• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "표준화"에 대한 통합 검색 내용이 1,492개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
[ Physical AI × 세계 최초 기술(RCRA) ] AI·로봇 융합 제조·물류 'Next Standard'
■ AX & Robotics-Driven Manufacturing R&D  · Safety Congress with LG Leaders and Global Experts  ■   ● 장소 : LG사이언스파크 E9동 B1층 프런티어홀 (마곡중앙 8로 71) - 발산역 도보 5분, 마곡나루역 도보 7분, 김포공항역 택시 15분   ● 일시 : 9월 18일 (목) 12시  30분 참석등록 시작 (1:00세션 시작 ~ 4:30 종료)   ● 참가료 : 600 명 한정 무료   ● 참가 신청 링크 :  [참가 신청하기]   ● 참가 신청 URL : https://forms.gle/3ywdEZeSJa7sRM4G9   ● 아젠다 상세 :   ① [ Track Keynote ] 고장·충돌·사고를 넘어: System Thinking과 Digital Thread로 보는 로봇 공정의 숨은 리스크   -  경희대학교 임성수 교수   · 세션 상세:  많은 기업이 로봇·AI를 도입해 스마트팩토리의 생산성과 품질 향상을 기대하지만, 실제 운영에서는 고장·충돌·안전사고가 잦습니다. 이는 설계–생산–운영 전 과정의 데이터 단절과 의사결정 구조 분절에서 비롯됩니다. 본 세션에서는 System Thinking 과 Digital Thread를 통해 전사 차원의 리스크를 사전에 식별하고, 설계–생산–운영 데이터를 유기적으로 연결해 문제를 예방하는 구체적 접근법을 제시합니다.   · 연사 소개:  임성수 교수는 경희대 기계공학과 교수이자 대한기계학회 부회장으로, 로봇 안전 분야 권위자다. 산업용 로봇 ISO 국제표준 한국 대표 전문가이자 ISO 15066-3 프로젝트 리더를 맡아왔으며, 대통령 표창 (2024)과 산업부 장관 표창 등 다수의 수상 경력이 있다. 학계·산업계·정부를 아우르는 국제 표준화와 산업 발전의 가교 역할을 수행하고 있다.   ②  Collision-Free Human-Robot Collaboration – AI Safety Simulation and Global Compliance Cases   - 세이프틱스 김휘연 CSO   · 세션 상세: 로봇은 이제 일부 업종의 선택이 아니라 모든 제조 현장의 기본 인프라이며,  그 핵심은 안전성입니다. 안전 없는 자동화는 생산성·품질 모두를 보장할 수 없습니다. 본 세션에서는 Biomechanical Injury Threshold Model과 Digital Twin Safety Simulation을 활용해 자동화 설비의 실제 공정 안전성을 데이터로 분석하고 잠재 위험을 정량화하는 방법을 소개합니다. ISO 10218, ISO/TS 15066  등 국제 안전 규격 대응 사례를 통해 사고 예방을 넘어 리드타임 단축, 품질 보증, 글로벌 납품 승인 및 파트너십 강화로 이어지는 실제 경험을 공유하며, 로봇 안전성이 스마트팩토리의 Next Standard임을 제시합니다.   · 연사 소개 : 김휘연 CSO는 Safetics 전략총괄로, 공학 시뮬레이션 분야의 전문가다. 두산·한화·뉴로메카 등 국내 및 UR ·FANUC·KUKA 등 글로벌 기업과 협력해 왔고, 삼성·현대·GM·P&G 등 세계 유수 기업에 안전 솔루션을 적용한 경험이 있다. 인간-로봇 협업 (HRC) 분야에서 차세대 안전 기술을 선도하는 글로벌 전략가로 알려져 있다.   ③ 위험성 평가는 이제 ‘공정 설계 도구’다 – Front Loading Engineering과  MBSD로 여는 로봇 스마트 팩토리 품질/안전 혁신 - 세이프틱스 임정호 박사   · 세션 상세 : 기존 스마트팩토리 안전 평가는 설비 설치 후 뒤늦게 이뤄져 설계 변경·추가 비용, 일정 지연, 품질 저하로 이어지는 구조적 한계가 있었습니다. 본 세션에서는 이를 극복하기 위해 Front Loading Engineering 과 Model-Based Safety Design(MBSD)을 적용한 사례를 소개합니다. 설계 단계에서 선제적으로 위험성을 평가하고 안전 대책을 반영해 안전을 사후 점검이 아닌 설계의 일부로 통합한 접근법입니다. 이를 통해 설비 변경 비용 절감, 리드타임 단축, 안전·품질 동시 향상이라는 성과를 달성하며 , 위험성 평가가 스마트팩토리 경쟁력의 필수 설계 도구임을 보여드립니다.   · 연사 소개: 임정호 박사는 경희대 기계공학과 연구교수, 산업 자동화·물류 설비 기업과  KOTITI 시험연구원 경력을 바탕으로 수백 개 기업에 로봇 안전 컨설팅을 수행해 온 전문가이다. ISO 10218-2, ISO 13482 국제 표준 전문가로 산업 현장 요구를 깊이 이해하며, 한국로봇산업협회 전문위원과 산업부 소재부품기술개발사업 기획위원으로도 활동하고 있다.   ④ 지능형 로봇 기술혁신과 스마트물류의 확산 - LG CNS  손명운 팀장   · 세션 상세: 지능형 로봇 기술은 AI 수준에 따라  1세대 고정형 로봇에서 센서 기반 2세대, 학습형 3세대를 거쳐, 물리 환경과 상호작용하며 스스로 판단·학습하는 4세대 Physical AI 로봇으로 진화하고 있습니다 . 특히 휴머노이드 로봇은 범용지능을 갖추어 물류·제조 현장의 복잡한 부가가치 작업까지 수행할 수 있는 잠재력을 보여주고 있으며, Amazon과 BMW 등은 이미 현장 실증을 진행 중입니다. 이러한 변화의 핵심은 Robot Foundation Model(RFM)로,  방대한 시뮬레이션·원격제어 데이터 학습과 현장 파인튜닝을 통해 정교한 자율 동작을 구현합니다. Teleoperation 기반 원격작업으로 실시간 대응과 학습데이터 축적이 가능해 지속적 성능 향상이 이루어지며, 이는 단순 자동화를 넘어 완전 무인화 스마트물류센터로의 전환을 가속화합니다. 본 세션에서는 Physical AI와 휴머노이드가 제공하는 혁신과 이를 활용한 물류·제조 경쟁력 강화 방안을 제시합니다.   · 연사 소개: 손명운 팀장은 LG CNS에서 20년 이상 근무하며 북미 의료솔루션 개발과 C 사 자동유도차량 자동화 등 다수의 글로벌·국내 프로젝트를 수행해 온 디지털 혁신 전문가이다. 사용자 편의성 제고를 위한 여러 DX 과제부터 미국 유수의 회사들의 솔루션 사업, 자동화 설비 구축까지 폭넓은 현장 경험을 보유하고 있으며, AX, RX 기술을 활용한 물류자동화를 구현하고 차별화된 고객 가치를 개발하고 있다.    ● 참가 신청 링크 :  [참가 신청하기]   ● 참가 신청 URL :  https://forms.gle/3ywdEZeSJa7sRM4G9   ● 참가 신청 QR코드:    ● 장소 : LG사이언스파크  E9동 B1층 프런티어홀 (마곡중앙8로 71) - 발산역 도보 5분, 마곡나루역 도보 7분, 김포공항역 택시  15분   ● 일시 : 9월  18일 (목) 12시 30분 참석등록 시작 (1:00세션 시작 ~ 4:30 종료)   ● 참가료 : 600명 한정 무료   ● 문의  : Safetics   dblee0803@safetics.io 
작성일 : 2025-08-29
KRISO, HD현대와 손잡고 '기어리스 파워트레인' 개발로 선박 혁신 이끈다
KRISO, 전기추진 상반회전 파워트레인 개발 방향   선박해양플랜트연구소(KRISO)가 HD현대일렉트릭, HD한국조선해양 등과 함께 세계 최초로 기어 없는(gearless) 상반회전 전기추진 파워트레인 개발에 착수했다. 이번 사업은 산업통상자원부 주관으로 총 276.6억 원의 사업비를 투입해 2028년 12월까지 진행되며, HD현대일렉트릭, HD한국조선해양, 한국기계연구원, 한국조선해양기자재연구원 등 산·학·연 17개 기관이 참여한다. 기존 상반회전 추진시스템의 복잡한 기계 장치와 유지 보수 문제를 해결하고, 선박 추진효율을 극대화하는 것을 목표로 한다. 이번에 개발하는 파워트레인은 두 개의 프로펠러를 전동기로 개별 제어하여 기어 없이 반대 방향 회전(상반회전)을 구현한다. 이는 앞쪽 프로펠러가 흘려보내는 회전 에너지를 뒤쪽 프로펠러가 다시 받아 추진효율을 높이는 방식이다. 기존 시스템의 기어, 윤활, 냉각 장치 등을 제거하여 구조를 단순화하고, 시스템 신뢰성과 유지관리 편의성을 대폭 향상시켰다. KRISO는 이 기술을 15MW급 전기추진 선박에 최적화하여 개발한 후, 자체 연구 인프라를 활용해 고효율성과 신뢰성을 실증할 계획이다. 또한, 선급 인증 및 국제 표준화를 추진해 글로벌 기술 주도권을 확보할 방침이다. 연구책임자인 김명수 선임연구원은 이 기술이 전기 에너지를 효율적인 추진 동력으로 전환하여 친환경 전기추진 선박의 실용성을 높이는 핵심 기술이 될 것이라고 밝혔다. 이번 기술 혁신은 상선 시장의 전기추진 분야에 새로운 패러다임을 제시하고, 국내 선박 추진시스템의 독립과 자립화를 촉진할 것으로 기대된다. 나아가 탄소중립을 추구하는 미래 조선산업의 경쟁력을 강화하는 기술적 토대가 될 것으로 전망된다.  
