• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "프로토타입"에 대한 통합 검색 내용이 383개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
델, 책상 위의 AI 시스템 ‘델 프로 맥스 위드 GB10’ 출시
델 테크놀로지스가 네트워크 연결 없이 데스크 환경에서 최대 2000억개 매개변수의 LLM(대규모 언어 모델)을 지원하는 AI 시스템 ‘델 프로 맥스 위드 GB10(Dell Pro Max with GB10)’을 출시한다고 밝혔다.  최근 생성형 AI의 패러다임이 인간의 개입 없이 여러 AI가 협력하고 자율적으로 의사결정을 내리는 ‘에이전틱 AI’로 전환되고 있다. AI 성능 향상을 위한 매개변수 증가와 멀티모달 AI 모델 개발이 가속화됨에 따라, AI 워크로드를 안전하고 비용 효율적으로 빠르게 처리할 수 있는 로컬 컴퓨팅 환경의 중요성이 커지고 있다. 새롭게 발표된 델 프로 맥스 위드 GB10은 엔비디아 GB10 그레이스 블랙웰(NVIDIA GB10 Grace Blackwell) 슈퍼칩을 탑재해 AI 개발을 위한 고성능을 제공한다. 최대 2000억개 매개변수의 LLM을 로컬 환경에서 직접 프로토타이핑, 미세조정, 추론까지 할 수 있다는 것이 특징이다. GB10 슈퍼칩은 20코어의 고성능 Arm 아키텍처를 탑재한 그레이스 CPU와 블랙웰 GPU를 결합해 최대 1페타플롭(1초당 1000조번 연산 처리)의 AI 연산 성능을 제공한다.     이 제품은 128GB LPDDR5x 통합 시스템 메모리를 제공하며, 2TB 및 4TB NVMe SSD 옵션을 선택할 수 있어 방대한 데이터 처리와 복잡한 AI 워크로드를 원활히 운영할 수 있다. 또한, TPM 2.0 보안과 안전한 샌드박스 환경 구축을 통해 중요한 기업 데이터를 안전하게 보호할 수 있다.  우분투 리눅스 기반의 엔비디아 DGX OS 및 AI 소프트웨어 스택을 탑재해 AI 개발자가 데스크톱과 데이터센터 환경을 자유롭게 넘나들며 워크로드를 구현할 수 있는 것 또한 특징이다. 초저지연 네트워킹을 지원하는 엔비디아 커넥트X-7(ConnectX-7)으로 델 프로 맥스 위드 GB10 두 대를 연결하면 최대 4000억 개 매개변수 모델도 원활히 처리 가능하다. 또한 ‘엔비디아 기반 델 AI 팩토리(Dell AI Factory with NVIDIA)’를 기반으로 데스크 환경에서의 프로토타입 제작부터 데이터 센터 배포까지 원활하게 확장할 수 있다. 엔비디아 쿠다(NVIDIA CUDA), 엔비디아 AI 워크벤치(NVIDIA AI Workbench) 및 주피터랩(JupyterLab)과 독커(Docker) 등이 기본 탑재되어 별도의 설치 과정 없이 개봉 즉시 AI 모델 개발과 테스트를 시작할 수 있다. 델은 델 프로 맥스 위드 GB10가 강력한 성능을 기반으로 AI 시대의 다양한 사용자에게 새로운 가능성을 제시한다고 전했다.. 대학 등 연구기관에서는 ‘라마 3.3 70B(Llama 3.3 70B)’와 같은 대규모 언어 모델을 해당 제품에서 직접 실행해 연구 속도를 획기적으로 높일 수 있다. 스타트업 등 중소규모 기업은 추론, 미세 조정, 프로토타이핑 등 AI 개발의 전 과정을 로컬 환경에서 수행하며 복잡한 인프라 구축 없이도 혁신을 빠르게 이어갈 수 있다. 헬스케어나 금융 서비스와 같이 민감한 데이터를 다루는 업계에서는 데이터를 외부로 반출하지 않고 고급 AI 모델을 안전하게 학습 및 운용하여 데이터 보안을 실현하고 리스크를 줄일 수 있다. 크리에이터와 개발자들은 엔터프라이즈급 컴퓨팅 파워를 활용해 외부 인프라 구축 등의 추가 비용 없이, 자신만의 작업 공간에서 비전 모델을 미세 조정하고, AI 기반 콘텐츠를 제작하는 창의적인 프로젝트를 손쉽게 구현할 수 있다. 델 프로 맥스 위드 GB10은 공기 흐름을 최적화한 섀시 디자인을 적용해 장시간 사용 시에도 온도와 소음을 효과적으로 제어하며 안정적인 성능을 유지한다. 델 프로 맥스 위드 GB10은 10월 16일에 출시될 예정이며, 최대 3년간의 델 지원 서비스(Dell Service & Support)가 제공된다. 한국 델 테크놀로지스 김경진 총괄사장은 “온프레미스 환경에서 AI를 구현하는 수요가 증가하는 가운데, 델 프로 맥스 위드 GB10은 엔비디아 GB10 슈퍼칩 기반의 강력한 성능으로 개인용 데스크 환경에서 AI 프로젝트를 실행할 수 있는 획기적인 설루션”이라면서, “델 테크놀로지스는 델 프로 맥스 라인업에 최신 AI 기술을 발빠르게 적용해 제품 포트폴리오를 지속적으로 확장하고 있고, 많은 기업이 보안이나 비용 등의 제약 없이 로컬에서 AI 혁신을 구현하도록 지원하고 있다”고 말했다.
작성일 : 2025-10-14
벡터-시높시스, 가상ECU 기반의 SDV 개발 지원
벡터코리아는 AUTOSAR Classic 표준을 준수하는 자사의 ECU 개발 설루션 ‘MICROSAR Classic’과 시높시스의 ‘시높시스 실버(Synopsys Silver)’를 통합하여, ECU(전자제어장치) 개발 검증 시뮬레이션을 초기단계부터 확장하여 실행할 수 있도록 지원한다고 밝혔다. 시높시스 실버는 실제 하드웨어 없이 소프트웨어 개발 초기 단계부터 가상 환경에서 전자 제어 장치(vECU)를 생성하고 테스트하는 소프트웨어 인 더 루프(SiL) 설루션이다. 벡터와 시높시스는 지난 3월, 소프트웨어 정의 차량(SDV)의 개발 가속화를 위해 전략적 협력을 맺은바 있다. 양사는 협력을 통해 벡터의 소프트웨어 팩토리 전문성과 시높시스의 전자 디지털 트윈 기술을 사전 통합(pre-integrated)한 설루션을 제공한다. 자동차 제조업체는 설루션을 활용해 소프트웨어 검증 과정을 앞당겨 개발 생산성을 개선하고, 차량 수명주기 전반에 걸쳐 소프트웨어 개발 및 배포 속도를 높일 수 있다. 최근 SDV 아키텍처의 소프트웨어 복잡성이 증가함에 따라 ECU, ZCU(존 컨트롤 유닛 : Zonal Control Unit), CCU(중앙 컴퓨트 유닛 : Central Compute Unit) 등의 개발 주기가 길어지고 임베디드 디바이스 배포가 지연되는 문제가 발생하고 있다. 이러한 과제를 해결하기 위해서는 자동차 제조사와 공급사가 ECU, ZCU, CCU를 개별적으로 그리고 상호 연동된 상태에서 가능한 한 이른 단계부터 검증하는 것이 중요하다. 이러한 조기 검증을 위해, 가상 프로토타이핑(virtual prototyping) 기반 시뮬레이션 도구는 가상 환경에서의 통합 및 테스트를 가능하게 하여 문제를 조기에 발견하고 물리적 프로토타입 필요성을 줄여준다. 이로써 소프트웨어 품질이 향상되고 초기 피드백 확보가 가능해진다.     시높시스 실버는 가상 프로토타이핑 환경에서 ECU, ZCU, CCU 등 다양한 ECU 유형을 가상 ECU(vECU)로 개발 및 테스트할 수 있도록 지원한다. 이를 통해 소프트웨어 개발 속도를 가속화하고, 공급사와 제조사가 하드웨어 디바이스나 프로토타입에 의존하지 않고 소프트웨어를 통합·테스트·디버깅할 수 있다. 시높시스 실버는 임베디드 스택(Embedded Stack)을 가상 하드웨어 위에 배치하여 애플리케이션 통합, 미들웨어 통합, 운영체제 통합(Level 1~Level 3 vECU)을 지원한다. 이를 통해 ECU 소프트웨어의 모듈·레이어·조합을 격리해 수직적·수평적 통합은 물론, 개발 초기 단계에서 ECU 복합 검증(Compound Validation)이 가능하다. 벡터의 MICROSAR Classic은 시높시스 실버와 통합되면서 vECU 단위의 시스템 수준 통합 및 검증이 가능해졌다. 이 과정에서 운영체제와 드라이버는 실버 시뮬레이션 모듈로 대체되며, 임베디드 스택은 가상 하드웨어 환경에서 실행된다. 애플리케이션 소프트웨어는 OEM이 개발하고, BSW(Basic Software)와 RTE(Runtime Environment)는 MICROSAR Classic이 제공한다. 이를 위한 워크플로우는 다빈치 컨피규레이터 클래식(DaVinci Configurator Classic)을 통해 진행된다. 다빈치 컨피규레이터 클래식은 AUTOSAR 기반 ECU 개발 도구로, BSW와 RTE를 설정하고 코드를 생성한다. 가상 통합 단계에서는 실버 시뮬레이션 모듈이 실제 드라이버를 대체하며, 외부 코드 생성기를 통해 시뮬레이션용 소스 코드가 생성된다. 이후 vECU는 SIL(Software-in-the-Loop) 테스트에 활용될 수 있으며, 필요 시 벡터의 CANoe에 SIL Kit을 통해 연결할 수도 있다. 한편, MICROSAR Classic은 실시간 처리가 가능한 임베디드 기본 소프트웨어 스택(Embedded Base Software Stack)으로, 모든 하드웨어 및 주변장치 드라이버를 포함한 모듈형 구조를 제공한다. 사용자는 런타임 환경(RTE)을 직접 정의할 수 있으며, 하드웨어 위나 Vector OS 및 타 OS 환경에서도 실행이 가능하다. 이는 고성능 멀티코어 시스템뿐 아니라 리소스가 제한된 단일 코어 환경에서도 유연하게 적용될 수 있다.
