• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "쿼리"에 대한 통합 검색 내용이 245개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
[포커스] SAP, 모든 설루션에 AI 탑재… “데이터 중심의 선순환 구조로 비즈니스 AI 혁신”
SAP 코리아가 7월 15일 연례행사인 ‘SAP 나우 AI 투어 코리아(SAP NOW AI Tour Korea)’를 진행하면서, AI(인공지능) 시대를 위한 새로운 비즈니스 운영 방식을 제시했다. ‘Unleash Your Future with Business AI(비즈니스 AI로 미래를 열다)’를 주제로 열린 이번 행사에서는 빠르게 변화하는 AI 시대에 기업의 비즈니스 혁신을 지원하는 SAP의 전략과 비전이 소개됐다. ■ 정수진 편집장   애플리케이션–데이터-AI의 선순환으로 비즈니스 혁신 주도 SAP의 AI 전략은 애플리케이션, 데이터, 비즈니스 AI의 선순환 효과(flywheel effect)를 통해 비즈니스 운영 방식을 근본적으로 혁신하겠다는 것이다. SAP의 지나 바르주-브로이어(Gina Vargiu-Breuer) 최고인사책임자는 이런 전략의 핵심으로 자사의 모든 애플리케이션에 AI를 기본으로 내재화(embedded AI)한다는 ‘AI 퍼스트(AI First)’ 접근법을 꼽았다. SAP는 2025년 말까지 400개 이상의 임베디드 AI 기능을 출시할 계획이다. 이와 동시에 SAP는 ‘스위트 퍼스트(Suite First)’ 전략을 추구한다. 개별 기능이 뛰어난 ‘최고의 설루션(Best of Breed)’을 모아 놓는 것을 넘어, 모든 비즈니스 애플리케이션을 유기적으로 통합한 ‘최적의 스위트(Best of Suite)’를 제공한다는 뜻이다. 바르주-브로이어 최고인사책임자는 이를 통해 기업 고객이 일관성, 유연성, 민첩성을 확보할 수 있다고 전했다. SAP의 전략은 애플리케이션이 생성하는 고품질의 비즈니스 데이터를 기반으로 신뢰할 수 있는 AI(reliable AI)를 구동하고, 이 AI가 다시 애플리케이션을 더욱 지능적으로 만드는 선순환 구조를 완성하는 것으로 요약할 수 있다. SAP는 애플리케이션, 데이터, AI가 긴밀히 연계되어 만들어내는 시너지가 고객에게 실질적인 비즈니스 가치를 제공하는 원동력이 될 것으로 보았다.   ▲ SAP의 이르판 칸 최고제품책임자가 기자간담회를 통해 자사의 AI 전략과 기술을 소개했다.   데이터 복잡성을 해결하는 ‘비즈니스 데이터 클라우드’ 이번 행사에서 SAP가 소개한 ‘SAP 비즈니스 데이터 클라우드(SAP Business Data Cloud : BDC)는 AI 시대에 기업의 데이터 관리와 AI 도입을 지원하고 비즈니스 운영 방식을 혁신하기 위해 새로운 서비스형 소프트웨어(SaaS) 설루션이다. BDC는 분산된 데이터를 통합하고 의미 있는 데이터로 전환하여 AI 활용도를 극대화하는 데 초점을 맞추었다. 이를 위해 BDC는 데이터 통합과 조화를 통한 단일 진실 공급원을 구축하고, 신뢰할 수 있는 AI 및 지능형 애플리케이션의 기반을 마련하면서, 현대적 아키텍처와 강력한 파트너 생태계를 지원한다. 기업들은 AI를 위한 데이터 준비, 수집, 거버넌스 등 데이터 관리에 많은 시간을 쓰고 있으며, 이는 기업에서 AI를 활용하는 데 있어 어려움으로 작용한다. BDC는 이러한 문제를 해결하기 위해 SAP와 비 SAP 데이터를 통합해 연결된 데이터 환경을 구축하도록 한다. 