• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "파일"에 대한 통합 검색 내용이 6,804개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
델, AMD ‘크라켄 포인트’ 탑재한 기업용 ‘델 프로 노트북’ 첫 공개
델 테크놀로지스가 AMD의 차세대 AI PC 프로세서인 ‘라이젠 AI 프로 300 시리즈(코드명 크라켄 포인트)'를 탑재한 기업용 노트북인 ‘델 프로 노트북(Dell Pro laptop)’ 신제품 5종을 공개했다. 델 테크놀로지스는 고객의 다양한 요구사항에 최적화된 AI PC를 제공하기 위해 인텔, AMD, 퀄컴 등 글로벌 반도체 기업과 협업하고 있다. 이번에 선보인 델 프로 노트북은 최대 50 TOPS를 지원하는 AMD 차세대 APU를 탑재한 델의 첫 번째 기업용 노트북으로, 강력한 온-디바이스 AI 기능과 함께 고급스러운 디자인과 휴대성을 갖추었다. ‘델 프로 플러스(Dell Pro Plus)’ 제품군은 다양한 사양을 제공하는 메인스트림 기업용 노트북으로, 사용자의 니즈에 따라 다양한 스펙, 폼 팩터(클램셸 및 투인원), 디스플레이 크기(13, 14, 16형)를 선택할 수 있다는 점이 특징이다. 이번에 발표된 신제품인 AMD 기반 ‘델 프로 13, 14 및 16 플러스(Dell Pro 13, 14, 16 Plus)’는 각각 13, 14, 16형 디스플레이를 탑재한 고급형 기업용 노트북으로, 올해 출시한 AMD 라이젠 AI 프로 300 시리즈를 탑재했다. 언어 번역 및 고급 AI 이미지 생성 등을 포함하는 코파일럿+(Copilot+) 기능을 지원하고, 최대 50 NPU TOPS의 AI 처리 능력을 갖춰 즉각적인 트랜스크립션과 같은 비즈니스 생산성을 구현한다. 이들 제품은 2024년에 출시한 ‘AMD 라이젠 AI 프로 300 시리즈’의 고성능 스트릭스 포인트 프로세서와 ‘AMD 라이젠 AI 프로 200 시리즈(호크 포인트)’ 옵션도 제공한다. 이번 AMD 기반 델 프로 플러스 신제품 가운데 ‘델 프로 14 플러스(Dell Pro 14 Plus)’ 및 ‘델 프로 16 플러스(Dell Pro 16 Plus)’는 각각 ‘AMD 라이젠 AI 5 프로 340’, ‘AMD 라이젠 AI 7 프로 350’ 프로세서를 탑재했으며, 두 모델 모두 ‘AMD 라이젠 AI 9 HX 프로 370’ 프로세서(코드네임 스트릭스 포인트) 옵션을 제공한다. 16:10 화면비의 디스플레이, 긴 배터리 수명, 슬림하고 내구성이 뛰어난 폼팩터로 하이브리드 업무 환경의 비즈니스 사용자에게 적합한 제품이다. FHD+ 해상도에서 각각 최대 14.5시간, 11.5시간의 긴 배터리 지속 시간을 지원해 전원 연결 없이 작업이 가능하며, 화상 회의 시 열악한 조명 조건에서도 이미지 디테일을 정확하게 캡처하는 HDR 기반 5MP 카메라가 옵션으로 탑재되어 있다. 아울러, 사용자가 직접 교체할 수 있는 ‘모듈형 USB-C 포트’를 적용하여 수리용이성을 강화했다. 내구성이 강한 알루미늄 소재를 적용하여 차분하고 세련된 플래티넘 실버 색상으로 제공되며, 기존 클램셸 형태 외에 투인원 폼 팩터로도 선택할 수 있다.   ▲ AMD 라이젠 AI 프로 300 시리즈를 탑재한 델 프로 16 플러스   델 프로 제품군은 일상적인 업무를 위한 필수 성능을 제공하는 것이 특징으로, 이번 신제품인 AMD 기반 ‘델 프로 14(Dell Pro 14)’ 및 ‘델 프로 16(Dell Pro 16)’은 각각 14,16형 디스플레이에 최대 ‘AMD 라이젠 AI 7 프로 350’ 프로세서를 탑재한 기업용 노트북이다. 이전 세대 대비 각각 5% 및 10% 넓어진 화면 영역으로 한층 시원한 시야감을 구현했고, 1kg대의 가벼운 무게감과 긴 배터리 수명은 다양한 장소에서 멀티태스킹을 해야 하는 사용자에게 최적의 사용자 경험을 제공한다. FHD+ 해상도에서 각각 최대 15.1시간, 11.1시간의 배터리 지속 시간을 제공하며, 미국 국방성 내구성 표준 테스트(MIL-STD)를 거쳐 내구성과 안정성까지 보장한다. 이들 제품은 시크한 메탈릭 마감(플래티넘 실버 색상)으로 제공된다. AMD 라이젠 200 시리즈를 탑재한 델 프로 14 및 델 프로 16 노트북은 질감이 느껴지는 마그네타이트 색상으로 제공된다. 이와 함께, 델 테크놀로지스는 AMD 라이젠 프로 데스크톱 프로세서를 탑재한 기업용 데스크톱 PC인 ‘‘델 프로 데스크톱(Dell Pro Desktops)’ 신제품 2종도 선보였다. 마이크로형(micro)과 슬림형(slim)의 두 가지 폼 팩터로 제공되는 이 제품군은 AI에 최적화된 성능과 높은 전력 효율을 제공한다. 마이크로형은 좁은 업무 공간에서도 효율성과 생산성을 극대화하도록 설계된 초소형 데스크톱이며, 슬림형은 높은 보안 및 관리 용이성 설루션을 갖춘 공간 절약형 데스크톱이다. 이들 제품은 AMD 라이젠 7 프로 데스크톱 프로세서를 기반으로 강력한 성능은 물론, 기업 환경에 최적화된 보안 및 관리 기능, 안정성 및 일관된 수명 주기를 제공하며, 세련된 디자인과 견고한 내구성까지 겸비했다. 델 프로 노트북과 델 프로 데스크톱에서는 델의 온-디바이스 AI 애플리케이션 개발 툴킷인 ‘델 프로 AI 스튜디오(Dell Pro AI Studio)’를 구동할 수 있다. 이는 개발자와 IT 관리자가 인터넷 연결 없이 AI 애플리케이션을 개발하고 배포할 수 있도록 지원하는 포괄적인 툴킷으로, 개발자는 이를 활용해 혁신적인 AI 애플리케이션을 빠르게 개발하고, IT 관리자는 기업 환경에 배포한 애플리케이션을 효율적으로 관리할 수 있다. NPU를 활용하기에 AI 워크로드를 보다 민첩하고 효율적으로 처리하고, 델 검증 도구, 프레임워크, 템플릿 및 모델 세트를 통해 AI 프로젝트 개발 기간을 대략 6주로 대폭 줄일 수 있다. 한국 델 테크놀로지스의 김경진 총괄사장은 “AI PC는 컴퓨팅의 새로운 지평을 열며, 비즈니스 환경을 탈바꿈시키는 중요한 툴로 다시 한 번 부상하고 있다”면서, “델은 혁신적인 PC 경험을 제공하기 위해 최신 AI 기술과 다양한 프로세서 옵션을 전체 포트폴리오에 빠르게 적용하고, 통합 리브랜딩으로 사용자들이 각자 니즈에 맞게 최적의 AI 디바이스를 선택할 수 있게끔 지원하고 있다”고 말했다.
작성일 : 2025-05-08
앤시스 LS-DYNA의 리스타트 기능 및 활용 방법
앤시스 워크벤치를 활용한 해석 성공 사례   해석을 하다 보면 사용자의 실수나 다른 외부 문제로 진행 중이던 해석이 중단되는 경우가 발생한다. 이러한 경우, 앤시스 LS-DYNA(엘에스 다이나)의 ‘리스타트(Restart)’ 기능을 활용하면 해석 시뮬레이션을 처음부터 다시 수행하지 않고 해석이 중단된 특정 시점부터 재시작할 수 있다. 또한 이미 완료된 해석에 대해 조건을 변경하여 해석 시뮬레이션을 이어서 진행할 수도 있다. 이번 호에서는 LS-DYNA의 리스타트 기능에 대해 소개하고, 예제를 통해 LS-PrePost(엘에스 프리포스트)와 워크벤치(Workbench) 환경에서 활용하는 방법을 알아본다.   ■ 김혜영 태성에스엔이 MBU팀에서 수석매니저로 근무하고 있으며, LS-DYNA 해석 기술지원 및 교육, 용역 업무를 담당하고 있다. 홈페이지 | www.tsne.co.kr   리스타트 해석의 수행 조건 리스타트 해석을 사용하기 위해서는 다음과 같은 조건이 필요하다.  동일한 실행 솔버(Executable)를 사용하는가?(예 : lsdyna_sp.exe)  동일한 CPU 개수인가?  Dump 파일이 생성되었는가? 덤프(Dump) 파일은 리스타트를 위한 바이너리 아웃풋(Binary Output) 파일로 특정 시점의 응력, 변형률, 변형량 등 해석 결과를 완전히 기록한다. LS-DYNA에는 두 가지 유형의 덤프 파일이 있다. 그 중 한 유형인 D3DUMP 파일은 특별히 설정하지 않아도 해석이 정상 종료되면 d3dump01 파일이 생성된다. 이 파일에 대하여 *DATABASE_BINERY_ D3DUMP 키워드를 통해 사용자가 정의한 간격에 따라 D3DUMP 파일을 주기적으로 생성할 수 있고, 생성된 파일 뒤에 숫자가 붙어 주기마다 증가하고 해석 폴더 내에서 d3dump01, d3dump02 등으로 확인할 수 있다. 다른 유형의 덤프 파일은 RUNRSF로 *DATABASE_BINERY_RUNRSF 키워드를 통해 사용자가 정의한 간격에 따라 파일을 생성하지만, NR 매개변수가 사용되지 않는 한 동일한 파일에 덮어씌워져서 생성된다. 이 두 가지 덤프 파일은 함께 사용할 수 있다. <그림 1>은 D3DUMP 파일을 주기적으로 저장하기 위한 *DATABASE_BINARY_D3DUMP 키워드 예시이다.   그림 1. D3DUMP 저장 간격 키워드 예시   리스타트 타입 LS-DYNA의 리스타트 타입(Restart Type)은 이전 해석에 이어서 수행하는 기능으로, 크게 세 가지로 나눌 수 있다. 심플 리스타트(Simple Restart) 스몰 리스타트(Small Restart) 풀 리스타트(Full Restart) 그러면, 이전 해석에 이어서 진행해야 하는 몇 가지 상황에 따라 어떤 타입의 리스타트 기능을 사용하는지 알아보자.    실수로 해석창을 닫았어요! – 심플 리스타트 심플 리스타트는 종료시간(Termination Time) 이전에 해석이 중단된 경우에, 사용자가 설정한 주기마다 저장된 d3dump 파일을 사용하여 특정 시점부터 해석을 다시 시작하는 기능이다. 따라서 변경 사항이 없어 입력 파일(Keyword Input Deck)이 필요하지 않고 d3dump 파일만 활용한다.    그림 2. 일반적인 해석 실행 화면(LS-RUN)   그림 3. 일반적인 해석 실행 화면(CMD 창)   <그림 2>와 같이 LS-RUN을 사용하여 해석을 수행한 경우 <그림 3>과 같은 CMD 창이 팝업되고, 해석 진행에 따른 메시지를 바로 확인할 수 있다. <그림 1>의 키워드 예시처럼 사용자가 덤프 파일의 저장 주기를 미리 설정하였다면, CMD 창에 나타난 메시지처럼 지정된 주기인 5000 사이클마다 덤프 파일이 저장되고 있음을 알 수 있다.  만약 1만 사이클 이후 실수로 해석 CMD 창을 닫아 해석이 중단되었다면, d3dump02를 사용하여 리스타트 해석을 수행할 수 있다. <그림 4>처럼 LS-RUN의 Expression 설정에서 i=$INPUT 대신 r=d3dump02로 명령어를 수정하면 덤프 파일을 사용하여 해석을 이어갈 수 있다.   그림 4. 심플 리스타트 해석 실행 화면(LS-RUN)   그림 5. 심플 리스타트 해석 실행 화면(CMD창)     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
