• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "파운데이션 모델"에 대한 통합 검색 내용이 191개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
엔비디아, 한국 AI 인프라·생태계 구축 협력… “GPU 26만 개 이상 추가 도입”
엔비디아가 대한민국 정부 및 기업들과 협력해 클라우드와 AI 팩토리를 중심으로 25만 개 이상의 GPU를 포함하는 전국 규모의 AI 인프라 확장 계획을 발표했다. 이번 인프라는 공공과 민간 부문이 함께 구축하며, 자동차, 제조, 통신 등 한국 주요 산업 전반의 AI 기반 혁신과 경제 성장을 견인할 핵심 토대가 될 예정이다. 이번 계획은 세계 각국 정상이 APEC 정상회의 참석을 위해 한국에 모인 가운데 발표됐다.  과학기술정보통신부는 기업과 산업 전반의 독자 AI 개발을 가속화하기 위해 최신 엔비디아 GPU 5만 개 도입을 추진 중이라고 밝혔다. AI 인프라 구축은 엔비디아 클라우드 파트너인 네이버 클라우드와 NHN클라우드, 카카오가 국가 독자 클라우드 내 컴퓨팅 인프라를 확장하기 위해 엔비디아 블랙웰(Blackwell) 등 GPU 1만 3000 개를 초기 도입하는 것을 시작으로, 향후 국가 AI컴퓨팅센터 구축 등을 통해 수년간 점진적으로 확대될 예정이다. 이 AI 인프라는 연구기관, 스타트업, AI 기업이 모델과 애플리케이션을 개발할 수 있도록 개방되며, 이는 대한민국의 AI 역량 강화와 인프라 확충을 위한 국가 전략을 뒷받침하게 된다. 또한, 엔비디아는 한국의 산업계, 학계, 연구기관과 AI-RAN과 6G 인프라 개발에도 함께하고 있다. 엔비디아는 최근 삼성(Samsung), SK텔레콤(SK Telecom), 한국전자통신연구원(ETRI), KT, LG유플러스(LG U+), 연세대학교와 협력해 지능형·저전력 AI-RAN 네트워크 기술을 공동 개발 중이다. 이 기술은 GPU 연산 작업을 디바이스에서 네트워크 기지국으로 오프로딩함으로써 컴퓨팅 비용을 절감하고 배터리 수명을 연장할 수 있도록 설계됐다.     한국의 자동차, 제조, 통신 분야 선도 기업들은 엔터프라이즈와 피지컬 AI 개발을 가속화하기 위해 대규모 AI 인프라 투자와 확장을 추진하고 있다. 삼성은 GPU 5만 개 이상을 탑재한 엔비디아 AI 팩토리를 구축해 지능형 제조를 발전시키고 제품과 서비스 전반에 AI를 적용한다. 삼성은 엔비디아 네모트론(Nemotron) 사후 훈련 데이터세트, 엔비디아 쿠다-X(CUDA-X), 엔비디아 cu리소(cuLitho) 라이브러리, 엔비디아 옴니버스(Omniverse) 등 엔비디아 기술을 활용해 정교한 반도체 제조 공정의 속도와 수율을 개선하는 디지털 트윈을 구축한다. 또한 엔비디아 코스모스(Cosmos), 엔비디아 아이작 심(Isaac Sim), 엔비디아 아이작 랩(Isaac Lab)을 활용해해 가정용 로봇 개발 포트폴리오를 강화하고 있다. SK그룹은 반도체 연구·개발·생산을 고도화하고, 디지털 트윈과 AI 에이전트 개발을 지원하는 클라우드 인프라 구축을 위해 5만 개 이상의 GPU를 탑재할 수 있는 AI 팩토리를 설계하고 있다. SK텔레콤은 엔비디아 RTX PRO 6000 블랙웰 서버 에디션 GPU를 기반으로 한 소버린 인프라를 제공해, 국내 제조 기업들이 엔비디아 옴니버스를 활용할 수 있도록 지원할 계획이다. SK 텔레콤은 스타트업, 기업, 정부 기관을 대상으로 디지털 트윈과 로보틱스 프로젝트 가속화를 위한 산업용 클라우드 인프라를 제공할 예정이다. 현대자동차그룹과 엔비디아는 한층 심화된 협력 단계로 나아가며, 모빌리티, 스마트 공장, 온디바이스 반도체 전반에 걸쳐 AI 역량을 공동 개발할 예정이다. 양사는 AI 모델 훈련과 배포를 위해 5만 개의 블랙웰 GPU를 기반으로 협력을 추진한다. 또한 한국 정부의 국가 피지컬 AI 클러스터 구축 이니셔티브를 지원하기 위해, 현대자동차그룹과 엔비디아는 정부 관계자들과 긴밀히 협력해 생태계 조성을 가속화할 계획이다. 이를 통해 약 30억 달러 규모의 투자가 이루어져 한국의 피지컬 AI 산업 발전을 한층 앞당길 전망이다. 주요 이니셔티브로는 엔비디아 AI 기술 센터, 현대자동차그룹 피지컬 AI 애플리케이션 센터, 지역 AI 데이터센터 설립 등이 포함된다. 네이버 클라우드는 소버린 AI와 피지컬 AI용 인프라를 구축하기 위해 엔비디아 AI 인프라를 확장하고 있다. 이에 따라 엔비디아 RTX PRO 6000 블랙웰과 기타 엔비디아 블랙웰 GPU를 포함해 최대 6만 개의 GPU를 도입할 예정이다. 네이버 클라우드는 엔비디아 AI 인프라에서 구동되는 엔비디아 네모트론 오픈 모델을 기반으로 차세대 소버린 AI 개발의 다음 단계를 준비 중이다. 또한 네이버 클라우드는 조선, 보안 등 산업 특화 AI 모델을 개발하고, 대한민국 국민 모두를 위한 포용적 AI 구현에 주력할 계획이다. 과학기술정보통신부는 엔비디아와의 협력을 기반으로 주권 언어 모델 개발을 위한 독자 AI 파운데이션 모델(Sovereign AI Foundation Models) 프로젝트를 추진한다. 본 프로젝트는 엔비디아 네모와 오픈 엔비디아 네모트론 데이터세트를 활용해 로컬 데이터를 기반으로 추론(reasoning) 모델을 개발하고 디스틸(distilling)할 예정이다. 또한 LG AI연구원, 네이버 클라우드, NC AI, SK텔레콤, 업스테이지가 독자 모델 개발을 지원하는 프로젝트에 협력한다. 기업, 연구진, 스타트업은 이 모델 개발에 기여하고 이를 활용해 음성, 추론 등 다양한 기능을 갖춘 AI 에이전트를 개발할 수 있다. LG는 피지컬 AI 기술 개발을 촉진하고, 피지컬 AI 생태계를 지원하기 위해 엔비디아와 협력하고 있다. 양사는 LG 엑사원(EXAONE) 모델을 활용해 스타트업과 학계를 지원한다. 일례로, 암 진단을 지원하는 모나이(MONAI) 프레임워크 기반의 엑사원 패스(EXAONE Path) 의료 모델이 있다. 한국과학기술정보연구원(KISTI)은 엔비디아와 협력해 한국의 슈퍼컴퓨터 6호기 ‘한강’을 활용한 연구 협력을 촉진하기 위한 공동연구센터 설립을 추진 중이다. KISTI는 또한 양자 프로세서와 GPU 슈퍼컴퓨팅을 연결하는 엔비디아의 새로운 개방형 아키텍처 NVQ링크(NVQLink) 지원을 발표했다. 엔비디아 쿠다-Q(CUDA-Q) 플랫폼과 연동되는 NVQ링크는 KISTI가 양자 오류 정정과 하이브리드 애플리케이션 개발 등 분야의 연구를 심화해 차세대 양자-GPU 슈퍼컴퓨터 개발을 가속화할 수 있도록 지원한다. KISTI는 또한 과학 연구 개발을 위한 파운데이션 모델을 구축하고, 오픈소스 엔비디아 피직스네모(PhysicsNeMo) 프레임워크를 활용한 물리 기반 AI 모델 개발을 연구자들에게 지원할 예정이다. 엔비디아와 파트너들은 한국의 경제 발전과 기회 창출을 위해 엔비디아 인셉션(NVIDIA Inception) 프로그램으로 스타트업을 육성하는 얼라이언스를 설립한다. 얼라이언스 회원사는 SK텔레콤을 포함한 엔비디아 클라우드 파트너가 제공하는 가속 컴퓨팅 인프라를 활용할 수 있다. 또한, IMM인베스트먼트, 한국투자파트너스, SBVA 등 벤처캐피털 얼라이언스와 엔비디아 인셉션의 지원을 받게 된다. 아울러 스타트업은 엔비디아의 소프트웨어와 전문 기술 역량도 활용할 수 있게 돼, 차세대 기업들의 성장을 더욱 신속하게 추진할 수 있게 된다. 엔비디아는 스타트업을 위한 엔비디아 인셉션 프로그램의 성과를 바탕으로, 차세대 기업 지원을 위해 한국 정부와도 협력할 계획이다. 또한 중소기업벤처부에서 운영하는 ‘엔업(N-Up)’ AI 스타트업 육성 프로그램에도 참여할 예정이다. 엔비디아의 젠슨 황 CEO는 “대한민국은 기술과 제조 분야에서 선도적 입지를 갖추고 있으며, 이는 대한민국이 AI 산업 혁명의 중심에 서 있음을 보여준다. 이 산업혁명에서 가속 컴퓨팅 인프라는 전력망과 광대역만큼 중요한 기반이 되고 있다. 한국의 물리적 공장이 정교한 선박, 자동차, 반도체, 전자제품으로 세계에 영감을 주었듯, 이제는 인텔리전스라는 새로운 수출품을 생산하며 글로벌 변화를 이끌 수 있다”고 말했다. 배경훈 부총리 겸 과학기술정보통신부 장관은 “AI가 단순히 혁신을 넘어 미래 산업의 기반이 된 지금, 대한민국은 변혁의 문턱에 서 있다. 엔비디아와 함께 국가 AI 인프라를 확충하고 기술을 개발하는 것은 제조업 역량 등 한국이 보유한 강점을 더욱 강화할 수 있는 투자이며, 이는 글로벌 AI 3대 강국을 향한 대한민국의 번영을 뒷받침할 것”이라고 말했다.
