• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "파라미터"에 대한 통합 검색 내용이 218개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
오라클-AMD, 차세대 AI 확장성 지원 위한 파트너십 확대
오라클과 AMD는 고객이 AI 역량과 이니셔티브를 대규모로 확장할 수 있도록 지원하기 위한 양사의 오랜 다세대 협력 관계를 확대한다고 발표했다. 수년간의 공동 기술 혁신을 바탕으로, 오라클 클라우드 인프라스트럭처(OCI)는 AMD 인스팅트(AMD Instinct) MI450 시리즈 GPU 기반의 최초 공개형 AI 슈퍼클러스터의 출시 파트너가 될 예정이다. 초기 배포는 2026년 3분기부터 5만 개의 GPU로 시작되며, 2027년 이후까지 더욱 규모가 확대될 계획이다. 이번 발표는 2024년 AMD 인스팅트 MI300X 기반 셰이프(shape) 출시를 시작으로 AMD 인스팅트 MI355X GPU를 탑재한 OCI 컴퓨트(OCI Compute)의 정식 출시까지 이어지는 오라클과 AMD의 전략적 협업의 연장선상에 있다.  양사는 최종 고객에게 OCI 상의 AMD 인스팅트 GPU 플랫폼을 제공하기 위해 꾸준히 협업해 왔다. 이 플랫폼은 제타스케일 OCI 슈퍼클러스터(zettascale OCI Supercluster)에서 제공될 예정이다. 대규모 AI 컴퓨팅 수요가 급격히 증가함에 따라, 차세대 AI 모델은 기존 AI 클러스터의 한계를 뛰어넘고 있다. 이러한 워크로드의 훈련 및 운영을 위해서는 극한의 확장성과 효율성을 갖춘 유연하고 개방적인 컴퓨팅 설루션이 필요하다. OCI가 새롭게 선보일 AI 슈퍼클러스터는 AMD ‘헬리오스(Helios)’ 랙 설계를 기반으로 하며, 여기에는 ▲AMD 인스팅트 MI450 시리즈 GPU ▲차세대 AMD 에픽 CPU(코드명 베니스) ▲차세대 AMD 펜산도(Pensando) 고급 네트워킹 기능(코드명 불카노)가 포함된다. 수직적으로 최적화된 이 랙 스케일 아키텍처는 대규모 AI 모델의 훈련 및 추론을 위한 최대 성능, 탁월한 확장성, 우수한 에너지 효율성을 제공하도록 설계됐다. 마헤쉬 티아가라얀 OCI 총괄 부사장은 “오라클의 고객들은 전 세계에서 가장 혁신적인 AI 애플리케이션을 구축하고 있으며, 이를 위해서는 강력하고 확장 가능한 고성능의 인프라가 필수적이다. 최신 AMD 프로세서 기술, OCI의 안전하고 유연한 플랫폼, 오라클 액셀러론(Oracle Acceleron) 기반 고급 네트워킹의 결합으로 고객은 확신을 갖고 혁신 영역을 넓혀갈 수 있다. 에픽부터 AMD 인스팅트 가속기까지, 10년 이상 이어진 AMD와의 협력을 바탕으로 오라클은 탁월한 가격 대비 성능, 개방적이고 안전하며 확장가능한 클라우드 기반을 지속적으로 제공하여 차세대 AI 시대의 요구에 부응하고 있다”고 말했다. AMD의 포레스트 노로드(Forrest Norrod) 데이터센터 설루션 비즈니스 그룹 총괄 부사장 겸 총괄 매니저는 “AMD와 오라클은 계속해서 클라우드 분야의 AI 혁신에 앞장서고 있다. AMD 인스팅트 GPU, 에픽 CPU, 그리고 첨단 AMD 펜산도 네트워킹 기술을 통해 오라클 고객들은 차세대 AI 훈련, 미세 조정 및 배포를 위한 강력한 역량을 확보할 수 있다. AMD와 오라클은 대규모 AI 데이터센터 환경에 최적화된 개방적이고 안전한 시스템으로 AI 발전을 가속화하고 있다”고 말했다. AMD 인스팅트 MI450 시리즈 GPU 기반 셰이프는 고성능의 유연한 클라우드 배포 옵션과 광범위한 오픈소스 지원을 제공하도록 설계되었다. 이는 최신 언어 모델, 생성형 AI 및 고성능 컴퓨팅 워크로드를 실행하는 고객에게 맞춤형 기반을 제공한다. OCI상의 AMD 인스팅트 MI450 시리즈 GPU는 AI 훈련 모델을 위한 메모리 대역폭을 확장해 고객이 더욱 신속하게 결과를 달성하고, 복잡한 워크로드를 처리하며, 모델 분할 필요성을 줄일 수 있도록 지원한다. AMD 인스팅트 MI450 시리즈 GPU는 개당 최대 432GB의 HBM4 메모리와 20TB/s의 메모리 대역폭을 제공하여, 이전 세대 대비 50% 더 큰 규모 모델의 훈련 및 추론을 인메모리에서 수행할 수 있다. AMD의 최적화된 헬리오스 랙 설계는 고밀도 액체 냉각 방식의 72-GPU 랙을 통해 성능 밀도, 비용 및 에너지 효율이 최적화된 대규모 운영을 가능하게 한다. 헬리오스는 UALoE(Universal Accelerator Link over Ethernet) 스케일업 연결성과 이더넷 기반의 UEC(Ultra Ethernet Consortium) 표준에 부합하는 스케일아웃 네트워킹을 통합하여 포드 및 랙 간 지연을 최소화하고 처리량을 극대화한다. 차세대 AMD 에픽 CPU로 구성된 아키텍처는 작업 오케스트레이션 및 데이터 처리를 가속화하여 고객이 클러스터 활용도를 극대화하고 대규모 워크플로를 간소화할 수 있도록 지원한다. 또한, 에픽 CPU는 기밀 컴퓨팅 기능과 내장형 보안 기능을 제공하여 민감한 AI 워크로드의 종단간 보안을 개선한다. 또한, DPU 가속 융합 네트워킹은 대규모 AI 및 클라우드 인프라의 성능 향상과 보안 태세 강화를 위해 라인레이트(Line-Rate) 데이터 수집을 지원한다. 프로그래밍 가능한 AMD 펜산도 DPU 기술을 기반으로 구축된 DPU 가속 융합 네트워킹은 데이터센터에서 차세대 AI 훈련, 추론 및 클라우드 워크로드를 실행하는 데 필요한 보안성과 성능을 제공한다. AI를 위한 스케일아웃 네트워킹은 미래 지향적 개방형 네트워킹 패브릭을 통해 고객이 초고속 분산 훈련(distributed training)과 최적화된 집합 통신(collective communication)을 활용할 수 있도록 지원한다. 각 GPU에는 최대 3개의 800Gbps AMD 펜산도 ‘불카노’ AI-NIC를 장착할 수 있어, 손실 없는 고속의 프로그래밍 가능한 연결성을 제공하고, RoCE 및 UEC 표준을 지원한다. 혁신적인 UALink 및 UALoE 패브릭은 고객이 워크로드를 효율적으로 확장하고, 메모리 병목 현상을 줄이며, 수 조 파라미터 단위의 대규모 모델을 통합 관리할 수 있도록 지원한다. 확장 가능한 아키텍처는 CPU를 경유하지 않고 홉(hop)과 지연시간을 최소화하며, UALoE 패브릭을 통해 전송되는 UALink 프로토콜을 통해 랙 내 GPU 간 직접적이고 하드웨어 일관성 있는 네트워킹 및 메모리 공유를 가능하게 한다. UALink는 AI 가속기를 위해 특별히 설계된 개방형 고속 상호연결 표준으로 광범위한 산업 생태계의 지원을 받는다. 이를 통해 고객은 개방형 표준 기반 인프라에서 까다로운 AI 워크로드를 실행하는 데 필요한 유연성, 확장성 및 안정성을 확보할 수 있다. 한편, OCI는 대규모 AI 구축, 훈련 및 추론을 수행하는 고객에게 더 많은 선택권을 제공하기 위해 AMD 인스팅트 MI355X GPU를 탑재한 OCI 컴퓨트의 정식 출시를 발표했다. 이 제품은 최대 13만 1072개의 GPU로 확장 가능한 제타스케일 OCI 슈퍼클러스터에서 이용 가능하다. AMD 인스팅트 MI355X 기반 셰이프는 탁월한 가치, 클라우드 유연성 및 오픈소스 호환성을 위해 설계되었다.