특히 기존 애플리케이션의 데이터 모델을 조화(harmonize)시켜서, 여러 비즈니스 라인에 걸쳐 다르게 정의된 고객 데이터를 단일 뷰로 제공한다. BDC는 고품질의 기업 데이터를 통합 관리하여 AI 애플리케이션이 안정적으로 데이터를 활용하고 모델을 훈련하는 시간을 줄인다. 또한 SAP의 AI 코파일럿인 쥴(Joule)과 연동해 비즈니스 데이터의 맥락을 깊이 있게 파악하고, 분석 및 권장사항 도출에 필요한 데이터를 제공한다. SAP의 이르판 칸(Irfan Khan) 데이터 및 애널리틱스 사장 겸 최고제품책임자는 “ERP와 같은 기업의 핵심 시스템에서 데이터가 추가되거나 변경될 때마다 BDC는 이를 복사하고 최신 상태로 반영하여 일관성을 유지하며, 이렇게 조화된 데이터는 단순한 원시 데이터가 아닌 ‘의미적으로 풍부한 데이터 제품(semantically enriched data products)’으로 전환되어 모든 앱에서 활용된다”고 설명했다. 또한 “BDC는 데이터 추출, 변환, 적재(ETL) 파이프라인 구축과 유지보수를 완전 관리형 서비스로 제공한다. 이를 통해 기업은 데이터 관리의 부담을 덜고, 가치 있는 AI 활용 사례를 만드는 데 집중할 수 있게 된다”고 설명했다. BDC는 스토리지와 컴퓨팅을 분리한 레이크하우스(lakehouse) 아키텍처를 기반으로 설계되었으며, 텍스트, 오디오, 비디오 등 정형 및 비정형 데이터를 구분 없이 저장 및 지원한다. 또한 AWS, 구글 클라우드, 애저 등 주요 하이퍼스케일러 인프라 어디에서나 구동되도록 설계되어, 고객은 기존 인프라를 변경할 필요 없이 BDC를 도입할 수 있다. 칸 최고제품책임자는 “데이터브릭스(Databricks)와의 파트너십을 통해 제로 카피 공유(zero-copy sharing) 방식으로 SAP 및 비 SAP 데이터를 양방향 공유하며, 팔란티어(Palantir)와도 협력해 데이터 파이프라인 구축을 간소화하는 도구를 지원한다”고 소개했다. SAP BDC는 2025년 2월에 글로벌 출시되었으며, 한국 시장에는 7월 말부터 공식 제공된다.   ▲ SAP는 유기적으로 결합된 스위트로 비즈니스 AI를 구현하고자 한다.   데이터의 맥락을 이해하는 AI 코파일럿 ‘쥴’ 한편, SAP는 AI 코파일럿인 ‘쥴(Joule)’이 다양한 개선을 이뤘다고 소개했다. 쥴은 데이터의 맥락을 확인하고 위치에 관계 없이 데이터를 활용할 수 있도록 지원한다. 이를 통해 AI 에이전트가 비즈니스 맥락과 데이터 관계성을 파악하는 과정을 돕는다. BDC가 고품질 기업 데이터를 통합 관리한다면, 쥴은 이를 AI 애플리케이션에서 활용할 수 있도록 지원한다. 특히 지식 그래프(knowledge graph) 기술을 활용해 비즈니스 데이터를 온톨로지(ontology) 기반으로 연결함으로써, AI 모델의 환각 현상을 줄이고 사용자가 자연어 질의로 데이터에 쉽게 접근하도록 돕는다. SAP는 “지식 그래프는 정형 데이터의 이해를 돕는 역할을 하며, 쥴과 같은 기술을 통해 데이터 주변의 사용자 경험을 바꿀 수 있다. 지식 그래프 내에 조화된 데이터 제품(harmonized data products)을 로드하여 온톨로지 뷰를 활성화하고, 자연어 쿼리를 통해 데이터에 접근할 수 있게 한다”고 설명했다. 이외에도 SAP는 쥴 스튜디오(Joule Studio)를 통해 고객이 맞춤형 에이전트를 개발할 수 있도록 지원하며, 최신 LLM(거대 언어 모델)을 연결하고 활용할 수 있도록 한다. 