작성일 : 2025-10-31
[포커스] 알테어, 제조 현장의 핵심 기술로 자리 잡는 AI 비전 소개
알테어는 9월 5일 ‘2025 추계 AI 워크숍’을 진행했다. ‘엔지니어를 위한 AI’를 주제로 진행된 이번 워크숍에서 알테어는 AI를 활용해 제품 개발 프로세스를 가속화하고 의사결정의 정확성을 높이며, 지능형 디지털 트윈을 완성한다는 비전을 선보였다. 또한 AI 기반 시뮬레이션, 생성형 AI, AI 에이전트, 지식 그래프 등 최신 AI 기술의 실제 적용 사례와 활용 방안을 소개했다. ■ 정수진 편집장     한국알테어의 김도하 지사장은 개회사를 통해 AI 기술이 산업 고객의 현장에서 빠르게 내재화되며 동반 성장하고 있다면서, “이는 고객들이 명확한 비전과 단계별 로드맵을 가지고 각자의 환경에 맞춰 AI를 접목하고 있기 때문”이라고 설명했다. 또한, 국가 AI 프로젝트가 시작되어 1만 4000 장의 GPU가 1차 도입되는 등 정부가 주도하는 ‘소버린 AI’ 시대가 열리고 있는 점에 주목하면서, “AI를 통한 제조 산업의 르네상스가 도래하고 있으며, 알테어 또한 시장과 함께 성장하기 위해 준비하고 있다”고 전했다.   엔지니어링 언어를 학습하는 AI 알테어의 케샤브 선다레시(Keshav Sundaresh) 디지털 전환 총괄 시니어 디렉터는 “AI는 더 이상 개념이 아니라 실제 현장의 핵심 기술”이라면서, 엔지니어링 수명주기 전반에 걸친 로코드·고효율 AI 접근법을 구현해야 한다고 짚었다. MIT의 연구에 따르면, 기업의 생성형 AI 파일럿 프로젝트 가운데 95%가 실질적인 재무 성과를 내는 데 실패하고 있는 것으로 나타났다. 그 원인으로는 ▲특정 결과에 편중된 데이터 ▲단편적이고 사일로화된 데이터 ▲값비싼 컴퓨팅 자원 ▲도메인 지식과 AI 기술 간 격차 ▲기존 시스템과의 통합 및 신뢰성 문제 등이 꼽힌다. 선다레시 시니어 디렉터는 이런 현실적 장벽을 극복할 수 있도록 알테어와 지멘스의 기술 역량을 결합해 AI 기반의 통합 설루션 포트폴리오를 제공할 수 있다는 점을 강조했다. “제품의 요구사항 정의부터 폐기에 이르는 모든 과정에서 AI를 활용하고, 단절된 디지털 스레드를 통합하여 데이터 기반의 신속한 의사결정을 지원하겠다”는 것이다. 이를 위한 핵심 전략은 ‘AI에게 엔지니어링 및 제조의 언어’를 가르치는 것이다. 기존의 LLM(대규모 언어 모델)이 텍스트나 이미지 등 일반 데이터에 강점을 보인다면, 지멘스와 알테어는 기계 설계, 전기/전자, BOM(Bill-of-Materials), 시뮬레이션 데이터 등 산업 특화 데이터를 학습시켜 신뢰도 높은 ‘산업용 파운데이션 모델(Industrial Foundation Model)’을 구축하고 있다는 것이 선다레시 시니어 디렉터의 설명이다.   AI 확산으로 제조 혁신의 속도 높인다 AI 비전을 구체화하는 방법론으로 알테어는 ‘라이프사이클 인텔리전스(Lifecycle Intelligence)’ 프레임워크를 제시했다. 이 프레임워크는 AI 도입의 장벽을 낮추고 모든 엔지니어가 AI를 손쉽게 활용해 혁신을 가속화할 수 있도록 하는 데에 중점을 두고 있다. 선다레시 시니어 디렉터는 ▲반복 작업의 자동화 및 대규모 데이터 분석으로 인간 전문가의 역량을 강화하고 ▲기존 워크플로와 도구에 AI 기능을 통합하여, 학습 부담 없이 자연스러운 AI 활용을 도우며 ▲코딩 지식과 관계 없이 모든 사용자가 AI를 구축하고 배포할 수 있는 환경을 제공하는 세 가지 접근법을 통해 AI 도입을 가속화한다는 로드맵을 소개했다. 이 프레임워크를 활용하면 전처리 영역에서는 형상 인식 AI 기술로 부품 분류 및 군집화를 자동화하거나, 자연어 처리(NLP) 기반 코파일럿을 통해 모델 정리부터 전체 해석 설정까지 대화형으로 수행할 수 있다. 솔빙 영역에서는 기존의 시뮬레이션 데이터를 학습해 CAD 또는 메시 단계에서 물리 현상을 빠르게 예측할 수 있고, 시스템 레벨의 시뮬레이션 속도를 높일 수 있다. 후처리 영역에서는 AI가 핫스폿이나 파손 영역을 자동 식별해 결과 분석을 돕는다. 이 프레임워크의 기술적 기반은 분산된 데이터를 연결하는 ‘데이터 패브릭’과 AI 모델을 개발·운영하는 ‘AI 팩토리’의 결합이다. 선다레시 시니어 디렉터는 알테어의 데이터 분석/AI 플랫폼인 래피드마이너(RapidMiner)와 로코드 앱 개발을 지원하는 지멘스 멘딕스(Mendix)를 통해 라이프사이클 인텔리전스를 구현할 수 있다고 설명했다.     엔지니어링 AI의 혁신 동력 에이전틱 AI(Agentic AI), 지식 그래프(Knowledge Graph), 생성형 AI 등 최신 AI 기술이 R&D부터 설계와 제조까지 엔지니어링 전반의 혁신을 가속화하고 있다. 알테어는 이들 기술이 개별적으로도 강력하지만, 서로 결합하면서 데이터 기반의 신속한 의사결정을 지원하고 기존 워크플로를 지능적으로 전환하는 핵심 동력으로 작용한다고 소개했다. AI 에이전트는 사용자를 대신해 특정 목표를 이해하고 자율적으로 판단 및 실행하는 ‘지능형 디지털 대리인’이다. 단순 반복 작업을 자동화하는 것을 넘어서, 여러 에이전트가 협업하는 다중 에이전트 구조를 통해 복잡한 과업을 수행하는 것이 최근의 흐름이다. 엔지니어링 현장에도 공정 상 발생한 문제에 대해 자연어로 질문하면 해결 방법을 제시하거나, 생산 라인의 다운타임 원인을 분석하고 관련 데이터를 종합해 보고하는 등의 AI 에이전트가 도입되고 있다. 알테어는 시각적 워크플로 설계 도구를 통해 이러한 AI 에이전트를 쉽게 구축하고 AI 클라우드 프로세스와 원활하게 연결하는 방법을 제시했다. 지식 그래프는 다양한 출처(소스)에 분산된 데이터를 하나의 의미 계층(semantic layer)으로 통합해서 데이터 간의 숨겨진 관계를 파악하게 하는 기술이다. 이는 AI 모델의 가장 큰 문제점으로 꼽히는 환각(hallucination) 현상을 최소화하고, 장기적인 맥락을 이해하는 메모리로 기능하면서 신뢰성 높은 AI 에이전트를 구현할 수 있게 돕는다. 엔지니어링 분야에서 지식 그래프는 여러 AI 에이전트가 일관된 지식 베이스를 공유하게 해서 협업의 효율을 높이고, 공장 문제 해결 시 여러 데이터베이스에 동적으로 접근하여 질문에 답하는 아키텍처를 구현하는 데 쓰인다.   PLM과 AI의 시너지로 더 큰 혁신도 가능 알테어는 지난 3월 지멘스와의 합병을 완료했다. 제조 기술에 강점을 가진 지멘스와 엔지니어링 및 AI 기술에 집중해 온 알테어의 시너지에 대해, 이번 워크숍에서 한 가지 실마리를 발견할 수 있었다. 알테어는 AI와 PLM(제품 수명주기 관리)의 결합이 제조업의 패러다임을 바꿀 것으로 보았다. 한국알테어 최병희 본부장은 “많은 기업이 PLM 시스템에 제품의 설계부터 생산, 운영까지 대량의 데이터를 축적하고 있지만, 이를 제대로 활용하지 못하고 있다. 이 PLM 데이터를 AI로 분석해 기업의 핵심 자산으로 만들고, 경험에 의존하던 사후 대응 방식의 업무 환경을 미래가 예측하고 문제를 예방하는 예측 기반의 업무 환경으로 혁신할 수 있다”고 소개했다. 지멘스의 PLM 설루션인 팀센터(Teamcenter)가 제품의 모든 역사를 기록한 단일 진실 공급원(single source of truth)이라면, 알테어의 래피드마이너는 코딩 지식이 없이도 AI 모델을 개발할 수 있는 ‘똑똑한 AI 분석가’라고 할 수 있다. 두 설루션을 통합하면 래피드마이너가 팀센터의 데이터를 분석해 숨겨진 패턴과 인사이트를 찾아내고, 이를 바탕으로 미래 예측 모델을 생성할 수 있다. 그리고 이 예측 결과를 다시 팀센터에 전달해 시스템 전체가 똑똑해지는 선순환 구조를 만든다. 최종적으로는 현실을 명확히 이해하고 미래를 예측하는 ‘지능형 디지털 트윈’을 완성할 수 있다는 것이 최병희 본부장의 설명이다. 이 외에 공급망 최적화, 품질 이상의 조기 탐지, 고객 피드백의 반영 등 다양한 분야로 시너지를 확장할 수 있는 가능성도 점칠 수 있다. 최병희 본부장은 “PLM 데이터를 시작으로 ERP, MES, CRM 등 분산된 기업 데이터를 통합하면 더 큰 범위의 업무 혁신이 가능하다”고 전했다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