작성일 : 2025-10-17
슈나이더 일렉트릭, 실시간 모터 관리 설루션으로 해양산업 효율 향상 지원
슈나이더 일렉트릭이 조선·해양 산업의 설비 운용 효율과 안정성을 높일 수 있는 방법으로 자사의 실시간 모터 관리 설루션인 ‘테시스 테라(TeSys Tera)’를 제시했다. 조선·해양 산업에서 모터는 전기 에너지를 회전 및 기계 에너지로 변환하는 핵심 장비로, 전체 전력 소비의 약 80%를 차지할 만큼 에너지 소모가 큰 설비다. 때문에 모터의 안정적인 운전과 체계적인 유지관리는 산업 전반의 효율과 직결되며, 최근에는 친환경 규제 강화 및 스마트 선박 기술 도입에 따라 더욱 정교한 모터 관리 설루션의 필요성이 부각되고 있다. 슈나이더 일렉트릭의 테시스 테라는 이러한 산업 트렌드에 부합하는 디지털 기반의 고도화된 모터 관리 시스템이다. 테시스 테라는 지정된 통신 버스를 통해 모터의 상태, 운전 전류, 전압, 전력, 역률, 외부 냉각 팬 동작까지 실시간으로 수집·모니터링하며, 인더스트리 4.0 표준을 충족해 중앙 제어 시스템과의 연동을 지원한다. 슈나이더 일렉트릭은 “특히 모터 권선과 베어링, 본체 온도를 측정하는 외부 센서를 통해 과열이나 냉각 이상 등 이상 징후를 사전에 감지할 수 있어 치명적인 고장을 예방하고 유지보수 비용을 절감에도 기여한다. 또한 고조파까지 정밀하게 측정할 수 있는 기능은 슈나이더 일렉트릭의 고도화된 전력 관리 기술력을 잘 보여준다”고 소개했다.     진단 기능과 관련해서는 각 보호 기능별 트립(차단) 횟수를 개별적으로 기록하며, 최대 100개의 이벤트를 시간 정보와 함께 순차적으로 저장하는 FIFO(선입선출) 방식 로그 기능을 지원한다. 더불어 열 메모리, 선 전류, 접지 전류 등 20개의 상세 고장 로그를 기록해 고장 원인 분석과 시스템 개선에 유용한 데이터를 제공한다. 시동 전류 곡선은 최대 250포인트까지 기록할 수 있어, 실제 운전 조건에 따른 보호 설정(Trip Class 등)을 최적화할 수 있으며, 시간 기반의 로그 데이터는 공정 정지나 시스템 장애 발생 시 정확한 사건 순서(SOE)를 파악할 수 있게 해준다. 이는 24시간 가동이 필수적인 조선·해양 현장에서 더욱 높은 신뢰성과 운영 효율성을 확보하는 데 도움이 된다. 아울러 테시스 테라는 온도 센서를 활용해 모터 권선, 베어링, 본체 각각에 대해 개별적인 보호 기능을 제공해 과열로 인한 손상을 사전에 방지한다. 모든 보호 기능은 활성화/비활성화, 경보 및 차단 수준 설정, 자동 또는 원격 리셋 기능(시간 지연 포함) 등 사용자가 공정 환경에 맞춰 완벽하게 구성할 수 있다. 또 외부 디지털·아날로그 입력도 고장 조건으로 인식하도록 설정 가능하다. 사용자 친화적인 소프트웨어 인터페이스도 특징이다. 윈도우 기반의 다국어 지원 소프트웨어는 메뉴와 아이콘 중심의 직관적인 UI를 제공한다. 동일 기능 내 여러 데이터를 한 화면에서 탐색할 수 있도록 안내형 내비게이션을 지원함으로써, 복잡한 설정이나 진단 과정도 간소화했다. 또한 별도의 HMI(Human-Machine Interface)를 통해 현장에서 직접 제어기 구성 및 파라미터 변경이 가능하며, 제어 키패드가 내장된 HMI는 상태 확인과 제어 명령을 로컬에서 즉시 수행할 수 있어 네트워크 연결이 원활하지 않은 환경에서도 독립적인 운용이 가능하다. 슈나이더 일렉트릭 코리아 파워 프로덕트 사업부의 김은지 본부장은 “슈나이더 일렉트릭의 디지털 모터 관리 설루션 테시스 테라는 실시간 디지털 모니터링과 정밀한 보호 기능을 통해 모터의 성능 저하와 고장을 사전에 방지함으로써 조선 및 해양 산업의 안전성과 생산성을 높이는 필수적인 설루션으로 주목받고 있다”고 말했다. 한편 슈나이더 일렉트릭 코리아는 오는 10월 21일부터 부산 벡스코에서 개최되는 조선·해양 산업 전문 전시회인 ‘코마린(KORMARINE) 2025’에 참가해 테시스 테라를 선보일 예정이라고 전했다.
작성일 : 2025-10-16
HP Z2 미니 G1a 리뷰 : 초소형 워크스테이션의 AI·3D 실전 성능
워크스테이션은 콤팩트한 외형 속에 데스크톱급 성능을 담아낸 전문가용 시스템이다. 단순한 소형 PC와 달리, 3D·영상·AI·엔지니어링 등 고성능이 필요한 크리에이터와 전문 작업자를 위해 설계된 것이 특징이다. 이번 리뷰에서는 실제 소프트웨어 워크플로와 AI·LLM 테스트까지 다양한 관점에서 심층 평가를 진행했다.   ▲ HP Z2 미니 G1a   하드웨어 및 설치 환경 HP Z2 미니 G1a(HP Z2 Mini G1a)의 가장 큰 강점 중 하나는 강력한 하드웨어 스펙이다. AMD 라이젠 AI 맥스+ 프로 395(AMD Ryzen AI Max+ PRO 395) 프로세서(16코어 32스레드, 3.00GHz), 최대 128GB LPDDR5X 메모리, 8TB NVMe SSD, 그리고 16GB VRAM을 탑재한 라데온 8060S(Radeon 8060S) 통합 그래픽 등, 동급 소형 워크스테이션에서는 보기 힘든 구성을 갖췄다. 특히 메모리는 최대 128GB까지 확장 가능하며, 이 중 최대 96GB를 그래픽 자원에 독점 할당할 수 있다. 듀얼 NVMe 및 RAID 지원으로 대용량 데이터 처리와 안정성을 확보했으며, 50TOPS에 달하는 NPU 성능 덕분에 AI 추론 등 최신 워크로드도 소화할 수 있다. 테스트는 윈도우 11 프로 기반, 64GB RAM과 16GB 라데온 8060S, 듀얼 NVMe SSD가 장착된 구성으로 진행됐다.   ▲ HP Z2 미니 G1a의 하드웨어 스펙   전문 소프트웨어 워크플로 직접 HP Z2 미니 G1a를 사용해 본 첫 인상은 “미니 사이즈에서 이 정도 성능이라니?”였다. 크기는 작지만, 성능은 결코 작지 않았다. 시네마 4D(Cinema 4D)로 복잡한 3D 신을 제작하고, 지브러시(ZBrush)에서 대형 폴리곤 모델링과 서브툴 멀티 작업을 해 보니 작업 흐름이 부드럽고, 장시간 동작에도 다운이나 랙 없이 꾸준한 성능으로 작업할 수 있었다. 시네벤치(Cinebench), 시네마 4D, 지브러시, 애프터 이펙트(After Effects), AI 생성형 이미지·영상, LLM 실행 등 전 영역에서 성능 저하를 체가하기 어려웠다. 시네마 4D에서는 수십만~수백만 폴리곤에 달하는 대형 3D 신 파일을 불러오고, 뷰포트 내 실시간 조작이나 배치 렌더링, 애니메이션 키프레임 작업에서 CPU 기반 멀티스레드 성능이 큰 장점을 발휘했다. 시네벤치 2024 멀티코어 점수는 1832점으로, 애플의 M1 울트라보다 높은 수치를 달성해 전문 사용자에게 매력적인 대안이 될 것으로 보인다.   ▲ 시네마 4D에서 테스트   애프터 이펙트 환경에서는 GPU 가속 지원이 부족한 점에도 불구하고, 강력한 CPU 성능 덕분에 고해상도(4K) 다중 레이어 영상 합성, 이펙트, 복수 트랙 편집에서도 랙이나 끊김 없이 작업을 이어갈 수 있었다. 시네마 4D, 지브러시, 콤피UI(ComfyUI) 등과의 멀티태스킹 환경에서도 리소스 병목 없이 쾌적하게 여러 프로그램을 병행 실행하는 것이 가능했다.   ▲ 애프터 이펙트에서 테스트   아이언캐드 대형 어셈블리 테스트 엔지니어링 현장에서 요구되는 대형 어셈블리 작업을 검증하기 위해 동료와 함께 아이언캐드(IronCAD)로 2만여 개(2만 1800개)에 달하는 파트가 포함된 820MB 대용량 CAD 파일을 로딩해 테스트를 진행했다. 이 워크플로는 최근 산업·기계 설계 현장에서 자주 마주치는 극한 환경을 그대로 반영한 조건이었다. 테스트 결과, HP Z2 마니 G1a의 평균 FPS는 약 19로 측정됐다. 이는 노트북용 RTX2060 GPU가 내는 실제 CAD 작업 성능과 동등한 수준에 해당한다. 고용량 모델의 빠른 불러오기, 실시간 3D 뷰 조작, 개별 파트 속성 편집 작업에서 큰 병목이나 지연 없이 효율적인 사용 경험을 확인했다. 대형 파일임에도 불구하고 시스템 자원 부족이나 다운 없이 멀티태스킹 환경에서도 안정적으로 작업이 이어지는 점이 인상적이었다.   ▲ 아이언캐드에서 테스트   AI 및 LLM 활용 AI 작업이나 LLM 실행에서도 강점이 명확했다. 