칸 최고제품책임자는 “이러한 개선사항 및 핵심 기능을 통해 쥴은 데이터의 맥락적 이해를 높이고, 고품질 데이터를 기반으로 AI 기능을 강화하며, 사용자 경험을 혁신하고 있다”고 전했다. 그리고 “SAP는 AI 및 생성형 AI를 활용하여 국제화 및 언어 지원 제공을 매우 빠르게 가속화하고 있으며, 이를 통해 한국어뿐만 아니라 모든 언어 및 지역에서 영어와 유사한 기능을 제공하는 것이 목표”라고 덧붙였다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-08-04
지멘스, AI 코파일럿·몰입형 설계·통합 시뮬레이션 기능 추가된 NX 최신 업데이트 발표
지멘스 디지털 인더스트리 소프트웨어가 제품 엔지니어링 소프트웨어인 디자인센터(Designcenter) 제품군의 NX 및 NX X 소프트웨어의 최신 업데이트를 발표했다. 이번 업데이트는 현실 설계와 가상 세계에서의 협업을 위한 몰입형 엔지니어링, 제조를 위한 설계(design for manufacturing)의 새로운 기능, CAD 통합 유체 유동 시뮬레이션, 새로운 AI 설계용 코파일럿(Copilot) 도입 등을 포함한다. 최신 업데이트와 함께 제공되는 새로운 디자인 코파일럿 NX(Design Copilot NX)는 지멘스의 학습 리소스를 활용하고 AI 기반 자연어 인터페이스를 제공한다. 따라서 소프트웨어 초심자부터 새로운 기능을 탐색하며 지식을 확장하려는 숙련자까지 모두 학습 속도를 높일 수 있도록 지원한다. 사용자는 자연어 입력과 쿼리를 활용하는 NX 코파일럿 기능을 통해 기술적 질문, 모범 사례, 문서에 대한 답변을 빠르고 효율적으로 찾을 수 있다.     CES 2024에서 지멘스는 소니와 협력해 혼합현실(MR) 헤드셋을 기반으로 몰입형 엔지니어링 기능을 제공한다는 계획을 발표한 바 있다. 최신 NX 업데이트에서는 여러 제품 출시에 걸쳐 이러한 기능을 제공해 왔다. NX는 설계자와 엔지니어가 가상 현실 또는 증강 현실에서 3D CAD 설계를 생성, 확인, 편집할 수 있도록 NX 이머시브 디자이너(NX Immersive Designer)의 기능을 제공한다. 최신 업데이트에서는 동료, 파트너, 기타 이해관계자가 동일한 가상 현실 공간에서 협업할 수 있는 NX 이머시브 컬래버레이터(NX Immersive Collaborator)가 추가로 도입됐다. VR 협업에서 일반적으로 요구되는 복잡한 사전 작업 없이도 NX 인터페이스에서 직접 협업 세션을 시작할 수 있으며, 개별 부품 또는 전체 어셈블리를 측정, 평가하고 주석을 달 수 있는 설계 검토 도구를 제공한다. 최신 업데이트를 통해 도입된 새로운 NX 인스펙터(NX Inspector)는 디지털 트윈에 모델 기반 특성을 추가하는 기능으로, MBD(모델 기반 설계) 사용을 확장해 다운스트림 품질과 제조 프로세스를 정의한다. 이 기능은 디지털 계측 표준 컨소시엄의 모델 기반 특성(Model-Based Characteristics) 표준을 기반으로 하며, 설계자와 엔지니어가 제조 PMI를 정의할 수 있도록 지원한다. 이때 제조 PMI는 팀센터(Teamcenter) 및 팀센터 퀄리티(Teamcenter Quality)와의 통합을 통해 실시간 관리 데이터를 기반으로 검사와 계측 프로세스 생성을 촉진하는 데 재사용될 수 있다. 