작성일 : 2025-08-09
엔텍시스템, AI 기반 모터 진단 솔루션으로 산업 예지보전 선도
전력 계측 및 AI 기반 모터 진단 솔루션 전문기업, 엔텍시스템   산업 현장에서 고장이나 생산이 중단될 수 있는 상황을 미리 예측해, 장비 가동 중지 등의 사태를 막는 예지보전의 중요성이 높아지고 있다. AI 기반 산업 진단 기술 전문기업 엔텍시스템(www.nteksys.com)은 전력 계측과 모터 진단 분야에서 20년 이상 축적된 기술력으로 산업 설비의 안전성과 효율성을 높이는 데 앞장서고 있다.   엔텍시스템 김영식 부사장   산업 현장의 숨은 위험 신호, AI가 먼저 알아챈다 2002년 설립된 엔텍시스템은 전력 계측 및 AI 기반 모터 진단 솔루션을 전문으로 제공하는 기술 기업이다. 전기 신호 분석과 머신러닝 기술을 융합해 설비의 이상을 조기에 탐지하고, 운영 최적화를 유도하는 ‘AI 예지정비’ 분야에서 독자적 위치를 구축해왔다. 주요 제품으로는 ▲멀티채널 미터(GEMS 3500 시리즈) ▲AI 모터 진단 시스템(GEMS 5500 시리즈) ▲전기실 온라인 진단 시스템(EMS) 등이 있다. 이 중 멀티채널 미터는 수배전반의 인입 및 분기 회로를 동시에 고정밀 측정하여 에너지 효율과 전력 품질 감시에 활용되고, AI 모터 진단 솔루션은 전기 신호를 분석해 이상 징후를 조기에 탐지하고 머신러닝 기반 예지보전으로 설비 안정성 및 운영 효율을 향상시킨다. 또 전기실 온라인 진단 시스템은 실시간 전력 감시와 변압기 진단을 가능케 하여 원격 모니터링과 이상 감지에 강점을 보이고 있다. 삼성전자·LG전자·포스코 등 100여 개 이상의 기업과 150여 개 공장에 솔루션을 공급해 온 엔텍시스템은  2024년에는 미국 메릴랜드 법인을 설립하며 본격적인 글로벌 시장 공략에도 나섰다. 이와 함께 CE, UL, FCC 등 국제 인증을 확보하여 글로벌 경쟁력을 강화하고 있다. 산업AI EXPO에서 혁신적인 AI 진단시스템과 산업현장 적용 사례 소개 이 회사는 9월 3일부터 5일까지 코엑스 마곡에서 열리는 2025 산업AI EXPO에 참가해 대표 제품인 ‘SV500’ 모터 진단 시스템과 클라우드 기반 SaaS 서비스를 선보이며, 산업계의 스마트 유지보수 전환을 본격화할 계획이다. 엔텍시스템이 산업AI EXPO 2025 참가를 결정한 배경에는 “AI 기술의 실효성과 방향성을 업계에 선도적으로 제시하고자 하는 의지”가 있다. “국내 산업 AI 생태계 확산을 위한 첫 이정표로서, AI 기술의 방향성과 산업 현장 적용 사례를 업계에 선도적으로 알릴 수 있는 중요한 기회라고 판단해 산업AI EXPO에 참가하게 되었다”는 엔텍시스템 관계자는 “이번 전시를 통해 이미 여러 산업 현장에서 적용 사례를 갖춘 솔루션인 SV500의 기술 신뢰성과 실제 효과를 널리 알리고 싶다”고 전했다. 엔텍시스템이 주력으로 전시할 SV500은 24비트 해상도와 8kHz 샘플링의 전류·전압 실시간 파형 분석을 기반으로 인버터와 모터 전기 신호를 정밀 분석한다. 또 디지털 트윈 기술을 활용한 이상 탐지와 토크·고조파 분석, 웹기반 대시보드 시각화로 현장 상태를 실시간 확인할 수 있다. 이와 함께 이 회사의 전시부스에서는 클라우드 기반 실시간 모터 진단 SaaS 서비스도 선보일 예정이다. 이 서비스는 모터 이상 탐지 및 진단, 시공간 제약 없이 진단 현황 확인, 원격 실시간 모니터링 기능을 제공하여 현장 유지보수 업무의 효율성을 극대화한다. “산업AI EXPO는 산업계와 AI 기술이 실질적으로 만나는 통합 플랫폼으로서 의미가 크다”는 김영식 부사장은 “제조, 에너지, 인프라 분야에서 디지털 전환이 가속되는 가운데, 기업 간 AI 적용 경험과 니즈를 공유하고 협력할 수 있는 소통의 장이 될 것”이라고 덧붙였다. 특히 엔텍시스템은 이번 EXPO 참가를 통해 ‘스마트 유지보수의 새로운 기준’을 제시하며, 다양한 산업 고객 및 파트너와 실질적인 비즈니스 협업을 확대하는 계기로 삼을 계획이다. 이를 위해 전시 기간 내 SV500 실물 데모를 운영하여 방문객들이 센서 설치와 웹 대시보드를 직접 체험하도록 할 예정이다. 맞춤형 AI 유지보수 솔루션으로 산업계 표준 제시 엔텍시스템의 향후 목표는 명확하다. 산업 현장에서 발생할 수 있는 다양한 모터 고장 패턴을 AI가 정확히 예측할 수 있도록 머신러닝 및 딥러닝 알고리즘을 고도화하고, 고객 맞춤형 유지보수 기능을 강화해 신뢰도 높은 예지보전 시스템을 완성하겠다는 것이다. 특히 사용자 맞춤 알람 임계값 설정 기능, 모바일 최적화 UI·UX 개선, 클라우드 기반 플랫폼 강화 등을 통해 산업 전반에 AI 유지보수 솔루션을 표준화해 나갈 계획이다. 더불어, 일본, 베트남, 중동 등지로의 해외 진출도 확대하며 글로벌 SaaS 플랫폼 기업으로의 도약을 준비 중이다.  