콤피UI에서 Wan2.2, Video-wan2_2_14B_t2v 같은 고사양 텍스트-비디오 생성 모델도 무리 없이 돌릴 수 있었고, LM 스튜디오(LM Studio)와 올라마(Ollama) 기반의 대형 LLM 역시 빠른 추론 속도를 보여줬다. NPU(50TOPS)의 연산 가속과 64GB RAM의 넉넉함 덕분에, AI 모델 로컬 실행/추론에서 항상 안정적인 환경이 보장된다는 느낌이다. 오픈소스 AI 이미지 생성이나 텍스트-비디오 워크플로도 CPU-메모리 조합만으로 병목 없이 부드럽게 동작했다. 쿠다(CUDA)를 지원하지 않는 환경의 한계로 일부 오픈소스 AI 툴은 실행에 제약이 있었으나, CPU와 NPU 조합만으로도 로컬 기반 AI 이미지 생성 및 텍스트-비디오 워크플로에서 동급 대비 빠르고 매끄러운 결과를 보였다.    ▲ 콤피UI에서 테스트   LLM 분야에서는 LM 스튜디오와 올라마를 이용해 7B~33B 규모의 다양한 대형 언어 모델을 구동했다. 64GB RAM과 50TOPS NPU의 지원 덕분에 GPT-3.5, 라마 2(Llama 2) 등 대용량 파라미터 기반의 모델도 실제 업무에서 실시간 질문-응답, 코드 자동완성, 문서 요약 등에 무리 없이 활용 가능했다.   ▲ LLM 테스트   통합 메모리 아키텍처 효과 Z2 미니 G1a의 최고 강점은 UMA(통합 메모리 아키텍처)에 있다. 이 기술은 시스템 메모리(RAM)의 상당 부분을 GPU 연산에 직접 할당해, 기존 분리형 GPU VRAM 성능의 한계를 극복한다. 실제로 탑재된 메모리(64GB~128GB 중 구매 옵션에 따라 선택)를 GPU에 최대 96GB까지 독점적으로 할당할 수 있으며, 복잡한 3D·그래픽 집약적 프로젝트 처리와 생성형 AI·LLM 등의 작업에서 병목 없이 고효율 워크플로를 경험할 수 있었다.   실사용·테스트를 위한 리뷰 환경 제품 리뷰 당시 64GB RAM 탑재 모델을 기준으로, 기본 설정에서는 16~32GB를 GPU에 할당해 일반 CAD·3D·AI 작업을 진행했다. 또한 고해상도 3D 렌더나 생성형 AI 영상 작업에서는 BIOS/소프트웨어에서 48~50GB까지 VRAM 할당을 수동 조정해 본 결과, 대형 프로젝트 파일에서 뷰포트 프레임 저하나 메모리 부족 경고 없이 안정적인 작업 환경을 제공했다. 반대로 GPU에 할당하는 메모리를 늘리면 고용량 데이터 병목이 해결되고, 3D 뷰포트 FPS나 AI 추론 속도 및 이미지 품질·정확도가 확실히 향상되는 것이 일관되게 확인되었다. 실제 기업 환경에서는 128GB 모델을 쓰면 최대 96GB까지 VRAM 할당이 가능하므로 GPU 메모리 병목이 무의미해지고, 기존 미니PC와는 비교할 수 없는 확장성과 작업 안전성을 확보할 수 있다.   아쉬운 점 첫째, 테스트용으로 받았던 장비에서는 HDMI 단자의 부재로 미니 DP로 모니터를 연결해야 했는데, 이는 테스트했던 데모 제품의 기본 옵션에 해당한다. 하지만 HP Z2 미니 G1a는 기업용/구매 시 고객 요구에 따라 HDMI 포트를 포함한 맞춤형 Flex I/O 슬롯 옵션 구성이 가능하다고 한다. 실제로 HP 공식 문서 및 판매 페이지에 따르면, 썬더볼트4(Thunderbolt4), USB-C, 미니 DP 외에도 HDMI를 Flex IO 슬롯에 추가할 수 있으므로, 다수의 모니터·TV·AV 장비로 연결해 사용하는 환경에서도 문제없이 세팅할 수 있다. 둘째, GPU가 AMD 라데온 기반이기 때문에 엔비디아 CUDA를 필요로 하는 GPU 가속 작업(예 : Redshift GPU 렌더러, 딥러닝 프레임워크)은 아예 테스트 자체가 불가능하다. AI, 3D, 영상 워크플로에서 CUDA 생태계를 사용하는 환경에서는 제품 선택 전 미리 확인이 필요하다. 셋째, 고부하 작업 시 팬 소음이 다소 발생할 수 있으므로 조용한 사무실 환경이라면 쿼이엇 모드 설정이 필요하다.   결론 및 추천 HP Z2 미니 G1a 워크스테이션은 한정된 공간에서 고성능이 필요한 크리에이티브 및 AI 전문가, 엔지니어, 디지털 아티스트에게 탁월한 선택지가 될 수 있다. 실제로 써보면, 공간 제약이 있는 환경에서도 3D 모델링, 영상 편집, 생성형 AI, LLM 추론 등 고사양 멀티태스킹을 안정적으로 병행할 수 있었고, 기업용 보안, ISV 인증, 최신 네트워크까지 갖췄다. 다양한 작업을 동시에 손쉽게 처리할 수 있다는 점에서 미니 데스크톱 중에서도 실전 현장에 ‘매우 쓸 만한’ 최상위 선택지라고 생각이 든다. 비록 CUDA 미지원 및 HDMI 포트 부재라는 한계가 있지만, CPU·메모리 중심의 워크플로에선 동급 최고 수준의 안정성과 성능을 보여준다. 최신 AI 및 LLM, 3D·영상·컴포지팅 등 멀티태스킹이 잦은 전문 분야라면 이 제품이 오랜 기간 든든한 실전 파트너가 될 것이다. 견적 상담 문의하기 >> https://www.hp.com/kr-ko/shop/hp-workstation-amd-app   ■ 배현수 부장 마루인터내셔널(맥슨 한국총판) 기술지원팀, AI 크리에이터, 모션그래픽 디자이너     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
미라콤아이앤씨, 제조 AX 핵심 '넥스피어 AI' 공개하며 제조 혁신 로드맵 제시
미라콤 솔루션 페어   미라콤아이앤씨가 9월 25일 '미라콤 솔루션 페어 2025(MSF 2025)'를 개최하고, 핵심 주제인 '제조 AX(인공지능 전환)'를 중심으로 제조 특화 AI 솔루션인 'Nexphere AI(넥스피어 AI)'와 구체적인 AX 로드맵을 공개했다. 미라콤아이앤씨가 매년 하반기에 주최하는 이 전문 행사는 서울 드래곤시티 호텔에서 열렸다. 제조 AX를 이끌 최신 기술 트렌드 총망라 이번 MSF 2025에서는 제조 혁신을 이끌 최신 인사이트가 대거 공개된다. 행사의 첫 순서인 키노트 세션에서는 삼성SDS 김긍환 그룹장이 연사로 나서 'AI Agent 시대, 제조업의 새로운 가능성'이라는 주제로 발표했다. 김 그룹장은 사람의 개입 없이 AI 시스템이 스스로 작업을 수행하는 'Agentic AI'와 데이터 간 관계와 맥락을 부여해 AI의 정교한 추론을 돕는 '데이터 온톨로지' 등 최신 기술 트렌드를 언급하며 AI 시대에 국내 제조 기업들이 나아가야 할 방향을 제시할 예정이다. 제조 현장에서는 이 기술들을 활용해 고도화된 설비 파라미터 설정과 불량 원인 분석 등의 작업을 수행할 수 있을 것으로 전망된다. Agentic AI를 IT 리소스와 연결하면 제조 현장에 자율 지능형 AI 도입이 가능해진다. Nexphere AI로 실현하는 제조 AX 로드맵 키노트 이후에는 △Track1(Connect) △Track2(Activate) △Track3(Realize) 3개 트랙에서 총 12개의 세션이 이어진다. 특히, 미라콤아이앤씨 이송완 랩장은 Track1 'Connect'에서 'AX로 여는 자율제조의 미래: SDF 완성을 위한 플랫폼 핵심전략'을 주제로 발표한다. 이 랩장은 미라콤아이앤씨의 제조 AI인 Nexphere AI와 자체 플랫폼인 'Nexphere Platform'을 중심으로 구체적인 제조 AX 실현 로드맵을 제시한다. Nexphere Platform 위에서 제공되는 핵심 솔루션은 'Nexphere Analytics'와 'Nexphere Chat'이다. Nexphere Analytics는 데이터 전처리와 머신러닝, 딥러닝 기반의 예측 및 분석을 통해 제조 현장에서 활용할 수 있는 인사이트를 제공한다. Nexphere Chat은 제조 데이터를 실시간으로 조회하거나 기업의 문서와 자료를 지식화하여 자연어로 질의응답을 할 수 있도록 만든 협업 솔루션이다. 미라콤아이앤씨는 Nexphere Platform 내 학습 및 운영을 통해 AI Agent를 확보하고, 궁극적으로 이를 제조 특화 Agentic AI로 발전시키겠다는 로드맵을 가지고 있다. 행사 현장에는 Nexphere AI를 비롯해 6개의 제조 혁신 솔루션 데모가 마련되어 있어 관람객들이 직접 체험해볼 수 있다. 미라콤아이앤씨 강석립 대표이사는 "2025년은 제조 AX가 본격적으로 시작되는 원년"이라며 "올해 MSF 2025에서 제조 AX의 구체적인 전략과 방향성을 확인하길 바란다"고 말했다. 상세 내용은 홈페이지에서 확인 가능하다.
