다.   ■ 오재응 한양대학교 명예교수, LG전자 기술고문   최근 제조산업은 제품의 개발 기간 단축과 다품종 생산이라는 트렌드에 대응하기 위해 개발의 효율성을 극대화하고 반복 설계를 최소화하는 방향으로 변화하고 있다. 이러한 흐름 속에서 모델 기반 개발(Model-Based Development : MBD)은 이미 많은 제조업체가 적극 추진하고 있으며, 이를 통해 설계 초기부터 제품의 동작을 예측하고 최적화할 수 있는 기반을 마련하고자 한다. 그러나 모델 기반 개발을 도입하고 실제로 모델을 구축했음에도 불구하고, 현업에서 모델이 제대로 활용되지 못하는 경우가 많다. 이는 구축된 모델이 단지 형식적으로 존재할 뿐, 제품 개발의 맥락 속에서 아키텍처적, 1D적 연결성을 갖추지 못해 실질적인 의사결정과 개발 단계에서 활용되지 못하고 있기 때문이다. 즉, 원래 의도한 목적이나 아키텍처적 요구와 연계되지 않은 모델이기 때문에, 사용자는 해당 모델이 ‘내 일에 어떻게 쓰이는지’를 이해하지 못하고 거리감을 느끼는 것이다. 이러한 문제를 극복하기 위해서는 아키텍처 모델과 1D 모델을 유기적으로 연계하고, 이를 기반으로 아키텍처 요구사항을 구체화할 수 있어야 한다. 아키텍처 모델이란 제품의 구조, 기능, 물리적 메커니즘 등 아키텍처적 개념을 설명하는 모델이며, 1D 모델은 이러한 개념을 수학적으로 해석하고 시뮬레이션 가능한 형태로 정형화한 것이다. 따라서 아키텍처 모델과 1D 모델 간의 연계는 제품 개발의 전체 V자 프로세스에서 핵심 역할을 하며, 상호보완적으로 작용하여 제품 성능 검증 및 요구사항 만족 여부를 평가하는 데 기여한다.   그림 1. 아키텍처 모델 – 1D 모델 연계   <그림 1>은 이러한 개념을 시각적으로 설명한다. 초기의 아키텍처 설계 단계에서 아키텍처 요구와 구조를 정의한 뒤 이를 바탕으로 1D 모델이 생성되고, 시뮬레이션 및 해석을 통해 결과를 도출하며, 이 결과는 다시 상위의 아키텍처 요구사항에 대한 검증으로 이어진다. 이처럼 상향식-하향식 피드백 루프를 통해 아키텍처 모델과 1D 모델이 반복적으로 연계되어야 진정한 의미의 모델 기반 개발이 실현될 수 있다. 특히 설계자와 개발자는 1D 모델은 제품을 해석하고 튜닝하는 강력한 도구라고 인식하지만, ‘왜 이 설계를 했는가’, ‘서브시스템 간 구조는 어떻게 되는가’, ‘요구사항은 어떻게 충족되는가’와 같은 질문에는 답하지 못한다. 그 해답을 주는 것이 바로 아키텍처 모델(MBSE)이며, 이 두 모델을 연결해야만 설계의 정확성, 추적성, 협업성이 동시에 확보된다.   다양한 유형의 아키텍처적 측정 간의 관계   그림 2. ISO/IEC 15288 System Life Cycle Technical Processes & Life Cycle   ISO/IEC 15288(그림 2)은 시스템 수명주기 전반에 걸친 아키텍처 프로세스의 흐름과 체계를 정의한 국제 표준이다. 특히 이 표준은 모델 기반 시스템 엔지니어링(Model-Based Systems Engineering : MBSE) 관점에서 시스템 개발 활동을 구조화한 것으로, 시스템 수명 주기(V 모델)를 기반으로 요구 분석, 설계, 검증 및 확인, 유지보수 등 각 단계의 아키텍처적 활동과 그 상호 관계를 정립한다. 시스템 엔지니어링 활동을 통해 성공적인 시스템을 구축하기 위해서는 다양한 아키텍처적 성과 지표와 측정 지표가 필요하며, 이를 통해 시스템의 목표 달성 여부를 판단할 수 있다. 대표적인 지표로는 다음과 같은 세 가지가 있다. MOE(Measure of Effectiveness, 효과성 측정지표)는 시스템이 실제 운용 환경에서 얼마나 효과적으로 임무를 수행할 수 있는지를 평가하는 지표로, 주로 고객 요구사항이나 운용 목표 달성 여부에 초점을 맞춘다.  MOP(Measure of Performance, 성능 측정지표)는 시스템의 성능 수준을 수치적으로 정량화한 것으로, 설계 명세나 요구된 성능 기준을 얼마나 충족하는지를 평가한다.  TPM(Technical Performance Measure, 아키텍처 성과 측정지표)은 개발 과정 중 아키텍처 적인 목표 도달 여부를 지속적으로 모니터링하고 예측하는 데 사용되는 지표로, 시스템 개발 리스크를 조기에 식별하고 관리하는 데 활용된다. 이러한 측정 지표는 예측 차이나 실측 차이를 바탕으로 비교 분석할 수 있으며, 시스템 개발 단계에서 시스템의 위험 요인에 대한 조기 탐지와 개선 대책의 선제 적용이 가능하도록 지원한다. 이는 곧 사업의 비용 효율성 제고와 일정 준수에 기여하며, 전체 수명주기 동안 긍정적인 영향을 유도할 수 있다.  <그림 2>는 ISO/IEC 15288의 V-모델과 아키텍처적 측정 지표가 어떻게 연계되는지를 보여준다. 요구사항 도출과 검증, 설계와 확인 간의 대응 관계를 통해 아키텍처적 활동이 체계적으로 연결되며, 수명주기 전체에서 MOE, MOP, TPM이 통합적으로 작동하여 아키텍처적 리스크를 관리하고 시스템의 성공적인 구현을 가능하게 한다.      ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[포커스] 유니티, “게임을 넘어 다양한 산업으로, 3D 시각화와 AI 통해 혁신 지원”