엔비디아, “새로운 오픈 모델과 시뮬레이션 라이브러리로 로보틱스 연구개발 가속화”
엔비디아가 오픈소스 뉴턴 물리 엔진(Newton Physics Engine)을 엔비디아 아이작 랩(NVIDIA Isaac Lab)에서 이용 가능하며, 로봇 기술을 위한 엔비디아 아이작 GR00T N1.6 추론 비전 언어 행동(vision language action : VLA) 모델과 새로운 AI 인프라를 함께 제공한다고 발표했다. 이들 기술은 개발자와 연구자에게 개방형 가속 로보틱스 플랫폼을 제공해 반복 작업을 가속화하고, 테스트를 표준화하며, 로봇의 추론과 훈련 통합을 지원한다. 아울러 로봇이 시뮬레이션에서 실제 환경으로 안전하고 안정적으로 기술을 이전할 수 있도록 돕는다. 로봇은 시뮬레이션 환경에서 더 빠르고 안전하게 학습할 수 있지만, 복잡한 관절, 균형, 움직임을 가진 휴머노이드 로봇은 오늘날 기존 물리 엔진의 한계를 시험한다. 전 세계 25만 명 이상의 로보틱스 개발자들은 정확한 물리 엔진을 필요로 하며, 이는 로봇이 시뮬레이션에서 학습한 기술을 현실 세계에서 안전하고 안정적으로 수행하기 위해 필수이다. 엔비디아는 리눅스 재단이 관리하는 GPU 가속 오픈소스 물리 엔진 뉴턴의 베타 버전을 공개했다. 이는 엔비디아 워프(Warp)와 오픈USD(OpenUSD) 프레임워크 기반으로, 엔비디아와 구글 딥마인드, 디즈니 리서치가 공동 개발했다. 뉴턴은 유연한 설계 및 다양한 물리 솔버와의 호환성을 갖췄다. 이를 통해 개발자가 눈이나 자갈 위를 걷거나, 컵과 과일을 다루는 등 매우 복잡한 로봇 동작을 시뮬레이션하고 이를 현실 세계에 성공적으로 적용할 수 있도록 지원한다.     휴머노이드가 물리적 환경에서 인간과 유사한 작업을 수행하기 위해서는 모호한 지시를 이해하고 이전에 경험하지 못한 상황에 대처할 수 있어야 한다. 곧 허깅 페이스에서 공개될 오픈소스 아이작 GR00T N1.6 로봇 파운데이션 모델의 최신 버전에는 피지컬 AI를 위해 개발된 오픈 맞춤형 추론 비전 언어 모델(VLM)인 엔비디아 코스모스 리즌(Cosmos Reason)이 통합될 예정이다. 코스모스 리즌은 로봇이 심층 사고를 하는 두뇌 역할을 담당하며 기존의 지식, 상식, 물리학을 활용해 모호한 지시를 단계별 계획으로 전환하고, 새로운 상황을 처리하며, 다양한 작업에 걸쳐 일반화할 수 있도록 한다. 코스모스 리즌은 현재 피지컬 리즈닝 리더보드(Physical Reasoning Leaderboard) 1위를 차지하고 있으며, 100만 회 이상 다운로드를 기록했다. 또한, 모델 훈련을 위한 대규모 실제 데이터, 합성 데이터를 선별하고 주석을 달 수 있다. 코스모스 리즌 1은 NIM에서 제공되며, 사용하기 쉬운 마이크로서비스 형태로 AI 모델 배포를 지원한다.  아이작 GR00T N1.6은 휴머노이드가 물체를 동시에 이동하고 조작할 수 있도록 해 상체와 팔의 자유도를 넓히고, 무거운 문을 여는 것과 같은 까다로운 작업을 수행할 수 있도록 한다. 개발자는 허깅 페이스의 오픈소스 엔비디아 피지컬 AI 데이터세트(Physical AI Dataset)를 사용해 아이작 GR00T N 모델을 사후 훈련할 수 있다. 이 데이터세트는 480만 회 이상 다운로드됐으며, 현재 수천 개의 합성 궤적과 실제 궤적 데이터를 포함한다. 또한, 엔비디아는 오픈소스 코스모스 월드 파운데이션 모델(WFM)의 신규 업데이트를 발표했다. 300만 회 이상 다운로드된 이 모델은 개발자가 텍스트, 이미지, 영상 프롬프트를 활용해 대규모로 피지컬AI 모델 훈련을 가속화할 수 있는 다양한 데이터 생성을 지원한다. 코스모스 프리딕트(Cosmos Predict) 2.5는 곧 출시될 예정이며, 세 가지 코스모스 WFM의 성능을 하나의 강력한 모델로 통합해 복잡성을 줄이고, 시간을 절약하며, 효율을 높인다. 또한 최대 30초의 긴 동영상 생성, 다중 뷰 카메라 출력을 지원해 더욱 풍부한 세계 시뮬레이션을 구현한다. 코스모스 트랜스퍼(Cosmos Transfer) 2.5는 곧 출시될 예정이며, 기존 모델 대비 3.5배 작으면서도 더 빠르고 높은 품질의 결과를 제공한다. 이제 사실적인 합성 데이터를 생성할 수 있으며, 그라운드 트루스(ground-truth) 3D 시뮬레이션 장면, 깊이, 세분화, 에지, 고해상도 지도와 같은 공간 제어 입력값을 활용할 수 있다.   로봇에게 물체를 잡는 법을 학습시키는 것은 로보틱스에서 가장 어려운 과제 중 하나다. 파지는 단순히 팔을 움직이는 것이 아니라 생각을 정밀한 동작으로 전환하는 것으로, 로봇이 시행착오를 통해 학습해야 하는 기술이다. 엔비디아 옴니버스(Omniverse) 플랫폼 기반의 아이작 랩 2.3 개발자 프리뷰의 새로운 정밀 파지(dexterous grasping) 워크플로는 다관절 손과 팔을 가진 로봇을 가상 환경에서 자동화된 커리큘럼으로 훈련시킨다. 이 과정은 간단한 작업부터 시작해 점차 복잡성을 높여간다. 해당 워크플로는 중력, 마찰, 물체의 무게 등 요소를 변경해 로봇이 예측 불가능한 환경에서도 기술을 습득하도록 훈련시킨다. 컵을 집거나 방을 가로질러 걷는 것과 같이 새로운 기술을 로봇에게 숙달시키는 것은 매우 어렵다. 또한, 이러한 기술을 실제 로봇에서 테스트하는 과정은 시간과 비용이 많이 요구된다. 이러한 어려움을 해결할 수 있는 방법은 시뮬레이션이다. 시뮬레이션은 로봇이 학습한 기술을 무수한 시나리오, 작업, 환경에서 테스트할 수 있는 방법을 제공한다. 그러나 개발자들은 시뮬레이션 환경에서도 현실 세계를 반영하지 못하고 단편적이고 단순화된 테스트를 구축하는 경우가 많다. 완벽하고 단순한 시뮬레이션 환경에서 학습한 로봇은 현실 세계의 복잡성에 직면하는 순간 실패할 가능성이 크다. 엔비디아와 라이트휠은 개발자가 시스템을 처음부터 구축하지 않고도 시뮬레이션 환경에서 복잡한 대규모 평가를 실행할 수 있는 오픈소스 정책 평가 프레임워크인 아이작 랩-아레나(Arena) 공동 개발 중이다. 이 프레임워크는 확장 가능한 실험과 표준화된 테스트를 지원하며 곧 공개될 예정이다. 엔비디아는 개발자들이 이러한 첨단 기술과 소프트웨어 라이브러리를 최대한 활용할 수 있도록, 까다로운 워크로드를 위해 설계된 AI 인프라를 발표했다. 엔비디아 GB200 NVL72는 엔비디아 그레이스(Grace) CPU 36개와 엔비디아 블랙웰(Blackwell) GPU 72개를 통합한 랙 규모 시스템으로, 주요 클라우드 공급업체들이 채택해 복잡한 추론과 피지컬 AI 작업을 포함한 AI 훈련과 추론을 가속화하고 있다. 엔비디아 RTX 프로 서버(RTX PRO Servers)는 훈련, 합성 데이터 생성, 로봇 학습, 시뮬레이션 전반의 모든 로봇 개발 워크로드를 위한 단일 아키텍처를 제공하며, RAI 연구소(RAI Institute)에서 도입 중이다. 블랙웰 GPU로 구동되는 엔비디아 젯슨 토르(Jetson Thor)는 로봇이 실시간 지능형 상호작용을 위한 다중 AI 워크플로 실행을 지원한다. 또한 실시간 로봇 추론으로 휴머노이드 로보틱스 전반에서 고성능 피지컬 AI 워크로드와 애플리케이션의 돌파구를 마련한다. 젯슨 토르는 피규어 AI, 갤봇(Galbot), 구글 딥마인드, 멘티 로보틱스, 메타(Meta), 스킬드 AI, 유니트리(Unitree) 등 파트너사에 도입 중이다. 엔비디아의 레브 레바레디언(Rev Lebaredian) 옴니버스, 시뮬레이션 기술 부문 부사장은 “휴머노이드는 피지컬 AI의 차세대 영역으로, 예측 불가능한 세상에서 추론하고, 적응하며, 안전하게 행동하는 능력이 필요하다. 이번 업데이트로 개발자들은 로봇을 연구 단계에서 일상 생활로 가져오기 위한 세 가지 컴퓨터를 갖게 됐다. 아이작 GR00T가 로봇의 두뇌 역할을 하고, 뉴턴이 신체를 시뮬레이션하며, 엔비디아 옴니버스가 훈련장이 된다”고 말했다.