작성일 : 2025-10-14
[포커스] 코리아 그래픽스 2025, AI로 가속하는 산업과 크리에이티브의 변화를 짚다 (2)
‘코리아 그래픽스 2025’가 지난 9월 11~12일 온라인으로 진행됐다. ‘AI로 혁신하는 3D 시각화와 산업의 미래’를 주제로 열린 ‘코리아 그래픽스 2025’에서는 급변하는 기술 트렌드 속에서 AI(인공지능)와 3D 시각화가 산업과 문화 전반에 미치는 영향력을 조명했다. 또한 AI 기술의 실질적인 적용 사례와 잠재력을 통해, AI가 단순한 도구를 넘어 창의적 동반자로 진화하는 흐름을 짚었다. ■ 정수진 편집장   ■ 같이 보기 : [포커스] 코리아 그래픽스 2025, AI로 가속하는 산업과 크리에이티브의 변화를 짚다 (1)     AI·3D 시각화 기술의 현재와 미래를 짚다 9월 11일에는 ‘디지털 트윈 & 3D 시각화’ 트랙이 진행됐다. 에픽게임즈 코리아의 권오찬 시니어 에반젤리스트는 ‘리얼타임을 통한 디지털 트랜스포메이션의 진화, 그리고 에픽게임즈의 에코시스템’을 주제로 발표했다. 그는 디지털 트윈을 통한 시각화가 건축, 도시 계획, 훈련 시뮬레이션, 자동차 산업 등 다양한 분야에서 혁신적인 의사결정을 이끌어내는 사례를 소개하면서, 3D 인터랙티브 콘텐츠로의 전환을 강조했다. 권오찬 시니어 에반젤리스트는 “에픽게임즈는 이러한 변화를 성공적으로 지원하기 위해 나나이트, 루멘, 라지 월드 코디네이터, 절차적 콘텐츠 생성 툴 같은 리얼타임 렌더링 기술과 함께 메타휴먼, 애셋 스토어, 리얼리티 스캔 2.0 등 풍부한 에코시스템을 제공한다”고 밝혔다.   ▲ 에픽게임즈 코리아 권오찬 시니어 에반젤리스트   HP 코리아의 차성호 이사는 ‘AI 워크스테이션을 통한 생산성 향상 방안 및 사례’를 발표했다. 워크스테이션은 R&D, 금융, 데이터 과학, AI 등의 분야에서 성능과 안정성을 겸비한 비즈니스 제품군으로 자리잡고 있다. 차성호 이사는 HP의 AI 워크스테이션이 40 TOPS 이상의 NPU(신경망 처리장치)와 코파일럿 키를 탑재하고 있으며, 대량의 그래픽 메모리를 바탕으로 솔리드웍스, 오토데스크 레빗, D5 렌더 등 ISV 애플리케이션에서 높은 생산성 향상을 보인다고 소개했다. 또한, 프로그램과 목적에 따른 최적 하드웨어 선택의 중요성을 강조하면서, “HP는 데모 프로그램을 통한 성20 · 능 검증 기회를 제공한다”고 덧붙였다.   ▲ HP 코리아 차성호 이사   에스엘즈의 정재헌 대표는 ‘AEC 산업을 위해 진화하는 공간지능 기술’을 주제로, 2020년 캐나다 ‘어그멘티드 그라운드’ 프로젝트의 AR 원격 시공 경험을 비롯해 자체 개발한 추론형 AI로 BIM 모델 이미지를 학습하여 고객사의 MEP 설계 노하우의 보안을 유지하면서 자동 배관 설계를 진행한 사례를 소개했다. 또한 ‘증강 휴먼’ 기술이 피지컬 AI 기반의 ‘증강 로봇’으로 진화하는 여정도 공유했다. 정재헌 대표는 “초기 AR 디바이스 탑재를 넘어 휴머노이드 로봇 및 드론에도 공간 지능 기술을 적용 중이며, 드론에서 수신한 GNSS 좌표를 기반으로 BIM 모델을 고정밀 증강하여 실시간 현장 영상 위에 데이터를 매핑하는 데 성공했다”고 밝혔다.   ▲ 에스엘즈 정재헌 대표   유니티코리아의 김현민 시니어 설루션 엔지니어는 ‘유니티 애셋 매니저로 혁신하는 CAD 데이터 관리와 실시간 협업’에 대해 발표했다. 그는 “유니티가 디자인 및 프로토타입 작업 간소화, 비용 절감, 브랜드 경험 강화 등 산업 전반에 몰입감 있고 인터랙티브한 경험을 제공한다”고 설명했다. 오픈 플랫폼인 유니티는 카티아, 솔리드웍스 등 70여 종의 CAD 포맷을 지원하며 애셋 관리, 버전 관리와 함께 20여 종 이상 플랫폼 빌드를 제공하는 엔드 투 엔드 설루션을 제공한다. 또한 유니티 애셋 매니저(Unity Asset Manager)는 클라우드 기반에서 대용량 CAD/3D 데이터를 효율적으로 관리하며, AI 태깅, 버전 관리, 데이터 스트리밍 기능을 통해 실시간 협업 환경을 구축한다.   ▲ 유니티코리아 김현민 시니어 설루션 엔지니어   메가존클라우드의 홍동희 유니티 유닛 테크 그룹장은 ‘CAD와 유니티의 만남 : 새로운 비즈니스 수익 모델과 창의적 혁신’을 발표했다. 그는 “유니티의 실시간 렌더링, 인터랙티브 기능, 멀티플랫폼 배포 능력이 정밀한 설계에 강점을 가진 CAD에 새로운 가치를 부여하고 수익화할 수 있다”고 강조했다. 또한, 가상 복제본 생성부터 AI 결합을 통한 완전 자율화까지 디지털 트윈의 진화 과정을 설명하며, “유니티는 디지털 트윈 개발을 위한 최적의 플랫폼”이라고 전했다. 유니티의 에코시스템을 활용해 기업은 새로운 비즈니스 영역을 창출하고, 개인은 CAD와 유니티를 겸비한 전문가로서 경쟁력을 강화할 수 있다는 것이 그의 설명이다.   ▲ 메가존클라우드 홍동희 유니티 유닛 테크 그룹장   캐디안의 한명기 상무는 ‘AI 이미지 인지기술 기반 3D 도면 생성 방안 및 적용 설루션 소개’를 주제로 발표를 진행했다. 한명기 상무는 “캐디안은 1990년 설립된 국산 CAD 개발 기업으로, 2020년에는 AI CAD 개발을 선언하며 설계 도면 생성 과정의 어려움을 해결하는 데에 AI를 접목했다”고 설명했다. 캐디안은 최근 전통 목조 건축의 손도면을 2D/3D 도면화하는 ‘CADian TWArch’를 개발하여 불국사 복원 가상 설계에 적용했으며, 올해 연말 출시 예정이다. 또한, 현대 건축을 위한 ‘CADian AI-CE’는 JPG, PDF, DWG 등 다양한 도면에서 벽체, 창호, 룸 정보 등을 AI로 탐지하여 도면을 재생성하고 BOM을 산출한다. 한명기 상무는 “캐디안 AI CAD의 미래는 스마트 블록, 디자인 어시스턴트, 인스펙션 시스템 등 기능 강화와 함께 궁극적으로 AI 에이전트를 통한 ‘말로 설계하는 세상’을 목표로 한다”고 전했다.   ▲ 캐디안 한명기 상무   이노시뮬레이션의 이지선 CTO는 ‘모빌리티 XR 사례와 AI 융합 기술의 미래’를 전망했다. 그는 XR 기술이 나와 외부 세계를 소통하는 모든 통로를 대체하는 기술이며, 그래픽, 디바이스, 시뮬레이션 기술과 밀접하다고 정의했다. 그리고 운전 시뮬레이터, 가상 훈련, HMI 검토, 가상 품평, AR HUD 등 다양한 모빌리티 XR 응용 사례를 소개하며 개발 기간과 비용 절감 효과를 강조했다. 이지선 CTO는 “AI와 XR 기술의 결합은 모빌리티 무인화 시대를 가속화할 것”이라면서, “이노시뮬레이션은 AI 개발 툴을 활용하여 AI와 모빌리티가 혼합된 시뮬레이션 시스템을 연구 개발 중”이라고 소개했다.   ▲ 이노시뮬레이션 이지선 CTO   디자인과 제조의 미래를 만드는 생성형 AI 9월 12일에는 ‘AI 비주얼 트렌드 & 응용’ 트랙이 진행됐다. LG CNS의 정용기 선임은 ‘Image Gen.AI를 활용한 업무 생산성 향상 방안’에 대한 발표에서, 생성형 AI 기술에 기반한 LG CNS의 Image Gen.AI 엔진을 소개했다. 이를 활용하면 디자인 과정에서 아이디어 구상 시간을 단축하는 등의 프로세스 개선을 통해 비주얼 콘텐츠의 생성 시간과 비용을 50% 이상 줄여줄 수 있다는 것이 정용기 선임의 설명이다. 또한, LG CNS의 Image Gen.AI 엔진을 탑재한 COP(Content Optimization Platform)도 소개했다. COP는 이미지 생성 및 편집, 배경 제거/교체/확장, 부분 수정 등의 기능을 제공하며, 특화 학습을 통해 고객사의 특정 스타일을 반영한 마케팅 이미지를 생성한다. 정용기 선임은 “COP는 제품의 디테일을 유지하면서 다양한 연출 컷을 만들 수 있으며, 향후 매체별 배너 이미지 자동 생성 기능을 개발 중”이라고 밝혔다.   ▲ LG CNS 정용기 선임   아이스케이프의 조세희 대표는 ‘이미지부터 3D까지 : 크리에이터가 알려주는 생성형 AI 영상 제작’을 주제로 발표했다. 조세희 대표는 AI를 활용한 영상 콘텐츠 제작 과정을 실무 사례와 함께 소개하면서, “영상 제작은 스토리보드, 키 이미지 생성, 영상화, 음악 생성, 편집의 5단계로 진행되며, AI가 텍스트, 이미지, 오디오, 3D 모델 등 다양한 콘텐츠를 생성한다”고 설명했다. 또한, 3D 오브젝트를 활용해 가상 공간에서 영상을 만들고, 미드저니의 옴니 레퍼런스와 페이스 스왑, 일레븐랩스를 이용해 가상 인간의 일관된 이미지와 음성을 제작하는 과정도 시연했다. 조세희 대표는 “AI는 생산성을 높일 수 있는 도구이지만, 영상 구조, 조명, 연출 등의 기본 지식은 필수”라고 짚었다.   ▲ 아이스케이프 조세희 대표   AI팩토리의 김태영 CEO는 ‘크리에이터를 위한 AI 에이전트 활용 및 ‘바이브 코딩’ 발표를 통해 엔트로픽의 클로드 코드(Claude Code)를 활용해서 AI와 협업하여 코드를 작성하고 실행하는 방법을 시연했다. 바이브 코딩(vibe coding)은 대화식으로 사용자가 원하는 내용을 AI 에이전트에게 전달하면 AI가 코딩을 수행하는 방식이다. “요구사항 명세서 역할을 하는 파일을 통해 더욱 상세한 지시가 가능하다”고 소개한 김태영 CEO는 발표 중 실제 라이브 시연을 통해 상품 소개 웹 페이지를 제작하고, AI가 텍스트와 이미지를 자동 생성하여 콘텐츠를 풍부하게 만드는 과정을 선보였다.   ▲ AI팩토리 김태영 CEO   IUM SPACE의 이윰 대표는 ‘AI 툴로 구현하는 비주얼 세계 : 실무 적용과 아트워크 융합 사례’를 주제로 발표했다. 생성형 AI 시대의 진정한 창의성은 ‘세계관 디자인’에 있다고 짚은 이윰 대표는 미드저니의 스타일 레퍼런스 기능을 통해 42억 개의 스타일 시드를 탐색하며 “각 시드가 담고 있는 고유한 세계관을 이해하는 것이 중요하다”고 설명했다. 또한, 인간의 상상력과 AI의 지능을 결합하여 고유한 스타일과 이야기를 만드는 과정을 소개했다. 이윰 대표는 “AI는 의미를 생성하지 않으므로, 인간 창작자가 의미를 부여하고 다양한 이미지를 통합하여 스토리를 완성하는 것이 핵심”이라고 전했다.   ▲ IUM SPACE 이윰 대표   ■ 같이 보기 : [포커스] 코리아 그래픽스 2025, AI로 가속하는 산업과 크리에이티브의 변화를 짚다 (1)