유니티가 지난 4월 15일 글로벌 개발자 콘퍼런스인 ‘유나이트 서울 2025’를 진행했다. 2900여 명의 국내외 개발자 및 게임 업계 종사자들이 참석한 이번 행사에서 유니티는 자사의 최신 기술과 실제 적용 사례 등을 소개했다. 또한, 콘텐츠 개발을 위한 AI(인공지능) 비전과 비 게임 분야의 산업 시장을 겨냥한 전략도 밝혔다. ■ 정수진 편집장     개발 효율 향상과 커뮤니티 지원에 중점 두고 기능 개발 유니티 코리아 송민석 대표이사는 “지난 몇 년간 개발자 커뮤니티는 기술의 변화, 시장의 변화, 창작 과정의 어려움 등 많은 도전을 겪었지만, 그 과정에서 늘 새로운 가능성을 발견했다. 유니티 역시 그동안 많은 변화가 있었고, 개발자들의 격려와 조언이 큰 힘이 됐다”면서, “이번 유나이트에서는 개발자를 위한 생존 전략, 크리에이터 세션, 국내외 유니티 전문가의 기술 세션 및 다양한 산업에서 적용 가능한 기술과 사례를 제공하면서, 사용자의 프로젝트에 도움이 되고 영감을 주는 기회를 마련하고자 했다”고 전했다. 유나이트 서울 행사를 위해 처음으로 한국을 찾은 유니티의 맷 브롬버그(Matt Bromberg) CEO는 “한국은 유니티의 역사에서 매우 특별한 위치를 차지한다. 한국 개발자들이 만든 혁신적인 게임은 유니티의 가능성을 잘 보여줬다. 모바일뿐 아니라 최근 PC와 콘솔로까지 확대되는 한국 게임 개발자들의 새로운 도전은 전 세계적으로 주목받고 있다”면서 성능, 안정성, 크로스 플랫폼 지원을 더욱 강화하면서 개발자와 커뮤니티의 좋은 파트너가 되고자 한다고 밝혔다. 최신 버전인 유니티 6.1에서는 VRS(가변 레이트 셰이딩), GPU 처리 시간을 단축해 CPU 성능과의 균형을 유지하는 디퍼드+(Deffered+), 벌칸 디바이스 필터링 등의 기능을 통해 퍼포먼스 향상이 이뤄졌다. 한편, 유니티는 올해 다양한 새 기술과 고성능 기능을 제공하는 동시에 엔진의 근본적인 기술도 현대화할 예정이다. 그리고 엔진의 핵심 소스 코드에 닷넷(.NET) 프레임워크와 ECS(Entity Component System)를 적용하여 성능을 극대화하며, 콘텐츠 파이프라인도 현대화하여 개발자들이 더 빠르게 개발하고 반복 작업을 최소화할 수 있도록 지원할 계획이다. 브롬버그 CEO는 향후 개발 방향과 관련해서 새 업데이트를 출시 전 실제 환경에서 테스트한 후 제공할 것이며, 유니티 에디터 내에서 AI를 활용한 게임 개발을 지원하는 등 개발 효율을 높일 계획이라고 소개했다.   ▲ 유니티 맷 브롬버그 CEO   게임 개발 프로젝트에서 기술 검증 후 출시 전략 이와 관련해서 유니티의 애덤 스미스(Adam Smith) 엔진 부문 프로덕트 수석 부사장이 조금 더 자세히 설명했다. 그는 “유니티가 게임 개발자들로부터 가장 많이 받은 피드백은 플레이어의 경험이 더 안정적이고 뛰어나야 한다는 것이었다. 또한 개발 과정이 보다 빠르고 효율적이길 원했고, 복잡한 라이브 게임 개발에서 겪는 여러 문제들을 해결해 달라는 요청이 많았다”고 전했다. 이에 대응하기 위해 유니티는 ‘프로덕션 검증(production verification)’이라는 테스트 방식을 도입했다. 이는 실제 게임 개발 프로젝트에 최신 기술을 적용하여 검증하는 방식인데, 유니티는 몇몇 게임사와 협력해 기술 성능과 빌드 성공률을 높였다. 한편, 유니티는 코나미와 협력해 닌텐도 스위치 2용 게임인 ‘서바이벌 키즈(Survival Kids)’의 개발 과정 전반에 유니티 6 엔진을 적용했으며, 궁극적으로 게임의 기획부터 개발, 광고를 통한 수익화까지 전체 수명주기를 포괄하는 기술을 제공한다는 포부를 밝히기도 했다. 스미스 수석 부사장은 “이러한 협업과 게임 개발 경험은 유니티가 자체 기술과 서비스, 툴을 실제 개발 환경에서 테스트하고, 모든 기능이 철저히 검증되고 안정화된 상태에서 전달될 수 있도록 하는 데 목적이 있었다. 특히 애니메이션 시스템, 물리 엔진, DOTS(Data-Oriented Technology Stack) 기능의 성능과 안정성을 크게 높여 커뮤니티에 제공할 수 있게 되었다”고 전했다.   ▲ 유니티의 임원진이 참가한 기자간담회   개별 설루션 대신 AI 데이터가 모이는 플랫폼 추구 스미스 수석 부사장은 게임 및 시각 콘텐츠 개발에서 빠르게 확산되고 있는 AI와 관련한 로드맵도 소개했다. 2025년 하반기에 출시될 유니티 6.2 버전에서는 에디터 내에 직접 프롬프트 기반의 워크플로(prompt-based workflows)를 통합할 계획이다. 스미스 수석 부사장은 “반복 업무가 자동화되어 개발자들의 작업 시간을 크게 줄일 수 있고, 코드 디버깅과 C# 코드 자동 생성 기능도 추가되어 더욱 효율적인 작업 환경을 제공할 것”이라고 밝혔다. 유니티의 AI 지향점은 개발자가 워크플로의 흐름에서 벗어나지 않고, 유니티 에디터 내에서 곧바로 AI 어시스턴트의 도움을 받을 수 있도록 한다는 것이다. 유니티의 플랫폼이 생성형 AI 데이터를 수집하는 중심이 될 수 있도록 하고, 코드, 텍스처, 애니메이션 등 AI로 생성된 다양한 애셋을 손쉽게 유니티 프로젝트에 통합하고 활용할 수 있는 프레임워크를 구축하고 있다는 것이 유니티의 설명이다. 스미스 수석 부사장은 “유니티의 기존 AI 설루션인 ‘뮤즈’나 ‘센티스’의 이름은 점차 쓰이지 않게 되고, 유니티 에디터 안에 AI를 자연스럽게 통합하는 방향으로 가게 될 것”이라고 전망했다.   산업 분야를 위한 실시간 시각화 및 데이터 활용 비전 소개 유니티는 게임, 비주얼 콘텐츠뿐 아니라 다양한 산업 영역으로 실시간 3D 시각화 기술을 확장하려는 노력을 기울이고 있다. 유니티 코리아의 민경준 인더스트리 사업 본부장은 “그 동안 산업 분야의 많은 기업이 제품 설계, 디자인, 제조부터 마케팅과 운영까지 정적인 3D 모델과 전통적인 워크플로에 의존해왔지만, 기술의 융합과 비즈니스의 디지털화가 빠르게 진행되면서 기업들이 일하는 방식, 클라우드 협업, 고객과의 상호작용 방식이 근본적으로 바뀌고 있다”고 전했다. 민경준 본부장은 이런 변화의 핵심 키워드로 ‘상호작용(interactive)’과 ‘몰입(immersive)’의 두 가지를 꼽았다. 두 가지 핵심 경험을 제공하는 기업만이 디지털 전환을 성공시킬 수 있다는 것이다. 그리고 이런 혁신이 가져올 수 있는 성과로 ▲고품질의 현실감 있는 3D 모델을 활용한 디자인과 프로토타이핑 과정의 간소화 ▲복잡한 3D 애셋과 설계 파일의 효율적인 최적화 및 생산 일정과 비용의 절감 ▲현실감 있는 시뮬레이션을 통해 위험도가 높은 산업군의 직원 교육의 빠르고 안전하며 효과적인 진행 ▲마케팅부터 판매까지 전 과정에서 인터랙티브 제품 구성 도구와 가상 경험으로 고객 전환율 향상 ▲모든 고객 접점에서 인터랙티브한 3D 경험을 적용해 참여도 향상 및 브랜드 차별화 실현 등을 소개했다.   ▲ 산업 분야에서 유니티의 혁신 성과   “몰입형 혁신은 리얼타임 3D를 기반으로 실현할 수 있다”고 짚은 민경준 본부장은 “연결(Connect), 개발(Create), 배포(Deploy) 등 세 가지 핵심 기능을 중심으로 하는 유니티의 산업용 설루션은 뛰어난 시각적 인터페이스를 제공하며, 많은 기업이 유니티를 활용하여 VR, AR, XR 애플리케이션, 제조 환경의 디지털 트윈, 고품질 프로덕트 컨피규레이터 등 다양한 핵심 애플리케이션을 개발하고 있다”고 전했다. 유니티는 차량용 인포테인먼트 시스템, 디지털 클러스터, 몰입형 UX(사용자 경험) 기반의 계기판, 디지털 미디어 시스템 등이 유니티로 제작되고 있다고 소개했다. 또한 현대자동차는 유니티 기반의 디지털 트윈 기술을 물류 및 스마트 공장 프로젝트에 적용하고 있으며, LG전자는 차량용 HMI 시스템을 유니티 기반으로 개발 중이다. 산업 분야의 데이터 활용에 대해 스미스 수석 부사장은 ‘애셋 매니저(Asset Manager)’라는 클라우드 기반 툴을 통해 다양한 산업용 데이터를 워크플로에 통합할 수 있도록 지원한다. 애셋 매니저는 데이터를 시각적으로 프리뷰하는 한편, 성능을 떨어뜨리지 않고 유니티 엔진에 적합한 형태로 변환할 수 있다. 이외에도 산업 시장을 위해 꾸준한 기술 개선 및 실무에 바로 적용 가능한 설루션을 선보일 것”이라고 밝혔다.       ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
[기업탐방] DX Accelerator 디엑셀, 지능형 공장 서비스로 제조업을 바꾸다
고객맞춤 제조 IT시스템 솔루션 코디네이션 전문기업 지능형 공장 서비스·DX Accelerator, 디엑셀   디지털 기술의 발전으로 글로벌 제조업계는 더 높은 효율성, 맞춤 생산, 그리고 지속 가능성 확대를 위한 혁신기술 개발에 대한 니즈를 키우고 있다. 이러한 트렌드에 맞춘 디지털 기술과 로보틱스를 활용한 제조 시스템이 구현되고 있으며, 개인화·맞춤화를 위한 기능과 프로세스의 진화 속도도 빨라지고 있다. 본지에서는 지능형 공장 서비스와 고객이 필요한 솔루션을 활용하여 기업의 시스템을 코디네이션 하는 ‘디엑셀(DXel, www.dxel.co.kr)을 만났다.   ▲ 디엑셀 김남웅 대표       고객이 필요로 하는 솔루션을 찾아주는 기업 2022년 4월 설립된 디엑셀은 회사명에서도 알 수 있듯 산업계의 디지털 전환을 돕는 ’Digital Transformation Accelerator‘ 기업이다. “당사는 고객이 필요한 솔루션을 코디네이션 하는 제조 시스템 전문기업”이라고 소개하는 김남웅 대표는 “당사 가장 큰 경쟁력은 20여 년간 다양한 산업별 제조 현장을 경험한 전문적인 노하우를 가지고 기업 맞춤 제조 서비스를 제공하고 있는 임직원”이라고 소개하며, 검증된 솔루션을 통해 고객의 업무 효율성을 높이고, 제조산업 시스템의 혁신을 이루고 있다고 부연했다. 2~3년 전의 제조 IT시스템은 생산량, 업무감시, 원가절감 등 관리직 위주로 구축되었다. 그러나 생산성 향상과 품질력 제고에 직접적으로 성과를 내기 위해서는 좀 더 직관적이고, 직원 참여가 가능한 시스템을 구축해야 한다. 이러한 환경 변화에 맞춰 디엑셀은 직원의 감시보다 직원의 참여를 확대할 수 있는 시스템, 제조 현장에 맞춘 MES와 UWB 기반의 실시간 제품 위치 추적시스템을 사업의 모토로 창업하게 되었다. “과거 제조 IT시스템이 ‘관리적 관점’에서 구축되었다면, 이제는 사람을 중심으로 사회적 가치까지 창출할 수 있는 역할로 확대되고 있다”라고 말하는 디엑셀 김남웅 대표는 “우리는 전 직원이 참여할 수 있는 ‘지속 가능한 실천적 제조 IT시스템’을 구축하고 있다”라고 소개한다. 제조산업에 특화된 스마트 플랫폼 서비스 제공 디엑셀은 제조산업에 특화된 스마트 플랫폼을 통해 제조 현장 시스템 개발, UI/UX 프로비저닝 및 대시보드를 구현하기 위한 다양한 레어어를 제공하고 있다. 이 회사 솔루션의 핵심적인 기능인 기준정보 구축과 환경정보 및 시스템을 컨트롤하는 파운데이션 레이어, 제조현장시스템인 공정 정보와 Lot 정보, BOM 정보 등 프로세스 전반을 관할하는 시스템인 프로세스 레이어가 있다. 이와 더불어 사용자 데이터 수집 및 편의성을 제공하는 UI/UX 오퍼레이션 레이어와 수집된 데이터를 각종 디바이스를 통해 사용자에게 제공하는 디스플레이 레이어를 통해 최적의 제조시스템을 제공하고 있다.  디엑셀 김남웅 대표는 “이러한 기술력을 토대로 스마트한 공장 운용을 위한 ‘디지털팩토리 서비스’, 협력사/딜러사 등의 파트너사들과의 ‘디지털 협업공장 공급망 벨류체인 서비스’, 그리고 초광대역통신(Ultra-Wideband, UWB) 기술을 활용한 ‘실시간 고정밀 측위 관리 서비스’ 등 3가지 영역에서 솔루션 코디네이션 서비스를 제공하고 있다”라고 부연했다.   (1) 디지털 팩토리 서비스 이중 디지털 팩토리는 다양한 설비 및 공장 내 장치와의 인터페이스를 통한 실시간 데이터 수집 및 모니터링을 적용하여 디지털 생산 공정 정보를 제공하고 있다. 휴먼 에러를 원천 차단하고, 품질 결과를 학습하여 피드백함으로써 선제 예방 품질 역량을 강화하고 있다. 또한 핵심 생산 및 유관 정보를 표준화하고 디지털화하여, 모든 제조 현장의 데이터 연계로 통합적인 디지털 관리를 실현하고 있다. 특히 생산 현장 정보의 디지털화와 실시간 가시성 확보로 경영 목표 관점의 새로운 영감을 제시하고 있으며, 데이터 분석 기반의 생산 및 품질을 위한 최적화된 제조 운영과 QCD 즉 품질, 원가, 납기의 가치를 극대화하여 최고의 생산 능력을 창출할 기회를 제공하고 있다. (2) 디지털 협업공장 공급망 벨류체인 서비스 디엑셀의 또 다른 서비스는 협력사와 제조 현장, 판매딜러 간의 공급망 디지털 협업공장을 구축하여 클라우드를 기반으로 고객사와 협력사, 그리고 판매딜러의 실시간 재고 데이터를 SaaS(서비스형 소프트웨어) 형태의 애플리케이션으로 제공하는 서비스이다. 