작성일 : 2025-09-30
시스코, 머신 데이터를 AI 인텔리전스로 전환하는 ‘시스코 데이터 패브릭’ 발표
시스코가 미국 보스턴에서 열린 스플렁크의 연례 행사 ‘닷컨프(.conf)’에서 머신 데이터의 가치를 AI로 활용할 수 있도록 지원하는 새 아키텍처인 시스코 데이터 패브릭(Cisco Data Fabric)을 발표했다. 시스코 데이터 패브릭은 스플렁크(Splunk) 플랫폼을 기반으로 한다. 대규모 머신 데이터를 처리하는 과정에서 비용과 복잡성을 줄이고, 데이터를 AI 애플리케이션에 활용할 수 있도록 설계됐다. 일례로 기업은 맞춤형 AI 모델 훈련, 에이전틱 워크플로 구동, 머신 데이터 및 비즈니스 데이터의 다중 스트림을 상호 연계해 인사이트를 도출하고 더 나은 의사결정을 내리는 데 활용할 수 있다. AI 시대를 위해 설계된 시스코 데이터 패브릭은 기업이 더 빠르게 혁신하고 보안을 강화하며 비즈니스 민첩성을 높일 수 있도록 지원한다. 기업 전반에 걸친 머신 데이터를 통합하고 활성화해, 비용과 복잡성을 줄이고, 분산 데이터 관리의 어려움을 극복할 수 있는 턴키(turnkey) 설루션을 제공한다. 시스코 데이터 패브릭은 데이터 스트림을 실행 가능한 인텔리전스로 전환해, 고객이 의사결정을 가속화하고 운영 리스크를 줄이며 혁신을 촉진하도록 지원한다. 이 프레임워크의 지능형 에지 데이터 관리 기능은 고도화된 데이터 필터링, 구조화 및 계층화를 가능하게 한다. 또한 페더레이션(federation, 연합) 기능을 통해 다양한 도메인 전반에서 인사이트를 연계해 실시간에 가까운 엔드 투 엔드(end-to-end) 운영 인텔리전스를 제공한다. AI 어시스턴트와 에이전트 기능으로 구동되는 차세대 경험 레이어는 기업이 문제 해결 속도를 획기적으로 향상시키고, 관리 부담을 줄이며, 팀은 더 빠른 의사결정을 내릴 수 있도록 지원한다. 시스코는 기업들이 시스코 데이터 패브릭을 통해 ▲대규모 머신 데이터 운영을 위한 통합형·지능형 데이터 파운데이션 및 도메인 간 실시간 검색 및 분석 ▲시계열 파운데이션 모델과 같은 독자적 데이터의 가치 활용 ▲시스코 AI 캔버스(Cisco AI Canvas)를 통한 사람과 AI 에이전트의 경험 통합 ▲데이터 수명주기의 모든 단계에 걸친 AI 네이티브 지원 등의 이점을 얻을 수 있다고 설명했다. 시스코 데이터 패브릭은 스플렁크 엔터프라이즈(Splunk Enterprise)와 스플렁크 클라우드 플랫폼(Splunk Cloud Platform) 기능을 기반으로 구축됐으며, 현재 사용 가능하다. 앞으로 데이터 관리, 데이터 페더레이션, AI 전반에 걸친 발전 사항이 반영될 예정이며, 추가 기능은 2026년까지 순차적으로 제공된다. 스플렁크 AI 툴킷은 현재 사용 가능하며, 새롭게 호스팅되는 모델은 2026년에 제공될 예정이다. 시스코의 지투 파텔(Jeetu Patel) 최고제품책임자(CPO) 겸 사장은 “전 세계 기업들은 막대한 가치를 지닌 머신 데이터를 보유하고 있지만, 머신 데이터를 AI에 활용하기에는 너무 복잡하고 번거로우며 많은 비용이 들었다”고 말했다. 이어 “센서 측정값과 공장 지표부터 결제 시스템 데이터 그리고 애플리케이션, 서버, 네트워크 등에서 발생하는 이벤트 업데이트에 이르기까지, 머신 데이터는 비즈니스 운영 방식을 주도한다”면서, “스플렁크는 클라우드 데이터 및 분석 분야에서 혁신을 가져왔다. 그리고 이제 시스코 데이터 패브릭은 기업이 자체 소유의 머신 데이터를 활용해 AI 모델을 구축할 수 있도록 지원함으로써 AI 분야에서도 동일한 혁신을 이룰 준비가 됐다”고 밝혔다. 시스코 자회사인 스플렁크의 카말 하티(Kamal Hathi) 수석 부사장 겸 총괄은 “스플렁크의 목표는 데이터를 행동으로 전환하는 여정을, 고객에게 가장 빠르고 안전하게 제공하는 것”이라며, “플랫폼 전반에 AI를 내재화하고 개방형 표준을 적용함으로써, 단순히 기업들이 정보를 더 빨리 분석하도록 지원하는 데 그치지 않고, 변화를 예측하고, 불필요한 복잡성 없이 혁신을 확장하며, 사용자 요구에 맞춰 더욱 탄력적이고 적응력 있으며 반응하는 디지털 서비스를 제공할 수 있도록 지원한다”고 말했다.
작성일 : 2025-09-12
심데이터, “전 세계 시뮬레이션 및 해석 시장 8.8% 성장”
PLM 전략 경영 컨설팅 및 리서치 기업인 심데이터(CIMdata)는 ‘심데이터 시뮬레이션 및 해석(S&A) 시장 분석 보고서’를 발표한다고 밝혔다. ‘심데이터 2025 PLM 시장 분석 보고서 시리즈’의 일부로 수행된 S&A 시장 분석을 확장한 이 보고서는 전 세계 S&A 시장을 다양한 차원에서 상세히 설명한다. 또한 심데이터의 S&A 시장 세분화에 대한 업데이트, S&A 산업의 동향에 대한 논의, 상위 S&A 설루션 공급업체에 대한 최신 정보를 포함한다. 심데이터 보고서에 따르면, 2024년 전 세계 시뮬레이션 및 해석 시장 매출은 2023년의 100억 달러(약 13조 9000억 원)에서 8.8% 증가한 109억 달러(약 15조 1510억 원) 규모로 나타났다.  심데이터는 PLM 시장 전체가 강력한 성장을 지속할 것으로 보았는데, 이 중 S&A 부문은 2025년에 10.7% 성장하여 매출 규모가 120억 달러(약 16조 6800억 원)를 약간 넘을 것으로 전망했다.     또한, 이번 보고서에서는 2024년 업계를 근본적으로 재편한 세 가지 핵심 동향으로 ▲EDA(전자 설계 자동화)와 S&A의 통합 ▲인공지능(AI)/머신러닝(ML) 통합의 부상 ▲ 디지털 트윈의 성숙 등을 꼽았다. 전자 및 반도체 시스템은 더 이상 특정 산업 영역이나 응용 분야에 국한되지 않고, 모든 신제품 및 프로세스 개발의 중심 부분이 되고 있다. 이러한 핵심적인 산업 수요에 따라, EDA 설루션 공급업체들은 ‘실리콘에서 시스템까지’ 아우르는 소프트웨어 스택 비전을 실현하기 위해 빠르게 움직이고 있다. 물리 기반 시뮬레이션 기술은 이들 제품의 핵심적인 부분으로 자리 잡고 있다. AI와 머신러닝 기능은 오랫동안 시뮬레이션 워크플로에 내장되어 주로 배경적인 역할을 수행해 왔다. 그러나 GPU 컴퓨팅 발전과 생성형 AI가 불러일으킨 큰 관심에 힘입어, 신생 스타트업과 기존 설루션 공급업체 모두 시뮬레이션 워크플로를 재창조하고 있다. 여기에는 과거의 시뮬레이션 및 테스트 데이터를 사용한 모델 개발(핵심 머신러닝), 훈련 시간 및 데이터 요구사항을 줄이기 위한 물리 정보 AI 훈련 방법 사용, 기하학적 딥러닝을 기본 구성 요소로 활용하는 것 등이 포함된다. 많은 기업이 ‘파운데이션 모델’을 개발하려 시도하고 있으며, 이를 통해 완전히 훈련된 모델을 사용한 추론으로 시뮬레이션의 패러다임을 전환하고 있다. 디지털 트윈 기술은 개념적 아이디어에서 여러 산업에 걸친 실질적인 구현 단계로 발전했다. 시뮬레이션 및 해석은 디지털 트윈의 기본 요소로서, 예측 통찰력에 필요한 물리 기반 모델링을 제공한다. 기업은 예측 유지보수 및 가상 시운전과 같은 응용 분야에 디지털 트윈을 활용하여 제품 운영과 설계 간의 폐순환(closed-loop) 시스템을 구축하고 있다.