작성일 : 2025-08-09
[칼럼] 2025년 하노버 산업박람회가 던진 시사점과 교훈
세계는 지금 기술패권 시대다. 국가와 기업의 명운이 기술에 달려 있다고 해도 과언이 아니다. 인류 사회를 총체적으로 혁신하고 있는 디지털·그린·문명 대전환도 기술 혁신이 핵심이다. 한편으로 위협받고 있는 인류의 지속가능성을 확보하고 인류의 비전을 실현하기 위한 수단으로서, 다른 한편으로 국가의 명운을 좌우하는 패권의 핵심으로서 과학기술의 중요성이 국가 최우선 이슈로 자리 잡고 있다. AI를 비롯한 기술 트렌드를 따라잡지 못하면 기업 경영은 물론 국가 경영도 어렵다. 기술의 미래 트렌드를 제시하는 양대 기술 전시회인 매년 1월초 미국 라스베이거스 CES(소비자전자쇼)와 4월초 독일 하노버 산업박람회에 세계인의 관심이 쏠리는 이유다.    주영섭 / 서울대학교 공학전문대학원 특임교수 전 중소기업청장 하노버 산업박람회, 왜 우리에게 중요한가 미국 CES와 함께 우리나라가 특히 많은 관심을 가져야 할 세계적 기술 전시회가 매년 4월 독일의 북부 도시 하노버에서 열리는 산업박람회다. 세계 산업계의최신 기술과 트렌드를 선보이는 글로벌 산업 기술의 메카로 주목받고 있는 하노버 산업박람회가 우리에 중요한 이유는 대한민국 경제의 중추를 이루고 있는 주력 및 미래 산업의 기술 트렌드를 제시하는 핵심 전시회이기 때문이다. 우리 경제의 근간인 수출의 대부분을 반도체, 자동차, 철강·화학, 선박, 기계 등 제조업이주도하고 있기 때문에 산업 기술 트렌드를 보여주는 하노버 산업박람회는 우리나라에 특히 중요한 기술 전시회라 할 수 있다. 지대한 중요성에도 불구하고 미국CES 대비하여 국내 기업 및 정부의 관심이 상대적으로 낮은 것은 속히 개선해야할 점이다. 산업 AI 대전환, 지속가능성의 열쇠 올해로 78회를 맞은 하노버 산업박람회는 우리 산업의 전략적 방향에 많은 시사점을 제시하여 우리 기업은 물론 정부, 대학 및 연구기관의 많은 관심과 연구가 요구된다. 올해는 지난 3월 31일부터 4월 4일까지 5일간 60개 국가에서 약 4000개 전시업체, 150개 국가에서 12만 7천명의 관람객이 참가해 성황리에 개최되었다. 전시와 컨퍼런스 프로그램에 온라인으로 참가한 관람객을 합치면 수십만에 이를 것으로 추산된다.  하노버 산업박람회는 올해 슬로건으로 “기술로 미래를 만들자”를 내세웠다. 그리고 지난 해 슬로건 “지속가능한 산업에 활력을 불어넣자”에서 강조한 지속가능성을 확보하기 위한 수단으로 기술 혁신을 강조했다. 그 중에서도 올해 최고 화두는 단연 산업 AI 대전환이었다. 사실상 모든 전시업체가 제시한 제품이나 솔루션에 AI를 활용하지 않은 사례가 없을 만큼 이제 산업 AI 대전환은 기본이 되고 있다. 작년부터 CES와 하노버 산업박람회가 공히 제시하기 시작한 ‘디지털 및 AI 대전환을 통한 인류의 지속가능성 확보’가 새로운 패러다임이자 시대정신으로 자리매김하고 있다. 심각한 위험에 처한 환경·사회 및 인류의 지속가능성 확보와 같은 난제 해결과 인류 비전 실현을 위해서는 AI 활용 및 대전환을 통한 인류의 지적·신체적 역량의 확장이 필수적이라는 의미다.  올해 하노버 산업박람회는 산업 AI 대전환에 의한 에너지 효율화, 탄소배출 감축, 자원 최적화를 통해 환경의 지속가능성에 크게 기여하고, 산업의 효율성 및 생산성 향상과 새로운 비즈니스 모델 창출, 산업 인력의 교육 및 지식 관리로 경제적 및 사회적 지속가능성에 획기적 기여를 할 수 있는 많은 가능성을 제시했다.  이러한 맥락에서 하노버 산업박람회가 우리 산업에 던진 가장 중요한 교훈은 무엇보다도 산업 AI 대전환에 민관 협력의 국가적 총력을 경주해야 한다는 것이다. 한 시도 지체할 수 없이 시급한 국가 최우선 과제다. 이를 위해서는 산업 AI 대전환을 위한 미국과 유럽의 불꽃 튀는 경쟁과 협력 구도를 잘 이해하고 대비해야 한다. 세계 AI 및 클라우드 분야를 선도하는 마이크로소프트, 아마존(AWS), 구글 등 미국의 빅테크 기업과 지멘스, SAP, 슈나이더 일렉트릭, 보쉬 등 유럽의 제조 솔루션 기업 간에 피나는 경쟁을 하는 동시에 서로 협력하는 이중적 관계를 가지고 있다. 액센추어, EY, 딜로이트, KPMG 등 세계적 컨설팅 기업들도 AI 역량을 바탕으로 이 경쟁구도에 뛰어들고 있다.  산업 AI 주도권 경쟁과 글로벌 전략 산업 AI 대전환 분야에서 이처럼 독보적 기업이 나타나지 않고 군웅할거의 전국시대가 전개되는 이유는어느 누구도 산업 AI 대전환의 핵심 성공 요인인 AI 역량과 데이터 및 도메인 노하우를 다 가지고 있지 못하기 때문이다.  미국은 세계 최고의 AI 및 클라우드 역량을 가지고 있는 반면에 제조업 등 산업 현장의 해외 이전 심화로 산업 데이터 및 도메인 노하우는 열세를 면치 못하고 있다. 독일이 주도하는 유럽은 상황이 정반대다. 산업 데이터 및 도메인 노하우는 강세를 보이고 있는 반면 AI 및 클라우드 역량은 열세다. 비유하자면 미국은 짜장면 그릇은 잘 만드는데 담을 짜장면이 시원치 않고 유럽은 그 반대인 셈이다. 이번 박람회에서 미국과 유럽의 세계적 기업들이 서로 약속이나 한 듯 하나같이 타 기업들과의 협력 및 연합을 통한 공동 전시에 나선 배경으로 분석된다.  미국 빅테크 기업들은 미국 및 유럽의 대·중소 솔루션 기업들과 함께, 유럽의 메이저 기업들도 미국의 빅테크 기업 및 미국·유럽의 소프트웨어·컨설팅 기업과 함께 전시장을 꾸미고 운영하는 협력 사례가 대종을 이루었다. 미국의 마이크로소프트가 영국의 항공기 엔진 기업 롤스로이스와 협력하여 개발한 AI 기반의 항공기 엔진 검사 솔루션을 제시한 것이 좋은 사례다. 마이크로소프트 전시장에 AI 검사 솔루션을 장착한 롤스로이스 항공기 엔진을 최초로 공개해 참관객의 눈길을 사로잡았다. 내시경 형태의 LED 조명의 검사 시스템과 AI 기반 실시간 영상 분석을 통한 솔루션 개발로 엔진 검사 시간을 기존 12시간에서 5~6시간으로 대폭 단축하여 엔진 가동시간 확대와 수익성 제고에 기여하고 있다. 아울러 롤스로이스는 항공기 엔진 가격이 아니라 항공기 운행시간에 따라 엔진 사용 요금을 청구하는 서비스형 제품(PaaS)을 신규 비즈니스 모델로 추진하여 사업 확대에도 기여하고 있다.  현재로서는 이렇듯 시너지가 큰 협력에 주력하지만 서로의 속내는 오월동주처럼 달라 향후 귀추가 주목된다. 내재적 성장만이 아니라 M&A(인수·합병)를 통한 주도권 쟁탈전이 커질 것으로 전망된다.  