작성일 : 2025-10-01
[칼럼] 나만의 AI 에이전트 필살기 Ⅱ – 코드를 이해하는 기획자, 비개발자의 바이브 코딩 입문기
현장에서 얻은 것 No. 23   “거인의 어깨 위에 올라서서 더 넓은 세상을 바라보라.” – 아이작 뉴턴 AI라는 거대한 변화의 파도는 우리 삶 곳곳을 흔들고 있었다. 이는 단순히 새로운 기술의 등장이 아니라, 사고방식과 일하는 방식, 나아가 사회 전체의 구조를 바꾸는 흐름이었다. 필자는 지난 8개월 동안 이 변화의 흐름 속에서 매일 배우고 실험하며 자신만의 여정을 이어갔다. 이 시간 동안 AI를 단순한 도구로만 보지 않게 되었는데, 그것은 업무, 창작, 학습, 그리고 삶 전반을 통해 스스로를 끊임없이 자극하는 동반자였다. AI를 맹목적으로 신뢰하기보다는 신중하게 거리를 두고, 동시에 적극적으로 받아들이는 태도를 통해 자신만의 ‘필살기’를 다듬어왔다. 필자의 학습법은 눈으로 익힌 것이 70%, 손으로 부딪히며 체득한 것이 30%로 다소 독특했다. 이러한 비율을 받아들인 이유는 필자의 경험이 개발자의 삶이 아니었기 때문이었다. ‘바이브 코딩(vibe coding)’을 통해 비개발자도 개발을 할 수 있다고 광고했지만, 실제로는 한계가 있음을 이해했다. 커서 AI(Cursor AI)로 회사 홈페이지를 만들고, 리플릿(Replit) 프로그램으로 MBTI 판별 프로그램을 바이브 코딩으로 시도하며, 만들고 수정하는 것도 가능했다. 하지만 PLM을 기업에 구축하는 PM으로서 경험한 바로는, 비개발자가 프로그램을 만드는 데에는 한계가 있었다. 취미로 만드는 것은 환영하지만 프로그램이 론칭된 이후 발생하는 많은 이슈를 경험하며, 개발자와의 협업이 더 효율적이라는 자신만의 학습 공식을 터득했다. 강의와 책, 스터디에서 얻은 지식이 토대가 되었고, 실습과 시행착오가 그 지식을 현실과 연결해 주었다. 이부일 대표의 강의를 들으며 챗GPT를 활용한 파이썬 코드를 직접 따라가던 순간, AI가 단순한 언어 모델이 아니라 강력한 실무 도구라는 사실을 처음 체감했다. 첫날은 잘 따라갔지만 둘째 날 노트북 배터리가 나가 낭패를 본 기억도 생생했는데, 이러한 경험조차도 학습 과정의 일부가 되었다. AI 학습은 지식을 머리에 담는 것뿐만 아니라 삶과 환경 속에서 몸으로 받아들이는 과정임을 깨달았다. 실패와 해프닝도 자산이 되어 필자의 학습 지도 위에 하나씩 좌표가 찍혀갔다. 중요한 것은 속도가 아니라, 끊임 없이 배우고 기록하고 다시 활용하는 과정이 훨씬 값지다는 것이었다.  “미래는 예측하는 것이 아니라 상상하는 것이다.” – 앨런 케이   ▲ 코드를 이해하는 기획자, 비개발자의 바이브 코딩 입문(Map by 류용효) (클릭하시면 큰 이미지로 볼수 있습니다.)   비개발자가 코드를 배우려 했던 이유 필자가 비개발자로서 코드를 배우기 시작한 동기는 개인적인 필요에서 비롯되었다. PLM 구축 PM으로서 개발자와 같은 언어로 소통하고 싶었고, 프로세스 컨설팅을 수행하며 시스템/프로세스 흐름을 실제 코드 레벨에서 검증하고 싶었다. 또한 콘셉트맵과 AI를 접목하여 아이디어를 프로토타입 코드로 구현하고, 데이터 및 AI 기반으로 확장하고자 했다. 바이브 코딩을 통해 손쉽게 프로토타입을 직접 만들어 아이디어를 빠르게 실험하고 싶었던 것도 큰 동기였다. 일반적인 경우에도 비개발자가 코드를 배우는 다양한 이유가 있었다. 반복적이고 단순한 작업을 효율화하여 업무를 자동화하고, 데이터 구조를 직접 다루어 인사이트를 도출하며 데이터 이해력을 강화하는 것이었다. 개발자와의 협업 과정에서 기술적 언어를 이해하여 소통을 원활하게 하고, 아이디어를 직접 테스트하고 시각화하여 창의적 문제 해결 능력을 키우는 데에도 코딩이 필요했다. 또한 디지털 리터러시와 융합 역량을 확보하여 커리어를 확장하고, AI 툴 활용의 전제 조건인 코드 이해를 통해 AI 시대에 적응하고자 했다. 결론적으로, 비개발자가 코드를 배우는 이유는 개발자가 되기 위해서가 아니라 아이디어를 직접 다루고, 빠르게 실험하며, 더 나은 협업자이자 창의적 문제 해결자가 되기 위함이었다. 개발자와 비개발자의 시선 차이는 명확했는데, 개발자는 ‘코드와 로직을 어떻게 짤까’에 집중하고 성능, 안정성, 기술적 가능성에 관심을 두는 반면, 비개발자는 ‘왜 이게 필요한 걸까’에 집중하며 사용성, 효율, 비즈니스 가치를 중요하게 생각했다. 예를 들어, 같은 CSV 데이터를 보더라도 개발자는 데이터의 구조와 처리 방법을, 비개발자는 그 데이터가 무엇을 말해주고 경영 의사결정에 어떻게 쓰일지에 대한 의미와 활용 방법을 보았다. “가장 현명한 사람은 계속해서 배우는 사람이다.” – 소크라테스   나만의 바이브 코딩 조합 : 작은 성공에서 배운 것들 AI와 바이브 코딩 시대에 기획자의 새로운 역할이 중요하게 부각되었다. 바이브 코딩은 2025년 2월 안드레이 카르파티가 처음 언급한 개념으로, 코드 작성보다는 ‘원하는 결과물의 느낌(바이브)’을 AI에게 자연어로 설명하여 프로그래밍하는 방식이었다. 이는 코드 작성 능력이 창의력과 기획 능력으로 전환되는 트렌드를 반영했다. 비개발자를 위한 AI 개발 방법론은 문제 정의, PRD(제품 요구 문서) 작성, AI 프롬프팅, 그리고 결과 검증의 단계로 이루어졌다. 기획자는 문제 정의와 사용자 경험에 집중하고, AI와 대화하며 요구사항을 구체화하고 결과물을 정제하며, 빠른 프로토타입으로 아이디어를 시각화하고 개선점을 파악하는 데 주력했다. 필자는 8개월간의 여정 속에서 자신만의 AI 활용법, 즉 ‘필살기’를 만들어갔다. 이는 단순히 나열된 여러 갈래의 길이 아니라, 하나의 지도 위에 유기적으로 연결되어 있었다. AI는 단순히 도구가 아니라 이 지도를 함께 그려가는 협력자가 되었다. 필자의 AI 필살기는 다음과 같았다. 커서 AI : 비개발자의 ‘첫 코치’ 역할을 했다. 코딩의 벽을 낮춰주는 동반자로, 복잡한 문법, 오류, 환경 설정의 두려움을 덜어주었다. 커서 AI는 단순한 코드 자동 생성이 아니라 필자의 의도를 코드로 번역하여 작은 실험과 반복을 가능하게 했고, 바이브 코딩 학습을 지원했다. GPT-4 기반의 AI 코드 에디터로 비주얼 스튜디오 코드(VS Code)와 호환되며, 자연어로 코딩하고, 즉각적인 에러 수정, 단계별 설명, 코드 리팩토링 기능을 제공했다. 구글 CLI(Google CLI) : 데이터와 시스템을 다루는 새로운 무기였다. 클릭 대신 명령어로 반복 작업을 자동화하여 속도와 효율성을 극대화했다. 가상머신(VM), 스토리지(Storage), 데이터베이스(DB) 등 클라우드 리소스를 제어하고, 데이터를 핸들링하며, API를 직접 호출하여 서비스 통합을 용이하게 했다. 이는 GUI의 한계를 넘어서는 전문가의 무기가 되었다. 파이썬(Python) : 실전에서 가장 유용한 최소 단위였다. 쉽고 직관적인 문법, 방대한 라이브러리, 빠른 프로토타이핑이 강점이었다. 데이터 읽기/쓰기 한 줄, 간단한 자동화 스크립트 등 작은 코드로도 큰 효과를 낼 수 있었고, CSV 분석 및 시각화, 업무 자동화, AI·ML 모델 실험 등에 활용되었다. 커서 AI와 제미나이(Gemini)가 내장되어 더 쉽게 사용할 수 있었다. 이러한 도구들을 조합하여 데이터 분석 자동화 시나리오와 업무 자동화 봇 구축 시나리오를 구현할 수 있었다. 예를 들어, 커서 AI로 데이터 수집 스크립트를 작성하고, 파이썬으로 데이터 정제 및 시각화를 하며, 구글 CLI로 정기적 실행을 스케줄링했다. 무엇보다 데이터 이해는 코드보다 중요한 사고 프레임이었다. 코딩은 기술 습득이 아니라 사고방식의 확장임을 깨달았다. 데이터 구조를 이해하면 문제 정의력이 달라지고, 기획자로서 문제를 바라보는 시각이 새로워졌다. CSV 한 줄이 어떤 의미를 담고 있는지, 칼럼이 단순한 값이 아니라 업무의 맥락임을 이해하게 되면서, 데이터를 읽는 순간 업무 프로세스가 보이기 시작했다. 이러한 변화된 시각은 단순 결과물이 아닌 흐름과 원인을 질문하게 했고, 개발자와 같은 언어로 협업 및 설계를 가능하게 하며, 데이터 기반의 빠른 실험과 검증으로 이어졌다. 필자는 매일 새로운 프로그램에 도전하는 ‘하루 한 프로그램 도전기’를 통해 작은 성공을 쌓아갔다. 완벽함보다는 경험과 시행착오를 통한 학습을 강조했고, 개발의 본질이 사고의 연습임을 깨달았다. 즉, 코드는 도구일 뿐 핵심은 문제를 정확히 이해하고 구조화하는 능력이며, 실패는 학습이고 작은 성공이 쌓여 성장 곡선을 만든다는 것이었다. 