AI 기반 기능 및 성능이 향상된 오토캐드 2026
오토캐드 2026의 새로운 기능과 개선사항   이번 호에서는 지난 3월 출시된 오토캐드(AutoCAD)의 40번째 제품인 ‘오토캐드 2026(코드네임 Watt)’에서 새로 추가된 기능과 변경 및 개선된 사항을 살펴보도록 하자.   ■ 양승규 캐드앤그래픽스 전문 필진으로, MOT를 공부하며 엔지니어와 직장인으로 살아가는 방법에 대해 탐구한다. 건축과 CAD를 좋아한다. 홈페이지 | yangkoon.com    시작 오토캐드 2026의 스플래시 이미지(Splash image)는 이전 버전과 달리 완전히 새롭게 디자인되었다. 2026 버전은 오토데스크의 40주년을 기념하여 특별한 스플래시 이미지와 함께 시작된다.   그림 1   최초 실행 시 시작 탭이 활성화되며, 아래쪽의 메뉴를 선택하여 ‘학습(LEARN)’, ‘작업(CREATE)’ 화면으로 이동할 수 있다. 학습 화면에는 새로워진 사항에 대한 동영상 도움말, 시작하기 비디오, 기능 비디오, 학습 팁, 온라인 지원 메뉴가 표시되며, 작업 화면에서는 시작하기, 최근 문서, 알림, 오토데스크 독스(Autodesk Docs) 연결 메뉴가 표시된다.   그림 2   성능 향상 오토캐드 2026은 이전 버전에 비해 놀라운 성능 향상을 제공한다.  파일 열기 속도 : 최대 11배 향상 애플리케이션 시작 속도 : 4배 향상 대용량 도면 처리 : 50% 더 빠른 렌더링 및 처리 네트워크 환경 : LAN/네트워크 환경에서 DWG 파일 작업 시 특히 더 빠른 속도   DWG 파일 포맷 오토캐드 2026은 오토캐드 2025와 동일한 DWG 파일 포맷인 ‘AutoCAD 2018 Drawing’을 사용한다. DWG 버전 2018 이후에는 계속 같은 포맷을 유지 중이다.    DWG 버전 코드 AC1032 : AutoCAD 2018-2026  AC1027 : AutoCAD 2013/2014/2015/2016/2017  AC1024 : AutoCAD 2010/2011/2012  AC1021 : AutoCAD 2007/2008/2009  AC1018 : AutoCAD 2004/2005/2006  AC1015 : AutoCAD 2000/2000i/2002    AI 기반 기능 오토캐드 2026에는 설계 프로세스를 혁신적으로 변화시키는 여러 AI 기반 기능이 추가되었다.   오토데스크 어시스턴트   그림 3   그림 4   오토데스크 어시스턴트(Autodesk Assistant)는 대화형 AI 기반 디지털 어시스턴트로, 오토캐드 작업 중 발생하는 질문에 자연어로 응답한다. 이전 버전보다 더 정확하고 맥락을 이해하는 응답을 제공한다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[케이스 스터디] 노트르담 대성당의 영광스러운 복원을 선보인 언리얼 엔진 5 라이팅
리얼타임 3D 기술을 도입하여 한층 발전된 프로젝션 매핑 구현   화재로 큰 피해를 입은 파리의 노트르담 대성당이 5년에 걸친 복원 끝에 재개관했다. 복원된 성당을 더욱 돋보이게 한 프로젝션 매핑 작업은 언리얼 엔진의 실시간 렌더링 기술을 활용해 역사적 건축물을 사실적이고 정교하게 되살린 혁신적인 사례로 주목받고 있다. ■ 자료 제공 : 에픽게임즈   ▲ 이미지 제공 : 코스모 AV    2019년 4월, 파리의 상징인 노트르담 대성당에서 끔찍한 화재가 발생했다. 건물 처마 밑에서 시작된 불길은 곧 첨탑과 목조 지붕 대부분을 집어삼키며 다음 날 아침까지 밤새 타올랐다. 이후 장대한 복원 프로젝트가 진행되었으며, 5년에 걸쳐 1200명 이상의 인원이 재건에 힘을 쏟았다. 채석장 작업자와 목수, 모르타르 제조자, 석공 등 숙련된 장인이 고용되어 12세기 건축 당시와 똑같은 재료와 기법으로 대성당을 재건했다.  2024년 12월, 잿더미에서 부활한 노트르담 대성당의 재개관식이 TV 시청 황금 시간대에 방송되었다. 프랑스 텔레비지옹(France Télévisions)은 복원된 대성당의 영광스러운 모습을 선보이기 위해 비디오 매핑 회사인 코스모 AV(Cosmo AV)에 의뢰했고, 코스모 AV는 프로젝션 매핑 전문가 앙투안 부르구앵(Antoine Bourgouin)에게 재개관식을 위한 멋진 건축 라이팅을 제작해 달라고 요청했다.   ▲ 이미지 제공 : 코스모 AV   언리얼 엔진을 사용한 프로젝션 매핑 지난 2010년, 앙투안 부르구앵은 거대한 트롱프뢰유를 보여줄 캔버스로 건물을 사용하는 데 처음 관심을 갖게 되었다. 트롱프뢰유는 ‘눈속임’이라는 뜻의 프랑스어로, 2차원 표면에 3차원 공간과 물체를 표현하는 극사실적인 착시 기법을 나타내는 미술 용어다. 이는 주로 회화에서 관람자가 그림 속의 사물이나 공간을 실제처럼 인식하도록 속이는 기법을 일컫는다. 초기에는 이러한 종류의 작업을 구현할 수 있는 툴이 시중에 없어, 건물의 윤곽과 규모에 맞는 비주얼을 제작하려면 직접 컴퓨터 프로그램을 개발해야 했다. 하지만 부르구앵은 비디오 프로젝터 컨트롤러와 같은 역할을 하는 소프트웨어인 모듈로 플레이어(Modulo Player)를 사용하여 벽이나 건물과 같은 표면에 영상을 투영하여 재생하고, 각 표면에 맞게 영상을 정밀하게 변형시키고 조정할 수 있도록 했다. 특히, 부르구앵은 이 과정에 리얼타임 기술을 도입하여 프로젝션 매핑 기술을 더욱 발전시키고 있다. 전통적인 비디오 매핑은 사전 녹화된 영상을 투영하는 방식이었지만, 부르구앵은 언리얼 엔진을 사용해 개발한 비주얼을 실시간으로 건물에 투영한다. 이러한 혁신적인 아이디어로 그는 플레이어의 스마트폰을 게임 패드처럼 사용하는 비디오 게임을 제작하겠다는 아이디어로 메가그랜트를 지원하게 되었다. 이러한 아이디어를 실현하고자 부르구앵은 코스모 AV의 CEO이자 인텐스시티(IntensCity)의 공동 설립자인 피에르 이브 툴로(Pierre-Yves Toulot)를 만났다.    ▲ 이미지 제공 : 코스모 AV   3D 모델에 라이팅 매핑 코스모 AV는 프랑스 국영 텔레비전 방송사인 프랑스 텔레비지옹으로부터 노트르담 대성당 재개관을 위한 프로젝션 매핑 비주얼 제작을 의뢰받았다. 그 요청 중 하나는 대성당의 외관을 돋보이게 할 아름다운 라이팅 연출을 제작하는 것이었다. 툴로와 부르구앵은 이전에도 비슷한 프로젝트에서 협업한 적이 있었는데, 특별하면서도  우아함이 필요한 작업에서는 뛰어난 전통 건축 라이팅 디자이너인 장 프랑수아 투샤(Jean-François Touchard)의 기술을 활용했다. 툴로가 노트르담 프로젝트에 부르구앵과 투샤를 합류시킨 것은 당연한 결정이었다. 먼저 부르구앵은 노트르담 대성당의 3D 스캔 모델을 언리얼 엔진으로 가져왔고, 이 과정은 FBX 파일을 임포트하는 것만큼이나 간단했다. 부르구앵은 “언리얼 엔진과 나나이트(Ninite) 기술 덕분에 이제는 임포트한 메시의 폴리곤 밀도에 더 이상 신경 쓰지 않아도 된다. 노트르담 모델은 400만 개의 트라이앵글로 구성된 메시 구조였지만, 현재 언리얼 엔진에서는 이 정도의 폴리곤 수를 아주 쉽게 처리할 수 있다”고 말했다. 나나이트는 언리얼 엔진 5의 가상화된 지오메트리 시스템으로, 성능에 미치는 영향을 최소화하면서 방대한 양의 폴리곤으로 구성된 디테일한 3D 모델을 제작할 수 있다. 이 시스템은 활용해 대성당의 매우 정밀한 메시를 렌더링하는 데 쓰였으며, 가장 작은 디테일까지 정확하게 구현할 수 있었다. 팀은 대성당의 모든 디테일을 강조하기 위해 3D 모델에 옴니 라이트, 스포트 라이트, 렉트 라이트 등 500개의 라이트를 배치했다. 이 라이트는 강도와 온도, 색상이 조화를 이루도록 하는 것이 중요했다. 부르구앵은 “조작해야 하는 라이트의 수량이 이 프로젝트에서 가장 큰 과제였다. 하지만 즉석에서 바로 만든 블루프린트를 사용하고 라이트 액터에 태그를 지정하여 다른 그룹을 나누는 방식으로 매우 원활하게 작업할 수 있었다”고 설명했다. 툴로는 아트 디렉터 역할을 했고, 장 프랑수아는 대성당의 디테일한 부분에 대한 라이팅을 실제로 구현하는 데 전문성을 발휘했다. 팀은 조각상마다 두세 개의 스포트 라이트를 배치하고 그림자를 세심하게 조작하여 조각상의 형태와 입체감을 강조했다. 또한, IES(Illuminating Engineering Society)의 라이트 프로파일을 사용해 3D 라이팅이 실제 라이트처럼 각 아치와 발코니, 기타 건축 요소의 디테일과 정확하게 일치하도록 했으며, 깊이를 강조하기 위해 라이트 온도를 조정했다. 라이팅 구성을 이미지로 렌더링한 다음 모듈로 플레이어 시스템과 연결된 30대의 고광도 파나소닉(Panasonic) 비디오 프로젝터를 사용하여 노트르담 대성당에 투영했다.   ▲ 이미지 제공 : 코스모 AV   메가라이트와 루멘 활용 노트르담 프로젝트에서 팀은 사전 녹화된 영상을 대성당에 투영할 예정이었지만, 리얼타임 기술을 사용하면서 라이팅 디자인에서 많은 이점을 얻을 수 있었다. 라이팅이 실제 건물에서 어떻게 보일지 테스트하기 위해 팀은 현장에서 언리얼 엔진으로 3D 모델을 바로 업데이트하여, 대성당에서 즉시 결과를 확인하고 필요에 따라 조정할 수 있었다. 부르구앵은 언리얼 엔진으로 작업을 완성할 수 있었던 주요 이유로 나나이트와 결합된 강력한 라이팅 시스템의 성능을 꼽았다. 부르구앵은 “라이트 수가 많은 하이 폴리곤 메시에서 직관적인 편집 방식(WYSIWYG)으로 원활하게 작업할 수 있었다. 이로써 기존의 3D 모델링 소프트웨어에서처럼 렌더링 결과를 상상할 필요가 없었다”고 말했다. 또한 최근 언리얼 엔진 5.5에 출시된 강력한 신규 기능인 메가라이트에 대해서도 높이 평가했다. 메가라이트는 아티스트가 신(scene)에 다이내믹 섀도를 드리우는 수백 개의 라이트를 추가할 수 있게 해주는 실험적인 도구다. 언리얼 엔진의 다이내믹 글로벌 일루미네이션 및 리플렉션 기능인 루멘과 함께 사용하면 매우 사실적인 라이팅을 구현할 수 있다. 부르구앵은 “메가라이트는 상당히 유용한 기능 중 하나였다. 실시간으로 그림자를 유지하면서 수백 개의 라이트로 작업할 수 있었다. 루멘을 보완하는 환상적인 기능”이라고 말했다.   되찾은 노트르담의 영광 툴로, 장 프랑수아와 함께 한 부르구앵의 라이팅 작업은 파리에서 가장 유명한 기념물 중 하나인 대성당의 재개관식에서 중요한 역할을 했다. 언리얼 엔진 덕분에 팀은 복원가들의 놀라운 작업을 빛내고 노트르담 대성당의 영광스러운 모습을 선보일 수 있었다. 부르구앵은 “파리의 노트르담 대성당은 프로젝션 매핑 작업을 하는 사람들이라면 누구나 꿈꾸는 건물 중 하나다. 이 작업에 기여할 수 있32 · 어서 정말 큰 영광이었다”라고 말했다.      ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
[핫윈도] 디지털 트윈 기대 속에 실질적 도입과 확산 위한 노력 필요
캐드앤그래픽스 디지털 트윈 설문조사 분석   디지털 트윈 기술에 대한 관심이 국내 제조 및 엔지니어링 업계를 중심으로 높아지고 있지만, 실제 산업 현장에서는 여전히 다양한 현실적 제약에 직면해 있는 것으로 나타났다. 캐드앤그래픽스는 국내 디지털 트윈 현황을 집대성한 ‘디지털 트윈 가이드’를 발간하고, 국내 제조 및 엔지니어링 업계 관계자를 대상으로 3월 13일부터 4월 14일까지 ‘국내 디지털 트윈 현황 설문조사’를 실시했다. 총 1212명이 참여한 이번 설문조사에서는 디지털 트윈의 이해도, 적용 분야, 도입 단계, 구축 시 어려움 등 다양한 관점에서 기술의 현주소를 조망했다. 특히 디지털 트윈을 실제로 사용 중인 기업과 종사자를 대상으로 진행한 심층 조사에서는 기술 도입 과정에서의 구체적인 어려움과 향후 투자 계획 등 실질적인 인사이트가 도출됐다. ■ 최경화 국장   설문조사 개요 및 참가자 현황 이번 설문조사는 국내 제조 엔지니어링 업계 관계자 1212명을 대상으로 진행되었다. 설문 참가자들의 배경은 다양한 산업 분야에 걸쳐 있었으며, 이는 디지털 트윈 기술이 단일 산업에 국한되지 않고 여러 분야에서 관심을 받고 있음을 시사한다. 참가자들의 직무 또한 연구개발, 설계, 생산, 관리 등 다양한 영역에 분포하고 있어, 디지털 트윈 기술이 기업 내 여러 부서와 직무에 걸쳐 중요성을 인정받고 있음을 알 수 있었다. 디지털 트윈 관련 업무 분야에서도 다양한 응답이 나타나, 이 기술의 응용 범위가 넓어지고 있음을 확인할 수 있다.   주력 산업 분야 설문 응답자들의 주력 산업 분야는 ‘건축/건설/토목’(22.7%)과 ‘전기전자/하이테크/반도체’(17.9%), ‘시각화/그래픽/디자인’(14.2%) 등이 높은 비중을 차지했으며, 자동차, 플랜트 등 다양한 산업 분야가 분포되어 있음을 알 수 있다.   그림 1. 설문 응답자 현황 - 주력 산업 분야   직무 분야 설문 응답자들의 직무 분포는 ‘엔지니어’(41.2%)가 압도적으로 높은 비율을 보였고, ‘경영진/임원’(15.9%), ‘SW 개발’(14.3%) 순으로 나타나, 기술 및 관리 직무 종사자들의 높은 관심을 반영했다.   그림 2. 설문 응답자 현황 – 직무   디지털 트윈 관련 업무 분야 설문 응답자들의 디지털 트윈 관련 업무 분야에 대해서는 CAD/3D 모델링이 가장 높게 나타났고, AI/머신러닝, CAE/시뮬레이션 순으로 나타났다.    그림 3. 설문 참가자 현황 - 디지털 트윈 관련 업무 분야   국내 디지털 트윈 도입 현황 - 뜨거운 기대감과 더딘 현실 디지털 트윈 이해 수준 기술에 대한 이해 수준은 아직 부족한 것으로 나타났다. 디지털 트윈 이해 수준에 대해서는 ‘대체로 알고 있다’(36.8%)와 ‘조금 알고 있다’(37.2%)가 비슷한 비율을 보였으며, ‘매우 잘 알고 있다’ (10.4%)는 소수에 불과했다. ‘잘 모른다’(15.6%)는 응답도 상당수를 차지했다. 이는 기술에 대한 인지도는 높지만, 깊이 있는 이해와 활용 능력은 아직 부족하다는 점을 시사한다.   그림 4. 디지털 트윈에 대한 이해 수준   디지털 트윈 발전 전망 반면, 디지털 트윈의 미래에 대한 업계의 기대는 매우 컸다. 향후 디지털 트윈 발전 전망에 대한 응답에 따르면 ‘매우 중요하게 성장할 것’(66%)과 ‘다소 성장할 것’(30.5%)이라는 답변이 전체의 압도적인 대다수를 차지했다. 또한 전체 응답자의 96.5%가 기술의 중요성과 잠재력에 대해 폭넓은 공감대를 형성하고 있음을 확인시켜 주었다.   그림 5. 디지털 트윈 향후 발전 전망   디지털 트윈 사용 기업 및 도입 현황 디지털 트윈을 실제로 사용하고 있는 기업 및 유저를 대상으로 한 심층 조사에는 총 385명이 참여했다. 이들 기업의 규모는 매출액과 직원 수를 기준으로 다양하게 분포하고 있어, 디지털 트윈 기술이 대기업뿐 아니라 중소기업에서도 점차 도입되고 있음을 알 수 있다.   디지털 트윈 사용 기업 규모 디지털 트윈 사용 기업의 매출액은 5000억원 이상이 48.8%를 차지해 가장 높은 분포를 보였으며, 1000억원 이상~500억원 미만이 13.2%로 큰 기업들이 주로 관심을 가지고 있었음을 알 수 있었다. 직원 수도 5000명 이상이 32.2%로 가장 높은 수치를 차지했으며, 1000명~5000명 미만이 17.9%, 100명~500명 미만이 11.7% 순으로 나타났다.    그림 6. 디지털 트윈 사용 기업 매출액   디지털 트윈 사용 기업 적용 분야 디지털 트윈 적용 분야는 ‘제품 설계 및 시뮬레이션’(66.8%), ‘생산/제조 운영’(43.9%), 설비 모니터링 및 유지보수(39.2%) 순으로, 제품 개발과 생산 영역에 활용이 집중되는 경향을 보였다. 제조 분야에 비해서는 사용이 적지만 도시, 에너지, 교통, 물류, 의료 등 다양한 영역에서 활용되고 있음을 확인할 수 있다. 특히 제조업 분야에서는 생산 공정 최적화, 품질 관리, 설비 예지 보전 등의 목적으로 활용되고 있을 것으로 추정된다.   그림 7. 디지털 트윈 적용 분야   디지털 트윈 적용 목적 디지털 트윈을 적용하는 주요 목적은 ‘설계 최적화’(61.0%), ‘생산성 향상’(54.5%), ‘운영 효율화’(46.2%) 등 효율성 증대 관련 항목들이 우위를 점했다.   그림 8. 디지털 트윈 적용 목적   디지털 트윈 도입 단계 아직까지 디지털 트윈에 대한 관심은 높지만 실제 사용 보다는 검토 중인 기업이 많은 것으로 나타났다. 디지털 트윈 사용 기업의 도입 단계 관련 답변을 보면, ‘도입 검토 중’(43.6%)이 가장 큰 비중을 차지했다. 이어 ‘일부 시스템 도입 완료’(18.4%), ‘PoC(파일럿) 진행 중’(12.2%), ‘전사 확산 및 활용 중’은 4.2% 순으로, 본격적인 활용 단계에 진입한 기업은 소수임을 알 수 있었다. ‘도입 계획 없음’(17.9%)이라는 응답도 적지 않았다.    그림 9. 디지털 트윈 도입 단계   다양한 상용 디지털 트윈 툴 사용… 자체 개발·검토도 다수 디지털 트윈 기술의 확산과 함께, 국내 기업들이 활용 중인 디지털 트윈 소프트웨어 및 플랫폼은 매우 다양하며, 기업별로 도입 단계나 활용 수준에서도 큰 차이를 보이는 것으로 나타났다. ‘현재 사용 중인 디지털 트윈 툴’에 대한 주관식 응답 결과를 분석해 보면, 국내 산업계는 BIM 기반 플랫폼, CAE 시뮬레이션 도구, PLM 및 협업 플랫폼, 그리고 게임 엔진 기반 시각화 도구를 중심으로 디지털 트윈 기술을 도입하고 있는 것으로 나타났다. 아래 내용은 답변 내용을 중심으로 정리한 것이다.   BIM 및 설계 중심 소프트웨어의 강세 디지털 트윈 구축의 초기 단계에서 가장 두드러지는 분야는 설계 기반 모델링(BIM) 도구다. 응답자 중 상당수가 오토데스크의 레빗(Revit), 오토캐드, 시빌 3D(Civil 3D), 나비스웍스(Navisworks) 등을 사용하고 있다고 응답했다. 벤틀리 시스템즈의 아이트윈(iTwin), 트림블의 테클라(Tekla) 및 트림블 커넥트(Trimble Connect), 아비바의 아비바 E3D(AVEVA E3D) 등도 건설·플랜트 산업에서 활용하고 있다고 답변했다.   정밀 해석 기반의 시뮬레이션 툴 확산 앤시스(Ansys), 아바쿠스(Abaqus), 하이퍼웍스(HyperWorks), LS-DYNA, 시뮬링크(Simulink), 아담스(Adams), GT-스위트(GT-Suite), 플렉스심(FlexSim) 등 해석 전문 툴의 사용도 두드러졌다. 특히 제품 설계나 공정 시뮬레이션에서 정밀한 모델링이 필요한 제조업, 자동차, 중공업 분야에서는 다물리 해석 툴 기반의 디지털 트윈 구현이 주를 이뤘다.   