올해 박람회 직전 발표된 대로 유럽의 메이저 제조 솔루션 기업인 지멘스가 미국의 디지털 트윈 기반 시뮬레이션 및 데이터 분석 기업인 알테어를 무려 15조원에 인수한 것이 좋은 사례다. 알테어는 이번 박람회에서 통상 20~30시간 걸리던 자동차 공조시스템 시뮬레이션을 20분으로줄이고 판금 성형 작업의 재료 손실을 15% 이상 줄이는획기적 기술을 제시해 주목을 받았다. 대한민국의 전략 : 경쟁과 협력의 균형 하노버 산업박람회가 보여준 협력과 경쟁 사례는 글로벌 협력이 상대적으로 약한 우리 기업 생태계가 잘 유념하여 참고해야 할 대목이다. 우리의 기회이기도 하다. 산업 AI 대전환의 핵심 성공요소 중 하나인 AI 및 클라우드 역량은 미국보다는 열세이나 유럽 대비 강세로 볼 수 있어 민관이 합심하여 네이버, LG 등 국내 기업의 AI 역량 강화에 주력하는 한편 미국의 빅테크 기업과의 전략적 제휴 및 협력을 모색하면 훌륭한 시너지를 기대할 수 있다.  다른 성공요소인 산업 데이터 및 도메인 노하우에서 미국 대비 강점을 가지고 있기 때문이다. 이 점에서 우리와 유사한 상황에 있는 유럽과는 AI 및 클라우드 역량을 공동 개발하고 산업 데이터 및 도메인 노하우 측면에서 시장 지배력을 확보할 수 있는 데이터 표준화 및 생태계 구축의 협력에 적극 나서야 한다.  특히, 독일이 제조 데이터 생태계 구축을 통한 디지털 주권 및 세계 산업 주도권 확보를 위해 강력히 추진하고 있는 매뉴팩처링-X 프로젝트에 적극 참여하여 협력할 필요가 있다. 자동차 산업의 Catena-X, 화학 산업의 Chem-X, 항공 산업의 Aerospace-X 등 추진 중인 10여개의 산업 특화 데이터 생태계 구축 프로젝트에 대한 개별 또는 전체 참여 및 협력이 대상이다.  우리가 AI 대전환의 핵심인 산업 데이터와 도메인 노하우의 구조화 및 표준화를 국내외로 주도할 수 있으면 산업 AI 대전환 최강국이 될 수 있다는 점도 올해 하노버 산업박람회가 남긴 중요한 교훈이다. AI는 늦었지만 AI 대전환은 앞서 가자!    
작성일 : 2025-08-08
온라인 CAD 아레스 쿠도의 주요 기능
데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2026 (5)   DWG 호환 CAD인 독일 그래버트(Graebert)의 아레스 캐드(ARES CAD)는 PC 기반의 아레스 커맨더(ARES Commander), 모바일 기반의 아레스 터치(ARES Touch), 클라우드 기반의 아레스 쿠도(ARES Kudo) 모듈로 구성되어 있으며, 이들 모듈은 상호 간 동기화되어 작동한다. 이러한 구성으로 인해 아레스 캐드는 삼위일체형(trinity) CAD로 불린다. 이번 호에서는 이 중에서 클라우드에서 동작하는 아레스 쿠도를 중심으로, DWG 도면 작업과 3D 시각화, 그리고 최신 AI 기술(A3)을 소개한다. 이를 통해 어떻게 CAD 작업을 자동화하고 협업을 강화하며, 건설 및 제조 산업 전반에서 디지털 전환(DX)을 어떻게 실현할 수 있는지 살펴본다.   ■ 천벼리 캐디안 3D 솔루션 사업본부 대리로 기술영업 업무를 담당하고 있다. 홈페이지 | www.arescad.kr 블로그 | https://blog.naver.com/graebert 유튜브 | www.youtube.com/GraebertTV   아레스 쿠도의 아레스 AI 어시스트     아레스 AI 어시스트(ARES AI Assist :A3)는 아레스 쿠도 내에서 작동하는 지능형 가이드이다.  오픈 AI 기술로 구동되는 A3는 다음과 같은 방식으로 사용자를 지원한다. 소프트웨어의 다양한 CAD 기능 사용 방법 설명 사용자 인터페이스에서 기능 위치 안내 질문에 답하고 일반 CAD 개념 설명 사용자 인터페이스 맞춤화(UI 개인화) 지원 업계별 전문적인 조언 제공 변환 및 계산 수행 다국어 텍스트 번역 A3는 기본적으로 최소화된 상태로 대기하다가, 사용자가 도움말을 입력하면 즉시 대화창에서 응답한다. 여러 언어를 이해하기 때문에 아레스를 처음 접하는 사용자도 기능 탐색이나 사용법을 쉽게 배울 수 있으며, 숙련 사용자에게는 계산, 기술 질문 응답, 번역 기능을 통해 작업 효율을 높여준다. 특히 트리니티(Trinity) 협업 기능이나 아레스 제품군만의 고유 기능을 배우는 데 유용하며, 모든 사용자에게 CAD 작업을 더욱 쉽고 즐겁게 만들어 주는 조력자 역할을 한다.   버전 비교 및 향상된 버전 기록 관리자     아레스 쿠도의 버전 기록 관리자(Version History Manager)는 최근 강력한 기능이 추가되어 완전히 새롭게 재설계되었다. 특히 버전 비교(Version Compare) 기능을 통해 사용자는 예를 들어 동료가 업데이트한 최신 파일과 일주일 전 버전을 손쉽게 비교할 수 있다. 추가, 수정, 삭제된 엔티티가 색상으로 구분되어 표시되므로 변경 내역을 한눈에 파악할 수 있다. 클라우드 저장소와의 연동으로 직접 버전을 불러와 비교할 수 있어 정확성과 협업 효율을 극대화한다. 또한 저장한 버전에 ‘Customer Version(고객 버전)’, ‘Final Version 1(최종 버전 1)’과 같은 이름을 부여해 체계적으로 관리할 수 있으며, 이를 통해 작업 진행 상황을 손쉽게 추적하고 필요 시 과거 버전으로 복원할 수 있다.   블록 저장 및 온라인 블록 라이브러리 공유     아레스 쿠도에는 450개 이상의 표준 블록이 포함된 트리니티 블록 라이브러리(Trinity Block Library)가 2024년 도입되었다. 이 라이브러리는 온라인에서 블록을 생성 및 공유할 수 있어, 팀 단위로 공통된 블록을 활용해 도면을 표준화하는 데 유용하다. 올해 추가된 새로운 기능을 통해 사용자는 DWG 파일에서 블록을 추출해 라이브러리를 확장하거나, 현재 도면을 벗어나지 않고도 팔레트에서 바로 새 라이브러리를 생성할 수 있게 되었다. 이를 통해 설계 표준화와 재사용성을 높일 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-08-04
아이비스, 로봇 서비스를 위한 데이터 기반 성능 평가 기술 개발