작성일 : 2025-08-20
엔비디아, "AI와 디지털 트윈으로 물리적 프로토타입 없는 제조 혁신 이끈다"
엔비디아는 글로벌 컴퓨터 그래픽 콘퍼런스인 ‘시그라프(SIGGRAPH) 2025’에서, 아마존 디바이스 앤 서비스(Amazon Devices & Services)가 엔비디아 디지털 트윈 기술을 활용해 제조 분야의 혁신을 이끌고 있다고 밝혔다. 아마존 디바이스 생산 시설에 이달 도입된 이 설루션은 시뮬레이션 우선 접근 방식을 적용한 ‘제로 터치(zero-touch)’ 제조 방식을 구현했다. 제로 터치의 핵심은 로봇 팔이 다양한 장비의 제품 품질을 자율적으로 검사하고, 새로운 제품을 생산 라인에 통합하도록 훈련하는 과정 전체를 하드웨어 변경 없이 합성 데이터를 기반으로 수행하는 것이다. 이를 위해 아마존 디바이스가 자체 개발한 조립 라인 공정 시뮬레이션 소프트웨어와 엔비디아 기술 기반의 디지털 트윈을 결합했다. 모듈형 AI 기반 워크플로를 통해 기존보다 더 빠르고 효율적인 검사를 진행하며, 제조업체의 워크플로를 간소화해 신제품을 소비자에게 전달하는 시간을 줄일 수 있다는 것이 엔비디아의 설명이다.     또한, 이 설루션은 공장 작업대와 장비의 사실적인 물리 기반 표현에 기반한 합성 데이터를 생성해 로봇 운영을 위한 ‘제로샷(zero-shot)’ 제조를 가능하게 한다. 공장에 특화된 데이터는 시뮬레이션과 실제 작업 환경에서 AI 모델의 성능을 높이는 데에 쓰이며, 시뮬레이션과 실제 작업 환경에서의 AI 모델 성능 격차를 최소화할 수 있다. 엔비디아는 “제로샷 제조를 통해 물리적 프로토타입 없이도 다양한 제품과 생산 공정을 유연하게 처리할 수 있는 범용 제조 시대를 향한 중요한 도약을 이뤄냈다”고 평가했다. 아마존 디바이스 앤 서비스는 디지털 트윈 환경에서 로봇을 훈련시켜 새로운 장비를 인식하고 다루도록 한다. 이를 통해 소프트웨어 변경만으로 한 제품의 감사 작업에서 다른 제품으로 손쉽게 전환할 수 있으며, 더 빠르고 제어가 용이한 모듈화 제조 파이프라인을 구축했다. 이를 위해 엔비디아의 아이작(Isaac) 기술 제품군을 활용한다. 아마존은 신규 장치가 도입되면 CAD 모델을 엔비디아 옴니버스(Omniverse) 플랫폼 기반의 오픈소스 로보틱스 시뮬레이션 애플리케이션인 엔비디아 아이작 심(Sim)에 적용한다. 아이작 심은 각 장치의 CAD 모델을 통해 물체 및 결함 탐지 모델 훈련에 필수인 5만 개 이상의 합성 이미지를 생성한다. 이후 엔비디아 아이작 ROS를 활용해 제품 취급을 위한 로봇 팔 궤적을 생성하고 조립부터 테스트, 포장, 검사까지 모든 과정을 구성한다. 로봇이 작업 환경을 이해하고 충돌 없는 궤적을 생성하는 데에는 엔비디아 젯슨 AGX 오린(Jetson AGX Orin) 모듈에서 실행되는 쿠다(CUDA) 가속 동작 계획 라이브러리 엔비디아 cu모션(cuMotion)이 사용된다. 또한, 500만 개의 합성 이미지로 훈련된 엔비디아의 파운데이션 모델 파운데이션포즈(FoundationPose)는 로봇이 장비의 정확한 위치와 방향을 파악하도록 돕는다. 파운데이션포즈는 사전 노출 없이도 새로운 물체에 맞춰 일반화할 수 있어, 모델 재훈련 없이 다양한 제품 간의 원활한 전환을 가능하게 한다. 한편, 이 기술을 더욱 빠르게 개발하기 위해 아마존 디바이스 앤 서비스는 AWS 배치(Batch)와 아마존 EC2 G6 인스턴스를 통해 분산 AI 모델 훈련을 수행했으며, 생성형 AI 서비스인 아마존 베드록(Bedrock)으로 제품 사양 문서를 분석해 공장 내 고수준 작업과 특정 검사 테스트 사례를 계획했다. 아마존 베드록 에이전트코어(Bedrock AgentCore)는 생산 라인 내 다중 공장 작업대를 위한 자율 워크플로 계획에 사용되며, 3D 설계와 표면 특성 등 멀티모달 제품 사양 입력을 처리할 수 있다.
작성일 : 2025-08-18
[포커스] AWS, “다양한 기술로 국내 기업의 생성형 AI 활용 고도화 돕는다”
아마존웹서비스(AWS)는 최근 진행한 설문조사를 통해 국내 기업들의 AI 활용 현황과 과제를 짚었다. 또한, 신뢰할 수 있는 고성능의 인공지능 에이전트(AI agent)를 구축하고 배포할 수 있는 환경을 제공하면서 한국 시장에 지원을 강화하고 있다고 밝혔다. AWS는 AI의 도입과 활용 과정에서 기업이 겪는 기술적 어려움을 줄이고, 더 많은 기업이 쉽고 안전하게 생성형 AI를 도입하여 비즈니스 가치를 창출할 수 있도록 돕는 데 집중하고 있다. ■ 정수진 편집장    기업의 AI 도입률 높지만…고도화 위한 과제는?  AWS와 스트랜드 파트너스(Strand Partners)는 2025년 4월 한국 기업 1000곳과 일반인 1000명을 대상으로 AI에 대한 행동과 인식에 대한 설문조사를 진행하고, 그 결과를 바탕으로 한국 기업의 AI 활용 현황을 평가했다. 이 조사는 유럽에서는 3년째 진행되어 왔는데, 이번에 글로벌로 확장해 동일한 방법론을 적용했다. 스트랜드 파트너스의 닉 본스토우(Nick Bonstow) 디렉터는 설문조사 보고서의 내용을 소개하면서, 한국 기업의 AI 도입 현황과 주요 과제를 분석했다. 조사에서는 한국 기업의 48%가 AI를 도입 및 활용하고 있는 것으로 나타났는데, 이는 전년 대비 40% 성장한 수치이다. 유럽 기업의 평균 AI 도입률인 42%보다 높았는데, 특히 지난해에만 약 49만 9000 개의 한국 기업이 AI를 처음 도입한 것으로 추정된다. 본스토우 디렉터는 “AI를 도입한 기업들은 실질적인 이점을 경험하고 있다. 56%가 생산성 및 효율성 향상으로 매출 증가를 경험했고, 79%는 업무 생산성 향상 효과를 확인했다. 그리고 AI 도입에 따라 주당 평균 13시간의 업무 시간을 절감했다”고 소개했다. AI 도입률은 높지만, 국내 기업의 70%는 여전히 챗봇이나 간단한 반복 업무 자동화와 같은 기초적인 수준의 AI 활용에 머무르고 있는 상황이다. AI를 다양한 업무 영역에 통합하는 중간 단계는 7%, 여러 AI 도구나 모델을 결합하여 복잡한 업무를 수행하거나 비즈니스 모델을 혁신하는 변혁적 단계는 11%에 불과했다. 본스토우 디렉터는 “기업들이 AI의 잠재력을 완전히 활용하기 위해 더 높은 단계로 나아가야 할 필요가 있다”고 짚었다. 본스토우 디렉터는 국내 기업의 AI 도입이 양극화되고, AI 혁신의 편차를 키울 수 있다고 전했다. 한국 스타트업의 70%가 AI를 확대하고 있는데 이는 유럽의 58%보다 높은 수치로, 국내 스타트업 생태계는 AI 도입에서 뚜렷한 강점을 보였다. 스타트업의 33%는 AI를 비즈니스 전략 및 운영의 핵심 요소로 두고 있으며, 32%는 가장 고도화된 방식으로 AI를 활용하고 있다. 또한, 21%는 AI 기반의 새로운 제품 및 서비스를 개발 중이다. 반면, 국내 대기업의 69%는 여전히 AI를 효율 개선, 업무 간소화 등 기초적인 수준에서만 활용하고 있는 것으로 나타났다. 대기업의 10%만이 AI 기반 신제품 또는 서비스 개발 단계에 진입했는데, 이는 스타트업의 절반 수준이다. 이번 조사에서는 AI 도입의 주요 장애 요인으로 기술 및 디지털 인재의 부족, 자금 접근성, 규제 환경 등이 꼽혔다. 조사 응답 기업의 43%가 디지털 인재를 확보하지 못해 AI 도입 또는 확산에 어려움을 겪고 있다고 응답했고, 지난 1년간 디지털 역량 교육에 참여한 직원은 약 34%였다. 67%의 기업은 정부의 지원 정책이 AI 도입 결정에 중요하다고 응답했으며, 45%의 스타트업은 벤처 자본 56 · 접근성이 성장을 위한 핵심 요소라고 평가했다. 그리고 국내 기업들은 기술 예산 가운데 평균 23%를 규제 준수 비용에 투입하고 있으며, 34%는 AI 기본법 등 관련 입법으로 인해 이 비용이 증가할 것으로 예상했다. 본스토우 디렉터는 “한국이 AI 부문에서 세계를 선도할 수 있는 인프라와 스타트업 생태계 그리고 강한 열정을 가지고 있음을 확인했다. 하지만 AI 활용의 깊이를 더해주는 변혁적인 활용으로 나아가지 못하고 있는 점과 인재 부족, 규제 불확실성 등의 장애 요인을 해결해야 AI를 미래의 성장 동력과 경쟁력의 원천으로 삼을 수 있을 것”이라고 평가했다. 