이를 통해 고객의 주문을 받은 판매딜러는 제조 공장의 재고 수량 및 위치 데이터를, 제조 공장은 협력사의 재고 수량 및 위치 데이터를 실시간으로 확인할 수 있다. 이는 결과적으로, 불필요한 발주와 재고를 현저히 줄여 원가절감 및 협력사와의 상생을 도모할 수 있다. 이를 기반으로 디엑셀의 시스템은 고객사의 생산계획과 입고 검사, 공정관리를 지원하여 생산실적을 더욱 극대화해하고 있으며, 협력사에는 생산관리, 출하관리, 품질관리의 혁신을 이루어 나가고 있다.  (3) 실시간 고정밀 측위 관리 서비스 차세대 무선 통신 기술인 UWB의 정확한 위치감지 기술은 디지털 공장을 구축하는 데 많은 도움이 된다. 디엑셀의 스마트팩토리 고정밀 측위 관리 솔루션은 국제적인 첨단 UWB 기술을 바탕으로 제조현장의 제품, 부품 및 차량 등의 움직임을 센티미터 수준의 고정밀 측위 서비스로 제공한다. 0차원 존재 감지, 1차원 선형 궤적 측위 및 2차원 지역 평면 측위를 통합한 다차원 측위 모드를 채택하여 사람, 차량, 사물의 실시간 위치를 정확하게 파악할 수 있다. 이러한 기술은 궤적 추적, 작업 시간 통계, 면적 수, 전자 울타리 및 기타 서비스 기능과 결합하여 제조 운영의 효율성을 높이고 공장의 자재 관리 개선, 원가절감 및 공정 흐름 최적화를 제공한다. 김남웅 대표는 “위치 관리시스템과 결합된 저희 솔루션은 스마트팩토리의 관리 수준을 한 단계 높였다고 자부할 수 있다”라고 덧붙였다.  AI 제조 분야 앵커기업으로 부상 최근 디엑셀은 AI 자율제조 선도프로젝트의 일환으로 농기계 다품종 유연생산을 위한 AI 자율제조 국책과제의 공동연구기관으로 선정되어 참여하고 있다. 디엑셀의 실시간 고정밀 측위 관리 기술이 성공적인 AI 자율제조 실현에 필수적인 핵심기술임을 인정받았기 때문이다. “당사는 전라북도 농기계 산업 및 동종업계의 AI 자율제조 선도 표준모델을 구축하는데 무거운 책임감과 사명감을 느끼고 있다”라고 말하는 이 회사 김남웅 대표는 “디엑셀이 보유한 기술을 더욱 강화하고 발전시켜 AI 자율제조 분야의 앵커기업으로 성장하고자 한다”라고 프로젝트 참여에 대한 포부를 밝혔다. 사람이 기업 성장의 답 “아무리 기술이 뛰어나도 그 기술을 용도와 상황, 목적과 요구에 맞게 구현해 낼 사람이 없다면 그 기술은 가지고 있는 능력을 발휘할 수 없다”라고 말하는 디엑셀 김남웅 대표는 “앞서 소개한 바와 같이 우리의 가장 큰 장점은 고객이 요구하는 디지털 전환의 미션을 제대로 수행하기 위해 20년 넘게 많은 산업별 제조환경을 경험한 전문가들이 각자의 노하우를 기반으로 기업 맞춤 제조 서비스를 제공하며, 검증된 솔루션을 통해 업무 효율과 고객 서비스의 혁신을 높인다는 것”이라며, “특히 고객의 니즈를 먼저 파악하고, 선제적으로 솔루션을 제안할 수 있도록 임직원의 역량을 지속적으로 강화하고 있다”라고 부연했다. 이는 디엑셀이 인재 양성에 집중하고 우수한 경험을 가진 전문가를 끊임없이 발굴해 오는 이유기도 하다.  디지털과 인간이 상생하는 시스템을 만들다! 디엑셀은 제조물류산업의 다양한 고객을 만족시키기 위해 유연한 비즈니스 플랫폼을 선보이고 있다. 현재는 제조분야에서 전문역량을 발휘하고 있지만, 디지털 전환이 전 산업에서 일어나듯이 이 회사가 가진 지능형공장 서비스와 위치관리 기술 기반의 혁신 솔루션은 전 산업에 적용될 수 있다.  오늘보다 나은 내일을 꿈꾼다는 김남웅 대표는 “제조 현장에 특화된 디지털팩토리와 더불어 UWB 측위 기술을 기반으로 개발된 실내외 무선 위치 추적 장치, 이 두 개의 솔루션을 융합한 위치관리 기반 디지털팩토리 솔루션을 제공하여 시스템 인프라가 약한 중소기업, 관리의 단계를 높여야 하는 대기업들의 애로를 해결해 주는 것이 우리의 역할”이라며, “우리는 앞으로도 우리나라 산업의 디지털 역량 강화를 넘어 국가 기술 경쟁력 제고에 기여하고, 디지털과 인간이 상생하는 시스템, 새로운 기술이 인정받는 변화된 세상에서 저의 기술이 고객의 성공적인 비즈니스가 되도록 최선을 다하겠다”라고 덧붙였다.
작성일 : 2025-04-30
엔비디아, 기업 생산성 강화하는 ‘네모 마이크로서비스’ 정식 출시
엔비디아가 에이전트 기반 AI 플랫폼 개발을 가속화하고 기업의 생산성을 높이는 ‘엔비디아 네모 마이크로서비스(NVIDIA NeMo microservices)’를 정식 출시했다고 밝혔다. 이번에 정식 출시된 엔비디아 네모 마이크로서비스는 기업 IT 부서가 데이터 플라이휠(flywheel)을 활용해 직원 생산성을 높일 수 있는 AI 팀원을 빠르게 구축하도록 지원한다. 이 마이크로서비스는 엔드 투 엔드 개발자 플랫폼을 제공한다. 이 플랫폼은 최첨단 에이전틱 AI(Agentic AI) 시스템의 개발을 가능하게 하고, 추론 결과, 비즈니스 데이터, 사용자 선호도에 기반한 데이터 플라이휠을 통해 지속적인 최적화를 지원한다. 데이터 플라이휠을 통해 기업 IT 부서는 AI 에이전트를 디지털 팀원으로 온보딩할 수 있다. 이러한 에이전트는 사용자 상호작용과 AI 추론 과정에서 생성된 데이터를 활용해 모델 성능을 지속적으로 개선할 수 있다. 이를 통해 ‘사용’을 ‘인사이트’로, ‘인사이트’를 ‘실행’으로 전환할 수 있다.     데이터베이스, 사용자 상호작용, 현실 세계의 신호 등의 고품질 입력이 지속적으로 제공되지 않으면 에이전트의 이해력은 약화된다. 그 결과, 응답의 신뢰성은 떨어지고 에이전트의 생산성도 저하될 수 있다. 운영 환경에서 AI 에이전트를 구동하는 모델을 유지하고 개선하기 위해서는 세 가지 유형의 데이터가 필요하다. 