새로운 Design for Manufacture(DFM) Advisor는 부품 형상을 분석하고, 드릴링, 밀링, 어셈블리, 몰딩 등 다양한 제조 공정에서 발생할 수 있는 잠재적인 문제를 식별한다. 이를 통해 초기 제조 가능성 평가를 자동화하고 인터페이스 내에서 직접 실행 가능한 피드백을 제공한다. 더불어 팀센터에서 시각적 보고서를 생성하고 관리해 동료나 파트너와 공유하는 동시에, 인사이트를 활용해 추가 워크플로를 구축할 수 있다. 마지막으로 DFM 향상을 위해 NX 몰드 마법사(NX Mold Wizard)가 확장됐다. 이는 구성 변경에 따라 실시간으로 업데이트되는 표준 부품을 도입할 수 있다. 더불어 향상된 냉각 채널 시뮬레이션 도구를 제공해 냉각 시스템 반복으로 최상의 부품 품질을 달성하고, 사이클 시간을 최적화할 수 있도록 지원한다. 지멘스는 최신 업데이트를 통해 심센터 플로EFD(Simcenter FLOEFD) 소프트웨어 기술을 기반으로 하는 새로운 CAD 통합 설계 시뮬레이션 도구인 NX CFD 디자이너(NX CFD Designer) 소프트웨어도 선보인다. CFD 디자이너는 설계자가 NX CAD 작업 공간 내에서 직접 유체 흐름과 열 시뮬레이션 기능에 액세스해 시뮬레이션 기반 의사 결정을 할 수 있도록 지원한다. CFD 경험이 없는 사용자도 쉽게 사용할 수 있도록 설계된 이 소프트웨어는 자동화 기능을 통해 유체 체적 감지, 메싱과 같은 복잡한 작업을 설계자를 대신해 자동으로 처리한다. 이를 통해 다양한 작동 시나리오, 가정 분석, 지오메트리 변형을 신속하게 평가하고 결과를 비교할 수 있다. 지멘스는 새로운 CFD 디자이너와 함께 퍼포먼스 프레딕터(Performance Predictor)의 기능도 확장해 설계자와 엔지니어가 전체 어셈블리에 대한 응력(mechanical stress) 해석을 실행할 수 있도록 했다. 지멘스 디지털 인더스트리 소프트웨어의 밥 호브록(Bob Haubrock) 수석 부사장은 “디자인센터 브랜드로 제품 엔지니어링 설루션을 통합하는 작업이 빠르게 진행되고 있다. NX의 최신 업데이트는 다운스트림 품질과 제조를 위해 새로운 AI 기반 코파일럿 기능과 Characteristics 주도 MBD를 도입하고, 오랫동안 업계를 선도해 온 제품 엔지니어링 툴셋에서 혁신을 위한 새로운 영역을 개척하려는 지멘스의 노력을 명확히 보여준다”고 말했다.
작성일 : 2025-07-14
엔비디아, 도시 인프라에 물리 AI 도입하는 옴니버스 블루프린트 공개
엔비디아가 ‘스마트 시티 AI용 엔비디아 옴니버스 블루프린트(NVIDIA Omniverse Blueprint for smart city AI)’를 발표했다. 엔비디아는 이 블루프린트를 옴니버스, 코스모스(Cosmos), 네모(NeMo), 메트로폴리스(Metropolis)와 통합해 유럽의 도시에서 삶의 질을 개선시킬 것으로 기대하고 있다. 2050년까지 도시 인구는 두 배 증가할 것으로 예상된다. 이는 21세기 중반까지 도시 지역에 약 25억 명의 인구가 더해질 수 있음을 의미한다. 따라서 보다 지속 가능한 도시 계획과 공공 서비스의 필요성이 높아지고 있다. 전 세계 도시들은 도시 계획 시나리오 분석과 데이터 기반 운영 결정을 위해 디지털 트윈과 AI 에이전트를 활용하고 있다. 그러나 도시의 디지털 트윈을 구축하고 그 안에서 스마트 시티 AI 에이전트를 테스트하는 것은 복잡하며, 자원 집약적인 작업이다. 여기에는 기술적, 운영적 문제도 수반된다. 