끊임없이 배우고 기록하고 다시 활용하는 과정이 훨씬 값지다는 것을 체감했다. 그러나 바이브 코딩에는 현실적인 문제점도 있었다. 새로운 기능을 추가할 때 기존 기능이 손상되는 회귀 테스트 부재 문제, AI가 전체 맥락을 충분히 기억하지 못해 발생하는 기능 안정성 문제가 있었다. 무한루프나 잘못된 로직 생성, 에러 메시지 오해 등으로 인한 오류 및 디버깅 한계, 그리고 수정 과정에서 토큰/리소스를 과다하게 소비하는 문제도 발생했다. 세션이 바뀌거나 컨텍스트가 길어지면 AI가 이전 코드의 세부 흐름을 잊어버리는 지속성 부족 문제와, AI에 의해 산발적으로 작성된 코드가 구조화가 부족하여 협업 및 유지보수가 어렵다는 한계도 있었다. 이러한 문제를 경험하며 코드를 이해하거나 개발자와 협업하는 것이 필수라는 결론에 도달했다. “성공의 비결은 기회를 잡기 위해 준비하는 것이다.” – 벤저민 디즈레일리   미래를 향한 다리 : 기획자의 새로운 역할 AI 시대에 기획자의 역할은 크게 확장될 수 있었다. 비개발자의 강점은 데이터 맥락 해석력, 비즈니스 중심 사고, 그리고 맥락적 설명 능력에 있었고, 이는 CSV 데이터 컬럼의 의미와 관계를 명확하게 설명하고, 로직보다 비즈니스 가치와 목적에 집중하며, 기술적 디테일보다 전체적인 흐름과 맥락을 설명하는 커뮤니케이션 역량을 제공했다. 프로세스 컨설턴트에서 프로그램 기획자로의 역량 확장이 필요했다. 컨설팅 경험을 시스템 아키텍처 설계에 적용하고, 업무 분석 능력을 시스템 요구사항으로 전환하며, 사용자 관점과 시스템 관점의 통합을 통해 더 나은 UX(사용자 경험)를 설계하는 것이었다. 현업 부서와 IT 부서 간의 가교 역할을 수행하고, 업무 프로세스 최적화를 통해 비효율 지점을 발견하고, 시스템 병목 현상을 데이터 흐름 관점에서 해결하는 역량이 중요했다. 컨설팅 산출물을 소프트웨어 명세서로 변환하고 워크플로 시뮬레이션으로 최적화를 검증하는 방법이 요구되었다. 기획자는 기술 이해도를 바탕으로 개발팀과의 협상력을 강화하고, 데이터 기반의 의사결정 모델을 구축하며, 비즈니스와 기술을 잇는 통합적 관점을 제시하고, 프로토타입으로 아이디어를 구체화하는 능력을 확보해야 했다. 이를 위한 역량 개발로는 시스템 사고, 기술 리터러시(API, DB 구조, 클라우드 서비스 기본 개념), 애자일 방법론, 그리고 지라(Jira), 피그마(Figma), 미로(Miro)와 같은 협업 도구 활용 능력이 있었다. 기획자와 개발자의 경계를 허물고 함께 문제를 정의하고 해결하는 통합적 협업 체계를 구축하는 것이 중요했다. “나는 똑똑한 것이 아니다. 단지 문제와 더 오래 씨름할 뿐이다.” – 알베르트 아인슈타인 AI의 본질은 ‘주체’가 아니라 ‘도움’이었다. AI는 망설임 없이 실행하지만, 그것이 옳은 방향인지 판단하는 것은 인간의 몫이었다. 필자는 회의록 요약 같은 업무를 AI에 맡겼다가 보안 문제와 인간 역량 퇴화의 위험성을 깨달았다. 편리함이 언제나 효율을 의미하는 것은 아니며, 잘못된 의존은 인간의 중요한 능력을 잃게 만들 수 있었다. 그래서 필자는 AI의 답변을 최소 세 번 이상 검증했는데, 빠른 실행보다 올바른 방향 설정이 중요했기 때문이었다. AI가 주는 답은 끝이 아니라 출발점이었다. 필자가 AI와 함께한 여정은 자신을 끊임없이 질문하게 했다. AI는 인간을 대체하는 기계가 아니라, 인간이 더 깊은 사고와 창조의 세계로 들어가도록 돕는 동반자였다. 필자가 찾은 필살기는 바로 이것이었다. AI 덕분에 자신의 본질(core)에 더 많은 시간을 쏟을 수 있게 된 것이었다. 단순 반복 업무를 대신해 주는 AI 덕분에, 필자는 사고하고 기획하고 판단하는 인간 고유의 역량에 집중할 수 있었다. AI는 더 이상 선택이 아닌 필수 도구이자 협력자였다. 중요한 것은 이 강력한 도구를 어떻게 나의 본질과 연결하여, 나만의 고유한 가치를 창출하고 미래를 만들어갈 것인가에 대한 깊은 고민과 끊임없는 실행이었다. AI는 재능은 있지만 한계에 부딪힌 사람에게 ‘도움’이 되어 AI 가수, AI 영화감독, AI 작가, AI 프로그래머가 될 수 있는 길을 열어주었다. 효율만을 쫓기보다는 본질에 집중하고, 변화의 흐름을 읽으면서도 자신만의 ‘필살기’를 계속해서 갈고 닦아야 했다. 미래를 향한 첫걸음은 지금 바로 도전하는 것이었다. 바이브 코딩은 기획 의도와 개발 실행 사이의 간극을 해소하고, AI 시대 기획자의 역할 확장과 가능성을 발견하게 해주었다. 업무 자동화로 반복 작업에서 벗어나 창의적 업무에 시간을 활용하고, 데이터 기반의 의사결정과 인사이트 도출 능력을 강화할 수 있었다. 하루 30분, 한 프로그램 만들기로 시작하는 것이 중요했고, 완벽함보다는 시작하는 용기가 중요했다. 하지만 잊지 말아야 할 것은, 바이브 코딩의 장단점을 잘 파악하여 적용해야 한다. 특히 개인적인 사용의 간단한 프로그램은 괜찮으나, 대외적인 서비스를 하는 프로그램 개발의 경우, 반드시 고급 개발자의 코드리뷰를 거쳐서 보안상의 문제, 데이터 유출 등이 없도록 해야 한다. AI는 명확하게 정의된 문제를 푸는 데 능숙하지만, 복잡하고 모호한 비즈니스 요구사항을 해석하여 견고한 시스템을 설계하는 것은 못하는 것을 명심해야 한다. “코딩은 기술이 아닌 사고 프레임의 확장이다.”    ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다. (블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[칼럼] 인공지능 기술 : 도입에서 혁신으로
디지털 지식전문가 조형식의 지식마당   빠르게, 그리고 깊게 지난 2년간 필자는 정신없이 AI 지식을 흡수하고 수많은 설루션을 직접 사용했다. 신기함과 불편함이 뒤섞인 체험 끝에, 직감적으로 2025년이 인공지능 기술의 이정표가 될 것이라 확신하게 됐다.   거시 흐름, 지능형 자동화와 에이전트의 부상 인공지능(AI) 기술의 발전은 2024년을 기점으로 단순히 새로운 기술의 도입을 넘어, 산업과 사회 전반의 혁신을 촉발하는 핵심 동력으로 자리 잡았다. 여러 분석가는 2024년이 AI 도입의 해였다면, 2025년은 AI가 기존 산업의 경계를 허물고 운영 방식을 근본적으로 재정의하는 ‘혁신의 해’가 될 것으로 전망하고 있다. 이러한 변화의 물결 속에서 기업들은 막연한 기대감을 넘어, AI 기술을 통해 실질적인 비즈니스 가치(ROI)를 창출하는 데 집중하고 있다. 특히, 반복적이고 명확한 규칙 기반의 작업을 AI로 자동화함으로써 즉각적인 효율성 증대와 함께 투자 성과를 확보하는 전략이 부상하고 있다. 이러한 맥락에서 ‘지능형 자동화(intelligent automation)’는 단순 반복 작업을 넘어 복잡한 워크플로를 자율적으로 처리하고 의사결정까지 내리는 단계로 진화하고 있다. 이는 ‘AI 에이전트’의 형태로 구현되며, 응용 AI의 차세대 진화로 주목받고 있다.  이러한 거시적 흐름 속에서 AI 기술의 3대 핵심 분야인 언어 모델, 이미지 및 영상 모델, 음성 모델의 최신 기술적 동향과 시장 변화를 심층적으로 분석하고, 나아가 이들 간의 융합 현상인 ‘멀티모달 AI’의 부상을 조망함으로써 비즈니스 리더와 기술 전문가에게 전략적 통찰을 만들어 봤다. 첫 번째, 대규모 언어 모델(LLM)의 혁신은 대부분 ‘트랜스포머(transformer)’ 아키텍처에 기반을 두고 있다. GPT-4, LLaMA 2, Falcon 등 현재 시장을 선도하는 모델은 이 아키텍처를 활용하여 방대한 데이터 세트에서 인간 언어의 패턴과 구조를 학습한다. 트랜스포머는 언어 모델의 근간을 이루며, 그 영향력은 비단 텍스트에만 머무르지 않고, 오픈AI(OpenAI)의 최신 비디오 생성 모델인 소라(Sora)의 ‘디퓨전 트랜스포머’ 아키텍처에도 확장 적용되고 있다. 최근 LLM 훈련 방법론은 단순히 모델의 규모를 키우는 것을 넘어, 효율과 특화된 성능을 확보하는 방향으로 진화하고 있다. LLM 시장은 ‘규모’를 추구하는 초대형 모델(LLM)과 ‘효율’을 추구하는 소형 언어 모델(SLM)이 공존하는 양면적 발전 양상을 보인다. GPT-4o나 제미나이(Gemini)와 같은 초대형 모델은 뛰어난 범용성과 성능으로 시장을 선도하는 한편, 특정 산업이나 용도에 맞게 최적화된 SLM은 적은 비용과 빠른 속도를 무기로 틈새시장을 공략하고 있다. 이러한 이원화된 전략은 기업이 적용 업무의 성격에 따라 두 모델을 전략적으로 선택하거나 조합하는 하이브리드 접근법을 채택하도록 유도하고 있다. 두 번째, 최근 이미지 및 영상 생성 모델의 핵심 기술은 ‘디퓨전 모델(diffusion model)’이다. 이 모델은 기존의 생성적 적대 신경망(GAN)이 가진 ‘모드 붕괴(mode collapse)’ 문제를 해결하며 고품질의 다양하고 사실적인 이미지 생성을 가능하게 했다. 디퓨전 모델은 이미지에 점진적으로 노이즈를 추가한 뒤, 이 노이즈를 단계적으로 제거하며 깨끗한 이미지를 복원하는 방식을 사용한다. 이 기술은 스테이블 디퓨전(Stable Diffusion), 달리(DALL-E)와 같은 대표적인 서비스에 활용되고 있다. 