인사이트를 수집하고 변화하는 데이터 패턴에 적응하기 위한 추론 데이터, 인텔리전스를 제공하기 위한 최신 비즈니스 데이터, 모델과 애플리케이션이 예상대로 작동하는지를 판단하기 위한 사용자 피드백 데이터가 그것이다. 네모 마이크로서비스는 개발자가 이 세 가지 유형의 데이터를 효율적으로 활용할 수 있도록 지원한다. 또한, 네모 마이크로서비스는 에이전트를 구동하는 모델을 선별하고, 맞춤화하며, 평가하고, 안전장치를 적용하는 데 필요한 엔드 투 엔드 툴을 제공함으로써 AI 에이전트 개발 속도를 높인다. 엔비디아 네모 마이크로서비스는 ▲대규모 언어 모델(LLM) 미세 조정을 가속화해 최대 1.8배 높은 훈련 처리량을 제공하는 네모 커스터마이저(Customizer) ▲개인과 산업 벤치마크에서 AI 모델과 워크플로의 평가를 단 5번의 API 호출로 간소화하는 네모 이밸류에이터(Evaluator) ▲ 0.5초의 추가 지연 시간만으로 규정 준수 보호 기능을 최대 1.4배까지 향상시키는 네모 가드레일(Guardrails)을 포함한다. 이는 네모 리트리버(Retreiver), 네모 큐레이터(Curator)와 함께 사용돼, 맞춤형 엔터프라이즈 데이터 플라이휠을 통해 AI 에이전트를 구축하고, 최적화하며, 확장하는 과정을 기업이 보다 수월하게 수행할 수 있도록 지원한다. 개발자는 네모 마이크로서비스를 통해 AI 에이전트의 정확성과 효율성을 높이는 데이터 플라이휠을 구축할 수 있다. 엔비디아 AI 엔터프라이즈(Enterprise) 소프트웨어 플랫폼을 통해 배포되는 네모 마이크로서비스는 온프레미스 또는 클라우드의 모든 가속 컴퓨팅 인프라에서 엔터프라이즈급 보안, 안정성, 지원과 함께 손쉽게 운영할 수 있다. 이 마이크로서비스는 기업들이 수백 개의 전문화된 에이전트를 협업시키는 대규모 멀티 에이전트 시스템을 구축하고 있는 현재 정식 출시됐다. 각 에이전트는 고유의 목표와 워크플로를 가지고 있으며, 디지털 팀원으로서 복잡한 업무를 함께 해결하며 직원들의 업무를 보조하고, 강화하며, 가속화한다. 엔비디아 네모 마이크로서비스로 구축된 데이터 플라이휠은 사람의 개입을 최소화하고 자율성을 극대화하면서 데이터를 지속적으로 선별하고, 모델을 재훈련하며, 성능을 평가한다. 네모 마이크로서비스는 라마(Llama), 마이크로소프트 파이(Microsoft Phi) 소형 언어 모델 제품군, 구글 젬마(Google Gemma), 미스트랄 등 폭넓은 인기 오픈 모델을 지원한다. 또한, 기업은 엔비디아 가속 인프라, 네트워킹, 그리고 시스코, 델, HPE, 레노버(Lenovo) 등 주요 시스템 제공업체의 소프트웨어를 기반으로 AI 에이전트를 실행할 수 있다. 액센츄어(Accenture), 딜로이트(Deloitte), EY를 비롯한 거대 컨설팅 기업들 역시 네모 마이크로서비스를 기반으로 기업용 AI 에이전트 플랫폼을 구축하고 있다.
작성일 : 2025-04-25
유니티, ‘유나이트 서울 2025’에서 엔진 로드맵, 성과, 전략 소개
유니티는 글로벌 개발자 콘퍼런스인 ‘유나이트 서울 2025’를 4월 15일 코엑스에서 진행했다. 이번 ‘유나이트 서울 2025’에서는 국내외 유니티 전문가들이 선보이는 다양한 사례 중심의 기술 세션과 최신 유니티 소식, 엔진 로드맵 등을 공유하는 자리가 마련됐다. 또한 다양한 산업 영역에 적용되는 유니티 활용 사례, 개발 노하우 등 실무에 도움이 될 만한 정보가 소개됐다. 이번 행사는 유니티 코리아 송민석 대표이사의 환영사를 시작으로 유니티의 맷 브롬버그(Matt Bromberg) CEO 겸 사장이 안정성, 성능, 크로스 플랫폼 지원에 대한 유니티의 의지를 담은 개회사를 전했다.     이어 유니티의 애덤 스미스(Adam Smith) 엔진 부문 프로덕트 수석부사장은 개발자의 피드백을 적극 반영하고 프로덕션 테스트 환경을 거친 ‘유니티 6(Unity 6)’의 주요 업데이트 로드맵을 공개했다. 유니티의 샘 로치(Sam Roach) 파트너 엔지니어링 디렉터는 4월 말 출시 예정인 유니티 6.1로 제작된 최신 리얼타임 데모 ‘판타지 킹덤’을 시연하며 유니티의 발전된 성능을 선보였다. '데이브 더 다이버'를 개발한 민트로켓의 황재호 대표는 유니티 엔진에 대한 견해와 유니티 6로 전환한 경험을 소개했다. ‘데이브 더 다이버’는 APV(Adaptive Probe Volume)를 통한 조명 워크플로 간소화, 프로젝트 오디터(Project Auditor)를 통한 성능 병목 구간 파악 등 유니티 6의 최신 기술을 통한 지속적인 개발 프로세스 최적화를 진행해왔는데, 황재호 대표는 개발 초창기부터 지금까지 효율적인 개발을 위해 유니티 엔진을 사용해온 경험을 소개했다.   유니티의 민경준 인더스트리 사업 본부장은 자동차, 제조/건설, 커머스, 의료 등 다양한 산업에서 활용되는 유니티 사례와 3D 콘텐츠를 바탕으로 한 인터랙티브 경험의 효과 등에 대해 소개했다. 그리고,  LG전자 CTO 소속 최재복 리드는 유니티를 기반으로 차량용 3D HMI(휴먼-머신 인터페이스) 설루션을 개발한 사례를 발표했다. 유니티의 트레버 캠벨(Trevor Campbell) APAC 디맨드 광고 사업부 총괄은 앱 비즈니스 성장을 지원하기 위한 유니티 그로우 설루션 및 경쟁력에 대해 소개했다.     한편, 이번 유나이트 서울 2025에서는 유니티 기반 게임 프로젝트의 포스트모템 세션, 글로벌 업계 리더와 함께 성공적인 비즈니스 성장 전략을 나누는 ‘그로우 트랙(Grow Track)’ 세션, 다양한 데모 존 및 유니티로 제작한 인디 게임을 참관객에게 선보일 수 있는 ‘메이드 위드 유니티(Made With Unity) 존’, 유니티 전문가에게 실습 기반 피드백을 받을 수 있는 ‘핸즈온 트레이닝’ 등 다양한 프로그램이 진행됐다. 유니티는 ‘유나이트 서울 2025’의 키노트를 유니티 코리아 유튜브 채널을 통해 생중계했으며, 주요 세션은 5월 중 유니티 공식 유튜브 채널을 통해서 제공할 예정이다.