엔비디아가 공개한 스마트 시티 AI용 엔비디아 옴니버스 블루프린트는 이러한 문제를 해결하기 위한 것이다. 이 참조 프레임워크는 엔비디아 옴니버스, 코스모스, 네모, 메트로폴리스 플랫폼과 결합해 도시 전체와 주요 인프라에 물리 AI의 이점을 제공한다. 개발자는 이 블루프린트를 사용해 심레디(SimReady)와 같이 시뮬레이션이 가능한 사실적 도시 디지털 트윈을 구축할 수 있다. 이를 통해 도시 운영을 모니터링하고 최적화하는 AI 에이전트를 개발, 테스트할 수 있다. 스마트 시티 AI용 엔비디아 옴니버스 블루프린트는 완전한 소프트웨어 스택을 제공해, 물리적으로 정밀한 도시의 디지털 트윈에서 AI 에이전트의 개발, 테스트를 가속화한다.      엔비디아 옴니버스는 물리적으로 정확한 디지털 트윈을 구축해 도시 규모에서 시뮬레이션을 실행한다. 엔비디아 코스모스는 사후 훈련 AI 모델을 위한 대규모 합성 데이터를 생성한다. 엔비디아 네모는 고품질 데이터를 큐레이션하며, 해당 데이터를 사용해 비전 언어 모델(vision language model, VLM)과 대규모 언어 모델(large language model, LLM)을 훈련하고 미세 조정한다. 엔비디아 메트로폴리스는 영상 검색과 요약(video search and summarization, VSS)용 엔비디아 AI 블루프린트를 기반으로 영상 분석 AI 에이전트를 구축, 배포한다. 이를 통해 방대한 양의 영상 데이터를 처리하고, 비즈니스 프로세스를 최적화하는 데 중요한 인사이트를 제공한다.   이 블루프린트 워크플로는 세 개의 주요 단계로 구성된다. 먼저 개발자는 옴니버스와 코스모스를 통해 특정 위치와 시설의 심레디 디지털 트윈을 구축한다. 여기에는 항공, 위성, 지도 데이터가 활용된다. 이어서 엔비디아 타오(TAO)와 네모 큐레이터(Curator)를 사용해 컴퓨터 비전 모델, VLM 등 AI 모델을 훈련하고 미세 조정한다. 이로써 비전 AI 사용 사례에서 정확도를 높인다​. 마지막으로 이러한 맞춤형 모델에 기반한 실시간 AI 에이전트의 배포로 메트로폴리스 VSS 블루프린트를 사용해 카메라와 센서 데이터를 알림, 요약, 쿼리한다.  엔비디아는 스마트 시티 AI용 블루프린트를 통해 다양한 파트너가 엔비디아의 기술과 자사의 기술을 결합하고, 통합된 워크플로를 기반으로 스마트 시티 사용 사례를 위한 디지털 트윈을 구축, 활성화할 수 있도록 지원한다는 계획이다. 이 새로운 블루프린트를 최초로 활용하게 될 주요 기업에는 XXII, AVES 리얼리티, 아킬라, 블링시, 벤틀리, 세슘, K2K, 링커 비전, 마일스톤 시스템즈, 네비우스, 프랑스 국영철도회사, 트림블, 유나이트 AI 등이 있다. 벤틀리 시스템즈는 엔비디아 블루프린트와 함께 물리 AI를 도시에 도입하는 데 동참하고 있다. 개방형 3D 지리 공간 플랫폼인 세슘은 인프라 프로젝트와 항만의 디지털 트윈을 옴니버스에서 시각화, 분석, 관리하는 기반을 제공한다. 벤틀리 시스템즈의 AI 플랫폼인 블린시는 합성 데이터 생성과 메트로폴리스를 사용해 도로 조건을 분석하고 유지보수를 개선한다. 트림블은 건설, 지리 공간, 운송 등 필수 산업을 지원하는 글로벌 기술 회사이다. 이들은 스마트 시티의 측량, 지도 제작 애플리케이션을 위한 현실 캡처 워크플로와 트림블 커넥트(Connect) 디지털 트윈 플랫폼에 옴니버스 블루프린트의 구성 요소를 통합하는 방법을 모색하고 있다.