그리고, 이를 위해 한국 정부가 ▲기술 인재에 대한 투자 ▲혁신 친화적이고 명확한 규제 환경 조성 ▲공공 부문의 기술 현대화 및 디지털 전환 추진 등에 관심을 기울일 것을 제안했다.   ▲ AWS 김선수 AI/ML 사업 개발 수석 스페셜리스트   기업의 생성형 AI 활용 문턱 낮춘다 AWS의 김선수 AI/ML 사업 개발 수석 스페셜리스트는 국내 기업들이 AI를 잘 활용할 수 있도록 돕는 AWS의 생성형 AI 기술 스택과 주요 서비스를 소개했다. 그는 “2023년이 생성형 AI 개념 검증(PoC)의 해였다면 2024년은 생산 적용, 2025년은 비즈니스 가치 실현의 해가 될 것”이라고 짚었다. 또한 복잡한 작업을 자율적으로 수행하는 에이전트 AI에 대한 관심이 커지고 있다면서, 가트너(Gartner)의 전망을 인용해 “2026년까지 기업의 80% 이상이 생성형 AI API(애플리케이션 프로그래밍 인터페이스)를 사용하거나 관련 기능이 탑재된 애플리케이션을 배포할 것”이라고 전망했다. AWS는 생성형 AI를 위한 기술 스택을 세 가지 계층으로 제공한다. 가장 아래쪽에는 GPU, AI 프로세서 등을 포함해 모델 훈련과 추론에 필요한 인프라 레이어가 있고, 중간에는 AI 모델에 연결하여 각 기업에 최적화된 생성형 AI 애플리케이션을 구현하도록 돕는 모델/도구 레이어, 가장 위쪽에는 복잡한 개발 없이 쉽고 빠르게 활용할 수 있는 생성형 AI 애플리케이션 레이어가 있다. 이 기술 스택의 핵심으로 AWS가 내세운 것이 아마존 베드록(Amazon Bedrock)이다. 베드록은 생성형 AI 애플리케이션을 쉽게 구축하고 확장할 수 있도록 지원하는 완전 관리형 서비스이다. 앤트로픽, 메타, 미스트랄 AI 등 12개가 넘는 AI 기업의 파운데이션 모델(FM)을 선택해 활용할 수 있다는 점이 특징이다. 아마존 베드록은 비용, 지연 시간, 정확도를 최적화할 뿐만 아니라 기업의 필요에 맞게 모델을 맞춤 설정하거나 유해 콘텐츠/프롬프트 공격 등을 필터링해 안전한 AI 활용 환경을 갖출 수 있도록 돕는다. 김선수 수석 스페셜리스트는 “베드록은 프롬프트 엔지니어링, 검색 증강 생성(RAG), 미세조정(파인 튜닝) 등 다양한 방식으로 모델을 활용할 수 있도록 지원한다. 특히 RAG 구현을 위한 지식 베이스 및 벡터 검색 기능을 기본으로 제공해, 기업의 내부 데이터를 안전하게 연결하고 관련성 높은 답변을 생성할 수 있다”고 전했다. 최근 생성형 AI는 어시스턴트(assistant)를 넘어 워크플로를 자동화하는 에이전트(agent)로 진화하고 있으며, 궁극적으로는 사람의 개입 없이 AI끼리 자율적으로 협업하는 에이전틱 AI(agentic AI) 시스템으로 나아갈 것으로 보인다. AWS는 생성형 AI 에이전트 구축을 위해 ▲아마존 Q 디벨로퍼(Amazon Q Developer)와 같이 사전 구축된 에이전트 제품 ▲아마존 베드록 에이전트(Amazon Bedrock Agents)와 같이 내장된 오케스트레이션을 제공하는 완전 관리형 설루션 ▲스트랜드 에이전트(Strands Agents)와 같은 경량 오픈소스 SDK(소프트웨어 개발 키트)를 활용해 직접 에이전트를 구축할 수 있는 제품 등을 선보이고 있다.    ▲ AWS는 AI 에이전트의 구축과 배포를 위해 다양한 기술을 제공한다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-08-04
[포커스] PLM/DX 베스트 프랙티스 컨퍼런스 2025, 제조 혁신을 위한 PLM과 AI 전략을 짚다
‘PLM/DX 베스트 프랙티스 컨퍼런스 2025’가 지난 6월 20일 서울 코엑스에서 열렸다. ‘제조의 미래를 위한 PLM 혁신과 AX 전략’을 주제로 한 이번 행사에서는 제조산업에서 불확실한 외부 환경에 대응하고 기술 및 비용 경쟁력을 확보하기 위한 통합 PLM(제품 수명주기 관리) 설루션과 인공지능 전환(AX)의 중요성을 강조했다. ■ 정수진 편집장     한국산업지능화협회 PLM 기술위원회 위원장인 KAIST 서효원 명예교수는 개회사에서 AI와 결합하여 다시 중요해진 PLM의 미래를 강조했다. 그는 “AI 혁신이 전 세계를 휩쓰는 가운데 특히 제조 산업에서 GPT와 같은 LLM(대규모 언어 모델)을 어떻게 적용할지가 핵심 과제”라면서, “제조 특유의 반구조화된 데이터, 환각(hallucination) 문제, 막대한 학습 데이터 구축 비용 등의 난관을 극복하고 1~2년 내에 현업에서 성과를 내야 한다”고 강조했다. 또한, “이번 콘퍼런스가 PLM을 넘어 생성형 AI, 디지털 트윈 등 폭넓은 미래 지향적 주제를 다루며, 산업 전문가들이 디지털 혁신의 본질적 가치와 방향성을 논의하고 상호 인사이트를 얻는 교류의 장이 되기를 바란다”고 전했다.   ▲ 서효원 한국산업지능화협회 PLM 기술위원회 위원장   한국CDE학회의 회장인 충남대학교 정현 교수는 격려사를 통해 “이번 행사에서 PLM의 AI 전환을 위해 생성형 AI, 디지털 트윈 등 폭넓은 미래 지향적 논의가 이뤄지기를 바란다”면서, 다양한 산업 전문가들의 교류를 통해 디지털 혁신의 본질적 가치와 방향성을 점검하고 상호 인사이트를 얻는 것이 중요하다고 짚었다. 그는 또한 기술 확산을 넘어 회사의 전략, 내부 문화, 조직 혁신이 동반되어야 진정한 디지털 AI 전환이 완성될 것이라고 강조하면서, “이번 PLX/DX 베스트 프랙티스 콘퍼런스가 새로운 협업과 혁신의 출발점이 되기를 바라며, 한국CDE학회 또한 산학연 협력의 구심점 역할을 이어나갈 것”이라고 전했다.   ▲ 한국CDE학회 정현 회장   이번 행사의 오전 시간에는 세 편의 기조연설이 진행됐다. 기조연설에서는 제조 산업의 미래를 위한 PLM 기반의 통합적 디지털/ AI 전환 전략을 통해 경쟁력을 강화하고 새로운 가치를 창출해야 한다는 메시지와 함께, 단순한 기술 도입을 넘어 데이터 통합과 표준화 그리고 궁극적으로 일하는 방식과 조직 문화의 근본적인 변화가 필요하다는 지적이 있었다.   PLM과 산업 AI, 미래 제조 산업의 핵심 동력이 되다 가천대학교의 조영임 교수는 ‘제조 산업의 미래, 산업 AI 트렌드와 과제’를 주제로 한 기조연설에서 전 세계적으로 AI 기술 개발이 빠르게 추진되고 있으며, 제조 기업이 AI에 몰입하지 않으면 경쟁력을 유지하기 어렵다고 짚었다. 그리고 AI를 통한 제조 산업의 미래 활성화 방안을 제시하면서, AI 기술 발전과 함께 제조업이 갖춰야 할 기술/전략/인프라/인재 양성의 중요성을 언급했다. PLM은 제품의 전체 생애 주기에 걸친 프로세스와 데이터를 통합 관리하는 개념으로 설명된다. 최근에는 단순한 제품 관리를 넘어 순환 경제(circular economy)의 핵심 개념으로 정의되고 있으며, 데이터 중심의 관리 및 전략적 최적화를 추구하고 있다. 조영임 교수는 “최근 PLM이 다시 중요하게 부각되는 이유는 디지털 전환에 있어 PLM이 디지털 스레드(digital Thread)와 디지털 트윈(digital Twin)을 포괄하는 상위 관리 체계로서 중요한 역할을 하며, 디지털 전환에 AI가 결합되는 구조가 글로벌 제조 산업 AI의 기본 모델이기 때문”이라고 짚었다.   ▲ 가천대학교 조영임 교수   한편, AI 기술은 현재 클라우드 중심의 LLM(대규모 언어 모델)에서 미래에는 온디바이스 기반의 SLM(소규모 언어 모델)로 변화하며 효율성과 협업, 그리고 지속가능성을 강조할 것으로 보인다. 특히 에이전틱 AI(agentic AI)는 LLM을 넘어 사용자의 복잡한 작업을 스스로 처리하는 비서 역할을 수행할 것으로 기대를 모으고 있다. 조영임 교수는 “국내 제조업의 AI 도입률은 아직 낮고, 대기업이 중소기업보다 도입률이 높다. 또한, 한국 기업은 핵심 기술 영역보다는 재무 관리 등 주변 인프라에 AI를 집중하는 경향이 있다”고 지적했다. 향후 산업 AI의 과제로는 핵심 기술에 대한 고도화된 도입과 전략 및 데이터 연결의 표준화가 꼽힌다. 조영임 교수는 “산업 AI는 제조 디지털 전환의 핵심 기술로서, PLM과 AI의 공동 연계, 통합 패키지 개발, 산업 AI 표준 반영, 제조 DX 가이드라인 개발 및 공공 조달 지침 마련 등이 정부가 기업과 함께 추진해야 할 과제”라고 전했다.   AI 시대 제조 경쟁력 향상을 위한 통합형 PLM 전략 SAP 코리아의 고건 파트너는 ‘AI 혁신을 기회로! 