대규모 언어 모델과 마찬가지로, 이미지 및 영상 모델 역시 규모의 확장과 효율의 최적화라는 상반된 흐름을 동시에 경험하고 있다. 디퓨전 모델은 모델의 규모가 클수록 더 좋은 성능을 보이지만, 그만큼 막대한 연산 자원과 느린 처리 속도라는 문제에 직면한다. 이러한 한계를 극복하기 위해 모델 경량화와 처리 속도를 높이는 기술적 접근이 중요하게 다루어지고 있다. 이는 AI 기술의 상용화와 대중화를 위한 필수 단계이다. 영상 생성 기술은 미디어 및 엔터테인먼트 산업의 콘텐츠 창작 패러다임을 근본적으로 변화시키고 있다. 텍스트 입력만으로 원하는 비디오를 만들 수 있는 능력은 브레인스토밍을 가속화하고, 마케팅 자료, 게임 비주얼, 와이어프레임 및 프로토타입 제작 시간을 획기적으로 단축시켜 기업의 시장 대응력을 높인다. 특히, 전자상거래 기업은 AI 생성 이미지를 사용하여 다양한 제품 쇼케이스와 맞춤형 마케팅 자료를 대규모로 제작할 수 있다. 세 번째, 음성 모델은 크게 음성 신호를 텍스트로 변환하는 ‘음성 인식(ASR : Automatic Speech Recognition)’과 텍스트를 음성으로 변환하는 ‘음성 합성(TTS : Text-to-Speech)’ 기술로 구분된다. 딥러닝 기술의 발전은 이 두 분야에 혁명적인 변화를 가져왔다. 음성 인식(ASR) : 딥러닝 기반의 엔드 투 엔드 모델은 음향 모델링과 언어 모델링 과정을 통합하여 ASR의 정확도를 비약적으로 향상시켰다. 최신 시스템은 배경 소음을 제거하고 자연어 처리(NLP) 기술을 활용하2025/10여 문맥을 이해함으로써 최대 99%에 가까운 정확도를 달성하고 있다. 이는 단순히 음성을 텍스트로 바꾸는 것을 넘어, 사용자의 의도를 정확히 이해하고 적절하게 대응하는 대화형 AI 시스템의 핵심 기반이 된다. 음성 합성(TTS) : 딥러닝 기반 모델은 기계적인 느낌을 벗어나 사람처럼 자연스럽고 운율이 담긴 목소리를 생성하는 데 큰 발전을 이루었다. 이는 텍스트 분석, 운율 모델링, 그리고 실제 음성 파형을 생성하는 ‘보코더(vocoder)’ 과정을 통해 이루어진다. 현대 음성 합성 기술의 발전 방향은 단순히 자연스러움을 넘어, 인간-기계 상호작용을 더욱 몰입감 있고 개인화된 경험으로 이끄는 데 있다. 감정 표현 TTS : 이는 기계에 감정을 부여하여 인간 언어와 더욱 유사한 음성을 생성하는 것을 목표로 한다. 기쁨, 슬픔, 분노 등 다양한 감정을 표현하는 음성 합성은 사용자 경험을 더욱 풍부하게 만든다. 개인화된 음성 합성(Personalized TTS) : 이 기술은 약 1시간 분량의 데이터만으로 개인의 목소리를 복제하여 맞춤형 TTS를 만드는 연구 단계에 있다. 이는 부모의 목소리로 동화책을 읽어주는 등 감성적이고 따뜻한 응용 분야에 적용될 가능성을 열어준다.   감성으로 완성되는 기술 올해는 유난히 더운 것인지 아니면, 우리가 에어컨 환경에 너무 노출되어서 더위에 대한 저항력이 없어진 것인지는 모르지만 너무 더워서 정신적 활동이 힘들었다. 그 와중에 개인 자료를 정리하던 중에 개인적으로는 필자의 입사 이력서 사진을 우연히 찾아봤으나, 손상이 많이 되어서 인공지능으로 복원해 보기로 했다.     그림 1. 옛날 사진을 스마트폰으로 촬영한 이미지와 구글 인공지능으로 생성한 이미지   우선 스마트폰으로 이 사진을 찍은 다음 구글의 제미나이로 복원하고 다양한 모습으로 재현해 봤다. 그리고 동영상도 만들어 봤다. 아주 작고 희미한 흑백 사진이라고 우리의 머리속에 있는 이미지와 유사할 때까지 계속 보강된 이미지를 만들 수 있다. 그래서 최근에는 ‘포즈의 정리(Theorem of Pose)’라는 책을 구입해서 인공지능 생성 이미지 프롬프트를 본격적으로 연구해 보기로 했다.     그림 2. 구글 제미나이로 생성된 이미지   돌이켜보면 생각보다 빠른 속도다. 기술은 때로 불안과 경외를 동시에 불러온다. 그러나 확실한 것은, 인공지능이 우리의 감성을 자극하기 시작했다는 사실이다. 오래된 사진이 되살아나고, 목소리가 감정을 띠며, 텍스트가 움직이는 영상으로 변한다. 도입의 해를 지나 혁신의 해로 들어서는 지금, 우리는 효율을 넘어 의미를 설계해야 한다. AI는 결국, 우리 일과 삶의 이야기를 더 풍부하게 엮어내는 도구다. 기술이 감성을 만나 경험을 재편할 때, 진짜 혁신은 비로소 현실이 된다. 기업의 입장에서 2024년이 ‘도입의 해’였다면 2025년은 운영 방식 자체를 재정의하는 ‘혁신의 해’다. 기업은 막연한 기대가 아니라 ROI로 말하기 시작했고, 반복적·규칙 기반 업무를 AI로 자동화하여 즉각적인 효율과 투자 성과를 확보하는 전략이 주류로 부상했다. 그 중심에는 언어, 시각(이미지·영상), 음성이라는 세 가지 축과 이들을 촘촘히 엮어내는 멀티모달 AI가 있다.   ■ 조형식 항공 유체해석(CFD) 엔지니어로 출발하여 프로젝트 관리자 및 컨설턴트를 걸쳐서 디지털 지식 전문가로 활동하고 있다. 현재 디지털지식연구소 대표와 인더스트리 4.0, MES 강의, 캐드앤그래픽스 CNG 지식교육 방송 사회자 및 컬럼니스트로 활동하고 있다. 보잉, 삼성항공우주연구소, 한국항공(KAI), 지멘스에서 근무했다. 저서로는 ‘PLM 지식’, ‘서비스공학’, ‘스마트 엔지니어링’, ‘MES’, ‘인더스트리 4.0’ 등이 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
엔비디아, "AI와 디지털 트윈으로 물리적 프로토타입 없는 제조 혁신 이끈다"
엔비디아는 글로벌 컴퓨터 그래픽 콘퍼런스인 ‘시그라프(SIGGRAPH) 2025’에서, 아마존 디바이스 앤 서비스(Amazon Devices & Services)가 엔비디아 디지털 트윈 기술을 활용해 제조 분야의 혁신을 이끌고 있다고 밝혔다. 아마존 디바이스 생산 시설에 이달 도입된 이 설루션은 시뮬레이션 우선 접근 방식을 적용한 ‘제로 터치(zero-touch)’ 제조 방식을 구현했다. 제로 터치의 핵심은 로봇 팔이 다양한 장비의 제품 품질을 자율적으로 검사하고, 새로운 제품을 생산 라인에 통합하도록 훈련하는 과정 전체를 하드웨어 변경 없이 합성 데이터를 기반으로 수행하는 것이다. 이를 위해 아마존 디바이스가 자체 개발한 조립 라인 공정 시뮬레이션 소프트웨어와 엔비디아 기술 기반의 디지털 트윈을 결합했다. 모듈형 AI 기반 워크플로를 통해 기존보다 더 빠르고 효율적인 검사를 진행하며, 제조업체의 워크플로를 간소화해 신제품을 소비자에게 전달하는 시간을 줄일 수 있다는 것이 엔비디아의 설명이다.     또한, 이 설루션은 공장 작업대와 장비의 사실적인 물리 기반 표현에 기반한 합성 데이터를 생성해 로봇 운영을 위한 ‘제로샷(zero-shot)’ 제조를 가능하게 한다. 공장에 특화된 데이터는 시뮬레이션과 실제 작업 환경에서 AI 모델의 성능을 높이는 데에 쓰이며, 시뮬레이션과 실제 작업 환경에서의 AI 모델 성능 격차를 최소화할 수 있다. 엔비디아는 “제로샷 제조를 통해 물리적 프로토타입 없이도 다양한 제품과 생산 공정을 유연하게 처리할 수 있는 범용 제조 시대를 향한 중요한 도약을 이뤄냈다”고 평가했다. 아마존 디바이스 앤 서비스는 디지털 트윈 환경에서 로봇을 훈련시켜 새로운 장비를 인식하고 다루도록 한다. 이를 통해 소프트웨어 변경만으로 한 제품의 감사 작업에서 다른 제품으로 손쉽게 전환할 수 있으며, 더 빠르고 제어가 용이한 모듈화 제조 파이프라인을 구축했다. 이를 위해 엔비디아의 아이작(Isaac) 기술 제품군을 활용한다. 아마존은 신규 장치가 도입되면 CAD 모델을 엔비디아 옴니버스(Omniverse) 플랫폼 기반의 오픈소스 로보틱스 시뮬레이션 애플리케이션인 엔비디아 아이작 심(Sim)에 적용한다. 아이작 심은 각 장치의 CAD 모델을 통해 물체 및 결함 탐지 모델 훈련에 필수인 5만 개 이상의 합성 이미지를 생성한다. 이후 엔비디아 아이작 ROS를 활용해 제품 취급을 위한 로봇 팔 궤적을 생성하고 조립부터 테스트, 포장, 검사까지 모든 과정을 구성한다. 로봇이 작업 환경을 이해하고 충돌 없는 궤적을 생성하는 데에는 엔비디아 젯슨 AGX 오린(Jetson AGX Orin) 모듈에서 실행되는 쿠다(CUDA) 가속 동작 계획 라이브러리 엔비디아 cu모션(cuMotion)이 사용된다. 또한, 500만 개의 합성 이미지로 훈련된 엔비디아의 파운데이션 모델 파운데이션포즈(FoundationPose)는 로봇이 장비의 정확한 위치와 방향을 파악하도록 돕는다. 파운데이션포즈는 사전 노출 없이도 새로운 물체에 맞춰 일반화할 수 있어, 모델 재훈련 없이 다양한 제품 간의 원활한 전환을 가능하게 한다. 한편, 이 기술을 더욱 빠르게 개발하기 위해 아마존 디바이스 앤 서비스는 AWS 배치(Batch)와 아마존 EC2 G6 인스턴스를 통해 분산 AI 모델 훈련을 수행했으며, 생성형 AI 서비스인 아마존 베드록(Bedrock)으로 제품 사양 문서를 분석해 공장 내 고수준 작업과 특정 검사 테스트 사례를 계획했다. 아마존 베드록 에이전트코어(Bedrock AgentCore)는 생산 라인 내 다중 공장 작업대를 위한 자율 워크플로 계획에 사용되며, 3D 설계와 표면 특성 등 멀티모달 제품 사양 입력을 처리할 수 있다.
작성일 : 2025-08-18
[포커스] 3D 프린팅, 제조 혁신 이끌 생산 기술 될까…현실의 벽과 돌파구는?