작성일 : 2025-09-27
PINOKIO가 선보이는 스마트 공장 기술과 사례
생산 계획부터 운영까지 혁신하는 스마트 제조   제조 산업은 빠르게 변화하고 있으며, 이에 따라 생산성 향상과 유연한 운영을 위한 혁신이 요구되고 있다. 스마트 제조는 이러한 요구를 충족시키는 해답으로, 특히 생산 계획과 운영 단계의 최적화는 전체 공정 효율성에 큰 영향을 미친다. 이번 호에서는 스마트 제조 구현을 위한 핵심 전략으로서 생산 계획 및 운영을 혁신할 수 있는 ‘PINOKIO(피노키오)’ 설루션을 제시한다.   ■ 자료 제공 : 이노쏘비, www.pinodt.com   제조 산업 전반에서 디지털 트윈 기술이 핵심 전략으로 떠오르고 있다. 차세대 물류 디지털 트윈 설루션을 지향하는 PINOKIO는 최신 기술 흐름을 반영해 개발된 설루션으로, 기존 상용 시스템이 지닌 한계를 극복하고 스마트 제조 전환을 가속화하는 데 최적화된 기능을 제공한다. 기존의 디지털 전환(DX) 설루션이 주로 3D 모델링 및 시뮬레이션 등 기초 단계의 디지털 트윈 기술에서 출발한 반면, PINOKIO는 개발 목적을 현장의 대용량 데이터를 기반으로 실시간 물류 모니터링과 시뮬레이션 제공을 목표로 설계되었다. 이러한 기술적 차별성을 바탕으로 PINOKIO는 SK하이닉스, LG전자 등 대규모 혼류 생산 제조 현장에서 정합성과 예측 정확도 측면에서 검증을 완료했으며, 실제 도입을 통해 생산성과 운영 효율성 향상 등 실질적 성과를 입증했다. 최근에는 고성능 시뮬레이터까지 제품 라인업에 포함되면서, 기존 상용 설루션 대비 향상된 성능과 확장성을 갖춘 디지털 트윈 시스템으로 자리매김하고 있다. PINOKIO는 앞으로도 다양한 산업군의 요구에 대응하며, 제조업의 스마트화를 실현하는 핵심 플랫폼으로의 성장을 이어갈 계획이다.   제품 소개 AI 기반 제조 물류 혁신을 위한 디지털 트윈 플랫폼 PINOKIO는 전통적인 시뮬레이션을 넘어 시뮬레이터, 디지털 트윈, AI 에이전시를 통합한 차세대 DES(이산 이벤트 시뮬레이션) 기반 플랫폼으로, 제조 물류 전반에 걸친 통합 설루션을 제공한다.  PINOKIO는 세 가지의 핵심 모듈로 구성된다. 첫 번째, 물류 시뮬레이터 설루션 ‘Pino SIM(피노 SIM)’이다. 이는 공정 흐름 설계부터 시뮬레이션, 결과 분석까지 지원하는 시뮬레이터로, ‘Pino Editor(피노 에디터)’라는 내장 도면 편집기와 레이아웃 설계 도구를 포함한다. 단순한 시뮬레이션을 넘어 제조 기준정보 입력, 물류 시나리오 구성, 시뮬레이션 실행 및 시각화 분석까지 포괄적인 기능을 제공한다. 두 번째, 실시간 디지털 트윈 설루션 ‘Pino DT(피노 DT)’다. MES, IoT, PLC, 센서 등 다양한 제조 운영 시스템과 인터페이스하여 대용량 데이터를 실시간으로 수집·처리하며, 실시간 모니터링, 미래 예측, 예지 보전 시뮬레이션까지 가능하다. 이는 생산 현장의 가시성과 대응력을 높이고 의사결정에 도움을 준다. 세 번째는 인공지능 기반의 ‘Pino AI(피노 AI)’다. 대규모 언어 모델(LLM)과 전문 특화 언어 모델(sLLM)을 활용한 대화형 UI를 통해 사용자는 데이터를 직관적으로 분석하고 의사결정에 활용할 수 있다. 또한 강화학습, 파라미터 최적화 등 다양한 AI 기법이 적용 가능해, 생산성과 품질 향상을 동시에 실현할 수 있다. 확장성 면에서도 PINOKIO는 주목할 만하다. 최근에는 엔비디아 옴니버스(NVIDIA Omniverse)와 같은 고급 시각화 플랫폼과의 연동을 지원하며, 파이썬(Python) 기반 개발 환경 확장도 가능해 사용자 맞춤형 라이브러리 개발이 용이하다. PINOKIO 설루션을 통해 제조 기업은 공정 및 물류의 사전 최적화, 실시간 생산 모니터링, 미래 예측, AI 기반 고도화 등 다양한 지능형 서비스를 구현할 수 있다.   PINOKIO의 특징 Pino SIM은 디지털 트윈 구축 시 미래 예측 시뮬레이터 역할을 수행할 뿐만 아니라, 공장 신설이나 생산 라인 변경 등 제조 현장의 변화가 필요한 상황에서 사전 물류 계획 수립과 최적 레이아웃 구성을 지원한다. 이를 통해 공정의 효율성과 안정성 확보를 가능케 하며, 제조 현장의 디지털 전환을 실질적으로 이끄는 핵심 도구로 자리잡고 있다.   그림 1. Pino SIM 작업 과정   Pino DT는 자체 개발한 최적화 시뮬레이션 및 모니터링 엔진을 기반으로, 실시간 데이터에 기반한 정밀한 의사결정과 미래 예측을 가능하게 하는 디지털 트윈 설루션이다. 특히, 시뮬레이션 이벤트 처리 횟수를 최소화한 구조로 설계되어, 불필요한 연산을 줄이고 대용량 데이터를 빠르고 효율적으로 처리할 수 있다는 점이 강점이다. 이를 통해 공정 변화나 예기치 못한 상황에도 유연하게 대응할 수 있으며, 작업자 개입 등 현장의 변수까지 반영한 고도화된 시뮬레이션이 가능하다. Pino DT는 실시간 운영 최적화와 미래 예측을 동시에 수행함으로써, 제조 현장의 민첩성과 안정성을 획기적으로 향상시키는 차세대 디지털 트윈 기반 물류 설루션으로 주목받고 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-08-04
AWS, 엔비디아 블랙웰 기반의 AI 컴퓨팅 인프라 공개
아마존웹서비스(AWS)는 추론 모델과 에이전틱 AI 시스템(Agentic AI systems) 등 새로운 생성형 AI 발전을 가속화하기 위해, 엔비디아 그레이스 블랙웰 슈퍼칩(NVIDIA Grace Blackwell Superchips)으로 구동되는 P6e-GB200 울트라서버(P6e-GB200 UltraServers)를 출시했다고 밝혔다. P6e-GB200 울트라서버는 크고 정교한 AI 모델의 훈련과 배포를 위해 설계되었다. AWS는 올해 초, 다양한 AI 및 고성능 컴퓨팅(HPC) 워크로드를 위해 엔비디아 블랙웰 GPU로 구동되는 P6-B200 인스턴스(P6-B200 Instances)를 출시한 바 있다. P6e-GB200 울트라서버는 현재 AWS가 제공하는 가장 강력한 GPU 제품으로, 최대 72개의 엔비디아 블랙웰 GPU를 탑재하고, 5세대 엔비디아 NV링크(NVIDIA NVLink)를 통해 상호 연결된 단일 컴퓨팅 유닛으로 작동한다. 각 울트라서버는 360페타플롭스(petaflops)의 FP8 고밀도 컴퓨팅과 13.4테라바이트(TB)의 총 고대역폭 GPU 메모리(HBM3e)를 제공한다. 이는 P5en 인스턴스와 비교하여 단일 NV링크 도메인에서 20배 이상의 컴퓨팅 성능과 11배 이상의 메모리를 제공한다. P6e-GB200 울트라서버는 4세대 일래스틱 패브릭 어댑터(Elastic Fabric Adapter : EFAv4) 네트워킹으로 최대 초당 28.8테라비트(Tbps)의 통합 대역폭을 지원한다. P6-B200 인스턴스는 다양한 AI 활용 사례에 유연하게 대응할 수 있는 옵션이다. 각 인스턴스는 NV링크로 상호 연결된 8개의 엔비디아 블랙웰 GPU와 1.4TB의 고대역폭 GPU 메모리, 최대 3.2Tbps의 EFAv4 네트워킹, 5세대 인텔 제온 스케일러블 프로세서(Intel Xeon Scalable processors)를 제공한다. 또한, P6-B200 인스턴스는 P5en 인스턴스와 비교하여 최대 2.25배 향상된 GPU 테라플롭스(TFLOPs) 연산 성능, 1.27배의 GPU 메모리 크기, 1.6배의 GPU 메모리 대역폭을 제공한다. AWS는 사용자의 구체적인 워크로드 요구사항과 아키텍처 요구사항에 따라 P6e-GB200과 P6-B200를 선택해야 한다고 전했다. P6e-GB200 울트라서버는 조 단위 매개변수(trillion-parameter) 규모의 프론티어 모델 훈련 및 배포와 같은 컴퓨팅 및 메모리 집약적인 AI 워크로드에 적합하다. 엔비디아 GB200 NVL72 아키텍처는 이러한 규모에서 성능을 발휘한다. 72개의 GPU가 통합된 메모리 공간과 조정된 워크로드 분산을 통해 단일 시스템으로 작동할 때, 이 아키텍처는 GPU 노드 간 통신 오버헤드를 줄여 더 효율적인 분산 훈련을 가능하게 한다.  추론 워크로드의 경우, 1조 개 파라미터 모델을 단일 NV링크 도메인 내에 완전히 포함할 수 있어 대규모 환경에서도 더 빠르고 일관된 응답 시간을 제공한다. P6-B200 인스턴스는 광범위한 AI 워크로드를 지원하며 중대형 규모의 훈련 및 추론 워크로드에 적합하다. 기존 GPU 워크로드를 이식하려는 경우, P6-B200 인스턴스는 코드 변경을 최소화하고 현재 세대 인스턴스로부터의 마이그레이션을 간소화하는 친숙한 8-GPU 구성을 제공한다. 또한 엔비디아의 AI 소프트웨어 스택이 Arm과 x86 모두에 최적화되어 있지만, 워크로드가 x86 환경에 특별히 구축된 경우 인텔 제온 프로세서를 사용하는 P6-B200 인스턴스가 효과적인 선택이 될 것이다. 한편, AWS는 3세대 EC2 울트라클러스터(EC2 UltraClusters)에 P6e-GB200 울트라서버를 배포하여, 가장 큰 데이터센터들을 포괄할 수 있는 단일 패브릭을 구현했다고 전했다. 3세대 울트라클러스터는 전력 소모를 최대 40% 줄이고 케이블링 요구사항을 80% 이상 줄여 효율성을 높이는 동시에, 장애 가능성을 유발하는 요소를 감소시킨다. 이러한 대규모 환경에서 일관된 성능을 제공하기 위해, AWS는 SRD(Scalable Reliable Datagram) 프로토콜을 사용하는 EFA(Elastic Fabric Adapter)를 활용한다. 여러 네트워크 경로를 지능적으로 활용해 트래픽을 분산시켜, 혼잡이나 장애 상황에서도 원활한 운영을 유지한다. AWS는 4세대에 걸쳐 EFA의 성능을 지속적으로 개선해 왔다. EFAv4를 사용하는 P6e-GB200과 P6-B200 인스턴스는 EFAv3을 사용하는 P5en 인스턴스와 비교하여 분산 훈련에서 최대 18% 더 빠른 집합 통신 성능을 보여준다. P6-B200 인스턴스는 검증된 공기 냉각 인프라를 사용하는 반면, P6e-GB200 울트라서버는 액체 냉각 방식을 사용하여 대규모 NV링크 도메인 아키텍처에서 더 높은 컴퓨팅 밀도를 가능하게 하고 더 높은 시스템 성능을 제공한다. P6e-GB200은 새로운 기계식 냉각 솔루션을 적용한 액체 냉각 방식으로 설계되었다. 이 시스템은 신규 및 기존 데이터 센터 모두에서 칩 수준까지 냉각이 가능한 유연한 액체-칩(liquid-to-chip) 냉각 방식을 제공한다. 이를 통해 하나의 시설 내에서 액체 냉각 방식의 가속기와 공랭 방식의 네트워크 및 스토리지 인프라를 함께 운영할 수 있다. 이러한 유연한 냉각 설계를 통해 AWS는 낮은 비용으로 높은 성능과 효율을 제공할 수 있다. AWS는 “아마존 세이지메이커 하이퍼팟(Amazon SageMaker HyperPod), 아마존 EKS(Amazon EKS), AWS에 탑재된 엔비디아 DGX 클라우드 등 여러 배포 경로를 통해 P6e-GB200 울트라서버와 P6-B200 인스턴스를 간편하게 시작할 수 있도록 했으며, 조직에 가장 적합한 운영 모델을 유지하면서 블랙웰 GPU 사용을 신속하게 시작할 수 있다”고 밝혔다.