제조 경쟁력을 높이는 통합형 PLM 전략’이라는 주제로 기조연설을 진행하면서, SAP의 PLM과 ERP(전사 자원 관리) 통합 전략을 소개했다. SAP는 예측 불가능한 외부 환경에 대응하고 내부 역량을 강화하기 위해 애플리케이션 레벨의 수평적 통합과 데이터 및 AI 레이어를 통한 수직적 통합을 동시에 추구하고 있다. SAP가 추진하는 수평적 PLM 통합은 디지털 스레드를 통해 데이터 사일로를 해소하고, 사내뿐 아니라 협력사 및 고객사를 포함한 전체 가치사슬(value chain)의 데이터를 실시간으로 통합하는 것을 목표로 한다. 고건 파트너는 “SAP는 이를 위해 별도의 비즈니스 네트워크를 운영하며, 설계 단계의 산출물이 제조 및 설비 관리까지 원활하게 연동되어 정보 재활용이 극대화되는 환경을 제공한다”고 소개했다.   ▲ SAP 코리아 고건 파트너   수직적 PLM 통합은 애플리케이션 위에 AI 레이어를 두어 정형 및 비정형 데이터를 활용하고 AI가 비즈니스를 이해하도록 하는 전략이다. 고건 파트너는 국내 기업의 AI 도입 시 가장 큰 문제점으로 데이터 부재와 품질 문제를 꼽으면서, AI와 함께 지식 그래프(knowledge graph)를 PLM에 적용하여 예지 정비 및 설계 변경 영향도 분석 등이 가능한 데이터 플랫폼을 제안했다. 고건 파트너는 “SAP는 PLM에 AI 코파일럿인 쥴(Joule)을 적용해 협업 및 문서 요약 기능을 제공하고 있으며, 오픈 AI, 엔비디아, 메타 등 30개 이상의 파운데이션 모델과 협력하여 제조 현장의 로봇 제어까지 확장하고 있다”고 전했다. 또한 “현재 기업들이 직면한 불확실성에 대응하기 위해서는 제품 정보 관리의 고도화가 필수이며, 통합형 PLM 전략이 그 해답이 될 것”이라고 강조했다.   조선산업의 미래를 위한 차세대 설계/생산 통합 플랫폼 HD현대의 이태진 전무는 ‘조선업의 미래를 위한 차세대 설계/생산 통합 플랫폼’을 주제로 한 기조연설에서 조선산업의 현황과 디지털 전환 전략의 필요성을 짚었다. 국내 조선산업은 탈탄소 정책, 에너지 무기화, 군사력 강화 등으로 호황을 맞고 있지만, 한편으로 중국 조선소의 추격, 높은 원가와 인건비, 친환경 선박 생산의 어려움, 숙련 인력의 이탈, 그리고 신사업 발굴 필요성 등으로 인해 위기감을 갖고 있기도 하다. 이태진 전무는 이러한 상황에서 디지털 전환은 조선산업의 미래를 위한 필수 요소라고 진단하면서, 2020년부터 2030년까지 10년간 디지털로 최적 운영되는 초일류 조선소 구현을 목표로 하는 HD현대의 디지털 전환 전략을 소개했다. HD현대의 ‘FOS(Future of Shipyard)’ 프로젝트는 조선소 데이터의 디지털화, 데이터 연결 및 최적화, 지능형 조선소 구축 등 세 3단계로 진행되며, 그 핵심은 차세대 CAD와 PLM을 근간으로 하는 차세대 설계/생산 통합 플랫폼 구축에 있다.   ▲ HD현대 이태진 전무   HD현대의 차세대 설계/생산 통합 플랫폼은 연결성, 일하는 방식의 변화, 전체 업무 효율 극대화, 디지털 제조 기반 구축 등 네 가지 핵심 목표를 지향한다. 이를 실현할 수 있는 차세대 CAD/PLM 구축을 위해 HD현대는 올해 말 최종 설루션을 선정하고 2026년부터 구축에 들어갈 예정이며, 설루션 선정뿐만 아니라 업무 프로세스 변화를 함께 추진할 계획이다. 이태진 전무는 “PLM/DX는 제조업 경쟁력 강화의 핵심 구현 수단이며, 디지털 스레드는 생산, SCM(공급망 관리), MRO(유지보수, 수리, 운영) 사업까지 연결하여 새로운 부가가치를 창출할 기회가 될 것”이라고 전망하면서, “이러한 설계/생산 디지털 전환이 장기적으로 제조산업의 경쟁력 강화에 크게 기여할 것이며, ERP, SCM, 데이터 플랫폼, AI 등 모든 연관 시스템과의 연결이 중요하다”고 덧붙였다.   기술 트렌드부터 사례까지, PLM·DX의 현재와 미래 짚다 ‘PLM/DX 베스트 프랙티스 컨퍼런스 2025’의 기조연설에 이어 오후 시간에는 ▲베스트 프랙티스 ▲트렌드/신기술/설루션 ▲ SDM(MES/MOM) 등 세 개의 트랙에서 18편의 발표가 진행됐다.   ■ 같이 보기 : [포커스] 기술 트렌드부터 사례까지, PLM·DX의 현재와 미래 짚다   또한, 부스 전시에서는 제조 혁신을 실현하기 위한 디지털 전환 및 인공지능 전환 설루션 기술이 다양하게 소개되어 참가자들의 눈길을 끌었다.   ▲ 다쏘시스템 부스   ▲ 마이링크 부스   ▲ 세원에스텍 부스   ▲ 쓰리피체인 부스   ▲ 씨이랩 부스   ▲ 아이지피넷 부스   ▲ 인코스 부스   ▲ 한화시스템 부스     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-07-01
엔비디아, 정밀한 지구 기후 시뮬레이션을 위한 생성형 AI 모델 공개
엔비디아가 새로운 엔비디아 어스-2(NVIDIA Earth-2) 생성형 AI 파운데이션 모델인 ‘c보틀(cBottle)’을 선보였다. 엔비디아는 이를 통해 킬로미터급 해상도로 지구 기후 시뮬레이션을 구현할 수 있다고 밝혔다. 보다 정밀한 지구 기후의 시뮬레이션은 기후 변화의 영향을 더 잘 예측하고 완화할 수 있게 돕는다. 이를 위한 c보틀은 ‘클라이밋 인 어 보틀(Climate in a Bottle)’의 줄임말로, 킬로미터급 해상도로 지구 기후를 시뮬레이션하도록 설계된 생성형 AI 파운데이션 모델이다. 엔비디아 어스-2 플랫폼의 일부인 c보틀은 하루 중 시간, 연중 요일, 해수면 온도 등 입력값에 따라 달라질 수 있는 사실적 대기 상태를 생성할 수 있다. 이를 통해 지구의 복잡한 자연 시스템을 이해하고 예측할 수 있는 새로운 방식을 제공한다는 것이 엔비디아의 설명이다. 어스-2 플랫폼은 AI, GPU 가속화, 물리 시뮬레이션, 컴퓨터 그래픽의 성능을 결합한 소프트웨어 스택과 도구를 갖췄다. 이는 날씨를 시뮬레이션하고 시각화하는 인터랙티브 디지털 트윈을 생성하며, 이와 함께 행성 규모의 기후 예측을 수행하도록 한다. 엔비디아는 c보틀을 사용하면 정확도 저하 없이도 기존 수치 모델보다 수천 배 빠르며 에너지 효율이 좋은 기후 예측이 가능해진다고 전했다.     기후 정보학은 전통적으로 시간, 노동, 컴퓨팅 집약적인 분야이며, 수십 페타바이트(PB) 규모 데이터 저장소에 대한 정교한 분석을 필요로 한다. 엔비디아 GPU 가속화와 최적화된 엔비디아 어스-2 스택이 적용된 c보틀은 첨단 AI를 활용해 방대한 양의 기후 시뮬레이션 데이터를 압축한다. 이를 통해 단일 기상 샘플에서 페타바이트 크기의 데이터를 최대 3000배까지 줄일 수 있다. 즉, 1000 개의 샘플에서 데이터 크기를 300만배 감소시킬 수 있다. c보틀은 고해상도 물리 기후 시뮬레이션과 지난 50년간의 실제 관측 데이터를 기반으로 한 대기 상태 추정값을 기반으로 훈련됐다. 이 모델은 누락되거나 손상된 기후 데이터를 채우고, 편향된 기후 모델을 수정할 수 있다. 또한 저해상도 기후 데이터의 고해상도 변환은 물론, 패턴과 기존 관측을 기반으로 한 정보 합성도 가능하다. c보틀의 데이터 효율성을 바탕으로, 단 4주 분량의 킬로미터급 기후 시뮬레이션 데이터만으로도 훈련이 가능하다. 개발자는 엔비디아 어스-2에서 c보틀을 사용해 기후 디지털 트윈을 구축할 수 있다. 이를 통해 킬로미터급 기후 데이터의 인터랙티브한 탐색과 시각화가 가능하며, 실현 가능한 시나리오를 낮은 지연 시간과 높은 처리량으로 예측할 수 있다.   c보틀은 세계기후연구프로그램의 글로벌 KM-스케일 해커톤에서 현장 테스트를 거쳤다. 이 행사는 8개국 10개 기후 시뮬레이션 센터가 주최했으며, 고해상도 지구 시스템 모델의 분석, 개발을 발전시키고 고해상도, 고충실도 기후 데이터에 대한 접근성을 확대하는 것을 목표로 진행됐다. 막스플랑크 기상 연구소, 앨런 인공지능 연구소 등 주요 과학 연구 기관은 c보틀을 활용해 지구 관측 데이터와 초고해상도 기후 시뮬레이션을 압축, 추출하고 쿼리 가능한 대화형 생성형 AI 시스템으로 전환하는 방법을 구상하고 있다. c보틀 파운데이션 모델은 현재 얼리 액세스로 제공된다. 깃허브(GitHub)에서 c보틀 코드베이스에 접속할 수 있으며, 아카이브(arXiv)에서 출판 전 논문을 열람할 수 있다.