작성일 : 2025-06-16
엔비디아, 정밀한 지구 기후 시뮬레이션을 위한 생성형 AI 모델 공개
엔비디아가 새로운 엔비디아 어스-2(NVIDIA Earth-2) 생성형 AI 파운데이션 모델인 ‘c보틀(cBottle)’을 선보였다. 엔비디아는 이를 통해 킬로미터급 해상도로 지구 기후 시뮬레이션을 구현할 수 있다고 밝혔다. 보다 정밀한 지구 기후의 시뮬레이션은 기후 변화의 영향을 더 잘 예측하고 완화할 수 있게 돕는다. 이를 위한 c보틀은 ‘클라이밋 인 어 보틀(Climate in a Bottle)’의 줄임말로, 킬로미터급 해상도로 지구 기후를 시뮬레이션하도록 설계된 생성형 AI 파운데이션 모델이다. 엔비디아 어스-2 플랫폼의 일부인 c보틀은 하루 중 시간, 연중 요일, 해수면 온도 등 입력값에 따라 달라질 수 있는 사실적 대기 상태를 생성할 수 있다. 이를 통해 지구의 복잡한 자연 시스템을 이해하고 예측할 수 있는 새로운 방식을 제공한다는 것이 엔비디아의 설명이다. 어스-2 플랫폼은 AI, GPU 가속화, 물리 시뮬레이션, 컴퓨터 그래픽의 성능을 결합한 소프트웨어 스택과 도구를 갖췄다. 이는 날씨를 시뮬레이션하고 시각화하는 인터랙티브 디지털 트윈을 생성하며, 이와 함께 행성 규모의 기후 예측을 수행하도록 한다. 엔비디아는 c보틀을 사용하면 정확도 저하 없이도 기존 수치 모델보다 수천 배 빠르며 에너지 효율이 좋은 기후 예측이 가능해진다고 전했다.     기후 정보학은 전통적으로 시간, 노동, 컴퓨팅 집약적인 분야이며, 수십 페타바이트(PB) 규모 데이터 저장소에 대한 정교한 분석을 필요로 한다. 엔비디아 GPU 가속화와 최적화된 엔비디아 어스-2 스택이 적용된 c보틀은 첨단 AI를 활용해 방대한 양의 기후 시뮬레이션 데이터를 압축한다. 이를 통해 단일 기상 샘플에서 페타바이트 크기의 데이터를 최대 3000배까지 줄일 수 있다. 즉, 1000 개의 샘플에서 데이터 크기를 300만배 감소시킬 수 있다. c보틀은 고해상도 물리 기후 시뮬레이션과 지난 50년간의 실제 관측 데이터를 기반으로 한 대기 상태 추정값을 기반으로 훈련됐다. 이 모델은 누락되거나 손상된 기후 데이터를 채우고, 편향된 기후 모델을 수정할 수 있다. 또한 저해상도 기후 데이터의 고해상도 변환은 물론, 패턴과 기존 관측을 기반으로 한 정보 합성도 가능하다. c보틀의 데이터 효율성을 바탕으로, 단 4주 분량의 킬로미터급 기후 시뮬레이션 데이터만으로도 훈련이 가능하다. 개발자는 엔비디아 어스-2에서 c보틀을 사용해 기후 디지털 트윈을 구축할 수 있다. 이를 통해 킬로미터급 기후 데이터의 인터랙티브한 탐색과 시각화가 가능하며, 실현 가능한 시나리오를 낮은 지연 시간과 높은 처리량으로 예측할 수 있다.   c보틀은 세계기후연구프로그램의 글로벌 KM-스케일 해커톤에서 현장 테스트를 거쳤다. 이 행사는 8개국 10개 기후 시뮬레이션 센터가 주최했으며, 고해상도 지구 시스템 모델의 분석, 개발을 발전시키고 고해상도, 고충실도 기후 데이터에 대한 접근성을 확대하는 것을 목표로 진행됐다. 막스플랑크 기상 연구소, 앨런 인공지능 연구소 등 주요 과학 연구 기관은 c보틀을 활용해 지구 관측 데이터와 초고해상도 기후 시뮬레이션을 압축, 추출하고 쿼리 가능한 대화형 생성형 AI 시스템으로 전환하는 방법을 구상하고 있다. c보틀 파운데이션 모델은 현재 얼리 액세스로 제공된다. 깃허브(GitHub)에서 c보틀 코드베이스에 접속할 수 있으며, 아카이브(arXiv)에서 출판 전 논문을 열람할 수 있다.