차량용 모빌리티 소프트웨어 기업인 아이비스는 산업통상자원부가 추진하는 ‘데이터 기반 로봇 서비스 실증 평가 기술 개발’ 과제에 참여한다고 밝혔다. 이 과제는 로봇 서비스의 완성도를 높이기 위해 가상의 국가로봇테스트필드 실증 환경에서 로봇 서비스 기술의 성능을 과학적·정량적으로 검증하고, 가상환경 기반 테스트 기법을 통해 실증 비용 및 시간 부담을 줄일 수 있는 평가 인프라를 구축하는 것이 목표다. 국가로봇테스트필드는 산업통상자원부와 한국로봇산업진흥원이 주관하는 대규모 실증 기반 인프라로, 실내외 복합 환경에서 다양한 로봇 서비스의 성능을 과학적·정량적으로 검증할 수 있도록 설계된 테스트베드이다. 로봇 서비스는 환경, 운용 조건, 사용 목적에 따라 성능이 달라질 수 있기 때문에, 상용화 전 단계에서의 객관적이고 표준화된 검증 체계가 필수이다. 특히 공공안전, 물류, 의료 등 고신뢰성이 요구되는 분야에서 로봇 서비스의 정량적 성능 검증은 실제 도입 및 확산을 결정짓는 핵심 기준이 되며, 실증 비용과 시간을 절감할 수 있는 가상환경 기반 평가 기법의 중요성 또한 커지고 있다. 아이비스는 이번 과제에서 로봇 서비스 실증을 위한 데이터 수집·전송·시각화·분석 기술을 개발하는 역할을 수행한다. 특히, 다양한 로봇 시스템에서 발생하는 운용 데이터를 수집하고 이를 기반으로 실시간 상태 모니터링, 데이터 표준화 인터페이스, 성능 평가 기준에 따른 분석 환경을 구현하는 소프트웨어를 개발할 계획이다. 또한 데이터 전송을 위한 통신 프로토콜 정의, 가상환경 연동을 위한 시간 가속·감속 처리 기술 등도 아이비스의 주요 개발 항목에 포함된다.     그동안 로봇 서비스 성능 검증은 표준화된 절차나 객관적인 지표가 부족해, 개별 기업의 자체 기준에 의존해 왔다. 아이비스는 이번 과제를 통해 이러한 한계를 극복하고, 데이터 기반 평가 방식으로 전환함으로써 평가의 효율성과 정확성을 동시에 높일 수 있을 것으로 기대하고 있다. 아이비스는 클라우드 기반 차량 통합 관제 시스템, 자율주행 로봇 실증 서비스, 디지털 클러스터 및 인포테인먼트 소프트웨어 개발 등에서 축적해 온 실증형 소프트웨어 개발 경험을 바탕으로 이번 과제의 핵심 기능 개발을 담당하며, 로봇 서비스 성능의 객관적 평가와 검증 체계 고도화에 기여할 계획이다. 또한 실외 자율주행, 스마트시티, 무인이동체 통합관제 등 다양한 실증 환경과 연계해, 데이터 기반 평가 기술의 상용화를 위한 역량을 강화해 나가고 있다. 아이비스의 남기모 대표는 “로봇 서비스가 상용화되기 위해서는 다양한 환경에서 신뢰할 수 있는 평가 체계가 뒷받침되어야 한다. 이번 과제를 통해 아이비스는 데이터 수집부터 시각화, 분석, 검증에 이르는 전 과정을 통합할 수 있는 기술을 개발하고, 실증 기반의 소프트웨어 역량을 로봇 서비스 분야로 확장해 나갈 것”이라고 밝혔다. 이어 “앞으로도 아이비스는 차량 및 모빌리티 소프트웨어 분야에서 쌓아온 경험을 바탕으로, 스마트 모빌리티와 로보틱스가 융합되는 미래 서비스 환경에서 핵심적인 기술 기반을 제공해 나가겠다”고 덧붙였다.
작성일 : 2025-08-04
[칼럼] 스마트 디지털 트윈을 위한 디지털 온톨로지와 디지털 스레드
디지털 지식전문가 조형식의 지식마당   인공지능(AI)은 단순한 기술을 넘어 우리의 삶과 산업 전반을 재편하는 거대한 흐름이 되었고, 이 거대한 흐름 속에서 스마트 디지털 트윈(smart digital twin)과 디지털 스레드(digital thread)는 미래 혁신을 이끌 핵심 동력으로 될 것으로 생각된다. 이번 호 칼럼에서는 AI 시대에 이 두 가지 개념이 왜 필수인지 그 핵심 역할과 의미, 그리고 우리가 직면한 과제를 심층 조명하고자 한다. 미래 제품 개발의 최전선에는 스마트 디지털 트윈이 자리하고 있다. 이는 단순한 물리적 객체의 디지털 복제본을 넘어선다. 우리는 이를 ‘인공지능 중심 디지털 트윈 (AI defined digital twin)’이라고 부르며, 궁극적으로는 AI 에이전트 디지털 트윈으로 진화할 것으로 생각된다.   그림 1. 인공지능 중심의 디지털 트윈과 디지털 스레드의 통합(출처 : Lifecycle Insights)   스마트 디지털 트윈의 핵심은 미래 예측과 시뮬레이션 능력에 있다. 가상 환경과 인공지능 환경에서 미래 제품의 성능과 기능을 사전에 예측하고 다양한 시나리오를 시뮬레이션함으로써, 우리는 현실 세계에서 발생할 수 있는 시행착오를 최소화하고 최적의 설계를 도출할 수 있다. 예를 들어, 자율주행 자동차를 개발할 때 스마트 디지털 트윈은 수십만 가지의 주행 상황을 가상으로 재현하고 AI 모델을 훈련시켜 실제 도로에서의 안전성을 극대화할 수 있다. 이는 제품 개발의 시간과 비용을 획기적으로 절감할 뿐만 아니라, 혁신적인 제품의 출시를 가속화하는 핵심 역할을 수행한다. 그러나 스마트 디지털 트윈이 그 잠재력을 온전히 발휘하기 위해서는 거대한 양의 데이터가 끊김 없이 흐르고, 이 데이터가 의미 있는 정보로 변환되어 AI의 추론과 학습에 활용될 수 있는 환경이 조성되어야 한다. 바로 이 지점에서 디지털 스레드의 역할이 부각된다. 인공지능이 강화되는 스마트 디지털 트윈 환경에서 디지털 스레드는 단순한 연결을 넘어 혁신의 실핏줄과 같은 역할을 수행한다. 이는 정보의 단절, 즉 데이터 사일로(data silo)를 극복하고 정보의 흐름을 원활하게 하는 유일무이한 기술이다. 기존의 단절된 시스템과 프로세스 속에서는 데이터가 각자의 고립된 공간에 갇혀 효율적인 활용이 불가능했다. 디지털 스레드는 이러한 장벽을 허물고, 정보가 마치 혈액처럼 유기적으로 순환하며 지식으로 축적될 수 있도록 도와준다. 디지털 스레드의 핵심 기능은 크게 다섯 가지 유형의 단절된 데이터 사일로를 연결하는 데 있다. 첫째, 제품 수명주기(product lifecycle) 내 소통이다. 요구사항 정의에서부터 제품 스펙, 엔지니어링 BOM(Bill Of Materials), 제조 BOM, Bill of Process, 그리고 서비스 BOM에 이르기까지, 제품의 전 수명주기 단계에서 발생하는 모든 데이터가 디지털 스레드를 통해 끊김 없이 연결된다. 과거에는 각 단계별로 데이터가 사일로화되어 정보 흐름이 원활하지 못했고, 이는 곧 비효율적인 의사결정과 불필요한 재작업으로 이어졌다. 디지털 스레드는 이러한 문제점을 해결하여 제품 개발의 전 과정에서 일관된 정보와 최신 데이터를 공유할 수 있도록 한다. 둘째, 제품 수명주기 관리(PLM)와 인공지능 간의 소통이다. 제품 개발 환경에서 인간의 생각과 인공지능의 추론 기능 간에는 디지털 온톨로지(digital ontology)의 표준적 개념과 디지털 스레드를 통해 다양하고 복잡한 생각과 용어 등이 소통될 필요가 있다. 