작성일 : 2025-07-15
PINOKIO : 스마트 제조의 실현 위한 물류 디지털 트윈 설루션
개발 및 공급 : 이노쏘비 주요 특징 : 제조 물류 전반에 걸친 시뮬레이터/디지털 트윈/AI 에이전시의 통합 플랫폼, 설계~운영 과정의 최적화 지원, 다양한 제조 운영 시스템과 실시간 연동으로 대용량 데이터를 수집 및 처리, LLM/sLLM을 활용해 직관적인 데이터 분석 및 의사결정 지원 등 사용 환경(OS) : 윈도우 10/11(64비트) 시스템 권장 사양 : 인텔 i5 10세대 이상 또는 AMD 라이젠 5 이상 CPU, 최소 16GB RAM(32GB 권장), 엔비디아 RTX 4060 이상 GPU(AI 기능 사용 시 필요), 30GB 이상 여유 저장공간   최근 제조 기업들은 디지털 트윈 기반의 스마트 공장 도입과 더불어 급속한 디지털 전환(DX)을 위해 노력하고 있다. 불과 몇 해전만 하더라도 그 실체와 사례에 대해 의문이 있었지만, 다양한 도입 사례와 성과가 공개되면서 이제는 DX에서 나아가 AI 기술 도입과 AI로의 전환(AX : AI Transformation)을 활발히 검토하고 있고, 적극적인 도입 의사를 밝히고 있다. ‘PINOKIO(피노키오)’는 최신 기술 흐름을 반영해 탄생한 차세대 물류 디지털 트윈 설루션으로, 기존 상용 시스템의 한계를 극복하고 제조 산업의 스마트화를 가속화하는데 최적화된 해답을 제시한다. 기술 대전환의 시대를 맞아 기존의 전통적인 DX 설루션 기업들은 3D 모델링 및 시뮬레이션 등 낮은 단계의 디지털 트윈 기술을 기반으로 DX 설루션으로 개선 및 확장하고 있다. 이와 달리, PINOKIO는 초기부터 현장의 대용량 데이터 기반 실시간 물류 모니터링 및 실시간 시뮬레이션을 제공하는 디지털 트윈 기반의 운영 시스템을 목적으로 출발하였다. 그 결과 SK 하이닉스, LG전자 등 대량의 혼류 생산 제조 현장에서 디지털 트윈의 정합성과 예측의 정확도 등을 검증받았고 도입 효과를 증명했다. 이를 바탕으로 최근에는 기존 상용 설루션보다 높은 성능의 시뮬레이터까지 라인업하여 다양한 요구를 충족시킬 수 있게 되었다. 기존 상용 물류 시뮬레이션 설루션은 대부분 20~30년 전 개발된 구조를 가지고 있어, 최신 IT/OT 시스템과의 연동과 AI 기술을 적용하기 어렵다. 이로 인해 대용량 데이터 처리에 한계가 있으며, 사용자 API(애플리케이션 프로그래밍 인터페이스) 미제공으로 커스터마이징과 타 시스템 연계, 현장 실시간 운영에 필요한 유연성과 확장성에서도 제약이 있다. PINOKIO는 이러한 기존 설루션의 문제점을 개선해 제조 물류 관련 다양한 AI 모델을 지원하며, 기존 설루션 대비 높은 모델링 속도를 구현할 수 있다. 그리고 멀티 스레드, GPU 기반의 고속 시뮬레이션 연산 기능과 2차전지, AMR(자율이동로봇), OHT(오버헤드 트랜스퍼), 자동창고 등 다양한 제조 환경에 맞는 특화 라이브러리를 제공한다. 특히, 생산 현장에서 발생하는 실시간 빅데이터를 효과적으로 처리하고, 대화형 어시스턴트(assistant) 방식의 직관적인 사용자 인터페이스(UI)를 통해 사용자 편의성을 높였다. 또한, 사용자 API를 통한 고도화된 커스터마이징이 가능하며, MES(제조 실행 시스템), 센서, PLC(프로그래머블 로직 컨트롤러), IoT(사물인터넷) 등 다양한 운영 시스템과의 실시간 연동 기능도 갖췄다. 나아가, 전력 사용량 분석과 탄소세 예측 기능까지 탑재돼 지속 가능한 제조 환경 구축을 위한 의사결정도 지원한다. PINOKIO는 AI 기반 제조 혁신의 길을 여는 실질적인 도구로, 앞으로 제조업계의 디지털 전환을 선도할 핵심 설루션으로 자리매김할 전망이다.   주요 기능 소개 PINOKIO는 시뮬레이터, 디지털 트윈, AI 에이전시(agancy)를 통합한 차세대 DES(이산 이벤트 시뮬레이션) 기반 플랫폼으로, 제조 물류 전반에 걸친 통합 설루션을 제공한다. PINOKIO는 세 가지 핵심 모듈로 구성된다. 첫 번째는 ‘Pino SIM’으로, 공정 흐름 설계부터 시뮬레이션, 분석까지 수행하는 시뮬레이터다. Pino SIM은 도면 편집과 레이아웃 설계를 위한 Pino Editor를 내장하고 있어, 단순한 시뮬레이션을 넘어 제조 기준정보 입력, 물류 시나리오 구성, 시뮬레이션 실행 및 시각화 분석까지 다양한 기능을 제공한다. 이를 통해 설계 초기 단계부터 실제 운영에 이르기까지 전 과정의 최적화를 효과적으로 지원한다. 두 번째는 실시간 디지털 트윈 모듈인 ‘Pino DT’다. MES, IoT, PLC, 센서 등 다양한 제조 운영 시스템과의 실시간 연동을 통해 대용량 데이터를 실시간으로 수집하고 처리하며, 이를 바탕으로 실시간 모니터링은 물론 미래 상황 예측, 예지 보전 기반의 시뮬레이션이 가능하다. 이는 생산 현장의 가시성과 민첩성을 높이는 데 기여한다. 세 번째는 인공지능 기반의 ‘Pino AI’다. LLM(대규모 언어 모델)과 sLLM(전문 도메인 특화 언어 모델)을 활용한 대화형 UI를 통해 사용자가 직관적으로 데이터를 분석하고 의사결정에 활용할 수 있다. 또한 목적에 따라 강화학습, 파라미터 최적화 등 다양한 AI 기법을 적용할 수 있어 생산성과 품질 향상을 동시에 도모할 수 있다. PINOKIO는 엔비디아 옴니버스(NVIDIA Omniverse)와 같은 고급 시각화 플랫폼과 연동 가능하며, 파이썬(Python) 개발 환경 확장도 지원함으로써 사용자 맞춤형 라이브러리 개발이 가능하다. 이를 통해 제조 기업은 사전 공정 및 물류 최적화는 물론 실시간 생산 모니터링, 미래 예측, AI 기반 정확도 향상 등 다양한 지능형 서비스를 구현할 수 있다. 제조업의 디지털 전환이 본격화되는 시대에 PINOKIO는 스마트 공장을 넘어 AI 전환을 실현하는 핵심 파트너로 부상하고 있다.   PINOKIO의 특징 PINOKIO는 고도화된 시뮬레이션 엔진과 AI 통합 기능을 바탕으로 대규모 데이터 처리 및 실시간 예측 분석을 지원하며 스마트 제조 시대의 경쟁력을 강화하고 있다. PINOKIO는 이벤트 처리 기법 최적화 및 단순화된 시뮬레이션 엔진 설계로 빠른 연산 속도를 제공한다. 특히, 초당 60프레임(FPS) 기준으로 500만 개 수준의 대규모 3D 데이터를 안정적으로 처리할 수 있으며, 선택적 컴파일 방식(C# 기반 네이티브 코드)을 활용한 별도 계산 도구를 통해 집약적인 연산 작업도 고속으로 수행할 수 있다. 디지털 트윈 구축에서도 PINOKIO는 강력한 성능을 발휘한다. MES, ACS, MCS 등 다양한 제조 운영 시스템과 연동과 IoT, 센서, PLC 등 생산 현장에서 수집되는 대용량 데이터를 실시간으로 처리한다. 이를 통해 실시간 모니터링과 동시에 백그라운드 시뮬레이션을 수행하고, 타임 호라이즌(Time Horizon) 방식의 미래 예측 기술을 통해 병목, 이상 징후 탐지 및 알람 기능도 제공된다. 또한, AI를 활용하기 위한 정상/이상 데이터 제공과 파라미터 최적화 및 시나리오별 분석 기능이 포함되어 있으며, LLM과 sLLM, 챗GPT(ChatGPT), 메타 라마(Meta LLaMA) 등 다양한 AI 모델을 통합한 AI 에이전시 기능을 통해 대화형 데이터 분석, 자동 의사결정 지원, 데이터 해석 및 운영 최적화를 구현한다. 시뮬레이션 설계 및 모델링 측면에서도 사용자 편의성이 강화됐다. Pino Editor를 활용해 레이아웃 도면을 직관적으로 확인 및 편집할 수 있으며, 제조 기준 정보 입력 및 템플릿 매칭 기능을 통해 모델링 작업 시간을 획기적으로 단축시킨다. 또한, 2차전지 및 반도체 공정에 특화된 전용 라이브러리도 제공되며, 고객 맞춤형 커스터마이징 시뮬레이터를 통해 사용자의 목적에 따라 분석 및 최적화가 가능한 유연한 개발 환경을 지원한다. 이처럼 PINOKIO는 고속 시뮬레이션, 실시간 예측, AI 기반 의사결정, 그리고 유연한 모델링 기능을 종합적으로 제공하며, 제조업의 지능화·자동화를 실현하는 설루션이다.   그림 1. PINOKIO UI 화면 – 반도체 FAB   사전 레이아웃 및 물류 검토를 위한 설루션 : Pino SIM 디지털 트윈 구축 시 미래 예측을 위한 시뮬레이터 역할과 기존 상용 설루션과 같이 공장 신축 또는 생산 라인 변경 등 제조 현장의 변화가 요구된다. 