작성일 : 2025-06-11
마이크로소프트, “비즈니스 전반에서 AI 에이전트가 활약하는 시대가 온다”
마이크로소프트가 ‘마이크로소프트 빌드 2025(Microsoft Build 2025)’를 개최하고 AI 에이전트, 개발자 도구, 오픈 플랫폼 등 신규 기능과 주요 업데이트를 발표했다.   AI는 추론 능력과 메모리 기술의 고도화로 인해 스스로 학습하고 결정을 내리는 에이전트로 진화하고 있다. 이번 행사에서 마이크로소프트는 이러한 AI 에이전트가 개인, 조직, 팀은 물론 전체 비즈니스 전반에 작동하는 인터넷 환경을 ‘오픈 에이전틱 웹(Open Agentic Web)’으로 정의하며, AI가 사용자나 조직을 대신해 결정을 내리고 작업을 수행하는 시대가 도래했다고 강조했다.  전 세계 수십만 조직이 마이크로소프트 365 코파일럿(Microsoft 365 Copilot)을 활용해 리서치, 아이디어 브레인스토밍 등 다양한 업무에 특화된 AI 에이전트를 구축하고 있다. 이 중 포춘 500대 기업 90%를 포함한 23만 개 이상 조직은 코파일럿 스튜디오(Copilot Studio)를 통해 AI 에이전트와 자동화 앱을 개발하고 있다. 또한, 전 세계 약 1500만 명의 개발자가 깃허브 코파일럿(GitHub Copilot)을 통해 코드 작성, 검토, 배포, 디버깅 등 개발 전 과정을 효율화하고 있다.     이번 빌드 2025에서는 AI 에이전트 개발을 돕는 플랫폼과 도구가 집중 소개됐다. 먼저 깃허브(GitHub), 애저 AI 파운드리(Azure AI Foundry), 윈도우(Windows) 등 주요 개발 플랫폼에서 활용할 수 있는 다양한 기능과 업데이트가 발표됐다. 이번 업데이트는 개발 생애 주기의 변화에 따라 개발자가 보다 효율적으로 작업하고, 대규모 개발 환경에서도 유연하게 대응할 수 있도록 설계됐다.  깃허브 코파일럿에는 비동기화(asynchronous) 방식의 코딩 에이전트 기능이 새롭게 도입됐다. 또한, 깃허브 모델(GitHub Models)에는 프롬프트 관리, 경량평가(LightEval), 엔터프라이즈 제어 기능이 추가돼, 개발자는 깃허브 내에서 다양한 AI 모델을 실험할 수 있게 됐다. 이와 함께 깃허브 코파일럿 챗(GitHub Copilot Chat) 또한 비주얼 스튜디오 코드(Visual Studio Code)에서 오픈소스로 공개됐다. 깃허브 코파일럿 확장 기능의 AI 기능은 이제 개발 도구를 구동하는 오픈소스 저장소의 일부가 됐다.  윈도우 AI 파운드리(Windows AI Foundry)도 새롭게 공개됐다. 개발자에게 개방적이고 널리 사용되는 플랫폼 중 하나로서 윈도우가 확장성, 유연성, 그리고 성장 기회를 제공함에 따라, 윈도우 AI 파운드리는 학습부터 추론까지 AI 개발자 라이프사이클을 지원하는 통합되고 신뢰할 수 있는 플랫폼을 제공한다. 이를 통해 개발자는 시각 및 언어 작업에 특화된 간단한 모델 API를 활용해 오픈소스 대규모 언어 모델(LLM)을 파운드리 로컬(Foundry Local) 환경에서 실행하거나, 자체 개발한 모델을 가져와 변환·미세조정한 뒤 클라이언트 또는 클라우드 환경에 배포할 수 있다.  