디지털 스레드는 복잡한 제품 구조, 기능, 요구사항 등을 AI가 이해하고 추론할 수 있도록 의미론적으로 연결하는 다리 역할을 한다. 이를 통해 AI는 단순한 데이터 분석을 넘어, 인간의 의도를 파악하고 창의적인 해결책을 제시하는 진정한 협력자가 될 수 있다. 셋째, 서로 다른 설루션 간의 소통이다. 소프트웨어 형상 관리 설루션, PLM, 요구사항 관리 설루션, 해석 데이터 관리 설루션 등 수많은 서로 다른 설루션이 존재하지만, 이들 간의 데이터 연동은 늘 골칫거리였다. 디지털 스레드는 이처럼 분리된 설루션을 메시(mesh) 관계로 연결하여 데이터가 원활하게 연동될 수 있도록 한다. 마치 거미줄처럼 촘촘하게 연결된 이 망은 각 설루션이 생성하는 데이터가 실시간으로 다른 설루션과 공유되고 활용될 수 있는 기반을 제공한다. 넷째, 서로 다른 조직 간의 소통이다. 마케팅 부서, 기본 설계 부서, 생산 부서, 그리고 최종 서비스 부서 등 각기 다른 용어와 문화를 가진 조직간의 소통은 늘 쉽지 않은 과제였다. 디지털 스레드는 이러한 소통 장벽을 허물고 협업을 원활하게 한다. 각 조직이 사용하는 용어와 개념을 디지털 스레드 위에서 표준화하고 연결함으로써, 오해를 줄이고 목표 지향적인 협업을 가능하게 하는 것이다. 이는 궁극적으로 조직 전체의 시너지를 극대화하고, 혁신적인 아이디어가 자유롭게 교환될 수 있는 환경을 조성한다. 다섯째는 세렌디피티(serendipity)이다. 이런 거미줄 같은 메시 관계에서 오는 네트워크된 지식(Networked Knowledge) 생태계는 이해당사자인 개발책임자, 엔지니어, 생산 엔지니어, 마케팅 전문가, 안전 전문가, 형상관리자 등에게 생각지 못한 발견과 창의적 환경을 제공하며, 자료를 찾는데 소모되는 엄청난 시간과 노력을 절감하게 하며 더 창조적인 작업에 투자할 수 있다.   그림 2. 제품 수명주기의 디지털 스레드 지식 그래프(knowledge graph)(출처 : Eigner Engineering Consult)   이처럼 디지털 스레드는 AI 시대, 특히 스마트 디지털 트윈 환경에서 데이터의 고립을 해소하고, 정보의 흐름을 최적화하며, 궁극적으로는 AI의 잠재력을 최대한으로 끌어내는 필수 기반 기술이라고 할 수 있다. 인공지능 시대에 디지털 스레드를 통한 창조성과 필연적 세렌디피티가 분야 전문가의 유일한 생존 전략이라고 할 수 있다. 그럼에도 불구하고 디지털 스레드는 여전히 많은 이에게 생소하고 도전적인 개념으로 여겨진다. 현장에서는 디지털 트윈 개발에 디지털 스레드가 필수임에도 불구하고 고객을 설득하기 쉽지 않다는 어려움을 토로한다. 심지어 일부 미국 전문가 사이에서는 ‘디지털 스레드 무용론’이 제기되기도 한다. 이러한 오해와 도전은 디지털 스레드가 가지는 혁신적인 속성 때문일 수 있다. 우리가 직면한 과제는 명확하다. 첫째, 설득의 어려움이다. 디지털 스레드의 필요성을 현장의 이해관계자에게 명확히 전달하고 공감대를 형성하는 것이 중요하다. 단기적인 효율 증대 뿐만 아니라 장기적인 관점에서 AI 시대의 경쟁 우위를 확보하는 핵심 요소임을 강조해야 한다. 둘째, 개념의 생소함과 도전적인 특성이다. 현재에도 디지털 스레드에 대해 정확하게 아는 사람이 드물며, 이는 비교적 생소하고 혁신적이며 도전적인 개념이기 때문이다. 따라서 이에 대한 지속적인 교육과 홍보, 그리고 성공 사례 발굴을 통해 이해의 폭을 넓혀야 한다. 그러나 이러한 도전에도 불구하고, 인공지능 시대에 스마트 디지털 트윈에서 디지털 스레드가 필요한 이유는 존재하는 것이 아니라 만드는 것이라는 관점에서 접근해야 한다. 이는 디지털 스레드가 단순히 현존하는 문제를 해결하는 도구를 넘어, 미래의 복잡한 인공지능 기반 시스템을 구축하고 그 잠재력을 최대한 발휘하기 위한 능동적이고 필수적인 기반임을 시사한다. 디지털 스레드는 이미 존재하는 데이터나 시스템을 연결하는 수동적인 도구가 아니다. 그것은 미래에 우리가 만들어낼 혁신 제품과 서비스를 위한 데이터와 정보의 연결고리를 능동적으로 구축하는 의미를 가진다. AI 시대의 복잡성은 끊임없이 새로운 데이터 유형과 상호작용 방식을 요구할 것이다. 디지털 스레드는 이러한 변화에 유연하게 대응하며 새로운 연결고리를 지속적으로 생성하고 발전시키는, 살아있는 유기체와 같다.   ■ 조형식 항공 유체해석(CFD) 엔지니어로 출발하여 프로젝트 관리자 및 컨설턴트를 걸쳐서 디지털 지식 전문가로 활동하고 있다. 현재 디지털지식연구소 대표와 인더스트리 4.0, MES 강의, 캐드앤그래픽스 CNG 지식교육 방송 사회자 및 컬럼니스트로 활동하고 있다. 보잉, 삼성항공우주연구소, 한국항공(KAI), 지멘스에서 근무했다. 저서로는 ‘PLM 지식’, ‘서비스공학’, ‘스마트 엔지니어링’, ‘MES’, ‘인더스트리 4.0’ 등이 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-08-04
한국산업지능화협회-크라우드웍스, 제조 특화 AI 에이전트 평가·인증체계 공동 구축
한국산업지능화협회(KOIIA)는 인공지능(AI) 학습 데이터 및 플랫폼 전문기업인 크라우드웍스와 ‘제조 특화 AI 에이전트 평가·인증체계 공동구축 및 생태계 조성’을 위한 업무협약(MOU)을 맺었다고 밝혔다.  이번 협약은 제조 산업에서 활용되는 AI 에이전트(AI agent)의 정량적 성능과 신뢰·공정성 등을 검증하고 표준화된 기준을 마련하여, 산업계 전반의 AI 기술 신뢰성을 확보하기 위한 첫 단계다. 협약에 따라 양 기관은 ▲제조 특화 AI 에이전트 평가 인프라의 공동기획 및 운영 ▲실제 환경 기반 표준 데이터셋 구축 및 검증 ▲신뢰성, 성능, 공정성에 대한 정량 평가 수행 ▲기타 양 기관이 합의하는 평가·인증체계와 데이터 표준기반 구축 등 인공지능 기술의 신뢰성과 제조산업 AI 생태계 조성을 위한 활동을 공동으로 추진한다.  특히, 이번 협약은 향후 다양한 기술기업과 유관기관이 참여하는 협의체 기반의 생태계 확산을 염두에 두고 있으며, 산업 전반에 적용 가능한 평가·인증체계로 발전시키는 것을 목표로 하고 있다는 것이 한국산업지능화협회의 설명이다. 한국산업지능화협회 이길선 전무는“제조 특화 AI 에이전트 평가·인증체계는 산업 AI가 실제 현장에서 신뢰를 얻고 확산되기 위한 핵심 인프라”라며, “이번 협약은 민간 주도의 장기적 인증 생태계 기반 구축을 위한 의미 있는 첫걸음”이라고 밝혔다.   