이런 상황에서 Pino SIM은 사전에 최적의 물류 계획과 레이아웃 구성을 지원하고 공정의 효율성과 안정성을 미리 확보할 수 있는 디지털 전환 핵심 도구이자 가상 공장 구현 설루션이다. Pino SIM은 제조 기준 정보(제품, 공정, 레이아웃, 물류 흐름, 작업 순서, 스케줄링 등)를 기반으로 공정을 시뮬레이션하며, 그 결과를 차트, 그래프 등 다양한 시각화 도구를 통해 분석할 수 있다. 이를 통해 레이아웃 검증 및 최적화, 생산성 향상 등 공장 운용 전반의 효율화를 실현할 수 있다. 특히, OHT, AMR 등 신 산업군을 위한 특화 라이브러리를 제공하며, 이송 설비 구현을 위한 이동, 충돌 방지, 회피 제어를 위한 OCS, ACS 기능도 탑재되어 있다. 이를 통해 코드 작성 오류를 줄이고 디버깅 시간을 줄일 수 있으며, 보다 쉽고 효율적으로 시뮬레이션 모델을 구축할 수 있다. 또한, 자동창고 모델링에 필요한 Stocker(Crane, Rack, Rail)를 그룹화 형태로 제공하여 빠른 모델링이 가능하다. 환경과 에너지 측면에서도 전력 사용량 및 탄소 배출량(탄소세) 분석 기능을 통해 지속 가능한 생산 전략 수립에 도움을 주며, 제조업의 친환경화와 ESG 경영 대응에도 기여할 수 있다. 이처럼 Pino SIM은 공장 설계 단계에서의 의사결정 품질을 높이고, 새로운 제조 환경에 유연하게 대응할 수 있는 설루션이다.   그림 2. 라이브러리 제공 – Stocker   그림 3. 개발(코딩) 없이 기능 구현   그림 4. 시뮬레이션 결과 리포트 예제   디지털 트윈 설루션 : Pino DT 제조 현장에서 물류는 제품의 사이클 타임을 결정하는 요소 중에 하나이다. 물류 정체가 발생할 경우 제품의 사이클 타임이 길어지거나 라인이 정지되는 등 심각한 손실이 발생할 수 있다. 이러한 문제를 해결하기 위해 시뮬레이션을 통한 최적화된 운영 방식을 시스템에 적용하려는 노력이 이어져왔다. 기존의 물류 설루션은 현장에서 발생하는 대용량의 데이터를 시뮬레이션에 반영하여 실시간으로 의사결정하는 과정에서 다양한 제약으로 인해 어려움이 있었다. 또한, 현장 작업자의 개입과 같은 인간적 오류는 시스템이 예측할 수 없는 데이터를 발생시키기 때문에 생산 계획 단계에서의 사전 분석 및 검증만으로는 시뮬레이션 정합성을 높이는데 한계가 있다. Pino DT는 최적화된 자체 개발 시뮬레이션과 모니터링 엔진을 탑재하여 이를 해결하였다. 시뮬레이션의 이벤트 횟수를 최적화하여 최소한의 이벤트로 시뮬레이션이 가능하도록 설계했다. 또한 계산 속도에 이점이 있는 C, C++ 언어로 물류 경로를 최적화하는 알고리즘을 구현하여 기존 설루션 대비 약 2만평 규모의 공장에서 약 70배의 향상된 성능을 검증하였다.   그림 5. Pino DT의 UI 화면   대용량 데이터 처리 및 실시간 모니터링 Pino DT는 시뮬레이션에 최적화된 알고리즘을 사용함으로써 대용량 데이터 처리가 가능하고, 현장 데이터를 실시간으로 시뮬레이션에 반영할 수 있다. 기존 물류 시뮬레이션 설루션에 비해 60~700배 뛰어난 가속 성능을 제공하는 시뮬레이션 도구이다. 제조 현장과 동일한 상황을 시뮬레이션하기 위해 현장과 연동 후 데이터를 가공하여 디지털 트윈 모델로 표현하여 가시화하고, 사용자가 설정한 시간 주기마다 미래를 예측하는 시뮬레이션(proactive simulation)을 백그라운드로 수행한다. 이는 제품의 공정 시간보다 짧은 시간 안에 결과를 확인할 수 있고, AI를 통해 보다 정확한 의사결정을 내릴 수 있도록 지원한다.   그림 6. Pino DT의 모니터링 화면   디지털 트윈 실시간 시뮬레이션 : 미래 예측 실시간 현장 상황을 반영하여 미래를 예측하는 시뮬레이션(proactive simulation)은 제품의 택트 타임(tact time)보다 짧은 시간 내에 결과를 도출해내지 못하면 현장에서 선제 대응하지 못하는 결과를 초래할 수 있다. 모니터링 엔진으로부터 라인 상황에 대한 데이터를 수집하고, 현재로부터 예측하고자 하는 시간 동안 발생하는 이상상황에 대해 피드백을 준다. 예를 들어 조립 라인의 경우에는 부품이 5분 뒤에 부족하다는 알람을 작업자에게 즉시 전달하여 선제적 대응을 가능케 함으로써, 라인 정지 등 비상 상황을 사전에 방지할 수 있다. PINOKIO 디지털 트윈 시뮬레이션은 이러한 역할이 가능하도록 가속화한 고속 시뮬레이션 엔진을 보유하고 있다.   그림 7. 현장 FAB(왼쪽)과 PINOKIO에서 생성된 디지털 트윈(오른쪽)   제조 물류 현장에 특화된 AI 플랫폼 : Pino AI AI를 이용한 설루션을 만들기 위해서는 다양한 상황에 대한 데이터가 필요하다. 하지만 제조 현장의 특성 상 여러 상황에 대한 데이터를 획득하기 어렵다. PINOKIO에서는 현장에서 획득하기 어려운 데이터를 시뮬레이션을 통해 데이터를 확보할 수 있다. 즉, Pino DT 모델이 AI를 위한 데이터를 생성하고, 이를 AI가 최적 값을 도출하여 시뮬레이션에 반영한다. Pino DT에서 획득한 데이터를 파이썬, C, 자바(JAVA) 등 다양한 언어로 구현한 로직을 적용할 수 있도록 개발 환경을 제공하고 있다. 이를 통해 예측 정확도 향상, 데이터 기반 의사 결정, Scheduling, Routing, Dispatching 등 목적에 따라 AI 활용이 가능하다. 또한 LLM, sLLM, 챗GPT(ChatGPT), 메타 라마(Meta Llama) 등과 결합한 대화형 UI를 통해 사용자가 직관적으로 데이터를 분석하고 의사결정에 활용할 수 있다.   그림 8. 대화형 UI 및 결과 리포트   그림 9. Pino DT와 AI 모델 활용 원리   Pino DT와 현장 데이터 인터페이스 디지털 트윈에 가장 중요한 요소는 현장과의 연결이다. 대부분의 물류 전문 설루션이 현장과의 연결을 위한 인터페이스를 지원하지만, 많은 양의 데이터를 처리하면서 실시간으로 시뮬레이션하는데 어려움이 있다. Pino DT는 대용량 데이터 처리와 시뮬레이션 가속 성능이 뛰어나 실시간 모니터링 시스템까지 가능하다. <그림 10>은 현장에 있는 MES와 Pino DT가 인터페이스되는 과정이다. 현장에 있는 PLC가 MES에 데이터를 전달하고, MES는 그 데이터를 데이터베이스에 저장한다. 이를 Pino DT에서 외부 통신(IP)을 통해 데이터베이스에 접근하여 데이터를 시뮬레이션에 반영한다. 이 과정에서 현장 데이터의 상태가 중요하다. 불필요한 데이터가 있거나 로스 또는 시간 순서가 맞지 않은 경우가 대부분이다. Pino DT에서는 현장 데이터를 올바르게 정제하는 작업을 거쳐 현장과 동일한 디지털 트윈 모델을 만든다.   그림 10. 현장 데이터 인터페이스 과정   PINOKIO의 기대 효과 PINOKIO는 현장 운영 데이터를 실시간으로 디지털 트윈과 연동함으로써 모니터링이 가능하며, 전체 공장을 PC, 웹, 모바일 등 다양한 형태로 여러 사용자와 함께 직관적으로 확인하면서 공유하고 협업할 수 있다. 또한 현장과 연결된 디지털 트윈 모델을 이용하여, 미래에 발생 가능한 문제점을 예지(predictive)하고, 이러한 문제점을 사전에 해결하기 위한 선제대응(proactive) 의사결정을 가능하게 한다. 이 때 디지털 트윈을 이용한 사전예지는 온라인 시뮬레이션 기술에 기반하고, 선제대응은 AI 기술에 기반한다고 볼 수 있다. 디지털 트윈 기반 사전예지의 시간적 범위(time horizon)는 현장의 특성에 따라서 0.1시간~10시간으로 달라질 수 있으며, 문제점의 종류는 주로 생산 손실(loss), 부품의 혼류 비율 불균형, 설비 고장예지 및 물류 정체 등을 포함한다. 문제점이 예지되면 이를 해결하기 위한 즉각적인 의사결정 AI 기술을 활용하여 최적 운영을 달성함으로써 생산성, 경제성, 안정성 및 경쟁력 향상 효과가 있다.   맺음말 생산 계획 단계에서 Pino SIM을 통해 레이아웃 검증과 물류를 최적화하고, Pino SIM 모델 데이터를 생산 운영 단계에서 PINOKIO와 연계하여 현장 데이터 기반 실시간 모니터링과 미래 상황 예측 및 선제 대응함으로써 현실적이고 실제 활용 가능한 스마트한 디지털 트윈을 구축할 수 있다. 다음 호부터는 Pino SIM, Pino DT, Pino AI 등 각 제품별 소개 및 적용 사례를 소개하고자 한다.   그림 11. 디지털 트윈을 위한 플랜트 시뮬레이션과 PINOKIO     ■ 기사 내용은 PDF로도 제공됩니다. 