작성일 : 2025-06-11
[포커스] AWS 서밋 서울 2025, “생성형 AI와 클라우드 혁신으로 산업 디지털 전환 가속화”
아마존웹서비스(AWS)가 5월 14일~15일 서울 코엑스에서 ‘AWS 서밋 서울 2025’를 진행했다. 4만여 명이 사전 등록한 이번 서밋에는 생성형 AI를 중심으로 다양한 산업 분야와 기술 주제에 대해 130개 이상의 강연이 진행됐고, 60개 이상의 고객사가 AWS 도입 경험과 성공 사례를 소개했다. 또한 현실에 적용 가능한 도구로서 생성형 AI 활용 사례를 체험할 수 있는 엑스포 등 다양한 프로그램이 진행됐다. ■ 정수진 편집장   생성형 AI와 클라우드 전환 중심의 시장 전략 AWS 코리아의 함기호 대표이사는 생성형 AI가 일상을 빠르게 변화시키고 있다고 짚었다. 연구 결과에 따르면 한국 기업의 54%가 2025년 IT 예산에서 생성형 AI를 최우선 투자 항목으로 꼽았다. 그리고 63%의 조직이 최고 AI 책임자(CAIO)를 임명하는 등, AI는 기업의 조직 구조에도 변화를 가져왔다. 생성형 AI의 도입 속도는 매우 빨라서 94%의 기업이 이미 도입했고, 85%는 활발한 실험을 진행 중이다. 하지만 이러한 실험이 실제 활용으로 이어지는 비율은 아직 절반 이하에 머물고 있는 것으로 나타났다.   ▲ AWS코리아 함기호 대표   AWS는 고객들이 클라우드 전환을 지속적인 혁신의 여정으로 인식하고 있다는 점에 주목하고 있다. 과거에는 클라우드가 단순히 비용 절감 수단 또는 일회성 프로젝트로 여겨졌지만, 이제는 비즈니스 민첩성과 경쟁력 확보를 위해 클라우드 네이티브 환경으로의 전환을 더욱 중요하게 생각하고 있다는 것이다. 함기호 대표이사는 “AWS는 이러한 변화와 함께 고객의 디지털 전환을 지속적으로 지원하고 있다”면서, 작년에 이어 올해도 생성형 AI와 IT 현대화를 주요 사업 전략으로 진행하고 있다고 소개했다. 그는 또한 한국 시장에 대한 지원과 성과에 대해서도 소개했다. 올해에는 AWS 마켓플레이스(AWS Marketplace)가 한국에 정식으로 출시되었다. 지난 3월에는 한국인터넷진흥원의 클라우드 보안 인증(CSAP) 3등급을 획득하여, 공공기관에 클라우드 서비스를 제공할 수 있게 되었다. 개발자를 위한 생성형 AI 서비스인 아마존 Q 디벨로퍼(Amazon Q Developer)가 4월부터 한국어 지원을 시작했다. 이외에도 AWS는 한국 기업이 파운데이션 모델(FM)을 개발하고 해외로 빠르게 진출할 수 있도록 지원을 이어갈 예정이다.   컴퓨팅/스토리지/보안 등 주요 클라우드 기술 요소 소개 AWS는 이번 서밋이 기술 중심에서 기술 경험 중심으로 초점을 옮겨, 생성형 AI를 포함한 자사의 기술이 실제 문제 해결에 어떻게 기여하는지 보여주는 데 초점을 맞추었다고 설명했다. 서밋의 첫째 날인 5월 14일 기조연설에서 AWS의 야세르 알사이에드(Yasser Alsaied) IoT 부문 부사장은 “AWS가 불가능해 보이는 것을 상상하고 만들 수 있도록 돕는 기술을 제공한다”고 소개했다. 그가 소개한 주요 기술은 보안, 확장성, 컴퓨팅, 스토리지 등이다. AWS는 칩부터 클라우드까지 모든 수준에서 보안을 구축하고 고객 데이터에 접근할 수 없도록 했다. 또한, 전 세계의 인프라 리전(region)과 가용 영역(availability zone)을 연결하는 600만 킬로미터 이상의 광케이블을 보유하고 있으며, 2024년에는 네트워크 백본 용량을 80% 늘렸다. AWS는 클라우드 기반으로 필요한 만큼 컴퓨팅 리소스를 사용할 수 있도록 지원하며 가상 서버, 컨테이너 등 다양한 옵션을 제공한다. 특히 생성형 AI와 같은 복잡한 워크로드를 위해서는 엔비디아와 협력하여 GPU 인스턴스를 출시했다. 알사이에드 부사장은 세계에서 가장 빠른 슈퍼컴퓨터를 개발하기 위한 프로젝트 세이바(Project Ceiba) 및 고수요의 GPU 컴퓨팅에 즉시 예측 가능하게 액세스할 수 있는 아마존 EC2 캐퍼시티 블록을 소개했으며, “자체 개발한 프로세서인 AWS 그래비톤4(AWS Graviton4)는 이전 세대 대비 45% 빠르고 에너지 소비를 60% 줄였다. AWS는 지난 2년간 데이터센터 CPU의 50% 이상을 그래비톤으로 교체했다”고 설명했다.   ▲ AWS 야세르 알사이에드 IoT 부문 부사장   스토리지 서비스인 아마존 S3(Amazon S3)에는 현재 400조 개 이상의 오브젝트가 저장되어 있다. 한편, AWS는 대규모 분석 데이터셋을 위한 툴인 아파치 아이스버그(Apache Iceberg)를 오픈소스로 공개했고, 오브젝트 크기, 스토리지 클래스, 통계 등의 시스템 메타데이터를 자동으로 생성해 대규모 데이터셋 관리의 오버헤드를 줄이는 S3 메타데이터 등 스토리지 관련 서비스를 제공한다. 알사이에드 부사장은 이러한 스토리지 기술이 대규모 데이터를 효율적으로 관리하고 활용하는 데 있어 중요하며, 이를 통해 혁신적인 설루션을 구축할 수 있다고 강조했다.   앱 현대화 및 비즈니스 혁신을 위한 AI 기술 알사이에드 부사장은 비즈니스 혁신을 돕는 AWS의 생성형 AI 및 관련 서비스에 대해서도 소개했다. 아마존 베드락(Amazon Bedrock)은 고객에게 폭넓은 파운데이션 모델(FM) 선택권을 제공해, 아마존 및 다양한 회사의 모델 가운데 개발하는 애플리케이션에 가장 적합한 모델을 선택할 수 있도록 돕는다. 베드락은 검색 증강 생성(RAG)을 지원해 더욱 관련성 높고 정확한 응답을 제공하며, 가드레일 포 아마존 베드락(Guardrails for Amazon Bedrock)을 통해 유해한 콘텐츠를 차단할 수 있다. 알사이에드 부사장은 AI 응답의 불확실성을 줄이는 데에 도움을 주는 자동화 추론 및 프롬프트에 적합한 모델을 선택할 수 있는 지능형 프롬프트 라우팅 등의 기능도 소개했다. 또한 알사이에드 부사장은 AI 및 에이전트 기술을 활용한 애플리케이션의 현대화 사례를 소개하면서, “AWS는 고객들이 마이그레이션 과제를 극복하도록 꾸준히 지원해왔으며, 마이그레이션을 자동화하는 서비스를 제공한다”고 전했다. “닷넷 코드 변환 서비스는 애플리케이션의 현대화 시간 및 윈도우 라이선스 비용을 줄일 수 있게 돕고, VM웨어 워크로드 변환 서비스는 네트워크 설정 변환 속도를 80배 높일 수 있다. 복잡한 메인프레임 애플리케이션의 변환도 에이전트의 도움으로 몇 달 만에 완료할 수 있다”는 것이 알사이에드 부사장의 설명이다.   ▲ AWS는 생성형 AI가 제조 산업의 복잡한 업무에 도움을 줄 수 있다고 소개했다.   제조 산업 디지털 전환을 위한 데이터 통합 및 AI 활용 이번 서밋은 이틀에 걸쳐 ‘인더스트리 데이(5월 14일)’와 ‘코어 서비스 데이(5월 15일)’로 진행됐다. 5월 14일에는 현대카드와 트웰브랩스가 기조연설에서 생성형 AI 관련 인사이트를 소개했고 기술 트렌드, 생성형 AI, 산업별 트랙 등 다양한 주제의 강연이 진행되었다. 15일에는 아마존의 워너 보겔스(Werner Vogels) CTO와 디팍 싱(Deepak Singh) 데이터베이스 및 AI 부사장, 삼성전자 서치영 상무, 티맵모빌리티 김재순 CTO가 기조연설을 진행했으며, 9개 트랙에서 50여 개의 세부 강연을 통해 생성형 AI, 머신러닝, 데이터 분석, 클라우드, 데이터베이스, 보안 및 거버넌스 등 서비스별 업데이트와 활용 사례가 소개되었다. 이 가운데 14일 진행된 제조 및 하이테크 트랙에서는 디지털 전환과 인공지능을 통한 제조산업의 혁신 전략을 짚고, 국내 기업들의 사례가 소개됐다. AWS 코리아의 박천구 솔루션즈 아키텍트 매니저는 변화하는 시장 환경에서 제조 기업이 직면한 문제로 “엔지니어링 디자인, 제조, 공급망, 운영 등 각 부서의 시스템이 사일로화되어 필요한 데이터를 제때 얻기 어렵다”는 점을 꼽았다. 그러면서 “이런 문제를 해결하기 위한 디지털 전환은 전통적인 제조에서 첨단 제조로 완전히 전환하는 것을 뜻하며, 긴 여정을 통해 비즈니스 가치를 실현할 수 있어야 한다”고 전했다. 특히 제조산업 디지털 전환의 핵심 요소로 AWS가 주목한 것은 데이터의 통합이다. 박천구 매니저는 “공장에는 많은 데이터가 있고 산업 데이터는 2년마다 두 배씩 늘어나는데, 특히 OT 데이터가 대다수를 차지한다. 디지털 전환의 성공은 OT에 중점을 두고 OT-IT 데이터를 효과적으로 통합하는 데에 달려 있다”면서, “이렇게 통합된 데이터를 잘 관리하고 빅데이터・AI 등과 결합해 활용할 수 있는 구조를 갖춤으로써 각 제조 단위 및 전체 공정의 최적화가 가능하다. 특히 올해는 생성형 AI를 통한 비즈니스 전환에 대한 고민이 본격화될 것으로 보이는데, 탄탄한 데이터 기반을 구축하는 것은 생성형 AI의 효과를 실현하는 필수 조건”이라고 짚었다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-06-04