작성일 : 2025-07-31
[인터뷰] 산업통상자원부 산업인공지능혁신과 고상미 과장
산업 AI 확산 가속 페달… 활용 정책, 데이터 인프라 구축 지원   산업통상자원부 산업인공지능혁신과 고상미 과장      산업 대전환을 주도하는 인공지능(AI) 활용을 본격적으로 지원하기 위해 산업통상자원부(이하 산업부)는 최근 산업 AI 정책을 주도적으로 추진하는 부서인 ‘산업인공지능혁신과’를 신설했다. 기존에 여러 부서로 분산되어 있던 산업AI 관련 정책과 업무를 통합해 전담 조직을 마련한 것으로, 조직 신설의 배경과 향후 산업AI 정책 추진 방향에 대해 해당 부서를 이끄는 산업인공지능혁신과 고상미 과장을 만나 이야기를 들어 보았다.   산업부 산업인공지능혁신과 신설의 배경은 무엇인가?   AI는 데이터 및 컴퓨팅 기술의 발전과 산업 자동화 수요 확대 등에 힘입어 다양한 산업에 빠르게 적용되고 있다. 산업 현장에서 AI의 중요성이 높아지면서, 산업부 내에서도 AI 정책을 체계적으로 수립하고 지원할 전담 조직의 필요성이 대두됐다. 이에 2024년 상반기부터 조직 신설을 준비해 2024년 12월 30일에 ‘산업인공지능혁신과’ 를 공식 출범시켰다. 산업 AI 확산과 기업지원 효과를 극대화하기 위해 산업정책과와 산업기술시장혁신과의 일부 업무인 ‘AI 산업정책 민관협의체 운영, 산업디지털전환 관련 법령, R&D 사업, 데이터 구축·관리’ 등을 산업인공지능혁신과로 이관했다. 산업인공지능혁신과의 주요 업무는 무엇인가? 산업인공지능혁신과는 제조업과 서비스업 전반에 걸쳐 인공지능(AI)과 산업데이터 활용을 촉진하기 위한 정책을 수립하고 제도를 정비하는 업무를 총괄하고 있다. 현재는 「산업디지털전환촉진법」을 개정해 「산업디지털 전환 및 인공지능활용촉진법(가칭)」으로 개편하는 방안 을 추진 중이며, 이를 통해 기존의 디지털 전환 중심 정책에 산업 AI 활용을 명시적으로 포함하고, 산업현장의 AI 확산을 위한 법·제도적 기반을 강화하고자 한다. 아울러, ‘AI 산업정책 위원회’와 ‘산업디지털전환 위원회’는 그 기능과 역할을 확대·통합해 ‘산업인공지능 위원회’로 개편하는 등 관련 위원회 체계도 정비 중이다. 산업 AI 기술의 확산과 현장 적용을 위해 산업별 맞춤 형 AI 기술개발과 기반구축, 산업현장에 필요한 AI 전문 인력 양성 등을 추진하고 있다. 또한, 산업데이터의 수집, 표준화, 연계, 품질관리 체계 마련은 물론, 데이터 플랫폼 구축 등 민간 활용 활성화를 위한 정책도 총괄한다. 민관 협력도 활발히 운영 중이다. 산업계와 학계, 전문가 그룹과 연계한 협의체와 자문단을 구성해 현장 중심의 정책 수립에 반영하고 있으며, 수요‧공급 기업 간 매칭 지 원, 산업 AI 컨설팅, 현장 실증 등의 사업도 확대할 예정이다. 이와 함께 한국산업지능화협회 등 유관기관과 협력해 산업 AI 세미나, 전시회, 컨퍼런스 등 교류 행사도 개최하고 있다. 산업부 내 타 부서와의 차별점은 무엇인가?  산업부 내 여러 부서가 산업 디지털전환 및 AI 활용 관 련 업무를 수행하고 있으나, 산업인공지능혁신과는 ‘산업 데이터’ 업무를 전담한다는 점에서 차별화된다. 「 산업디지털전환촉진법」에서도 산업데이터 지원 근거가 별도 장(章)으로 명시될 만큼 그 중요성이 커지고 있다. 그러나 현장에서는 산업데이터의 확보가 어렵고, 활용 수준 또한 낮은 것이 현실이다. 이를 개선하기 위해 산업 부는 2024년 R&D 사업으로 ‘데이터 전처리(산업AI용 데이터 전처리 자동화 기술개발)’, ‘탄소데이터 플랫폼 구축(제조데이터 표준 인공지능 활용 제품 전주기 탄소중립 지원 기술개발)’ 사업을 새롭게 추진하였으며, 산업데이터의 생성·가공·활용 전 주기를 촉진하기 위한 ‘데이터 스페이스(한국형 Manufacturing-X 플랫폼 표준모델 개발 및 실증)’ 사업도 기획 중이다. AI 확산이 기업에 실질적으로 영향을 미치기 위해 필요한 노력은 무엇이라고 보는가?  AI 확산이 기업에 실질적인 영향을 미치기 위해서는 산업 현장의 수요에 기반한 전략적 접근이 필요하다. 현장을 살펴보면, 많은 기업들이 AI 도입에 관심은 있으나 산업데이터 부족, 기술 검증 부담, 초기 투자 리스크 등 현실적 한계에 부딪히고 있다. 특히 제조업의 AI 적용을 위해서는 양질의 산업데이터 확보와 이를 기반으로 한 문제 정의 과정이 선행되어야 하며, 이를 위해 산업부는 기업 현장 문제 해결을 위한 산업데이터 기반 AI 기술개발을 추진하고 있다. 또한 산업 전반의 AI 확산이 실제 기업의 생산성과 경쟁력 향상으로 이어지기 위해서는 수요기업 중심의 실질적 확산 기반 마련이 중요하다. 이에 산업부는 권역별 거점으로 ‘산업AI 혁신센터’를 지정하고, 산업AI 수요기업(제조기업)과 공급기업(솔루션기업) 간 파트너십을 통해 AI 솔루션 공동 실증을 지원하여, 산업 전반에 걸친 전국적 산업 AI 확산을 추진하고자 한다.  ‘산업 AI 10대 과제’의 선정 배경과 중요성에 대해 소개한다면?  ‘산업 AI 10대 과제’는 2024년 5월부터 민관 합동으로 ‘AI산업정책위원회’를 출범한 이래, 한국공학한림원 회원 들을 비롯한 200여명의 민간 전문가들이 심도 있게 논의해 도출한 결과다. 민간 전문가 그룹이 산업 현장의 수요와 기술 변화를 반영해 과제를 선정했다는 점에서 의미가 크다. 10대 과제에는 ▲산업AI 선도 프로젝트 ▲AI 에이전트 와 피지컬 AI ▲산업 AI 컴퓨팅 인프라 ▲산업 데이터 ▲ AI 반도체 ▲AI 인재 ▲전력 인프라 ▲산업 AI 자본 ▲AI 생태계 ▲산업 AI 제도 등이 포함된다. 일부 선도 과제는 기존 사업과 연계해 조기 성과 도출을 지원하고, 산업데이터 스페이스 구축, AI 인재 양성 등 신규 과제도 추진 중이다.   최근 진행했던 ‘산업 AI 전략(M.A.P)’ 세미나의 성과와 향후 계획은 무엇인가? 최근 진행한 ‘산업 AI 전략(M.A.P, Manufacturing AI Policy)’ 세미나는 제조기업의 AI 도입을 실질적으로 지원하기 위한 소통의 장으로 의미 있는 성과를 거두었다. 많은 제조기업들이 AI 도입의 필요성에는 공감하지만, 실 제 도입 과정에서 많은 어려움을 겪고 있다. 이에 산업인공지능혁신과는 기업들이 AI 전문가와 직접 소통하고 실질적인 해법을 모색할 수 있도록 ‘M.A.P 세미나’를 기획하였다. 해당 세미나는 서울, 광주, 창원 등에서 개최되었으며, 매 행사마다 높은 관심을 받았다. 