3D 프린팅이 폭발적인 관심을 받은 이후 거품이 꺼지고, 지금은 산업 분야를 중심으로 실질적인 기술 활용에 대한 고민과 노력이 이어지고 있다. ‘적층제조(Additive Manufacturing)’라는 용어는 절삭가공이나 주조 등과 다른 방식의 생산기술로서 3D 프린팅을 정의하는 개념이다. 3D프린팅연구조합은 지난 7월 2일~4일 일산 킨텍스에서 진행된 ‘제1회 국제 적층제조 기술 전시회 및 콘퍼런스(AM KOREA 2025)’를 통해 산업 분야에서 3D 프린팅 기술의 가능성을 짚는 기회를 마련했다. ■ 정수진 편집장     비용·소재·생산성의 한계를 극복해야 전시회 기간 중 치러진 ‘AM KOREA 2025 콘퍼런스’에서는 이틀에 걸쳐 최신 3D 프린팅 기술과 산업 분야에서의 활용 방안에 대한 논의가 이뤄졌다. 특히 현대자동차, LG전자, 한화에어로스페이스, 두산에너빌리티 등 국내 주요 제조기업에서 현실적인 고민과 노력을 소개했다. 콘퍼런스 첫째 날인 7월 3일 현대자동차 조영철 책임은 3D 프린팅 기술이 상당히 성숙했음에도 불구하고, 자동차 산업에서는 ‘2차 캐즘(Chasm)’ 단계에 접어들면서 본격 적용되기에는 몇 가지 한계가 있다고 짚었다. 가장 큰 장벽은 기존 제조 공정에 비해 여전히 제조 원가가 높고 생산성이 낮아 대량 생산에 쓰이기 어렵다는 것이다. 또한, 균일한 물성과 품질을 확보하기 어렵고, 특정 요구 조건을 만족하는 소재가 없다는 점도 해결해야 할 과제이다. 조영철 책임은 “이런 한계를 극복해야 3D 프린팅이 프로토타입 제작 수준을 넘어서 생산 기술로 자리잡을 수 있을 것”이라고 보았다. LG전자 박인백 팀장은 다품종 대량 생산 체제에서 고부가가치 산업과 달리 높은 소재 비용이 3D 프린팅의 양산 적용에서 걸림돌로 작용한다고 보았다. 또한, 반복되는 움직임이나 찢어짐을 견딜 수 있는 고무 같은 특수 소재가 부족한 소재 물성의 한계와 복잡한 부품을 3D 프린팅으로 제작할 경우 제작 시간과 비용이 높아지는 점도 꼽았다. 박인백 팀장은 “이 때문에 3D 프린팅을 실제 양산에 바로 적용하기는 어렵고, 현재 LG전자에서는 주로 개발 단계에서 3D 프린팅을 활용하고 있다”고 전했다.   비용 절감과 가치 창출을 위한 기술 개발이 돌파구 이런 한계를 넘어서 3D 프린팅이 제조산업에서 자리를 잡을 수 있는 가능성에 대해서도 제조기업들은 다방면의 노력을 기울이고 있다. 조영철 책임은 원가 허들을 극복하는 것과 함께 경량화를 통한 탄소 중립 대응, 파트 간 연결 방식 등 전후방 기술의 확보 등으로 3D 프린팅의 새로운 가치를 창출하는 것이 중요하다고 전망했다. 그리고 “물리적 서포트가 필요 없는 바인더젯(Binder Jet) 기술의 자동차 산업 적용 가능성을 찾고 있으며, 소프트웨어 중심 자동차(SDV)의 열 관리를 위한 다공성 구조물 제작이나 소량 생산되는 CS(고객 서비스) 부품의 무금형 양산 등에 3D 프린팅을 적용하는 방안을 연구 중이다. 이런 기술은 자동차 산업을 넘어 다양한 산업에 범용으로 적용할 수 있어 확장성이 높을 것으로 본다”고 전했다. LG전자는 3D 프린팅의 돌파구로 ‘무금형 양산’ 전략에 집중하고 있다. 금형 제작 비용이 부담스러운 소량의 비기능성 부품이나 서비스 부품에 적용해 비용을 절감할 수 있다는 것이다. 또한, LG전자는 신제품을 개발하는 과정에서 목업을 대체해 시간과 비용을 줄이거나, 생산 라인에서 쓰는 지그(jig) 제작에도 3D 프린팅을 활용하고 있다. 박인백 팀장은 “LG전자는 적층제조 특화 설계(DfAM)로 소재 비용을 줄이고 있으며, 3D 프린팅 소재와 장비를 직접 개발하여 원가 경쟁력을 확보하는 데 주력하고 있다”고 설명했다.     다양한 적층제조 설루션 및 기술 개발 내용 소개 이외에도 이번 AM KOREA 콘퍼런스에서는 ▲노스이스턴 대학교의 아흐메드 A. 부스나이나 교수가 나노 스케일의 반도체 제작을 위한 3D 프린팅 기술 개발 내용을 소개했고 ▲방위사업청의 도윤희 과장이 K-방산의 성장 과정·성과·육성 방향을 소개하면서 보안을 위해 3D 프린팅 장비의 국산화에 관심을 가져야 한다고 짚었다. ▲트루얼 테크놀로지의 루크 장 대표는 파우더 기반 적층제조에 기반한 고수율 및 저비용 제조 기술 연구 내용을 ▲한국재료연구원의 송상우 센터장은 와이어 기반 적층제조 기술을 활용한 SMR(소형 모듈형 원자로) 부품 제조 전략을 소개했다. ▲성균관대학교 백상열 교수는 지능형 생체 점착을 위한 4D 프린팅 기반 멀티스케일 소프트 로봇 기술을 소개했다. 콘퍼런스 둘째 날에는 ▲콜리브리움 애디티브의 첵한탄 이사의 ‘GE 에어로스페이스의 적층제조 산업화 경험’ ▲게퍼텍 세바스티안 렉 이사의 ‘WAAM(와이어 아크 적층제조) 기술의 대량 생산 산업 응용 전환’ ▲한화에어로스페이스 손인수 센터장의 ‘적층제조를 활용한 항공엔진의 국내외 개발 현황과 도전’ ▲두산에너빌리티 박재석 팀장의 ‘적층제조 기술은 첨단 제조산업을 어떻게 혁신하는가’ 등의 발표가 진행됐다. 3D프린팅연구조합의 이조원 이사장은 콘퍼런스의 개회사를 통해 국내 적층제조 산업의 위기를 경고했다. 그는 “한국의 기술 경쟁력이 하락하여 중국에 대한 기술 종속마저 우려되는 수준이다. 적층제조가 생산 기술의 중요한 전환점으로 여겨지고 있지만, 그 가능성을 실현하기 위해서는 정부의 정책적 관심과 함께 학계의 R&D 성과가 기업으로 이어지는 선순환 구조를 만들 필요가 있다”고 짚었다. 그러면서 이번 콘퍼런스가 국가 생존을 위한 기술 발전의 계기가 되기를 바란다고 전했다. 한편, 킨텍스 제1전시장에서 진행된 적층제조 기술 전시회에서는 성형 기법과 소재, 적층 크기와 정밀도 등에서 다양한 3D 프린팅 기술이 선보였으며, 한계를 극복하고 생산 분야에서 자리잡기 위한 노력이 진행되고 있음을 알 수 있었다. 전시회에서는 제조산업에서 3D 프린팅이 기존 생산 기술로 만들기 어려운 형상을 적은 시간과 비용으로 만들 수 있다는 점과 함께, 특정 분야에서는 프로토타입에서 나아가 실제로 쓰일 수 있는 부품 및 제품을 만들 수 있는 수준으로 3D 프린팅 기술이 성장했다는 부분이 강조됐다. 전시회 참가 업체들은 “3D 프린팅 기술이 지금 시점에서 기존의 생산 기술을 완벽히 대체할 수 있는 수준은 아니다”라면서도, 기술 한계를 극복하고 특화된 시장을 발굴하면서 제조 현장에 자리를 잡을 수 있을 것으로 기대하는 모습이었다.       ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-08-04
[온에어] 창의적 디자인의 미래, AI와 3D 프린팅에서 찾는다
캐드앤그래픽스 지식방송 CNG TV 지상 중계   CNG TV는 7월 7일 ‘창의적 디자인, AI와 3D 프린팅으로 만드는 미래’를 주제로 웨비나를 개최했다. 이번 웨비나에서는 홍익대학교 최성권 교수가 사회를 맡고 후스디자인 이광후 대표가 발표자로 참여해, 창의적 디자인이 AI(인공지능)와 3D 프린팅을 통해 어떻게 미래를 만들어가는지 집중 조명했다. 자세한 내용은 다시보기를 통해 확인할 수 있다. ■ 박경수 기자   ▲ 3D 프린팅을 통한 아이디어의 실현에 대해 소개한 후스디자인 이광후 대표   디자이너와 창작자가 창의성과 지속 가능성을 동시에 추구하는 시대가 도래했다. 후스디자인 이광후 대표는 AI와 3D 프린팅 기술의 융합을 통해 미래 디자인의 방향을 제시했다. 이광후 대표는 “디자인은 단지 사물을 만드는 일이 아니라, 삶의 방식을 제시하는 문화적 행위”라면서 ▲3D 프린팅을 통한 아이디어 실현, ▲디자인과 사회적 지속 가능성, ▲생성형 AI와 디자이너의 미래라는 세 가지 축을 중심으로 디자인이 나아갈 길을 조망했다.   3D 프린팅으로 구현한 창의적 아이디어 이 대표는 성당 양식의 다이닝 컨테이너, 레고처럼 조합 가능한 가구 시스템, 패놉티콘 개념을 형상화한 조형물 등 다양한 3D 프린팅 기반 프로젝트를 소개했다. 특히 SLS 방식의 프린팅 기술을 활용해 높은 완성도와 구조적 강도를 확보했으며, 프로토타입 제작부터 실제 제품화까지 폭넓은 가능성을 제시했다. 그는 “3D 프린팅은 자유로운 형상 구현과 실험적 시도를 가능하게 해주는 도구”라고 강조했다.   재활용 플라스틱과 지속 가능한 디자인 이 대표는 친환경 소재의 활용도 강조했다. 병뚜껑을 압착해 제작한 재활용 플라스틱 상판은 단순한 기능을 넘어 환경 메시지를 담은 오브제로 구현되었고, 서울시립대 학생들과 함께 진행한 샴푸 브러시 디자인 프로젝트는 다양한 사용자 상황을 반영한 실용적이면서도 유쾌한 제품을 선보였다. 그는 “디자인은 사회와 세대를 연결하는 매개체다. 지속 가능성은 이제 선택이 아닌 필수”라고 말했다.   ▲ 3D 프린팅을 통한 아이디어의 실현에 대해 소개   생성형 AI는 디자이너의 새로운 도구디자인 산업에서 생성형 AI의 등장은 위기이자 기회다. 이 대표는 AI가 반복 작업과 시각 자료 생성에서 유용한 도구가 될 수 있으며, 궁극적으로는 디자이너의 시각적 안목과 감성적 판단을 더욱 강조하게 될 것이라고 설명했다. AI와 3D 프린팅의 결합은 산업디자인의 새로운 가능성을 여는 열쇠로 떠오르고 있다. 이 대표는 데미안 허스트나 제프 쿤스 같은 현대 아티스트의 예를 들며, 디자인과 예술이 완성품보다 ‘과정’과 ‘스토리’에 가치를 두는 방향으로 진화하고 있다고 강조했다. 또한 디자인의 무형 가치는 아카이빙과 퍼포먼스를 통해 확장될 수 있으며, 이는 브랜드와 창작자의 정체성을 더욱 공고히 하는 전략이 될 수 있다고 덧붙였다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-08-04