작성일 : 2025-04-15
AWS, 아마존 Q 디벨로퍼 한국어 지원 확장
아마존웹서비스(AWS)는 아마존 Q 디벨로퍼(Amazon Q Developer)의 언어 지원 확장을 발표했다. 이를 통해 국내 개발자들은 한국어를 활용하여 아마존 Q 디벨로퍼 내에서 아키텍처 논의, 문서 작성, 인터페이스 설계, 애플리케이션 구축 등 다양한 개발 업무를 수행할 수 있게 됐다. 아마존 Q 디벨로퍼는 개발자가 사용하는 언어로 코드를 이해하고 문서를 작성하며, 인터페이스를 설계할 수 있도록 돕는 생성형 AI 기반 어시스턴트이다. 또한 코드에 대한 실시간 피드백을 제공하여 단순한 위험 요소 식별을 넘어 문제의 원인을 명확히 설명하고 해결 방안을 제시함으로써 반복적인 개발 작업을 신속하게 수행할 수 있도록 돕는다. 이를 통해 개발자는 보다 안전하고 신뢰할 수 있는 코드를 효율적으로 구현할 수 있으며, 다양한 개발 업무에서 생산성과 품질을 동시에 향상시킬 수 있다. 이번 한국어 지원 확장을 통해 아마존 Q 디벨로퍼는 개발자들이 한국어를 포함한 다양한 언어로 복잡한 기술 개념에 대해 보다 원활하게 자신이 선호하는 언어로 대화할 수 있도록 지원한다. 특히 이번 언어 지원 확장은 개발자들이 반복적이고 수동적인 작업에 소비하는 시간을 줄이고, 보다 창의적인 문제 해결에 집중할 수 있는 환경을 제공한다. AI 에이전트와 자연어 인터페이스가 결합되며 보다 직관적인 개발 경험이 가능해짐에 따라, 개발자들은 대규모 기술 현대화와 같이 기존에는 실행이 어려웠던 작업에도 적극적으로 대응할 수 있게 된다. 이는 개발자가 문제를 인식하고 해결하는 방식에 근본적인 변화를 가져오고 있으며, 복잡한 업무를 보다 효율적이고 전략적으로 수행할 수 있도록 돕는다. 예를 들어, 영어 등 다른 언어로 작성된 소스코드나 주석을 이해해야 하는 상황에서 아마존 Q 디벨로퍼가 유용하게 쓰일 수 있다. 개발자들은 모국어가 아닌 영어로 작성된 코드나 주석에 대해 한국어로 아마존 Q 디벨로퍼에게 질문하고 설명을 요청할 수 있으며, 아마존 Q 디벨로퍼는 이를 한국어로 명확하게 설명 가능하다. 이러한 기능은 영어나 다른 언어로 된 코드를 이해하는 데 있어 언어 장벽을 낮추고, 글로벌 개발 환경에서의 코드 이해도를 효과적으로 높이는 데 기여한다. 국내 기업은 이번 언어 지원 확장을 통해 해외 기업과의 협업에서 커뮤니케이션 효율을 높이고, 업무 생산성을 실질적으로 향상시킬 수 있다. 또한 다양한 언어를 사용하는 글로벌 팀 간 협업을 보다 포용적이고 효과적으로 만들고 글로벌 개발 환경을 강화할 수 있다. 확장된 언어 기능은 통합 개발 환경(IDE)과 커맨드라인 인터페이스(CLI)에서 즉시 이용 가능하며, 향후 AWS 매니지먼트 콘솔(AWS Management Console)에서도 지원될 예정이다. 또한 프리(Free) 및 프로(Pro) 요금제 사용자 모두에게 확장된 언어가 제공된다.
작성일 : 2025-04-14
어도비 프리미어 프로, AI로 푸티지 생성, 편집, 검색 속도 향상
어도비가 AI를 활용해 영상 및 오디오 클립을 즉시 생성하고 길이를 확장할 수 있는 프리미어 프로(Premiere Pro)의 생성형 확장(Generative Extend)과 테라바이트급 푸티지에서 특정 클립을 몇 초 만에 빠르게 찾아내는 AI 구동 미디어 인텔리전스(Media Intelligence)를 출시했다. 상업적으로 안전하게 사용할 수 있는 파이어플라이 비디오 모델로 구동되는 생성형 확장을 통해 편집자는 4K 및 가로, 세로형 영상, 오디오 클립과 함께 길이를 조절할 수 있어, 푸티지 내 부족한 부분을 채우는 방식을 혁신적으로 개선할 수 있다. 또한 애프터 이펙트(After Effects)는 향상된 성능과 3D 도구를 제공하며, 프레임닷아이오(Frame.io)는 저장, 대본, 다양한 문서 형식을 지원하도록 업그레이드됐다. 이번에 공개된 생성형 확장과 미디어 인텔리전스는 어도비 크리에이티브 커뮤니티에서 높은 기대를 모은 영상 역량으로, 수년간의 연구와 베타 고객의 피드백을 거쳐 정식 출시됐다. 또한 프리미어 프로에 다국어 캡션 생성을 자동화하는 AI 구동 캡션 번역(Caption Translation) 기능도 새롭게 추가되어, 영상 전문가들이 전 세계 시청자들과 더 손쉽게 소통할 수 있도록 지원한다. 뿐만 아니라, 카메라로 촬영한 RAW 영상 및 로그(LOG) 푸티지를 프리미어로 가져오는 즉시 해당 클립을 HDR 또는 SDR로 자동 변환해, 색 보정 작업의 정확도를 높이는 프리미어 색상 관리(Premiere Color Management)도 정식 출시됐다. 프리미어 프로의 전반적인 성능 향상과 더불어, 이러한 신규 기능들은 편집 작업을 더욱 빠르고 효율적으로 만들어준다.     4K 및 세로형 영상을 지원하는 생성형 확장 정식 출시로, 영상 편집 시 종종 발생하는 짧은 클립으로 인한 편집 문제를 쉽게 해결할 수 있다. 전문 편집 툴인 생성형 확장 기능은 클립의 길이를 늘려 푸티지의 영상 또는 오디오 공백을 채우고 장면 전환을 매끄럽게 하며 샷을 길게 유지해 완벽한 타이밍의 편집을 가능케한다. 클릭 및 드래그만으로 사실적인 영상과 오디오를 확장할 수 있어, 품질 저하 없이 타임라인을 유연하게 조정할 수 있다. 또한 세로형 영상도 지원해, 편집자는 별도의 프레임 재조정 없이 소셜미디어에 최적화된 콘텐츠를 쉽게 제작하고 내보낼 수 있다. 생성형 확장은 상업적으로 안전한 파이어플라이 비디오 모델로 구동된다. AI 생성 콘텐츠에 대한 투명성을 높이고자, 생성형 확장으로 제작된 콘텐츠 결과물에는 디지털 미디어의 '영양 성분 표시'와 같은 역할을 하는 콘텐츠 자격증명(Content Credentials)이 첨부된다. 프리미어 프로 및 애프터 이펙트 업그레이드를 통해 영화 제작자는 몇 초 내로 테라바이트 크기의 푸티지를 검색하고 시각 효과 및 모션 그래픽 워크플로를 간소화할 수 있게 됐다. 프리미어 프로의 AI 구동 미디어 인텔리전스 기능은 편집자가 프로젝트 푸티지를 다루는 방식을 근본적으로 바꾸고 시간을 절약한다. 번거로운 수동 검색을 대신해 미디어 인텔리전스는 개체, 위치, 카메라 각도, 촬영 날짜, 카메라 유형 등 메타데이터를 포함한 클립 콘텐츠를 자동 인식해 편집자가 필요할 때 원하는 장면을 찾을 수 있도록 돕는다.  프리미어 프로의 AI 구동 캡션 번역(Caption Translation)은 몇 초 만에 캡션을 27개 언어로 번역할 수 있는 기능으로, 수동 번역으로 인해 속도가 느려지고 워크플로가 중단되거나 비용이 추가되는 상황을 개선한다. 또한 프리미어 프로는 새로운 컬러 시스템을 제공해, 기존 대비 더 높은 정확도와 일관된 색상을 구현하고 거의 모든 카메라의 로그 영상을 HDR및 SDR 콘텐츠로 자동 변환한다. 이를 통해 편집자는 푸티지 편집 작업을 빠르게 시작하고 완벽한 피부 톤, 보다 생생한 색상, 향상된 다이내믹 레인지(Dynamic Range)로 어느 때보다 쉽게 멋진 영상을 제작할 수 있다. 애프터 이펙트는 고성능 미리보기 재생(High-Performance Preview Playback)을 통해 모든 컴퓨터에서 전체 컴포지션을 어느 때보다 빠르게 재생할 수 있게 됐고, 애니메이션 환경 조명(Animated Environment Light) 등 확장된 3D 툴로 보다 빠르고 사실적인 3D 합성을 지원한다. 