세미나 이후 질의응답에서는 고난이도 기술 질문이 이어져 산업 현장의 실질적 수요를 확인할 수 있었다. 앞으로도 M.A.P와 현장 밀착형 프로그램을 지속 확대해 기업들의 AI 도입을 실질적으로 지원하고, 산업계의 요구를 정책에 적극 반영해 나갈 계획이다. 국내 산업 AI·DX 도입 수준은 어떠하고, 확산을 위해 필요한 선결 과제는 무엇인가?  국내 산업계의 AI·DX 도입 수준은 여전히 초기 단계에 머물러 있으며, 실질적 확산을 위해 해결해야 할 과제가 적지 않다. 2024년도 한국생산성본부(KPC) 조사에 따르면, 국내 제조업체의 약 90%가 아직 AI를 실제로 도입하지 않았으며, 그 주요 원인으로 산업데이터 확보의 어려 움과 인프라 부족이 지목되었다. 또한, ‘AI 기술을 어떻게 활용해야 할지 모른다’는 점도 도입 저해 요인으로 나타났다. 산업 현장에 특화된 AI 솔루션에 대한 정보와 접근성이 낮기 때문이다. 산업 AI 확산을 위해서는 국가 차원의 전략도 중요하지만, 현장에서 필요한 AI 기술을 신속히 개발하고, 기업들이 쉽게 접근할 수 있도록 기술과 현장을 연결하는 실질적인 ‘연결고리’의 구축이 무엇보다 중요하다.   산업인공지능혁신과의 올해 및 중장기 계획에 대해 소개한다면? 산업인공지능혁신과는 AI 기술의 빠른 발전과 산업 전 반에 미치는 영향력을 고려해, 중장기 로드맵보다는 현장 수요와 단기 실현 가능성이 높은 과제 중심으로 지원 방향을 유연하게 설정하려 한다. ‘산업 AI 10대 과제’ 발표 이후, 실행력 있는 세부 실행 계획을 단계적으로 추진하고 있으며, 산업 현장에서 실질적인 효과를 낼 수 있도록 정책의 실행력을 높이는 데 중점을 두고 있다. 앞으로는 산업부 전체 차원의 중장기 전략을 재정립하고, 기업들이 실제로 필요로 하는 기술·데이터·인프라 요건을 면밀히 검토해 정책 대응을 강화할 계획이다. 산업 AI 활용 수혜기업과 한국산업지능화협회에 전하고 싶은 말이 있다면?  산업 AI 확산을 위해 여러 기관이 적극적으로 사업을 기획·발굴하고 있다. 현장의 수요를 신속하게 전달하는 것이 무엇보다 중요하며, 이를 통해 실질적으로 도움이 되는 정책과 사업이 만들어질 수 있다. 특히 한국산업지능화협회는 ‘산업AI 얼라이언스’ 운영, ‘산업AI 엑스포’ 개최 등 현장 중심 활동을 통해 정보 교류와 성공사례 확산에 앞장서고 있다. 앞으로도 수요기업과 공급기업의 현장 목소리가 정확히 전달되고, 산업계의 적극적인 참여와 소통이 실효성 높은 정책으로 연결될 수 있도록 협회의 적극적인 협력을 당부한다. ■    캐드앤그래픽스 최경화 국장 mail@cadgraphics.co.kr  
작성일 : 2025-07-22
아이비스–에스엠솔루션즈, AI 기반 차량 소프트웨어 기술 개발 위해 협력
차량용 모빌리티 소프트웨어 기업 아이비스가 사이버 보안 및 AI 기술 기업 에스엠솔루션즈와 함께 자동차 및 모빌리티 분야의 AI 기반 기술 공동 개발을 위한 양해각서(MOU)를 체결했다고 전했다. 양사는 이번 협력을 통해 차량 내 온디바이스 AI 기술과 보안 AI 기술을 융합한 미래형 SDV(소프트웨어 정의 차량) 플랫폼 구축에 나설 예정이다. 아이비스는 차량 내 디지털 클러스터와 인포테인먼트 시스템, 차량 제어기에 적용되는 임베디드 소프트웨어를 개발해 온 기업으로, SDV 환경에서 요구되는 실시간성, 확장성, 표준화 기반 기술을 갖추고 있다. 특히, 차량 실시간 데이터 추상화 기술과 통합 관제 설루션 등 데이터 기반 소프트웨어 플랫폼을 바탕으로, 최근에는 차량 내 AI 소프트웨어 기술 개발에도 집중하고 있다. 에스엠솔루션즈는 사이버 보안, 소프트웨어 품질 검증, AI 기반 위협 탐지 및 보안 자동화 기술을 전문으로 하는 IT 설루션 기업이다. 이번 협약을 통해 양사는 ▲온디바이스 AI 기반 차량용 소프트웨어 및 서비스 기술 공동 개발 ▲SDV 환경에서 AI 적용의 신뢰성 확보를 위한 테스트 및 검증 기술 협력 ▲AI 기반 보안 취약점 분석 및 침투 테스트 기술 공동 연구 ▲AI-보안 융합 기반의 차량 내 소프트웨어 보호 체계 구축 등을 포함한 다양한 협력을 추진할 계획이다. 세부적으로, 양사는 차량 내 온디바이스 AI 시스템과 SDV 플랫폼 상의 AI 기능 확장을 목표로 AI 기반 핵심 기술을 공동 연구한다. AI/ML 기반 위협 탐지, 생성형 AI를 활용한 보안 취약점 자동 검증, 제로데이 공격 대응 기술 등의 개발을 포함해, 차량 네트워크 및 ECU 대상 침투 테스트 기술도 함께 고도화할 예정이다. 이를 위해 아이비스는 차량 내 데이터 처리 및 AI 추론 기능을 수행하는 소프트웨어 프레임워크 개발을 주도하고, 실제 차량과 에지 컴퓨팅 환경에서의 적용을 위한 엔지니어링 기술을 제공한다. 특히 자사의 차량 데이터 추상화 기술 및 차량 서비스 프레임워크를 중심으로 한 실시간 AI 데이터 운영 기술을 강화하여, 차량 내부 AI 시스템의 신뢰성과 확장성을 확보해 나갈 방침이다. 에스엠솔루션즈는 생성형 AI와 대규모 언어 모델(RAG 포함) 기반의 AI 학습 기술을 바탕으로 차량용 소프트웨어 보안 강화를 지원한다. 퍼징 테스트 및 보안 취약점 탐지 기술, 오픈소스 보안 취약점 점검, 정적 분석 및 시큐어 코딩 설루션 등 폭넓은 보안 역량을 보유하고 있으며, 이번 협력을 통해 차량 내 온디바이스 AI 모델의 보안 내재화와 실차 환경에 특화된 보안 기술의 실증 적용을 추진할 계획이다. 아이비스 남기모 대표는 “최근 SDV 시대에 맞춰 차량 내 소프트웨어 구조가 AI 중심으로 전환되고 있으며, 이는 AI가 차량 소프트웨어 아키텍처를 정의하는 ADV(AI-Defined Vehicle) 패러다임으로 확장되고 있다. 아이비스는 SDV 기반 소프트웨어 기술에 AI를 접목한 차량 내 AI 활용을 위한 소프트웨어 프레임워크 고도화에 집중하고 있으며, 이번 협력을 계기로 ADV 전환을 뒷받침할 수 있는 온디바이스 AI 기술과 보안 체계의 기반을 구축해 나가겠다”고 말했다. 에스엠솔루션즈 김상모 대표는 “아이비스와의 이번 협력은 차량용 소프트웨어의 보안성과 AI 기술의 융합을 통해 SDV 및 ADV 시대를 선도할 수 있는 중요한 기회이다. 에스엠솔루션즈는 생성형 AI와 보안 자동화 기술을 바탕으로 차량 내 온디바이스 AI 시스템의 신뢰성과 안전성을 확보하는 데 기여할 계획이다. 양사의 기술 역량을 결합해 글로벌 모빌리티 시장에서 혁신적인 보안 설루션을 제공해 나가겠다”고 말했다.
작성일 : 2025-07-09