[칼럼] 포괄적 디지털 트윈으로 제조 공장의 미래를설계하다
제조업계는 품질 보장, 비용 절감, 폐기물 감소와 같은 과제에 직면하면서 디지털 전환을 가속화하고 있다. 이에 따라 많은 기업이 IoT(사물인터넷), 첨단 로보틱스 등 다양한 기술을 적극 도입하고 있으며, 그 중에서도 시뮬레이션 기술은 스마트 공장 구현의 핵심 요소로 주목받고 있다. 특히 디지털 트윈 기술은 업계의 복잡한 도전 과제를 효과적으로 관리하고, 기업의 경쟁력을 유지하는 데 중요한 역할을 하고 있다. 디지털 트윈은 제품 설계의 최적화와 생산 시스템의 강화를 모두 지원한다. 기업은 디지털 트윈을 활용해 물리적 프로토타입에 대한 의존도를 줄이고, 자원을 효율적으로 절약할 수 있다. 또한 디지털 트윈은 실제 물리적 대상과 동기화되어 지속적으로 업데이트되므로, 제조업체는 생산 라인과 공급망 등과 같은 동적인 요소에 민첩하게 대응할 수 있다. 실시간 시뮬레이션 기능은 개선이 필요한 프로세스를 식별하고, 잠재적인 변경 사항을 사전에 테스트하며, 전체 시스템을 지속적으로 모니터링하는 데 기여한다. 지멘스의 포괄적 디지털 트윈은 물리 기반의 디지털 모델 세트로 구성되어 있으며, 제품과 생산의 전체 수명 주기와 공급망 전반에 걸쳐 다양한 측면을 일관되게 표현한다. 이 모델에는 전기, 기계, 제조 분야의 소프트웨어가 포함되어 있으며, 제품 수명 주기 전반에 걸쳐 일관성을 유지하면서도 생성과 관리에 필요한 부담을 최소화할 수 있다.   제품과 생산 전반을 아우르는 디지털 트윈의 통합 효과 제조업체는 포괄적 디지털 트윈을 활용함으로써 제품과 생산의 수명 주기를 각각 ‘제품용 디지털 트윈(digital twin for products)’과 ‘생산용 디지털 트윈(digital twin for production)’으로 원활하게 통합할 수 있다. 제품 측면에서는 제품용 디지털 트윈의 강력한 시뮬레이션 기능이 설계 주기를 단축하고, 프로토타이핑을 지원하며, 최종 제품의 품질을 향상시키는 데 기여한다. 한편, 생산용 디지털 트윈은 전체 공장의 설계와 최적화를 촉진해, 기계와 생산 라인을 보다 빠르고 효율적이며 친환경적으로 구축할 수 있도록 지원한다. 이는 생산 시스템 내에서 작업을 실행하는 가장 효율적인 방법을 결정함으로써 생산 일정을 최적화하는 데 도움을 준다. 이처럼 디지털 트윈의 두 가지 측면은 모두 기업의 운용 비용 절감을 지원한다. 제조업체는 제품용/생산용 디지털 트윈을 활용해 공장을 가상 환경에서 재현할 수 있으며, 이를 통해 실제 세계에서 많은 비용이 소요되는 재설계 작업을 수행하기 전에 기계와 시스템을 미리 최적화할 수 있다. 또한 기업은 시뮬레이션 기술을 활용해 고객과 함께 설계를 검토하고, 물리적 시스템의 전체 기능을 구체화할 수 있다. 국내에서도 많은 기업이 제품용/생산용 디지털 트윈을 도입해 제조 현장의 디지털 전환을 선도하고 있다. 예를 들어, LG이노텍은 자사 구미 사업장에 디지털 트윈 기술을 적용한 ‘드림 팩토리’를 구축했다. 이를 통해 가상 환경에서 반도체 기판 공정을 수백만 회 반복하며, 높은 수율과 품질을 단시간에 달성했다. 또한 디지털 트윈 기반의 라인 모니터링 시스템(LMS)을 통해 생산 라인, 제품 이동 경로, 재고 현황, 설비 이상 유무 등 전체 공장 상황을 실시간으로 모니터링하고 있다. GS칼텍스는 공장 건설 단계에서 확보한 3D 모델에 공정별 장치 설계도와 공정 도면 등 설비 정보를 적용해 자사 여수 공장의 디지털 트윈을 구축했다. 이를 통해 원유 입고부터 제품 출하까지의 생산 과정을 가상 공장에서 구현하고, 공정 단계별로 발생하는 비효율을 줄였다. 그 결과, 설비 관련 데이터를 찾는 시간이 기존 대비 약 30% 감소했으며, 현장 구조물 설치 등 공간 확인이 필요한 작업의 소요 시간도 약 70% 줄어든 것으로 나타났다.     산업 전반에서 확산되는 디지털 트윈의 가치 여러 산업 분야의 기업이 포괄적 디지털 트윈의 이점을 직접 경험하고 있다. 제품 설계업체부터 기계 제조업체에 이르기까지, 많은 고객이 디지털 트윈을 구현해 실질적인 가치를 창출하고 있다. 실제 사용 사례는 다음과 같다. 저비용 냉각 공기 흐름 최적화 AVG 경로 탐지 공장 레이아웃 증강 AI 기반 제품 개선 폐순환(closed-loop) 디지털 트윈 생성과 차세대 설계 최적화 지멘스의 포괄적 디지털 트윈은 제조업체가 많은 비용과 시간이 소요되는 설비 재작업을 방지할 수 있도록 지원한다. 디지털 트윈을 활용하면 물리적 프로토타입 기계를 배송하는 데 드는 추가 시간과 비용은 물론, 기계가 기대 성능에 미치지 못할 경우 발생하는 개조 비용까지 대폭 절감할 수 있다. 국내 제조업계에서도 지멘스의 기술을 기반으로 디지털 트윈을 적극적으로 구현하고 있다. DL모터스는 지멘스 엑셀러레이터(Siemens Xcelerator) 포트폴리오의 다양한 설루션을 도입한 대표 사례다. AI 지원 설계 설루션인 NX를 통해 기존 2D 설계를 3D로 전환했으며, PLM 설루션인 팀센터(Teamcenter)를 활용해 설계 데이터와 자재 명세서(BOM)의 열람, 배포, 관리가 가능한 환경을 구축했다. 이를 통해 시스템 응답 속도를 15~50배 가속화하고, 제품 설계를 혁신하며 제조 공정을 최적화했다. DL모터스는 지멘스와의 협력을 통해 디지털 전환을 앞당기며, 이륜차 업계의 디지털 트윈 구현을 선도하고 있다. 또한 HD현대는 공장 시뮬레이션을 위한 테크노매틱스(Tecnomatix)와 팀센터를 활용해 선박 생산의 전체 수명 주기를 아우르는 스마트 조선소 구축에 힘쓰고 있다. 지멘스와의 협력을 통해 설계와 생산 작업을 가시화하고, 건조 과정을 사전에 시뮬레이션하는 ‘인더스트리 메타버스’를 개발하고 있다. 양사는 2023년에 체결한 ‘설계-생산 일관화 제조혁신 플랫폼 공동개발을 위한 업무협약’을 바탕으로, 선박 제조 과정의 모든 데이터를 하나의 플랫폼에서 관리하는 디지털 자동화 생산 체계 구축을 위해 협력하고 있다.   산업 혁신을 이끄는 디지털 트윈의 미래 가치 포괄적 디지털 트윈은 제조 공장의 잠재력을 극대화하는 핵심 기술로 자리매김하고 있다. 디지털 전환과 디지털 트윈을 통한 지속적이고 적극적인 최적화는 비용을 효과적으로 관리하면서 제품과 생산의 효율성을 향상시키는 데 기여한다. 디지털 트윈의 장점은 여기에 그치지 않는다. 시뮬레이션 기술은 소프트웨어 정의 자동화와 생산 시스템을 기반으로 산업계가 산업용 메타버스를 구축하도록 이끌고 있다. 산업용 메타버스는 사용자가 물리적 자산의 가상 표현과 실시간으로 상호작용할 수 있는 디지털 환경으로, 기업은 이를 통해 거리의 제약을 극복하고 협업을 촉진할 수 있으며, 문제와 프로세스를 보다 깊이 이해하고 최적의 설루션을 도출할 수 있다. 이러한 흐름에 발맞춰 정부의 산업 디지털화 정책도 국내 산업의 디지털 트윈 도입을 적극 지원하고 있다. 산업통상자원부는 지난 5월, 산업단지 입주기업의 AI와 디지털 설루션 활용을 지원하는 현장 방문 프로그램인 ‘산업단지 AX 카라반’을 출범했다. 올해에는 10개의 인공지능 전환 실증 산업단지가 선정될 예정이며, 디지털 트윈 기반 스마트 공장 구축을 위한 실증 사업이 본격화될 전망이다. 지역 차원에서도 디지털 트윈 도입을 위한 움직임이 활발하게 전개되고 있다. 2023년에 지멘스는 경상북도, 김천시와 함께 경북 제조산업에 디지털 트윈 기술을 지원하는 업무협약을 체결했다. 지멘스는 지역 산업 현장에 디지털 설루션을 제공해 산업 생태계를 혁신하고, 디지털 트윈 분야의 신규 사업을 발굴하며, 전문 인재를 양성하는 다양한 사업에 협력하고 있다. 이처럼 디지털 트윈은 민간과 공공을 막론하고 차세대 산업 혁신을 이끌 중추 기술로 주목받고 있다. 포괄적 디지털 트윈은 향후 제조업 경쟁력을 좌우할 핵심 동력으로서, 산업 생태계 내부의 협력을 촉진하고 지속 가능한 혁신을 실현하는 데 중요한 역할을 하게 될 것이다.    ■ 오병준 지멘스 디지털 인더스트리 소프트웨어 한국지사장이다. 30여년 이상 한국의 여러 글로벌 IT 기업을 거치며 성공적 비즈니스 및 기술 전문성을 구축해 왔다. 지멘스 디지털 인더스트리 소프트웨어 한국지사장으로 선임되기 전 SAS 코리아 대표이사를 지냈으며, 오라클 코리아, 테라데이터 코리아, IBM 코리아 임원으로 재직한 바 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-08-04
[케이스 스터디] 유니티로 구현된 VR 자동차 수리 학습 경험