PLM 기반 통합 디지털 플랫폼도 주목 설계-생산-운영 전 주기를 통합 관리하기 위한 PLM 기반 플랫폼도 활발히 사용되고 있다. 다쏘시스템즈의 3D익스피리언스(3DEXPERIENCE), 카티아(CATIA), 에노비아(ENOVIA), 지멘스의 NX, 팀센터(Teamcenter), 플랜트 시뮬레이션(Plant Simulation), PTC의 크레오(Creo), 윈칠(Windchill), 씽웍스(ThingWorx) 외에도 전문 툴인 비주얼컴포넌트 등은 스마트 공정 및 운영 관리까지 연계된 디지털 트윈 구현에 활용되고 있는 것으로 보인다.   게임엔진 기반 실시간 시각화 기술 부상 유니티(Unity), 언리얼 엔진(Unreal Engine), 트윈모션(Twinmotion), 엔비디아 옴니버스(Omniverse) 등 게임엔진 기반 시각화 도구는 실시간 협업과 현장 시뮬레이션에서 각광받고 있다. 특히 언리얼엔진, 유니티와 옴니버스 등은 다른 플랫폼과의 연동성을 강화해 디자인 협업 및 공정 검증에 널리 활용되고 있다.   자체 설루션 및 커스터마이징 비율도 높아 이밖에도 국산 설루션인 이에이트, 소프트힐스, 버넥트, 한국디지털트윈연구소 설루션을 이용하고 있다는 응답도 있었다. 흥미로운 점은 응답자의 상당수가 ‘인하우스 개발’ 또는 ‘자체 플랫폼’, ‘프로젝트마다 요구사항 수렴 방식’ 등의 형태로 독자적인 디지털 트윈 시스템을 운영하고 있다는 것이다. 이는 특정 상용 설루션만으로는 각기 다른 업무 흐름이나 도메인 지식을 완벽히 반영하기 어렵기 때문으로 분석된다. 또한 ‘아직 도입 예정’ 또는 ‘검토 단계’라는 응답도 적지 않아, 디지털 트윈 도입의 확산은 진행 중인 흐름임을 알 수 있다.   넘어야 할 장벽 : 현장의 목소리로 본 핵심 과제 디지털 트윈의 확산이 더딘 배경에는 공통적으로 지적된 여러 장애물이 존재했다. 특히 높은 비용과 불확실한 ROI는 가장 큰 걸림돌로 지목됐다.   디지털 트윈 시스템 구축의 어려움 디지털 트윈 사용 기업이 꼽은 구축 시 가장 큰 어려움으로 ‘초기 투자 비용’(24.4%)과 ‘전문 인력 부족’(20.5%)이 가장 높은 비율을 차지했다. 그 뒤를 이어 ‘ROI 분석의 어려움’(16.6%), ‘경영진의 이해 부족’(15.1%) 순으로 나타났다. 주관식 답변에서는 고비용의 소프트웨어, 외산 설루션 및 3D 프로그램의 높은 라이선스 비용, 디지털 전환(DX) 도입 및 유지보수 비용 과다 등 경제적 부담에 대한 토로가 많았다. 특히 기대효과가 명확해야 한다, 비용 대비 효율이 확보되지 않으면 불가능하다, 실질적인 경영 효과로 어떻게 연결되는지 의문이라며, 투자를 정당화할 명확한 성과 측정과 검증된 성공 사례 부족을 지적했다. 전문 인력 부족 문제는 교육 시스템의 부재와 연계돼 있으며, 현장에서는 관련 교육 기회가 부족하다는 지적이 많았다. 경영진의 이해 부족도 중요한 문제로 나타났다.   그림 10. 디지털 트윈 구축 시 어려움   디지털 트윈 시스템 구축 관련 투자 계획 이러한 어려움에도 불구하고, 향후 디지털 트윈에 대한 투자 의향은 비교적 긍정적이었다. 사용 기업의 향후 투자 계획을 보여주는 그래프를 보면, ‘2년 이내’(31.4%), ‘1년 이내’(19.0%), ‘6개월 이내’(11.4%) 등 2년 내 투자 계획이 있다는 응답이 전체의 61.8%를 차지했다. 반면에 ‘도입 계획 없음’(26.2%)도 상당수 있었다.   그림 11. 향후 투자 계획   미래 투자 방향과 나아갈 길 전체 응답자가 디지털 트윈 확산을 위해 가장 필요하다고 꼽은 요소를 가중치 순으로 나타낸 그래프를 보면, ‘경영진의 의지와 디지털 트윈에 대한 이해’가 다른 항목을 큰 차이로 앞서며 압도적인 1위를 차지하고 있음을 확인할 수 있다. 또한 실제 사용 기업이 겪는 어려움에서도 ‘경영진의 이해 부족’이 중요한 요인으로 드러났다. 주관식 답변에서는 ROI 증명의 어려움과 맞물려 경영진 설득의 어려움을 토로하거나, 심지어 “실제 시험을 안 해도 된다고 생각하는 경영진이 많다”는 언급까지 나와, 리더십의 인식 개선이 시급함을 알 수 있었다. 표준화의 부재 역시 반복적으로 지적되었다. 응답자들은 데이터 표준화, 3D CAD 포맷 변환, 시스템 간 호환성 부족 등을 구체적인 문제로 언급했다.   그림 12. 디지털 트윈 시스템 구축과 확대를 위해 가장 필요한 것   구체적 정보와 성공 사례의 부족 또한 큰 장벽이다. 응답자들은 산업별 사례, 성공 및 실패 경험 등을 통한 실질적 정보 공유를 절실히 요구하고 있다. 이 밖에도 데이터 확보의 어려움, 외산 소프트웨어 의존도, 기술 복잡성, 국산 소프트웨어 개발의 필요성 등이 복합적으로 언급되며, 생태계 전반에 대한 개선이 필요함을 시사했다. 따라서 성공적인 디지털 트윈 도입과 확산을 위해서는 산적한 과제를 해결하기 위한 다각적인 노력이 필요하다. 현장의 목소리와 설문 데이터는 다음과 같은 방향을 제시하고 있다. 정부의 적극적인 역할 : 중소기업 지원 확대 , R&D 지원 및 국산 소프트웨어 육성, 산업 표준화 주도, 선도적인 인프라 투자 및 정책 지원 등 정부의 체계적이고 일관성 있는 지원 정책이 요구된다. 실질적 가치 증명 및 정보 공유 : 명확한 ROI 산정 모델 개발, 산업별 성공/실패 사례 발굴 및 투명한 공유, 기술 효용성에 대한 적극적인 홍보와 교육 강화가 필요하다. 표준화 및 기술 개발 : 데이터 형식 통일, 호환성 확보 등 산업 표준을 조속히 마련하고, 사용자 편의성을 높인 기술 및 플랫폼 개발 노력이 필요하다. 인력 양성 및 생태계 조성 : 실무 중심의 교육 프로그램 개발발 및 전문가 양성 시스템 구축, 산학연관 협력 시스템 강화가 필요하다.   맺음말 : 잠재력 현실화 위한 협력과 실질적 노력 시급 이번 설문조사는 디지털 트윈에 대한 국내 산업계의 높은 관심과 함께, 도입을 가로막는 다양한 현실적 장애 요인을 통계와 목소리로 생생하게 보여준 것이라고 할 수 있다. 이 같은 결과는 국내 산업계에서 디지털 트윈 도입이 활발히 이루어지고 있으나, 여전히 도입 도구의 표준화, 조직 내 전사적 활용, 실제 업무 흐름과의 통합 등에서 과제가 많다는 점을 보여준다. 향후에는 상용 툴과 자체 개발 플랫폼 간의 융합 전략, 그리고 데이터 연동성과 유지관리 측면에서의 체계적인 접근이 더욱 중요해질 것으로 보인다. 또한 디지털 트윈이 제조업 혁신의 핵심 동력으로 자리매김하기 위해서는 산업계, 정부, 학계가 함께 협력해 실질적인 해결책을 모색하고, 지속 가능한 생태계를 조성하려는 노력이 절실하다고 할 것이다.     ■ 기사 상세 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[포커스] 유니티, “게임을 넘어 다양한 산업으로, 3D 시각화와 AI 통해 혁신 지원”
유니티가 지난 4월 15일 글로벌 개발자 콘퍼런스인 ‘유나이트 서울 2025’를 진행했다. 2900여 명의 국내외 개발자 및 게임 업계 종사자들이 참석한 이번 행사에서 유니티는 자사의 최신 기술과 실제 적용 사례 등을 소개했다. 또한, 콘텐츠 개발을 위한 AI(인공지능) 비전과 비 게임 분야의 산업 시장을 겨냥한 전략도 밝혔다. ■ 정수진 편집장     개발 효율 향상과 커뮤니티 지원에 중점 두고 기능 개발 유니티 코리아 송민석 대표이사는 “지난 몇 년간 개발자 커뮤니티는 기술의 변화, 시장의 변화, 창작 과정의 어려움 등 많은 도전을 겪었지만, 그 과정에서 늘 새로운 가능성을 발견했다. 유니티 역시 그동안 많은 변화가 있었고, 개발자들의 격려와 조언이 큰 힘이 됐다”면서, “이번 유나이트에서는 개발자를 위한 생존 전략, 크리에이터 세션, 국내외 유니티 전문가의 기술 세션 및 다양한 산업에서 적용 가능한 기술과 사례를 제공하면서, 사용자의 프로젝트에 도움이 되고 영감을 주는 기회를 마련하고자 했다”고 전했다. 유나이트 서울 행사를 위해 처음으로 한국을 찾은 유니티의 맷 브롬버그(Matt Bromberg) CEO는 “한국은 유니티의 역사에서 매우 특별한 위치를 차지한다. 한국 개발자들이 만든 혁신적인 게임은 유니티의 가능성을 잘 보여줬다. 모바일뿐 아니라 최근 PC와 콘솔로까지 확대되는 한국 게임 개발자들의 새로운 도전은 전 세계적으로 주목받고 있다”면서 성능, 안정성, 크로스 플랫폼 지원을 더욱 강화하면서 개발자와 커뮤니티의 좋은 파트너가 되고자 한다고 밝혔다. 최신 버전인 유니티 6.1에서는 VRS(가변 레이트 셰이딩), GPU 처리 시간을 단축해 CPU 성능과의 균형을 유지하는 디퍼드+(Deffered+), 벌칸 디바이스 필터링 등의 기능을 통해 퍼포먼스 향상이 이뤄졌다. 한편, 유니티는 올해 다양한 새 기술과 고성능 기능을 제공하는 동시에 엔진의 근본적인 기술도 현대화할 예정이다. 그리고 엔진의 핵심 소스 코드에 닷넷(.NET) 프레임워크와 ECS(Entity Component System)를 적용하여 성능을 극대화하며, 콘텐츠 파이프라인도 현대화하여 개발자들이 더 빠르게 개발하고 반복 작업을 최소화할 수 있도록 지원할 계획이다. 브롬버그 CEO는 향후 개발 방향과 관련해서 새 업데이트를 출시 전 실제 환경에서 테스트한 후 제공할 것이며, 유니티 에디터 내에서 AI를 활용한 게임 개발을 지원하는 등 개발 효율을 높일 계획이라고 소개했다.   ▲ 유니티 맷 브롬버그 CEO   게임 개발 프로젝트에서 기술 검증 후 출시 전략 이와 관련해서 유니티의 애덤 스미스(Adam Smith) 엔진 부문 프로덕트 수석 부사장이 조금 더 자세히 설명했다. 그는 “유니티가 게임 개발자들로부터 가장 많이 받은 피드백은 플레이어의 경험이 더 안정적이고 뛰어나야 한다는 것이었다. 또한 개발 과정이 보다 빠르고 효율적이길 원했고, 복잡한 라이브 게임 개발에서 겪는 여러 문제들을 해결해 달라는 요청이 많았다”고 전했다. 