작성일 : 2025-07-01
디지털 트윈 구축을 위한 BAS 기반 플랫폼, WAiSER (와이저)
주요 디지털 트윈 소프트웨어   디지털 트윈 구축을 위한 BAS 기반 플랫폼, WAiSER (와이저)   개발 및 자료 제공 : 한국디지털트윈연구소, 042-863-8090, www.kdtlab.kr   한국디지털트윈연구소는 KAIST 연구소기업으로, 빅데이터와 기계학습 기반 AI 기술과 전통적인 시뮬레이션 기법을 융합하여 디지털 트윈 구축을 위한 BAS 기반 플랫폼인 ‘WAiSER’를 상용화했다. WAiSER 플랫폼은 국방, 스마트시티, 에너지, 제조, 의료 등 다양한 분야에서 실체계만으로 해결할 수 없는 문제들을 가상 실험을 통해 분석, 예측 및 최적화를 가능하게 하는 고도화된 솔루션을 제공하며, 이를 통해 각 산업의 효율성을 극대화하고 데이터 기반 의사결정의 정확성을 향상시키고 있다. 1. 주요 특징   ■ 모델의 신뢰도 향상과 실체계와 연동하여 실체계의 변화를 반영할 수 있는 모델 학습/진화엔진 탑재 ■ 국제표준 기반으로 다양한 이종 디지털 트윈/시뮬레이션 모델, IoT/Bigdata/AI플랫폼, GIS/BIM/CAD, VR/AR/Metaverse등을 PoP(Platform of Platforms) 개념으로 유연하게 연동할 수 있는 개방형 플랫폼 ■ MFM(Muti-Fidelity Modeling)/MRM(Multi-Resolution Modeling) 지원 ■ FTS(Fast Time Simulation)/RTS(Real Time Simulation) 지원  ■ 역방향 시뮬레이션(Reverse Simulation) 기능 지원 2. 주요 기능 ■ IoT 등의 수단을 통해 실체계로부터 운영 데이터를 수집하거나 실체계 제어 명령 전달 등을 위한 인터페이스 ■ 가설적 모델을 기반으로 디지털 트윈 모델의 데이터와 실체계의 데이터가 일치하도록 디지털 트윈 모델 내부의 파라미터 또는 함수를 최적화하는 모듈 ■ 다수의 디지털 트윈 모델이 연동되어 실행되는 환경으로 확장하기 위한 병렬/분산 시뮬레이션 도구와의 인터페이스 지원 ■ 프레임 워크 기반 SW개발 형태로 모델을 개발할 수 있도록 플랫폼에서 정의하는 모델 클레스들의 템플릿 제공 ■ 연속시간 및 이산사건 모델이 혼합된 하이브리드 모델의 실행을 위해 2가지 엔진이 신호-이벤트(S-E) 변환기를 통해 혼합적으로 실행할 수 있도록 하이브리드 시뮬레이션 엔진 모듈 제공 ■ 사용자를 위한 그래픽 사용자 인터페이스 기능 3. 성공 사례 ■ 국방분야 War Game, 전투실험, 분석, 획득 업무 적용으로 실체계만으로 해결할 수 없는 문제를 해결 및 시간단축, 비용절감, 품질향상, 리스크 경감에 기여 ■ 교통신호제어 최적화, UAM 운영환경 디지털 트윈 사업을 통한 교통문제 해결에 기여 ■ 풍력발전량 예측, 댐 최적 방류량 산출 등 다양한 분야 문제 해결에 기여   4. 도입 효과 ■고 충실도(High Fidelity) 디지털 트윈 모델 구현 및 가상실험을 통한 미래 변화를 분석, 예측 및 최적화함으로써 실체계만으로 해결할 수 없는 문제 해결 및 지혜 수준의 서비스 제공  ■DBSE(Digital twin Based System Engineering) 적용으로 복잡하고 어려운 사회, 산업 문제들을 단순화하여 지혜롭게 해결할 수 있도록 지원   상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기
작성일 : 2025-06-08
사례로 살펴 보는 아키텍처 모델과 1D 모델의 연계
MBSE를 위한 아키텍처-1D 모델 연계의 중요성 및 적용 전략 (2)   지난 호에서는 MBD(모델 기반 개발)의 성과를 높이기 위한 아키텍처 모델과 1D 모델의 체계적인 연계 방안을 소개했다. 이번 호에서는 실제 모델 구축 및 설계 사례를 살펴 본다.   ■ 오재응 한양대학교 명예교수, LG전자 기술고문   1D 모델 구축 및 설계 사례 여기에서 소개할 사례는 의료용 기기 침대에 대한 설계 및 모델링 프로세스를 설명하기 위한 것으로, 실제 의료 현장에서 사용되는 환자 이송 및 자세 조절 장치를 대상으로 한다. 핵심 목적은 현재 사용 중인 기기의 성능을 유지하면서 제조 및 운영 비용을 절감하고, 유지 보수가 용이한 형태로 개선하는 것이다. 이를 위해 시스템 아키텍처 구성, 서브시스템 모델링, 제어기 설계 및 가상시험 환경 구성이 유기적으로 통합되어 있다.(그림 1)   그림 1. 기구 및 1D 모델 프로세스를 의료 기기용 침대 설계에 적용한 예   시스템 구성 및 작동 원리는 다음과 같은 주요 구성 요소로 이루어져 있다. 침대 위의 사람이 눕는 구조물이며, 움직임은 없지만 시스템의 하중 요소로 작용한다. 침대 본체에 사람을 지지하고 구동장치 및 제어기와 연결되어 상하 혹은 기울기 방향으로 조정 가능하다. 기어 풀링 벨트와 풀리 시스템은 침대의 움직임을 유도하는 메커니즘으로, 전기 모터에 의해 회전되는 벨트가 기어와 연결되어 침대 위치를 조정한다. 가이드 및 가이드 롤러는 침대의 직선 이동을 유도하며 안정적인 동작을 보장한다. 구동 축은 모터의 회전력을 벨트에 전달하는 역할을 수행하며, 전체 시스템의 동적 응답에 큰 영향을 미친다. 1D 모델링 및 제어 시스템에서 1D 모델 구축은 전체 시스템의 성능 예측 및 최적화를 위해 매우 중요하다. 이 사례에서는 물리 기반 모델을 활용하여 다음과 같은 서브 시스템 모델이 구축되었다. 모터 구동부 모델은 전기 모터, 기어 감속기, 벨트 구동 시스템 등으로 구성되며, 목표 위치에 따라 침대의 이동을 정밀하게 제어한다. 서브 블록도에서는 입력되는 타겟 각도와 실제 위치 간의 오차를 계산하고, 이를 보상하기 위한 PID 제어기가 설계되어 있다. 침대 이동 메커니즘 모델은 침대의 기계적 운동은 벨트 풀리 시스템을 통해 직선 운동으로 전환되며, 이에 따른 침대 위치 및 속도 응답을 시간 함수로 시뮬레이션할 수 있다. 모델에서는 각 구성 요소의 질량, 감쇠, 스프링 상수 등의 파라미터가 반영되어 있으며, 실제 작동 중 발생할 수 있는 진동 및 불안정 현상까지도 반영할 수 있다. 제어기 및 인터페이스 모델은 사용자 인터페이스를 통해 목표 위치를 입력하면, 제어기 블록은 이를 기준으로 모터에 신호를 출력하여 실시간 제어가 가능하다. 시뮬레이션을 통해 피드백 루프의 안정성과 응답 속도를 사전에 검증할 수 있다. 이 사례에서 설계 및 개발 목표는 비용 절감을 위해 기존 장비에 비해 구조 및 부품 단순화로 제조 비용과 유지보수 비용을 줄이는 것이다. 또한 성능 유지 및 개선을 위해서 사람의 체중, 운동 속도, 반응 속도 등의 다양한 작동 조건 하에서도 기존 수준 이상의 성능을 확보하는 것이다. 검증 기반 설계에서 실제 제품 제작 이전에 가상 시뮬레이션을 통해 문제점을 사전에 파악하고 설계 품질을 높이는 것을 가능하게 한다. 이 사례는 MBSE(모델 기반 시스템 엔지니어링)와 MBD의 통합 적용을 통해 실제 의료기기 설계 과정의 효율화와 성능 개선을 동시에 달성할 수 있음을 보여준다. 다양한 시스템 구성요소 간의 상호작용을 정량적으로 모델링하고 이를 기반으로 제어기 설계 및 성능 검증을 수행함으로써, 제품 개발 초기 단계에서부터 신뢰성 있는 설계를 유도할 수 있다.   내부 블록 다이어그램과 파라미터 다이어그램의 연계 시스템 모델링 및 시뮬레이션 기반의 설계 환경에서는 기능적 구성요소 간의 상호작용과 함께, 각 구성요소에 영향을 주는 매개변수(parameter)의 정의와 연계가 매우 중요하다. 이 사례에서는 내부 블록 다이어그램(IBD)과 파라미터 다이어그램을 연계하여, 시스템 구성요소 간의 구조적 연계와 수치적 특성 연계를 동시에 파악할 수 있는 방법을 설명한다.    그림 2. 의료 기기용 침대 설계를 위한 내부 블록 다이어그램과 파라미터 다이어그램   <그림 2>의 내부 블록 다이어그램은 ‘Belt Side Speed Analysis System’이라는 롤러 기반 시스템의 내부 구성 요소 간 상호작용을 시각화한 것이다. 시스템은 다음과 같은 주요 하위 블록으로 구성되어 있다. upport roller/mechanic roller는 롤러 메커니즘으로서, 회전을 통해 동력을 전달하거나 속도를 제어한다. roller/guide/clutch 등은 기계적 서브시스템의 구성요소이며, 각 요소는 물리적으로 연결되어 동작한다. speed_ change 블록은 속도 변화 조건을 반영하는 부분으로, 시뮬레이션에서 조건부 동작을 정의한다. controller는 전체 시스템의 제어 역할을 수행하며, 클러치나 롤러의 동작을 조정한다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-06-04
마이크로소프트, “비즈니스 전반에서 AI 에이전트가 활약하는 시대가 온다”