애프터 이펙트의 HDR 모니터링(HDR Monitoring) 기능은 HDR 콘텐츠를 정확하게 재생하고 작업함으로써 더욱 밝고 생동감 있는 모션 디자인 작업을 할 수 있다. 크리에이티브 팀에 따라 조정할 수 있는 프레임닷아이오 V4의 확장된 스토리지는 다양한 클라우드 플랫폼에 파일을 저장해, 워크플로 분절 없이 방대한 양의 미디어를 한곳에서 협업할 수 있도록 지원한다. 많은 크리에이티브 팀이 대규모 콘텐츠 제작과 빠르게 증가하는 수요에 대응하는 데 어려움을 겪고 있는 가운데, 프레임닷아이오 V4는 스크립트, 촬영지 사진, 원본 미디어 등 모든 것을 단일 플랫폼에서 저장, 관리, 협업 및 배포할 수 있도록 돕는다. 프레임닷아이오에는 스크립트, 브리핑 문서, 예산, 제안서, 장면 세부 묘사, 스토리보드 및 기타 제작 자료에 대한 협업을 지원하는 확장된 텍스트 문서 검토 툴(Expanded text document review tools), 영상 및 오디오 파일을 빠르게 텍스트로 변환할 수 있는 대본 생성(Transcription generation, 베타), 편집 중인 콘텐츠를 보호할 수 있도록 영상, 이미지 및 문서에 적용 가능한 맞춤형 텍스트 워터마크, 대규모 팀의 사용자 그룹 관리자가 워크스페이스 및 프로젝트 전반에서 대량 사용자 접근 권한을 자동화할 수 있는 접근 허용 그룹(Access Groups, 베타) 등의 기능이 제공된다. 이 밖에도 어도비는 고성능 미리보기 재생 엔진, 강력한 신규 3D 모션 디자인 툴, HDR 모니터링 등 애프터 이펙트의 신규 기능도 공개했다. 또한 프레임닷아이오 V4 업그레이드에는 팀 단위로 사용 가능한 확장 스토리지가 포함돼, 워크플로 단절 없이 편집 중인 작업물과 완성된 애셋을 자유롭게 공유하고, 관리, 정리할 수 있도록 지원한다. 어도비의 애슐리 스틸(Ashley Still) 디지털 미디어 부문 총괄 겸 수석 부사장은 “4K에서 가능한 생성형 확장 기능과 AI 구동 미디어 인텔리전스를 활용해, 프리미어 프로 이용자들이 어떤 상상력을 자극하는 다채로운 영상을 만들어낼지 기대된다”면서, “파이어플라이의 강력한 성능과 어도비의 첨단 AI 역량을 통해 영상 편집의 새 지평을 열고 있으며, 이용자들이 가장 중요한 일, 즉 생동감 있고 매력적인 스토리텔링에 온전히 집중할 수 있도록 돕고 있다”고 말했다.
작성일 : 2025-04-04
2024년 중소기업 정보화수준조사 결과 보고서
조사 개요  1.    조사 배경 ······················································································· 3 2.    조사 목적 및 필요성 ····································································· 4 3.    조사 프로세스 ················································································ 6 4.    기대 효과 ······················································································· 7 5.    조사 체계 ······················································································· 8 조사 결과 ············ 1.    정보화 추진의지 및 계획 ····································· 27 1)    정보화 관심도 ·············································································· 27 2)    정보화 추진계획 수립 정도 ························································· 29 3)    정보화 투자 타당성 분석 실시 여부 ·········································· 30 2.    정보화 추진현황 ··················································· 31 1)    정보화 투자비 ·············································································· 31 2)    정보화 교육 실시 여부 ······························································· 32 3)    가장 필요로 하는 정보화 교육 ··················································· 34 4)    정보화 담당 인력 ········································································ 36 5)    정보화 추진을 위한 업무혁신 수준 ············································ 38 6)    정보보안 계획 수립ž실행 여부 ···················································· 39 7)    통합 보안 시스템 보유 여부 ······················································· 40 8)    정보보안 인식 및 시스템 수준 ··················································· 41 9)    정보시스템 사후관리ž유지보수 수준 ··········································· 44 3.    정보화시스템 구축 및 활용 현황 ························ 47 1)    모바일 오피스 이용 여부 ···························································· 47 2)    모바일 오피스 확대 계획 여부 ··················································· 48 3)    영상 회의 시스템 활용 수준 ······················································· 49 4)    오피스용 협업툴 활용 수준 ························································· 50 5)    클라우드 서비스 이용 여부 ························································· 51 6)    클라우드 PC 활용 수준 ······························································ 52 7)    고객 요구사항 및 피드백 대응 수준 ·········································· 53 8)    부문별 데이터 수집 및 관리 수준 ·············································· 54 9)    데이터 공유 및 통합관리 수준 ··················································· 55 10)    정보화 업무 아웃소싱 여부 ······················································ 56 11)    업무별 정보시스템 구축ž활용 여부 ··········································· 59 12)    이용하는 SNS 서비스 ······························································· 61     본 조사 결과는 스마트공장 사업관리시스템 홈페이지(smart-factory.kr)에서 확인할 수 있으며,기타 조사 및 통계집의 내용에 관한 문의는 중소기업기술정보진흥원 스마트제조혁신추진단(044-300-0905)으로 연락주시기 바랍니다. 등록일 : 2024-12-27 132페이지 출처 : 스마트제조혁신추진단