이에 대응하기 위해 유니티는 ‘프로덕션 검증(production verification)’이라는 테스트 방식을 도입했다. 이는 실제 게임 개발 프로젝트에 최신 기술을 적용하여 검증하는 방식인데, 유니티는 몇몇 게임사와 협력해 기술 성능과 빌드 성공률을 높였다. 한편, 유니티는 코나미와 협력해 닌텐도 스위치 2용 게임인 ‘서바이벌 키즈(Survival Kids)’의 개발 과정 전반에 유니티 6 엔진을 적용했으며, 궁극적으로 게임의 기획부터 개발, 광고를 통한 수익화까지 전체 수명주기를 포괄하는 기술을 제공한다는 포부를 밝히기도 했다. 스미스 수석 부사장은 “이러한 협업과 게임 개발 경험은 유니티가 자체 기술과 서비스, 툴을 실제 개발 환경에서 테스트하고, 모든 기능이 철저히 검증되고 안정화된 상태에서 전달될 수 있도록 하는 데 목적이 있었다. 특히 애니메이션 시스템, 물리 엔진, DOTS(Data-Oriented Technology Stack) 기능의 성능과 안정성을 크게 높여 커뮤니티에 제공할 수 있게 되었다”고 전했다.   ▲ 유니티의 임원진이 참가한 기자간담회   개별 설루션 대신 AI 데이터가 모이는 플랫폼 추구 스미스 수석 부사장은 게임 및 시각 콘텐츠 개발에서 빠르게 확산되고 있는 AI와 관련한 로드맵도 소개했다. 2025년 하반기에 출시될 유니티 6.2 버전에서는 에디터 내에 직접 프롬프트 기반의 워크플로(prompt-based workflows)를 통합할 계획이다. 스미스 수석 부사장은 “반복 업무가 자동화되어 개발자들의 작업 시간을 크게 줄일 수 있고, 코드 디버깅과 C# 코드 자동 생성 기능도 추가되어 더욱 효율적인 작업 환경을 제공할 것”이라고 밝혔다. 유니티의 AI 지향점은 개발자가 워크플로의 흐름에서 벗어나지 않고, 유니티 에디터 내에서 곧바로 AI 어시스턴트의 도움을 받을 수 있도록 한다는 것이다. 유니티의 플랫폼이 생성형 AI 데이터를 수집하는 중심이 될 수 있도록 하고, 코드, 텍스처, 애니메이션 등 AI로 생성된 다양한 애셋을 손쉽게 유니티 프로젝트에 통합하고 활용할 수 있는 프레임워크를 구축하고 있다는 것이 유니티의 설명이다. 스미스 수석 부사장은 “유니티의 기존 AI 설루션인 ‘뮤즈’나 ‘센티스’의 이름은 점차 쓰이지 않게 되고, 유니티 에디터 안에 AI를 자연스럽게 통합하는 방향으로 가게 될 것”이라고 전망했다.   산업 분야를 위한 실시간 시각화 및 데이터 활용 비전 소개 유니티는 게임, 비주얼 콘텐츠뿐 아니라 다양한 산업 영역으로 실시간 3D 시각화 기술을 확장하려는 노력을 기울이고 있다. 유니티 코리아의 민경준 인더스트리 사업 본부장은 “그 동안 산업 분야의 많은 기업이 제품 설계, 디자인, 제조부터 마케팅과 운영까지 정적인 3D 모델과 전통적인 워크플로에 의존해왔지만, 기술의 융합과 비즈니스의 디지털화가 빠르게 진행되면서 기업들이 일하는 방식, 클라우드 협업, 고객과의 상호작용 방식이 근본적으로 바뀌고 있다”고 전했다. 민경준 본부장은 이런 변화의 핵심 키워드로 ‘상호작용(interactive)’과 ‘몰입(immersive)’의 두 가지를 꼽았다. 두 가지 핵심 경험을 제공하는 기업만이 디지털 전환을 성공시킬 수 있다는 것이다. 그리고 이런 혁신이 가져올 수 있는 성과로 ▲고품질의 현실감 있는 3D 모델을 활용한 디자인과 프로토타이핑 과정의 간소화 ▲복잡한 3D 애셋과 설계 파일의 효율적인 최적화 및 생산 일정과 비용의 절감 ▲현실감 있는 시뮬레이션을 통해 위험도가 높은 산업군의 직원 교육의 빠르고 안전하며 효과적인 진행 ▲마케팅부터 판매까지 전 과정에서 인터랙티브 제품 구성 도구와 가상 경험으로 고객 전환율 향상 ▲모든 고객 접점에서 인터랙티브한 3D 경험을 적용해 참여도 향상 및 브랜드 차별화 실현 등을 소개했다.   ▲ 산업 분야에서 유니티의 혁신 성과   “몰입형 혁신은 리얼타임 3D를 기반으로 실현할 수 있다”고 짚은 민경준 본부장은 “연결(Connect), 개발(Create), 배포(Deploy) 등 세 가지 핵심 기능을 중심으로 하는 유니티의 산업용 설루션은 뛰어난 시각적 인터페이스를 제공하며, 많은 기업이 유니티를 활용하여 VR, AR, XR 애플리케이션, 제조 환경의 디지털 트윈, 고품질 프로덕트 컨피규레이터 등 다양한 핵심 애플리케이션을 개발하고 있다”고 전했다. 유니티는 차량용 인포테인먼트 시스템, 디지털 클러스터, 몰입형 UX(사용자 경험) 기반의 계기판, 디지털 미디어 시스템 등이 유니티로 제작되고 있다고 소개했다. 또한 현대자동차는 유니티 기반의 디지털 트윈 기술을 물류 및 스마트 공장 프로젝트에 적용하고 있으며, LG전자는 차량용 HMI 시스템을 유니티 기반으로 개발 중이다. 산업 분야의 데이터 활용에 대해 스미스 수석 부사장은 ‘애셋 매니저(Asset Manager)’라는 클라우드 기반 툴을 통해 다양한 산업용 데이터를 워크플로에 통합할 수 있도록 지원한다. 애셋 매니저는 데이터를 시각적으로 프리뷰하는 한편, 성능을 떨어뜨리지 않고 유니티 엔진에 적합한 형태로 변환할 수 있다. 이외에도 산업 시장을 위해 꾸준한 기술 개선 및 실무에 바로 적용 가능한 설루션을 선보일 것”이라고 밝혔다.       ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
[포커스] 델, ‘AI PC 시대’ 주도 선언… 통합 브랜드 제품 대거 출시
델 테크놀로지스가 지난 3월 26일, 서울 그랜드 인터컨티넨탈 파르나스에서 ‘델 생성형AI 메가 런치(GenAI Mega Launch)’를 열고 2025년형 AI PC 및 클라이언트 제품들을 대거 공개했다. 이번 행사는 ‘델(Dell)’이라는 단일 브랜드로 클라이언트 제품군을 통합한 이후 첫 공식 발표 자리로, 델의 클라이언트 전략이 AI 중심으로 재편되고 있다는 점을 강조하는 무대였다. ■ 박경수 기자   ▲ 델 테크놀로지스 생성형AI 메가 런치(GenAI Mega Launch)’ 행사 전경   델은 ‘NPU(Neural Processing Unit, 신경망 처리 장치)’를 탑재한 차세대 AI PC는 물론, 워크스테이션, 클라우드 인프라, 데이터센터, 소프트웨어 및 AI 서비스까지 아우르는 ‘엔드-투-엔드 AI 포트폴리오’를 통해 시장을 선도하겠다는 청사진을 밝혔다. 워크스테이션 포트폴리오인 ‘델 프로 맥스(Dell Pro Max, 전 ‘델 프리시전’)’ 라인업에 엔비디아의 가장 강력한 전문가용 그래픽 설루션인 엔비디아 GB10·GB300 슈퍼칩을 탑재하는 등 최신 AI 기술을 발빠르게 적용해 제품 포트폴리오를 빠르게 확장하고 있다.   브랜드부터 제품군까지 통합…3단계 AI PC 라인업 도입 올해 초부터 델은 기존의 PC, 모니터, 액세서리, 서비스 브랜드를 ‘델’로 통합하고, AI PC 선택을 쉽게 하기 위해 ‘델 프로 노트북(Dell Pro Laptop)’ 시리즈로 기업용 라인업을 재정비했다. 등급도 ‘엔트리’, ‘플러스(Plus)’, ‘프리미엄(Premium)’으로 세분화해 고객의 요구와 예산에 따른 맞춤형 선택이 가능하다. ‘델 프로 노트북’은 인텔 코어 울트라 시리즈 2(Intel Core Ultra processors Series 2) CPU를 탑재했으며, 추후 AMD 라이젠(AMD Ryzen) 프로세서를 탑재한 제품도 출시될 예정이다. 고성능 CPU, GPU, NPU를 탑재해 ‘코파일럿’과 같은 온-디바이스 AI 기능과 향상된 배터리 수명을 지원해 강력한 생산성을 안정적으로 제공한다. 깔끔한 디자인에 작고 슬림한 폼팩터를 갖췄고, 내구성이 우수한 소재를 적용해 휴대성이 뛰어나다. 또한 ‘델 프로 노트북’에는 사용자들이 최적의 AI 모델을 찾고 훈련하여 애플리케이션에 적용하도록 돕는 NPU 기반의 ‘델 프로 AI 스튜디오(Dell Pro AI Studio)’ 툴킷이 탑재됐으며, 이를 통해 AI 모델 개발 및 배포까지의 기간이 대폭 줄어들 것으로 예상된다. 델 노트북의 대표 모델인 ‘델 프로 13 프리미엄’은 약 1kg 초경량에 13형 디스플레이, 고해상도 8MP HDR 카메라, 조용한 듀얼 팬 냉각 시스템을 갖췄고, AI 워크로드 속도는 이전 세대 대비 3.5배 향상됐다. ‘델 프로 14 플러스’는 배터리 지속 시간이 46% 늘었고, AI 처리 성능도 3.7배 향상됐다. 두 제품 모두 인텔 코어 울트라 시리즈 2 CPU를 탑재했으며, 향후 AMD 라이젠 탑재 모델도 선보일 예정이다. 그리고 온디바이스 AI 지원, NPU 기반 ‘델 프로 AI 스튜디오’ 툴킷을 제공해 AI 모델 훈련과 배포까지 지원하는 점이 특징이다.   ▲ 한국 델 테크놀로지스 오리온 상무   한국 델 테크놀로지스의 오리온 상무는 “지난 2020년 코로나19의 등장으로 노트북과 PC에 대한 수요가 크게 늘었다. 이제 4년이 지난 상황이라 PC 및 노트북 교체 수요가 증가할 것으로 보고 있다”면서 2025년 PC 시장의 기회 요소를 설명했다. 또한 “2024년 AI가 PC 및 노트북 등 사용자의 업무 환경들을 변화시키고 있다”며, “오는 10월에 마이크로소프트가 윈도우 10에 대한 지원을 중단할 예정이라, 윈도우 11로 전환될 경우 새로운 노트북과 PC 환경에 대한 수요가 크게 늘어날 것으로 기대한다”고 말했다. 한국 델 테크놀로지스 정재욱 부장은 “노트북, 데스크톱, 워크스테이션, 서버에 이르는 델의 모든 제품들이 ‘델’이라는 통합 브랜딩으로 바뀌었다”고 말했다. 하지만 “델 에이리언처럼 기존 브랜딩 네이밍도 살려 마케팅을 강화해 나갈 계획이다”라고 말했다. 또한 “인텔 CPU 외에도 새롭게 AMD, 퀄컴과 협력하게 되어 개인용 및 기업용에서도 더 다양한 제품군을 공급할 수 있게 됐다”고 설명했다.   ▲ 한국 델 테크놀로지스 정재욱 부장   모니터 라인업도 일원화… IPS 블랙 기술로 차별화 모니터 분야도 사용자의 니즈에 따라 모니터 제품을 손쉽게 선택할 수 있도록 ‘델 울트라샤프(Dell UltraSharp)’, ‘델 프로(Dell Pro)’, ‘델’로 구분한 통합 브랜딩을 적용했다. 그 중 가장 주목받은 제품은 ‘델 울트라샤프 27 4K 썬더볼트 허브(U2725QE)’로, 세계 최초로 3000:1 명암비의 IPS 블랙 기술을 적용했다. 기존 IPS 대비 47% 깊은 블랙 표현, 89% 향상된 실외 명암비를 제공하며, TUV 라인란드 5-스타 인증, 최대 140W 썬더볼트 PD 충전도 지원한다. 함께 공개된 ‘델 프로 14 플러스 포터블 모니터(P1425)’와 ‘델 프로 32 플러스 4K 허브 모니터(P3225QE)’는 각각 휴대성과 시각 경험 강화를 겨냥한 제품으로, 이동성·색 정확도·화면 공유 편의성을 모두 갖췄다. 델 프로 14 플러스 포터블 모니터는 16:10 화면 비율의 14인치 IPS 디스플레이를 탑재한 초경량 휴대용 모니터로, 65W 전력 공급 및 데이터 전송, 영상 출력을 위한 USB-C 타입 단자를 내장해 사용자의 편의성을 높였다. 10도부터 90도까지 기울기 조절이 가능한 틸트(tilt) 기능으로 사용자의 세컨드 모니터로 활용하거나 대면 회의 중 모니터를 기울여 다른 참석자와 화면을 공유하는 데 유용하며, 100×100 VESA 마운트로 모니터 암에 거치할 수도 있다. 32인치 4K 모니터인 ‘델 프로 32 플러스 USB-C 허브 모니터’는 100Hz의 고주사율과 99% sRGB 색역대, 1500:1 명암비를 지원하며, TUV 라인란드(TUV Rhineland)의 ‘아이 컴포트(eye comfort)’ 부문 ‘4-star’ 인증을 받아 선명하면서도 편안한 시각 경험을 제공한다.   ▲ 델 테크놀로지스 미디어 간담회 전경   ‘하드웨어 회사’에서 ‘AI 통합 파트너’로 이번 행사는 델이 단순한 PC 제조사를 넘어, AI 시대에 맞는 인프라와 디바이스, 소프트웨어, 툴킷까지 아우르는 ‘AI 통합 파트너’로 진화하고 있음을 보여주는 자리였다. 브랜드 통합과 제품 포트폴리오 재정비는 그 출발점이며, 향후에는 파트너십과 생태계 전략을 어떻게 확장해나갈지가 관건이다. 한국 델 테크놀로지스 김경진 총괄사장은 “올해는 AI가 일상과 업무 환경에 필수 기술로 자리 잡는 원년이 될 것으로 예상되는 가운데, 델은 사용자들이 AI 시대의 다양한 니즈에 맞춰 최적의 클라이언트 제품을 선택할 수 있도록 새로운 통합 브랜딩을 선보였다”라며, “델 테크놀로지스는 클라이언트 설루션부터 서버, 스토리지, 소프트웨어 및 서비스와 개방형 에코시스템에 이르기까지 다양한 AI 사용 사례를 구현할 수 있는 엔드-투-엔드 AI 포트폴리오를 보유하고 있으며, 고객들이 AI 기반의 미래에 민첩하게 대응하고 최고의 생산성과 효율성을 구현할 수 있도록 최선을 다해 지원하고 있다”고 말했다.   ▲ 한국 델 테크놀로지스 김경진 총괄 사장     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
[온에어] 공기업 BIM 적용 지침에 따른 설계·시공 프로세스 변화와 대응 전략
캐드앤그래픽스 CNG TV 지식방송 지상 중계   지난 3월 31일 CNG TV는 ‘공기업 BIM 적용 지침에 따른 설계 및 시공 프로세스 변화와 대응 전략’을 주제로 웨비나를 개최했다. 이번 웨비나는 공기업의 건축 BIM(건설 정보 모델링) 적용 지침에 따른 설계 및 시공 프로세스의 변화와 이에 대한 실질적인 대응 전략을 다뤘으며, 자세한 내용은 다시보기를 통해 확인할 수 있다. ■ 박경수 기자   ▲ 디지털 지식연구소 조형식 대표, 성균관대학교 진상윤 교수   공기업 건축 BIM 적용 지침의 변화와 실무 적용 사례 LH와 GH의 건축 BIM 적용 지침 개발을 총괄한 성균관대학교 진상윤 교수는 이 지침이 설계 및 시공 프로세스에 어떤 변화를 가져오는지 설명했다. 이 지침은 공기업이 각 기관의 특성에 맞춰 BIM 적용 지침을 제정하도록 유도하고 있으며, LH, GH 및 기타 공사가 이를 기반으로 자체 BIM 지침을 수립한 것이 특징이다. 진 교수는 이 지침을 통해 설계 및 시공의 초기 단계부터 BIM을 적극 활용하고, 기존의 ‘전환 설계’ 방식이 아닌 실질적인 BIM 설계 프로세스를 유도하고자 했다고 설명했다. 또한, 발주자가 BIM을 통해 실질적인 관리가 가능한 체계를 구축하고, 도면 대신 BIM 기반의 성과물을 생산하는 프로세스를 개발 중이라고 밝혔다. 그는 BIM을 활용한 설계가 국제 경쟁력 확보와 산업 선진화를 목표로 하고 있다면서, 공동주택 설계의 BIM 프로세스를 소개하는 비전 영상도 함께 공개했다. 주요 내용으로는 ▲기존 BIM 적용의 한계 극복 ▲실질적인 BIM 설계 프로세스 유도 ▲발주자의 지속 가능한 BIM 운영 체계 구축 ▲시공 BIM 프로세스 개선 ▲유지관리 단계까지 고려한 준공 BIM 확보 등이 제시됐다. 진 교수는 “BIM은 단순한 기술 도입이 아니라 언어 자체가 바뀌는 개념으로 접근해야 하며, ▲인식 개선 ▲프로세스 개선 ▲대가 체계 개선 ▲표현 언어 변화 ▲생태계 전환이라는 다섯 가지 관점에서 변화가 필요하다”고 강조했다.   ▲ LH와 GH의 BIM 적용 현황   단위 세대 모델링과 BIM 데이터 구축 단위 세대 모델링은 중심선을 그리드로 설정하고 벽 및 바닥을 모델링한 뒤 창호나 문을 배치하는 방식으로 진행된다. 모델이 변경되면 면적 산정도 자동으로 반영되며, 사용자는 전용 면적, 공용 면적, 발코니 면적 등 세부 면적 정보를 구분하여 입력하고 효율적으로 관리할 수 있다. 공동주택의 경우 반복되는 객체가 많아 프로그램 성능 저하가 우려되지만, 효율적인 파일 관리 방안을 마련하면 안정적인 운영이 가능하다고 밝혔다. 또한 구조 정합성 검토는 구조 부재 정보를 기반으로 진행되며, 실내 재료 마감표를 구성하여 높은 정합성을 가진 도면을 추출할 수 있는 점도 장점으로 꼽혔다.   현상 설계 공모 단계에서의 BIM 적용 변화 과거에는 현상 설계 공모 단계에서 BIM 활용에 대한 반대 의견이 있었으나, 최근에는 BIM 역량을 갖춘 업체의 참여를 유도하는 방향으로 변화하고 있다. 실제로 고양 창릉 지구의 기본 설계 공모에서 현상 설계 단계부터 BIM 적용이 요구되기 시작했으며, 이는 건축 산업의 디지털 전환을 가속화하려는 의도로 풀이된다. 진 교수는 “현상 설계 공모에서 BIM을 활용한 3D 모델과 정보를 구축하고 이를 바탕으로 설계 설명서를 제작하는 것이 요구되고 있으며, 이를 위한 정확한 설계 검증 시스템도 마련되고 있다”고 말했다. 또한 “BIM은 설계자의 부담을 줄이고, 설계 데이터와 요구 사항을 지속적으로 확인하며 작업할 수 있게 해주는 도구로 기능한다”고 설명했다. 아울러 “BIM을 사용하지 않을 경우 감점 조치가 시행되고 있으며, 설계뿐 아니라 관리까지 BIM을 활용하도록 요구되면서 BIM 거버넌스의 중요성이 더욱 강조되고 있다”고 덧붙였다. 한편, 공기업 BIM 적용 지침에서는 원본 데이터에서 정의된 뷰 명칭을 도면 각 페이지에 각주로 명시해야 한다. 이는 BIM을 통해 구축한 실체에 해당 명칭을 추가하는 과정으로, 중대한 위반 사항과 사전 검토 항목은 BIM 시스템을 통해 검토해야 하며, 불법 건축 등 법규 위반 여부도 BIM 데이터를 통해 확인이 가능하다. 과거에는 현상 설계에서 별도로 가상 모델을 제출해야 했지만, 현재는 BIM을 통해 이를 손쉽게 구현할 수 있다. 아직 BIM을 적용한 현상 설계 사례는 많지 않지만, 지침에 따라 가상 모델 제출을 선택적으로 요구할 수 있는 유연성도 확보된 상황이다.   ▲ LH가 추구하는 설계 BIM 프로세스   지속 가능한 BIM 거버넌스 체제 필요성 지속 가능한 BIM 거버넌스 체계는 조직 내 경영진 변화와 무관하게 유지되어야 하며, 실무자는 최소 4년 이상 담당함으로써 충분한 이해와 경험을 축적해야 한다. BIM 적용 과정에서 발생할 수 있는 시행착오는 실무자의 심리적 부담을 고려해 제도적으로 포용할 필요가 있다. 이를 위해 선순환적인 BIM 수행 체계를 마련하고, 이를 기반으로 한 교육 및 훈련 프로그램을 체계적으로 운영해야 성공적인  BIM 도입이 가능하다. 또한 설계 및 시공자의 편의를 고려한 지침은 최소한의 요구사항을 명시해 사업 특성에 맞는 유연한 적용을 가능하게 하며, 필요 시 감독관과 협의를 거쳐 조정할 수 있다. BIM 도면은 기존의 2D CAD 도면이 가진 한계를 극복하고, 3D의 특성을 살려 설계 이해도를 높이는 방향으로 발전해야 한다. BIM은 다양한 디지털 기술의 기반이 되는 핵심 요소이며, 기업의 지속 가능한 발전을 위한 필수 기술로 자리 잡고 있다. 국내에서 BIM 사용 시 BCF 포맷을 지원하는 대표 소프트웨어로는 나비스웍스, 레빗, 아키캐드 등이 있으며, 국산 소프트웨어의 발전도 요구되고 있다.   BIM의 중요성과 국내 소프트웨어 현황 진 교수는 “한국 건설 산업에서 BIM의 활성화를 위해 실무자 중심의 프로세스를 구축해야 하며, 현재는 외주 업체에 대한 의존도가 높아 시장 성장이 제한적”이라며, “BIM 적용 시 전문가 간 분업을 통해 효율적인 업무 분담이 이루어져야 하고, 설계자와 엔지니어 간 명확한 역할 구분이 필요하다”고 강조했다. 향후 BIM의 발전 방향으로는 AI 기술과의 융합이 이루어져 보다 자동화된 건축 관리 시대가 도래할 가능성이 있으며, BIM은 디지털 기술 전환의 기반으로서 핵심 역할을 할 것으로 전망된다. 진 교수는 “국내 BIM 소프트웨어가 활성화되지 못하는 이유는 시장 규모가 작기 때문이며, 실무자가 아닌 외주 업체가 주로 사용하는 구조로 인해 사용률이 낮다”고 지적했다. 그리고 “건설업계 종사자가 약 100만 명에 달하지만, 이 중 실질적으로 BIM을 사용하는 비율은 낮아 시장 확대가 필요하다”고 덧붙였다. 앞으로 외주 업체는 BIM 컨설팅 서비스를 통해 부가가치를 창출하고, 이를 통해 산업 전반의 발전에 기여할 수 있는 기회를 마련해야 한다. 실무자 중심의 BIM 프로세스가 정착된다면, 국산 소프트웨어의 판매 증가와 함께 시장의 선순환 구조 형성도 기대할 수 있다.   ▲ 기존 대비 BIM 설계 예시       ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