게임 기술이 충돌 수리 교육을 혁신하는 방법   이번 호에서는 게임 디자인의 원칙이 충돌 수리 산업과 같은 기업 사용 사례로 원활하게 전환되는 방법, 도전 과제와 해결책, 그리고 자동차 산업을 위한 몰입형 실습 학습 경험을 창출한 성과에 대해 짚어본다. ■ 자료 제공 : 유니티 코리아   마이크 머티스는 비디오 게임 및 음악 산업에서 25년 이상의 경험을 가지고 있으며, 게임 개발이 다양한 기업의 광범위한 응용 프로그램을 어떻게 형성하고 알릴 수 있는지를 이해하고 있다. 프리랜서 비디오 게임 저널리스트로 시작하여 다양한 게임 개발 프로젝트의 프로듀서로 기여하기까지, 그는 항상 게임 산업이 세계에 미치는 파급 효과에 영감을 받아왔다. 오늘날, 이 풍부한 기반은 I-CAR(자동차 충돌 수리 산업 간 회의)에서 그의 역할을 이끌고 있으며, 그는 가상현실(VR)을 사용하여 충돌 수리 교육을 혁신하는 학습 혁신 및 기술 팀을 이끌고 있다.   ▲ 이미지 제공 : I-CAR   게임 시작 : 기업 에디션 I-CAR의 VR 기반 시뮬레이션으로 자동차 교육 커리큘럼을 향상시키기 위한 노력에 참여했을 때, 머티스는 익숙한 느낌을 느꼈다고 한다. 새로운 게임 스튜디오를 설정하는 것과 매우 비슷했지만, 그는 비디오 게임을 출시하는 대신 충돌 수리 산업에서 기술자들이 사용할 수 있는 영향력 있는 교육 도구를 만드는 데 초점을 맞추었다. I-CAR는 충돌 수리의 안전성, 효율성 및 품질을 향상시키기 위해 헌신하는 비영리 조직이다. 1979년 설립 이후 탄탄한 명성을 쌓아왔으며, 골드 클래스 인정 프로그램을 통해 충돌 수리의 우수성에 대한 교육 기준을 설정하고 있어 VR 학습 통합과 같은 미래 지향적인 것을 탐구하기에 적합한 플랫폼이다. 머티스는 “가상 게임 기술과 자동차 수리 세계를 연결하는 복잡성은 내가 기꺼이 도전할 준비가 된 과제였다. 이전 경험과 많은 연구를 바탕으로, I-CAR의 학습 혁신 및 기술 팀의 기초를 구축하는 여정을 시작했다”고 소개했다.   ▲ 유니티 에디터에서 I-CAR VR 충돌 수리 교육 과정을 구축하는 모습(이미지 제공 : I-CAR)   개발 엔진의 선택 올바른 개발 엔진을 선택하는 것은 VR 기반 교육 시뮬레이션을 구축하는 데 있어 중요한 첫 번째 단계였다. 머티스는 “여러 게임 프로젝트에서 다양한 게임 엔진을 실험해본 결과, 게임 엔진 개발의 주력은 거의 20년 동안 유니티였다. 자신의 경험과 함께, 가상현실을 위해 개발하는 다른 회사들과 광범위하게 이야기했으며, 그들 모두가 유니티를 사용하고 있다는 공통점이 있었다”면서, “유니티의 OpenXR 및 Meta XR All-in-One 플러그인과의 통합은 높은 안정성을 보였으며, 엔진의 전반적인 유연성 덕분에 필요할 경우 미래에 다른 SDK로 빠르게 전환할 수 있었다”고 전했다. 또 다른 주요 고려 사항은 유니티 버전 컨트롤(Unity Version Control)이었다. 머티스는 “우리 팀의 많은 구성원이 원격으로 작업하고 있었기 때문에, 프로젝트 백업, 검색 및 개발 워크플로를 관리할 수 있는 강력한 시스템이 필요했다. 변경 사항을 쉽게 롤백하거나 필요에 따라 다양한 개발 경로를 위한 분기를 생성할 수 있는 견고한 버전 관리 시스템이 필수였다”고 설명했다. 그리고 “유니티가 우리의 모든 개발 요구 사항을 충족했기 때문에 선택은 간단했다. 돌이켜보면 그것은 중대한 결정으로 입증되었으며, 우리 팀의 성공과 개발 노력의 지속적인 진전에 중요한 역할을 했다”고 덧붙였다.     VR 혁신가 팀 구성 엔진이 선택된 후, 머티스는 내부 개발 팀을 찾기 시작했다. 유니티 개발자를 찾는 동안, 많은 후보자가 유니티 엔진으로 놀라운 성과를 이루는 것을 보는 것이 인상적이었다고 한다. 머티스는 “게임 산업에 대한 나의 지식과 우리의 교육 목표에 대한 명확한 이해가 게임 산업의 후보자들과 간극을 메우는 데 도움이 되었다. 이 덕분에 그들에게 그들의 개발 기술이 충돌 수리 산업에 있는 사람들을 위한 새로운 흥미로운 학습 방식을 형성하는 데 어떻게 도움이 될 수 있는지를 보여줄 수 있었다”고 전했다. 또한, 머티스는 3D 모델이 정확하고 시각적으로 매력적이도록 하기 위해 3D 모델러를 추가로 고용했다. 우리의 3D 모델러는 이전에 유니티를 사용한 적이 없었지만, 유니티 개발자들과의 협업 및 유니티 런(Unity Learn)의 학습 카탈로그 덕분에 빠르게 3D 자산을 유니티에 가져와 고품질 방식으로 작동시킬 수 있었다. 머티스의 팀은 유니티 개발자, 3D 애니메이터 및 XR 주제 전문가로 구성되었다. 이러한 인재들 덕분에 모든 개발, 경험 정확성, VR 헤드셋 지식 및 중요한 QA 테스트가 면밀히 모니터링되어 프로토타입의 성공을 보장할 수 있었다. 팀이 구성된 후에는 VR 프로토타입이 어떤 콘텐츠를 포함할지, 그리고 그것을 만드는 것이 I-CAR의 잘 확립된 커리큘럼 생성 과정에 어떻게 맞아들어갈지를 구체적으로 계획하는 단계를 거쳤다.   프로토타입 구축 머티스의 팀은 I-CAR의 제품 개발 및 커리큘럼 팀과 협력하여 VR을 그들의 과정 설계 프로세스에 원활하게 통합했다. 이와 함께, 머티스는 기존 개요 및 스토리보드에 맞춘 인터랙티브 단계 시트를 신속하게 개발하여 실제 수리 절차에서 핵심 프로세스 기술을 포착했다. 이 단계 시트는 VR 경험을 위해 유니티에서 작성될 필요가 있는 3D 자산, 상호작용, 소리 및 다른 요소를 추적하는 역할도 했다. 기술에 익숙하지 않은 커리큘럼 팀에 VR을 도입하는 것은 창작만큼이나 교육에 관한 것이었다. VR의 잠재력을 설명하기 위해, 머티스의 팀은 메타 퀘스트 2(Meta Quest 2) 헤드셋에서 사용할 수 있는 작은 프로토타입을 유니티에서 개발했다. 커리큘럼 팀을 위한 이 교육 프로토타입을 개발함으로써 개발 팀은 유니티에서 모든 기본 생산 프로세스를 설정할 수 있었다. 3D 자산을 유니티로 가져오는 방법과 상호작용을 위한 여러 코드 조각을 작성하는 것과 같은 것들로, 머티스의 팀은 주요 프로토타입을 위한 개발 템플릿을 갖게 되었다. 개발된 VR 교육 프로토타입은 커리큘럼 팀 구성원들이 도구와 차량과 상호작용할 수 있게 하여 몰입형 3D 경험의 힘에 대한 직접적인 통찰을 얻을 수 있게 했다. 머티스는 “이 작은 개발은 팀의 참여를 높일 뿐만 아니라 새로운 학습자가 더 복잡한 프로토타입에 뛰어들기 전에 VR에 익숙해질 수 있도록 도와주는 VR 트레이너로 발전한 성과였다. 이 성공은 우리가 실제 프로세스를 자연스럽고 매력적이며 기술자에게 정확한 강력한 가상 경험으로 변환하는 데 집중할 수 있게 해주었다”고 설명했다.   ▲ I-CAR VR 프로토타입 영상 캡처(비디오 제공 : I-CAR)   몰입형 학습으로 격차를 해소하기 머티스는 다음과 같은 시나리오를 소개했다. 전기차(EV)에 포함된 고전압 시스템을 다루는 수업을 듣기 직전이다. 이 수업 전에 다음에 대한 경험이 있는가? ① 멀티미터 사용하기 ② 전압 측정하기 ③ 2극 테스터 사용하기 ④ 안전 절차 ⑤ 고전압 분리 과정 수행하기 이러한 주제를 가르치는 수업에 들어가는 것은 꽤 벅차 보일 수 있으며, 어떤 사람은 수업 전에 프로세스를 더 잘 이해하기 위해 유튜브 비디오나 다른 자료를 찾고 있을 것이다. 이것은 자신감의 문제이다. 복잡한 프로세스에 들어갈 때 미리 알고 싶은 사람이 누가 있을까? 여기서 어려운 점은 어떤 자료가 있을 수 있지만, 언급된 모든 프로세스는 이해하기 위해 실습 경험이 필요하다. 멀티미터와 2극 테스터가 접근 가능하며, 전압을 측정할 수 있는 것이 있는가? 전기차 작업 프로세스와 관련이 있으면서도 안전한 작업은 무엇인가? 비용과 일반적인 접근성은 어떤가? 여기서 VR이 등장한다. VR은 실제 장비에서 연습하는 안전 위험이나 비용 없이 이러한 프로세스에 대한 실습 노출을 제공한다. 학습자는 헤드셋을 착용하고 즉시 가상 훈련실로 이동한다. 여기서 사람들은 멀티미터로 전압을 안전하게 측정하는 방법을 배우고, 고전압 연결 절차를 연습한다. 그리고 자신의 기술에 자신감을 가질 때까지 단계를 끝없이 반복한다. 이 기술은 학습자가 실수를 하고 안전하고 통제된 환경에서 그로부터 배우도록 허용한다. 훈련을 마스터했다고 느끼면 실제 응용 프로그램으로 전환할 수 있으며, 새로 습득한 기술과 지식을 직접 보여줄 준비가 되어 있을 뿐만 아니라 흥미를 느낄 수 있다.   미래를 엿보다 머티스는 “충돌 수리 산업 내에서 우리의 프로토타입을 선보이고 SEMA 및 CES와 같은 주요 산업 행사에서 발표한 후, 자동차 전문가들로부터 긍정적인 피드백을 받았다. 관심과 격려는 우리가 설계한 프로토타입을 완전한 VR 기반 과정으로 전환할 수 있는 신호를 주었다”고 소개했다. 전기차 기술 작업 및 ADAS 관련 수리 시나리오 문제 해결의 세부 사항에 중점을 둔 이 과정 중 두 개는 2025년 말에 출시될 예정이다. VR이 모든 실습 학습의 측면을 대체하지는 않지만, 복잡하고 접근하기 어려운 또는 비싼 시나리오를 더 접근 가능하게 만드는 데 뛰어나다. 이것은 도구이다. 전통적인 교육 방법을 보완하여 학습자에게 안전하고 확장 가능하며 상호작용적인 방식으로 기술을 마스터할 수 있는 방법을 제공한다. 유니티 인더스트리(Unity Industry)와 같은 플랫폼을 활용함으로써 기업은 교육의 미래를 재정의하고 고급 학습 경험을 더 영향력 있게 만드는 몰입형 VR 경험을 만들 수 있다.       ■ 기사 내용은 PDF로도 제공됩니다. 
작성일 : 2025-07-01