작성일 : 2025-04-03
로보톰, 한국건설기술연구원 스마트 건설기술 실·검증 연구 지원사업 선정
AIoT 기반의 로보틱스 주거 설루션 기업인 로보톰은 한국건설기술연구원(이하 건설연)이 주관하는 ‘2025 스마트 건설기술 실⋅검증 연구지원사업’에 최종 선정됐다고 밝혔다. 이번 선정으로 로보톰은 ‘로보틱스 주거 구현을 위한 RA-BIM 최적화 기술 개발’ 과제를 통해 미래형 스마트 주거 환경 구현에 속도를 낼 계획이다.  ‘스마트 건설기술 실검증 연구지원사업’ 은 창의적 아이디어와 기술 역량을 보유한 스타트업과 전문 연구팀 간 1:1 매칭을 통해, 실험실 수준의 기술을 실제 주거·건설 환경에 검증하고 상용화 가능성을 높이기 위한 사업이다. 이번 선정으로 로보톰과 건설연이 공동 개발하는 RA-BIM(Roboterior Automated Building Information Modeling) 시스템은 공간 치수 자동 변환 모델링과 규칙 기반 자동 설계 검토 알고리즘을 기반으로, 로보틱스 인테리어 ‘로보테리어’의 효율적인 배치와 공간 최적화를 자동으로 수행하는 기술이다. 이 시스템은 공간 측정, 제품 배치, 설계 검토 등 복잡한 작업을 자동화해 공간 설계 소요 시간을 80% 이상 단축하고, 기존 설계 방식 대비 비용은 70%, 오류율은 20% 이상 줄이는 것을 목표로 한다. 로보톰은 “시각화된 인터페이스(UI)를 통해 사용자가 직접 맞춤형 공간 구성을 선택할 수 있어, 공간 설계의 접근성과 사용자 만족도를 높일 수 있을 것”으로 기대하고 있다. 로보톰은 실험실 단계를 넘어 실제 현장에서도 기술의 유효성을 검증할 계획이며, RA-BIM 기반 스마트 주거 시스템을 적용하며 전시 및 실거주 테스트를 병행하고, 사용자 피드백을 반영한 반복 개선을 통해 기술의 완성도를 높일 계획이다. 건설연 스마트건설지원센터의 한재구 센터장은 “스마트건설지원센터는 유망한 스마트 건설 기업의 발돋움을 위해 실검증 지원 사업을 추진 중에 있으며, 로보톰이 보유한 로보테리어 설루션이 이번 사업을 통해 그 가치를 제대로 증명 받을 수 있기를 기대한다”고 밝혔다. 로보톰의 윤세용 대표는 “로보톰은 AIoT와 로보틱스 기술을 융합하는 로보틱스 전문가와 이를 주거 공간에 구현할 수 있는 건축 전문가로 구성된 팀이다. 이번 건설연과의 공동 연구를 통해 로보톰의 핵심 기술력을 한층 더 고도화하고 로보테리어의 확산에  박차를 가할 것”이라고 말했다.
작성일 : 2025-04-03
가상 제품 개발에 적용하기 위한 MBD와 CAE의 차이 및 협업
제품 개발 프로세스의 변화를 이끄는 MBD   MBD(모델 기반 개발)는 자동차 업계에서 화제가 되고 있는 가상 시뮬레이션이다. 기존의 방식보다 비용 절감과 개발 공정의 단축을 실현할 수 있다. MBD는 자동차 업계를 중심으로 제조 현장에서 주목을 받고 있는 개발 방법이다. 이번 호에서는 MBD의 정의, MBD의 중요성 및 CAE와의 차이, MBD의 장점과 단점을 설명한다.    ■ 오재응 LG전자 기술고문, 한양대학교 명예교수   MBD는 ‘모델 기반 개발’ MBD(Model Based Development)는 컴퓨터에 현실과 동일한 모델을 만들고 개발 및 검증하는 방법이다. 가상 시뮬레이션에 의해 개발의 효율화를 실현할 수 있다. 종래의 개발이나 검증에서는 종이의 사양서를 확인하면서 설계하고 완성 후에 사양서를 보면서 검증하는 사이클이었지만, MBD는 매트랩(MATLAB), 시뮬링크(Simulink) 등의 소프트웨어를 사용해 컴퓨터 상에 ‘움직이는 사양서’라고 불리는 모델을 만들고 개발과 검증을 동시에 진행한다. 매트랩과 시뮬링크의 차이점은 다음과 같다. 매트랩 : 수치 계산이나 데이터 해석 등에 적합 시뮬링크 : 시뮬레이션이나 테스트 환경 구축 등에 적합 MBD에서 제어 장치 및 제어 대상을 모델화하여 그 모델에 기반한 개발을 수행하는 기법으로, 매트랩/시뮬링크를 이용한 모델을 작성하고 검증하는 프로세스를 <그림 1>에 나타낸다.   그림 1. 매트랩/시뮬링크를 이용해 모델을 작성하고 검증하는 프로세스   따라서 지금까지의 개발 방법과 달리 제품을 만들지 않고 검증할 수 있게 되므로, 테스트나 분석을 여러 번 반복하여 품질 향상으로 연결된다. 또한 검증에 소요되는 비용과 비용을 줄일 수 있다는 것도 큰 장점이다.(그림 2)   그림 2. 모델 기반 개발 프로세스   MBD는 주로 자동차 업계 등에서 중요시되고 있는 개발 방법 실제로 자동차를 만들어 검증을 반복하면 막대한 비용이 들기 때문에, MBD로 업무를 진행하고 있는 케이스는 적지 않다. 또한 자동차 업계뿐만 아니라 항공 업계와 우주 산업, 의료 기기, 산업용 로봇 등에서도 도입되고 있다. 요즘에는 자율 운전이나 환경에 대한 배려 등 니즈의 변화나 다양화가 진행되고, 자동차의 제조도 복잡해지고 있다. 경쟁사보다 뒤떨어지지 않도록 개발 사이클을 가속화하는 것도 드물지 않다. 배기가스 규제 등을 클리어할 필요도 있다. 이러한 배경으로 비용 절감과 개발 프로세스의 단축화를 실현할 수 있는 MBD는 주목을 받고 있다. 한편, MBD가 맞지 않는 분야도 있다. 예를 들어, 스마트폰의 앱이나 오피스 워크에서 이용하는 소프트웨어 등 제어를 수반하지 않는 소프트웨어 개발에는 적합하지 않다. MBD는 실제 기계의 품질 향상과 시스템 안전을 위해 효과적이지만, 이러한 소프트웨어는 실제 기계가 필요하지 않기 때문이다.   CAE와의 차이 MBD는 컴퓨터에서 검증을 수행하는 CAE(Computer Aided Engineering)와 유사한 기술이지만, 각각의 사용 목적이 다르다. CAE의 경우 온도나 진동 등에 변화를 더해 시뮬레이션하는 방법이지만, MBD는 모델을 활용해 제품의 타당성을 검증한다. 엄밀히 말하면 개발 시점에서 CAE를 적용하고 품질 향상과 개발 기간을 단축하는 것이 MBD이다. CAE는 시뮬레이션하고 설계에 피드백하기 때문에 설계의 업스트림에 위치하지 않는다.   MBD에는 다양한 이점이 있음 MBD의 주요한 이점은 개발 단계에서 시뮬레이션을 할 수 있고 개발 기간을 줄일 수 있다는 것이다. 여기에서는 MBD의 장점을 자세히 살펴본다.   즉시 시뮬레이션 가능 MBD의 장점은 기존 개발 프로세스보다 조기에 시뮬레이션을 할 수 있다는 것이다. MBD는 종이의 사양서가 아니고, 움직이는 사양서가 되는 모델을 만들어 개발도 검증도 곧바로 행할 수 있다. 모델을 작성함으로써 기존의 방식으로 필요했던 시뮬레이션에 걸리는 공수가 줄어들어 횟수를 늘려 품질 향상으로 이어질 것이다. 또한, 시뮬레이션에 관여하는 인건비를 줄일 수 있는 메리트도 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-04-02