[칼럼] 실용형 AI, 제조의 미래를 바꾸다
트렌드에서 얻은 것 No. 23   “AI는 모든 산업에 새로운 가능성을 열어 준다. 중요한 것은 기술이 아니라, 그것을 어떻게 활용하느냐이다.” – 사티아 나델라(Satya Nadella), 마이크로소프트 CEO 마이크로소프트는 생성형 AI를 다양한 산업에 통합하며, 기술의 활용 방식에 중점을 두고 있고,  나델라의 말은 기술 도입보다 전략적 활용이 중요하다는 점을 강조한다.   생성형 AI와 함께 설계하고, 시뮬레이션하고, 개선하라 지금 이 이야기를 한국의 제조기업에 가서 한다면, 이상한 사람 취급을 받을 수 있다. 당장, 어떻게 할 수 있는지 이야기할 수 있느냐? 우리도 그렇게 하고 싶은데, 어떻게 할 수 있는지 제대로 나온 것도 없고, 사례가 있는지 등의 얘기가 자연스럽게 나온다. 맞는 말이다. 하지만, 지금은 레이스의 출발선에서 모두 같은 상황일 것이다. 다만, 전체를 제어하고 미래를 설계하는 혜안이 있는 사람이나 조직 유무에 따라 회사들의 달리기 속도는 분명 차이가 날 것이다.  우리는 그런 시대를 살아가고 또 지나가고 있다. 뉴스에서 다른 회사의 소식을 들으면서 탄식을 하고 있을 것인가, 아니면 고통스럽더라도 뭔가 해 보는 것이 낫지 않느냐의 갈림길에 있다. “그럼에도 불구하고, 우리는 설계할 수 있다.” 그렇다. ‘생성형 AI로 설계하고, 시뮬레이션하고, 개선하라’는 말은 지금의 제조 현장에선 거대한 간극처럼 느껴진다. 공장의 열기와 노하우 속에서 살아온 실무자에게는 뜬구름 잡는 이야기처럼 들릴 수 있다. “AI가 좋다는데, 어디까지 해봤나?”, “누가 이걸 설계에 실제로 썼대?” 이런 질문은 당연한 것이고, 오히려 현실을 잘 아는 사람일 수록 더 조심스러운 반응을 보인다. 그러나 지금, 우리는 모두 레이스의 출발선에 서 있다. 완성된 길도, 검증된 답도 아직 없다. 그러니 이 때 필요한 건 기술보다 먼저 혜안을 가진 사람, 구조를 설계할 수 있는 리더다. 단 한 줄의 프로토타입이라도 그려보려는 엔지니어, 익숙한 보고서보다 새로운 질문을 고민하는 팀장, 시행착오를 감수하고 방향을 잡으려는 임원이 지금 이 시대의 속도를 결정짓는다. 그리고 그 ‘혜안’은 거창한 청사진이 아닐 수도 있다. 단 하나의 설계 데이터를 기반으로 AI에게 첫 도면을 그리게 해보는 실험, 실시간 현장 일지에서 이상 징후를 요약하게 해 보는 시도, 현장의 사진 데이터로 품질 검사 자동화를 위한 검출 모델을 훈련해 보는 도전 등이 현 시점에서 예상해 볼 수 있는 가까운 미래 모습일 것 같다. “우리는 예상치 못한 상황을 목격하고, 예상된 상황을 보고하며, 결국 승리할 것입니다.” – 알렉스 카프, 팔란티어 CEO 카프는 AI를 활용한 제조업의 혁신이 불확실성을 극복하고 성공으로 이끄는 열쇠라고 보고 있으며, 이는 생성형 AI를 통한 제조업의 미래를 긍정적으로 전망한다.    그림 1. 실용형 AI 맵 ‘제조 미래를 바꾸다’(Map by 류용효) (클릭하면 큰 이미지로 볼 수 있습니다.)   제조, AI를 다시 만나다 “설계는 끝났지만, 고객은 원하지 않는다.”  “시뮬레이션은 끝났지만, 현장은 여전히 오류를 반복한다.”  “보고서는 쌓이지만, 문제는 여전히 현재진행형이다.” 이 문장들은 지금도 수많은 제조 현장에서 반복되고 있다. 전통적인 제조 프로세스는 분업과 효율을 중심으로 설계되었지만, 급변하는 고객의 요구와 복잡해진 제품 환경은 기존 체계의 민첩성과 창의성에 한계를 드러낸다. 이제 제조기업은 하나의 질문 앞에 서 있다. “우리는 더 빠르고 똑똑한 공장을 가질 준비가 되었는가?” 생성형 AI는 단순한 자동화 기술이 아니다. 설계자의 의도를 읽고 CAD 모델을 생성하며, 수십 개의 시뮬레이션으로 프로세스 병목을 알려주고, 품질 이상을 예측할 뿐 아니라 원인을 유추해주는 ‘설계적 사고를 하는 AI’가 등장하고 있다. 이는 기술의 도입이 아니라 제조기업의 ‘운영 철학’ 자체가 전환되는 순간이다. 제조기업이 생성형 AI와 함께 앞으로 어떻게 설계하고, 시뮬레이션하고, 개선할 수 있을지를 구체적으로 조망한다. “AI는 인류가 만든 가장 중요한 기술이다. 우리는 그것을 책임감 있게 개발하고 활용해야 한다.” – 순다르 피차이(Sundar Pichai), 구글 CEO 구글은 AI 개발에 있어 윤리적 책임과 사회적 영향을 고려하고 있으며, 피차이의 말은 기술 발전과 함께 그에 따른 책임도 중요하다는 점을 상기시켜 준다.   디자인의 재정의 - AI는 창의적인 엔지니어인가? 전통적인 제조 설계 과정은 복잡한 조건 설정, 반복적인 수정, 협업 간의 커뮤니케이션 비용 등으로 인해 수많은 시간과 리소스를 요구해왔다. 하지만 이제, 생성형 AI는 텍스트 한 줄로 설계를 시작하게 한다. “3개의 모듈로 구성된 소형 드론 프레임을 설계해 줘. 탄소 섬유 기반으로 무게는 150g 이하로.” 이 한 문장으로 AI는 초기 설계안을 생성하고, 다양한 대안 모델을 제공하며, 사용자 요구조건에 따라 자동 최적화를 제안한다. AI는 도면을 '그리는 도구'가 아니라, '제안하고 비교하는 동료 엔지니어'로 진화하고 있다. 예를 들어, 오토데스크의 퓨전 360(Fusion 360), 엔톱(nTop), 다쏘시스템의 3D익스피리언스 웍스(3DEXPERIENCE Works)는 이미 생성형 디자인 기능을 내장하고 있다.  디자이너는 아이디어를 제공하고, AI는 그에 기반한 설계 패턴을 도출한다. 이는 ‘무에서 유를 만드는’ 것이 아니라, 수많은 설계 데이터를 학습한 AI가 새로운 패턴과 조합을 도출해내는 방식이다. 결과적으로 설계자는 더 이상 반복적인 CAD 작업자가 아니다. 이제 디자이너는 ‘기획자’이자 ‘비평가’, 그리고 ‘AI와 협력하는 설계 전략가’가 된다. 또한, 이러한 생성형 설계는 대량 맞춤형 생산(mass customization)과의 결합으로 그 진가를 발휘한다. 기존에는 옵션이 제한된 범용 제품만이 경제성이 있었지만, 생성형 AI는 고객의 요구사항을 빠르게 읽고 즉시 설계에 반영할 수 있다. 이는 ‘고객이 참여하는 설계’, 즉 코디자인(co-design) 시대의 도래를 가능하게 한다. 기업은 더 빠르게 시장에 대응하고, 고객은 더 높은 만족도를 경험한다. 이처럼 생성형 AI는 설계를 단순히 ‘빠르게’ 만드는 기술이 아니라, 설계의 개념 자체를 ‘재정의’하는 도구이자 기업의 창의성과 기민함을 확장하는 전략 자산이 되고 있다. “퍼플렉시티(Perplexity)는 단순한 답변 엔진에서 행동 엔진으로 전환하고 있다. 이제는 단순히 질문에 답하는 것을 넘어, 사용자에게 행동을 제안하고 실행하는 단계로 나아가고 있다.” – 아라빈드 스리니바스(Aravind Srinivas), 퍼플렉시티 AI CEO 아라빈드의 말은 AI 기술이 단순한 정보 제공을 넘어, 사용자와의 상호작용을 통해 실제 행동을 유도하고 실행하는 방향으로 발전하고 있음을 의미한다.   시뮬레이션의 혁신 - 빠른 판단과 적은 비용 과거의 시뮬레이션은 전문 소프트웨어와 고성능 컴퓨팅 자원, 그리고 숙련된 엔지니어의 직관과 경험에 크게 의존해 왔다. CAE는 분명 설계 검증과 최적화의 핵심이었지만, 조건 설정 → 모델링 → 결과 해석 → 반복이라는 고비용 순환은 여전히 제품 개발의 병목으로 작용해왔다. 그러나 생성형 AI는 이 병목을 타파하는 새로운 접근을 제시한다. 자연어로 “강풍 조건에서 뒤틀림이 가장 적은 하우징 구조를 찾아줘”라고 지시하면, AI는 자동으로 물리 조건을 추론하고, 유사 데이터 기반의 시뮬레이션 템플릿을 구성하며, 수십 개의 대안 시나리오를 병렬 생성해 ‘예측 – 설명 – 추천’이라는 삼중 루프를 빠르게 수행한다. 이러한 기술은 시뮬레이션의 대중화(simulation democratization)를 이끈다. 기술 전공자가 아니어도, 제품 매니저나 품질 담당자가 AI의 도움으로 설계안의 응력 분포나 유동 조건에 대해 인사이트를 얻을 수 있다. 이는 실무자가 더 빠르게 결정을 내릴 수 있도록 돕고, 의사결정의 지연 대신, 다중 시나리오 기반의 ‘실험적 사고’를 가능하게 만든다. 대표적인 사례로는 알테어의 AI 기반 인스파이어 플랫폼(AI-driven Inspire Platform), 앤시스의 AI 기반 시뮬레이션 자동화, 그리고 다쏘시스템의 솔리드웍스 생성형 시뮬레이션(Generative Simulation for SOLIDWORKS)이 있다. 이들은 기존 FEM/CFD 분석의 시간과 비용을 줄이는 동시에, 경험 기반 의사결정에서 데이터 기반 최적화로의 전환을 이끌고 있다. 궁극적으로 생성형 AI는 단순히 ‘더 빠른 계산’을 넘어서, “어떤 시나리오를 먼저 고려해야 하는가?”, “이 조건에서 실패할 가능성은 무엇인가?”라는 전략적 질문에 답하는 보조 엔진이 되어 준다. 이는 시뮬레이션을 단지 제품 검증의 도구가 아니라, 경영 의사결정과 R&D 전략 수립의 인공지능 파트너로 진화시키는 변화의 시작점이다.  “AI는 우리가 상상하는 것보다 훨씬 더 빠르게 발전하고 있다. 