마이크로소프트가 ‘마이크로소프트 빌드 2025(Microsoft Build 2025)’를 개최하고 AI 에이전트, 개발자 도구, 오픈 플랫폼 등 신규 기능과 주요 업데이트를 발표했다.   AI는 추론 능력과 메모리 기술의 고도화로 인해 스스로 학습하고 결정을 내리는 에이전트로 진화하고 있다. 이번 행사에서 마이크로소프트는 이러한 AI 에이전트가 개인, 조직, 팀은 물론 전체 비즈니스 전반에 작동하는 인터넷 환경을 ‘오픈 에이전틱 웹(Open Agentic Web)’으로 정의하며, AI가 사용자나 조직을 대신해 결정을 내리고 작업을 수행하는 시대가 도래했다고 강조했다.  전 세계 수십만 조직이 마이크로소프트 365 코파일럿(Microsoft 365 Copilot)을 활용해 리서치, 아이디어 브레인스토밍 등 다양한 업무에 특화된 AI 에이전트를 구축하고 있다. 이 중 포춘 500대 기업 90%를 포함한 23만 개 이상 조직은 코파일럿 스튜디오(Copilot Studio)를 통해 AI 에이전트와 자동화 앱을 개발하고 있다. 또한, 전 세계 약 1500만 명의 개발자가 깃허브 코파일럿(GitHub Copilot)을 통해 코드 작성, 검토, 배포, 디버깅 등 개발 전 과정을 효율화하고 있다.     이번 빌드 2025에서는 AI 에이전트 개발을 돕는 플랫폼과 도구가 집중 소개됐다. 먼저 깃허브(GitHub), 애저 AI 파운드리(Azure AI Foundry), 윈도우(Windows) 등 주요 개발 플랫폼에서 활용할 수 있는 다양한 기능과 업데이트가 발표됐다. 이번 업데이트는 개발 생애 주기의 변화에 따라 개발자가 보다 효율적으로 작업하고, 대규모 개발 환경에서도 유연하게 대응할 수 있도록 설계됐다.  깃허브 코파일럿에는 비동기화(asynchronous) 방식의 코딩 에이전트 기능이 새롭게 도입됐다. 또한, 깃허브 모델(GitHub Models)에는 프롬프트 관리, 경량평가(LightEval), 엔터프라이즈 제어 기능이 추가돼, 개발자는 깃허브 내에서 다양한 AI 모델을 실험할 수 있게 됐다. 이와 함께 깃허브 코파일럿 챗(GitHub Copilot Chat) 또한 비주얼 스튜디오 코드(Visual Studio Code)에서 오픈소스로 공개됐다. 깃허브 코파일럿 확장 기능의 AI 기능은 이제 개발 도구를 구동하는 오픈소스 저장소의 일부가 됐다.  윈도우 AI 파운드리(Windows AI Foundry)도 새롭게 공개됐다. 개발자에게 개방적이고 널리 사용되는 플랫폼 중 하나로서 윈도우가 확장성, 유연성, 그리고 성장 기회를 제공함에 따라, 윈도우 AI 파운드리는 학습부터 추론까지 AI 개발자 라이프사이클을 지원하는 통합되고 신뢰할 수 있는 플랫폼을 제공한다. 이를 통해 개발자는 시각 및 언어 작업에 특화된 간단한 모델 API를 활용해 오픈소스 대규모 언어 모델(LLM)을 파운드리 로컬(Foundry Local) 환경에서 실행하거나, 자체 개발한 모델을 가져와 변환·미세조정한 뒤 클라이언트 또는 클라우드 환경에 배포할 수 있다.  애저 AI 파운드리도 주요 업데이트를 진행했다. 애저 AI 파운드리는 개발자가 AI 애플리케이션과 에이전트를 설계·맞춤화·관리할 수 있도록 지원하는 통합 플랫폼으로, 이번 애저 파운드리 모델(Azure Foundry Models) 업데이트를 통해 AI 기업 xAI의 그록3(Grok 3) 및 그록3 미니(Grok 3 Mini) 모델이 마이크로소프트 생태계에 추가됐다. 두 모델은 마이크로소프트가 직접 제공하며 과금한다. 이로써 개발자가 선택할 수 있는 AI 모델의 범위는 파트너사 및 마이크로소프트 제공 모델을 포함해 1900개 이상으로 확대됐다. 이와 함께, 안전한 데이터 통합, 모델 맞춤화, 엔터프라이즈급 관리 기능도 제공돼 보다 정밀한 AI 운영이 가능해졌다.   AI 모델을 항목별로 비교해 순위를 보여주는 모델 리더보드(Model Leaderboard)와 특정 쿼리나 작업에 따라 최적의 모델을 실시간으로 선택할 수 있도록 설계된 모델 라우터(Model Router) 등 신규 도구도 함께 공개됐다.   AI 에이전트 개발과 배포를 보다 안전하고 효율적으로 수행하도록 지원하는 기능도 선보였다. 사전 구축된 에이전트(pre-built agents), 맞춤형 에이전트 설계 도구, 멀티 에이전트 기능, 새로운 모델 등으로 구성된 이번 업데이트는 개발자와 조직이 보다 유연하게 AI 에이전트를 구축하고 생산성을 높이는 데 활용할 수 있도록 지원한다.  애저 AI 파운드리 에이전트 서비스(Azure AI Foundry Agent Service)는 여러 전문 에이전트를 조율해 복잡한 작업을 처리할 수 있도록 지원한다. 이번 업데이트에서는 시맨틱 커널(Semantic Kernel)과 오토젠(AutoGen)을 통합 제공하는 단일 SDK와, 에이전트 간 상호작용을 가능하게 하는 A2A(Agent-to-Agent) 기능 및 모델 컨텍스트 프로토콜(Model Context Protocol, 이하 MCP) 지원 기능도 포함한다.  애저 AI 파운드리 옵저버빌리티(Azure AI Foundry Observability)에는 AI 에이전트의 신뢰도를 높일 수 있도록 성능, 품질, 비용, 안전성 등의 지표들을 모니터링할 수 있는 기능이 탑재됐다. 모든 지표는 통합 대시보드를 통해 시각적으로 추적할 수 있어, 운영 현황을 직관적으로 파악할 수 있다.  보안과 거버넌스 측면에서도 기능이 강화됐다. 프리뷰로 제공되는 엔트라 에이전트 ID(Microsoft Entra Agent ID)를 활용하면, 애저 AI 파운드리나 코파일럿 스튜디오에서 생성한 에이전트에 고유 ID가 자동으로 부여된다. 이를 통해 에이전트를 초기 단계부터 안전하게 관리하고, 무분별한 생성을 방지해 보안 사각지대를 방지할 수 있다. 또한, 애저 AI 파운드리로 구축된 애플리케이션과 에이전트는 퍼뷰(Microsoft Purview)의 데이터 보안 및 컴플라이언스 제어 기능과 통합된다. 여기에 위험 파라미터 설정, 자동 평가 수행, 상세 보고서 제공 등 고도화된 거버넌스 도구도 함께 제공돼 정밀한 보안 및 운영 관리가 가능해졌다.  마이크로소프트 365 코파일럿 튜닝(Microsoft 365 Copilot Tuning)은 기업 고유의 데이터, 워크플로, 업무 프로세스를 기반으로 로코드 방식의 AI 모델 학습과 에이전트 생성을 돕는다. 생성된 에이전트는 마이크로소프트 365 환경 내에서 안전하게 실행되며, 조직별 업무에 특화된 작업을 높은 정확도로 수행할 수 있다. 예를 들어, 로펌은 자사의 전문성과 양식에 맞춰 문서를 작성하는 에이전트를 구축할 수 있다.  멀티 에이전트 오케스트레이션 기능도 코파일럿 스튜디오(Copilot Studio)에 새롭게 도입됐다. 이를 통해 다양한 에이전트를 상호 연결하고 기능을 결합함으로써 복잡하고 광범위한 업무를 처리할 수 있다.  이와 함께 마이크로소프트는 AI 에이전트의 미래를 위해 개방형 표준과 공유 인프라를 발전시키는 MCP 생태계 지원 업데이트와 새로운 개방형 프로젝트인 ‘NLWeb’을 발표했다. 마이크로소프트는 깃허브, 코파일럿 스튜디오, 다이나믹스 365(Dynamics 365), 애저 AI 파운드리, 시맨틱 커널, 윈도우 11 등 자사가 보유한 주요 에이전트 및 프레임워크 전반에서 MCP를 지원한다. 마이크로소프트와 깃허브는 MCP 운영 위원회(MCP Steering Committee)에 새롭게 합류해, 개방형 프로토콜의 보안성과 확장성을 높이기 위한 공동 노력을 이어갈 예정이다.  또한 MCP 생태계 확장을 위한 두 가지 업데이트도 공개했다. 첫 번째는 사용자가 기존 로그인 방식을 그대로 활용해 에이전트 및 LLM 기반 애플리케이션에게 개인 저장소나 구독 서비스와 같은 다양한 데이터에 대한 안전한 접근 권한을 부여할 수 있도록 인증 체계를 개선했다. 두 번째는 MCP 서버 항목을 누구나 최신 공용 또는 사설 저장소에서 중앙화해 관리할 수 있도록 지원하는 MCP 서버 등록 서비스를 설계했다.   NLWeb은 에이전틱 웹 환경을 위한 개방형 프로젝트로, 마이크로소프트는 NLWeb이 에이전틱 웹에서 HTML과 유사한 역할을 할 수 있을 것으로 기대한다. NLWeb은 웹사이트 운영자가 원하는 AI 모델과 자체 데이터를 연결해 대화형 인터페이스를 구축함으로써 사용자가 웹 콘텐츠와 직접 상호작용하며 풍부하고 의미 있는 정보를 얻도록 돕는다. 또한 모든 NLWeb 엔드포인트는 MCP 서버이기도 하기 때문에 웹사이트 운영자는 필요시 AI 에이전트들이 해당 사이트의 콘텐츠를 쉽게 검색하고 접근하도록 설정할 수 있다.  한편, 마이크로소프트는 과학 연구를 가속화하기 위한 AI 에이전트 기반 플랫폼 마이크로소프트 디스커버리(Microsoft Discovery)도 선보였다. 이 플랫폼은 연구자가 AI 에이전트를 활용해 과학적 발견 과정 전반을 혁신할 수 있도록 지원한다. 마이크로소프트는 이를 통해 제약, 환경 등 다양한 산업 분야의 연구개발 부서가 신제품 출시 기간을 단축하고, 연구 전반의 속도와 범위를 확장할 수 있을 것으로 기대하고 있다. 
작성일 : 2025-05-20