자율주행차는 그저 시작일 뿐이다.” – 일론 머스크(Elon Musk), 테슬라 CEO 테슬라는 자율주행 기술 개발에 AGI 수준의 AI를 활용하고 있으며, 이는 단순한 기능 향상을 넘어 차량 설계와 운행 방식 전반을 재정의하는 접근이다.   업무 분석과 프로세스 개선 - 데이터는 말하고 AI는 듣는다 제조 현장의 데이터는 언제나 풍부했다. 작업자 일지, 설비 로그, 유지보수 메모, 품질검사 리포트, 현장 사진과 동영상, 고객 클레임 이메일… 하지만 이들 대부분은 정형화되지 않은 ‘텍스트’와 ‘문서’ 형태로 존재하며, 기존 시스템은 이를 ‘기록’하는 데에만 집중했고, 의미를 해석하고 연결하는 능력은 인간의 몫이었다. 이제 생성형 AI는 이 방대한 비정형 데이터의 숲에서 맥락을 이해하는 나무를 찾는다. 작업자가 남긴 “라인 3에서 어제도 제품 정렬이 안 맞았고, 자동 이젝터가 두 번 멈췄다”는 기록은, AI에겐 단순한 텍스트가 아니라 ‘패턴’과 ‘이상’의 시그널이다. LLM은 이런 문장을 분석해 작업 단계별 이벤트를 분해하고, 관련된 설비 로그와 품질 데이터를 연결하여 문제 지점을 도출한다. 이제 업무는 ‘기록하고 보고하는 일’이 아니라, ‘데이터가 스스로 분석하고 말하는 환경’으로 바뀌고 있다. 대표적인 활용 사례는 다음과 같다. 업무 요약 자동화 : 업무 일지를 요약해 경영진에게 핵심 이슈를 전달 프로세스 병목 식별 : 여러 부서의 텍스트 기반 보고서에서 공통 키워드와 불만 분석 문서 자동 생성 : SOP(표준작업지침서), 회의록, 개선안 보고서 등의 자동 초안 작성 협업 인텔리전스 : 여러 팀 간의 커뮤니케이션 데이터를 분석해 협업 지연 포인트 도출 실제로 지멘스는 AI 기반 자연어 처리 기술(Natural Language Processing : NLP)을 통해 디지털 작업지시서와 실시간 현장 대응 리포트를 자동 생성하는 기능을 도입했고, 보쉬는 AI를 통해 품질 클레임 문서에서 반복 출현하는 원인 유형을 추출하여 품질 개선의 단초로 활용하고 있다. 핵심은 이것이다. 현장의 수많은 대화와 기록이 AI에게 ‘말을 거는 데이터’가 되었고, AI는 그 말을 듣고, 요약하고, 통찰을 제시하며, 업무 개선을 스스로 제안하는 존재가 되었다는 점이다. 이제 우리는 묻지 않을 수 없다. 우리는 AI에게 말 걸 준비가 되어 있는가? 그리고 그 대답을 조직이 들을 준비는 되었는가? “가장 큰 위험은 아무런 위험도 감수하지 않는 것이다. 모든 것이 급변하는 시대에서 위험을 회피하는 전략은 반드시 실패로 이어진다.” — 마크 저커버그, 메타 CEO 저커버그는 변화와 혁신의 시대에 기존의 방식을 고수하며 위험을 회피하려는 태도가 오히려 더 큰 실패를 초래할 수 있음을 경고한다.   품질 관리의 진화 - AI는 예지적 감각을 가질 수 있는가 품질 관리는 제조업의 마지막 방어선이자, 가장 정교한 신경망이다. 그러나 지금까지의 품질 관리는 주로 사후 대응(postdefect 대응)에 집중되어 있었다. 불량이 발생한 후 원인을 찾고, 재발 방지책을 수립하고, 문서를 정리하는 ‘후행적 품질 관리’가 일반적이었다. 이제 생성형 AI는 이 전통적 프레임을 근본부터 흔들고 있다. AI는 ‘불량을 감지’하는 것이 아니라, ‘불량을 설명하고 예측’하려 한다. 예를 들어, 제품 표면의 이미지를 기반으로 한 비전 검사 시스템은 단순히 OK/NG를 판단하는 데서 그치지 않고, “이 영역의 텍스처 패턴은 온도 편차에 의한 수축 변형일 가능성이 높습니다”라고 말할 수 있는 설명형 모델로 진화하고 있다. 나아가, 생성형 AI는 텍스트, 이미지, 센서 데이터를 통합적으로 분석해 복합적인 이상 징후를 감지하고, 불량의 '가능성'과 '잠재 원인'을 추론해낸다. 예를 들어 다음과 같은 조합이 가능해진다. 작업자 일지 : “이틀 전부터 용접기압이 다소 약한 것 같다.” 센서 로그 : 오전 9~11시에 기압 편차 발생 불량 이미지 : 비드 형성 불균형 AI는 이를 연결해 “용접 조건의 경미한 변화가 반복 불량의 근본 원인일 수 있다”고 보고한다. 이는 단순한 예측모델이 아니다. ‘설명 가능한 품질 관리(Explainable Quality)’, 즉 AI가 품질 이슈에 대해 왜 그런 판단을 했는지를 근거와 함께 제시함으로써, 품질팀은 더 이상 직감이나 경험에만 의존하지 않고 데이터 기반의 합리적 개선 프로세스를 수립할 수 있다. 이미 보쉬, 토요타, GE 항공 등은 ▲AI 기반 비전 검사 시스템에서 ‘불량 예측 + 원인 설명’을 제공하는 모델을 구축 중이고 ▲ISO 9001과 연동되는 AI 품질 리포트 자동화 시스템을 테스트하고 있다. 이는 곧 ‘AI가 품질 시스템의 일원으로 공식 포함되는 시대’가 오고 있음을 뜻한다. 품질의 정의는 바뀌고 있다. 과거의 품질은 발견과 수정의 문제였지만, 앞으로의 품질은 예지와 설득의 문제다. AI는 이제 불량을 찾아내는 것이 아니라, 불량이 만들어지지 않도록 ‘생산 과정 그 자체를 개선하자’고 제안하는 동료가 되어가고 있다. “AI는 전기를 발견한 것과 같은 혁신이다. 모든 산업에 스며들 것이며, 그 영향을 무시할 수 없다.” – 앤드류 응(Andrew Ng), AI 전문가 앤드류 응은 AI의 보편성과 산업 전반에 미치는 영향을 강조하고 있다. 그의 말은 제조업에서도 AI의 통합이 필수임을 시사한다.   경고와 제언 - 생성형 AI는 도입이 아니라 전환이다 많은 제조기업이 생성형 AI에 주목하고 있다. 설계 자동화, 시뮬레이션 최적화, 업무 요약, 품질 예측… 도입 사례는 늘고 있지만, 도입이 곧 성공을 의미하진 않는다. 생성형 AI는 단순한 툴이 아니라, 운영 철학의 변화를 요구한다. 기존의 프로세스는 ‘정해진 절차와 역할’ 속에서 최적화를 추구해왔지만, 생성형 AI는 ‘질문을 던지고 시나리오를 비교하며 판단을 내리는 유연한 사고방식’을 요구한다. 즉, 기술만 바꾸는 것이 아니라 조직의 사고 체계와 역할 구조 자체를 재설계해야 하는 것이다. 예를 들어 <표 1>과 같은 전환이 필요하다.   표 1   하지만 문제는 기술이 아니다. 가장 큰 장벽은 조직이 AI를 받아들일 준비가 되어 있느냐는 것이다. 임원은 AI를 단순히 ‘자동화 툴’로 간주하는 경향이 많고, 현장은 여전히 ‘내 일을 뺏는 존재’로 AI를 경계한다. 이 간극을 메우지 않으면, AI는 시연 단계에서 멈추고, 조직은 변화의 본질을 놓친다. 따라서 다음과 같은 전환 전략이 필요하다. 파일럿이 아닌 전환 설계 특정 부서에서 테스트하는 것이 아니라, 조직 전체의 프로세스 전환 시나리오를 기획해야 한다. ‘도입 교육’이 아닌 ‘공감 설계’ 기술 사용법이 아니라, 왜 이 기술이 필요한지에 대한 비즈니스 관점에서의 스토리텔링이 필요하다. AI Co-Worker 관점 전환 AI는 도구가 아니라, 함께 판단하고 실험하는 동료로 봐야 한다. 이를 위해 직무 정의서(JD)도 다시 써야 한다. 성과 기준의 재정립 AI 도입 이후에는 ‘정확도’보다 ‘학습 속도’와 ‘적응력’이 핵심 성과 지표가 된다. 결국, 생성형 AI는 ‘도입해야 할 기술’이 아니라 ‘다르게 일하고, 다르게 생각하고, 다르게 운영하는 기업’으로 전환하기 위한 촉매제다. 이제 경영진에게 남은 질문은 단 하나다. “우리는 기술을 도입할 준비가 되었는가?”가 아니라, “우리는 조직을 전환할 용기를 가졌는가?”이다. “지금은 스타트업의 시대… 세상은 여전히 변화의 가능성에 잠들어 있다.” – 샘 올트먼, 오픈에이아이 CEO 올트먼은 기술 혁신의 시기에 기존 기업들이 변화에 둔감해질 수 있음을 경고하며, 새로운 도전과 변화를 추구하는 조직만이 미래를 선도할 수 있다는 메시지를 담고 있다.   맺음말 : 생성형 AI 시대의 제조 기업, 당신은 어떤 그림을 그리고 있는가 미래의 공장은 단지 더 정교하고, 더 빠르며, 더 자동화된 곳이 아니다. 그곳은 데이터를 읽고, 상황을 이해하고, 사람과 함께 결정하는 공장이다. 문제를 발견하기 전에 감지하고, 작업자를 지원하며, 스스로 최적의 방식을 제안하는 공장이다. 그리고 그 공장의 핵심 파트너는 인간의 상상력을 확장하는 생성형 AI다. 이제 중요한 질문은 이것이다. “우리는 어떤 그림을 그리고 있는가?” 기술은 빠르게 진화한다. 생성형 AI는 설계와 시뮬레이션, 업무 분석과 품질 관리까지 제조의 전 과정을 유기적으로 연결하며 ‘스마트’를 넘어 ‘지능적’으로 만들고 있다. 하지만 진정한 경쟁력은 기술의 채택이 아닌, 기술과 함께 일하는 방식의 변화에서 비롯된다. 아직 많은 제조기업은 ‘가능성 탐색’ 단계에 머물러 있다. 하지만 머뭇거릴 시간이 없다. AI는 이미 조직 구조, 업무 정의, 리더십의 방식까지 영향을 미치기 시작했다. 이제는 기술을 배우는 것이 아니라, 기술과 함께 일할 조직을 설계해야 할 때다. 생성형 AI 시대의 제조 기업은 세 가지 질문에 답할 수 있어야 한다. 우리는 상상할 수 있는가? 생성형 AI는 ‘주어진 문제를 해결’하는 것이 아니라 ‘가능성을 확장’한다. 제조기업의 조직은 아직도 문제만 찾고 있는가, 아니면 새로운 기회를 그리고 있는가? 우리는 받아들일 수 있는가? AI는 사람의 영역을 침범하지 않는다. 다만 그 옆에 선다. 우리는 전환할 수 있는가? 우리는 그것을 파트너로 받아들일 준비가 되어 있는가? AI 도입은 기술의 문제가 아니라, 사고방식과 리더십의 전환이다. 과연 지금의 조직은 그 전환을 감당할 수 있는가? 미래의 공장은 말하고 있다. “나는 설계하고, 시뮬레이션하고, 개선할 준비가 되어 있다. 너는 나와 함께 걸을 준비가 되어 있는가?”   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다.(블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02