애저 AI 파운드리도 주요 업데이트를 진행했다. 애저 AI 파운드리는 개발자가 AI 애플리케이션과 에이전트를 설계·맞춤화·관리할 수 있도록 지원하는 통합 플랫폼으로, 이번 애저 파운드리 모델(Azure Foundry Models) 업데이트를 통해 AI 기업 xAI의 그록3(Grok 3) 및 그록3 미니(Grok 3 Mini) 모델이 마이크로소프트 생태계에 추가됐다. 두 모델은 마이크로소프트가 직접 제공하며 과금한다. 이로써 개발자가 선택할 수 있는 AI 모델의 범위는 파트너사 및 마이크로소프트 제공 모델을 포함해 1900개 이상으로 확대됐다. 이와 함께, 안전한 데이터 통합, 모델 맞춤화, 엔터프라이즈급 관리 기능도 제공돼 보다 정밀한 AI 운영이 가능해졌다.   AI 모델을 항목별로 비교해 순위를 보여주는 모델 리더보드(Model Leaderboard)와 특정 쿼리나 작업에 따라 최적의 모델을 실시간으로 선택할 수 있도록 설계된 모델 라우터(Model Router) 등 신규 도구도 함께 공개됐다.   AI 에이전트 개발과 배포를 보다 안전하고 효율적으로 수행하도록 지원하는 기능도 선보였다. 사전 구축된 에이전트(pre-built agents), 맞춤형 에이전트 설계 도구, 멀티 에이전트 기능, 새로운 모델 등으로 구성된 이번 업데이트는 개발자와 조직이 보다 유연하게 AI 에이전트를 구축하고 생산성을 높이는 데 활용할 수 있도록 지원한다.  애저 AI 파운드리 에이전트 서비스(Azure AI Foundry Agent Service)는 여러 전문 에이전트를 조율해 복잡한 작업을 처리할 수 있도록 지원한다. 이번 업데이트에서는 시맨틱 커널(Semantic Kernel)과 오토젠(AutoGen)을 통합 제공하는 단일 SDK와, 에이전트 간 상호작용을 가능하게 하는 A2A(Agent-to-Agent) 기능 및 모델 컨텍스트 프로토콜(Model Context Protocol, 이하 MCP) 지원 기능도 포함한다.  애저 AI 파운드리 옵저버빌리티(Azure AI Foundry Observability)에는 AI 에이전트의 신뢰도를 높일 수 있도록 성능, 품질, 비용, 안전성 등의 지표들을 모니터링할 수 있는 기능이 탑재됐다. 모든 지표는 통합 대시보드를 통해 시각적으로 추적할 수 있어, 운영 현황을 직관적으로 파악할 수 있다.  보안과 거버넌스 측면에서도 기능이 강화됐다. 프리뷰로 제공되는 엔트라 에이전트 ID(Microsoft Entra Agent ID)를 활용하면, 애저 AI 파운드리나 코파일럿 스튜디오에서 생성한 에이전트에 고유 ID가 자동으로 부여된다. 이를 통해 에이전트를 초기 단계부터 안전하게 관리하고, 무분별한 생성을 방지해 보안 사각지대를 방지할 수 있다. 또한, 애저 AI 파운드리로 구축된 애플리케이션과 에이전트는 퍼뷰(Microsoft Purview)의 데이터 보안 및 컴플라이언스 제어 기능과 통합된다. 여기에 위험 파라미터 설정, 자동 평가 수행, 상세 보고서 제공 등 고도화된 거버넌스 도구도 함께 제공돼 정밀한 보안 및 운영 관리가 가능해졌다.  마이크로소프트 365 코파일럿 튜닝(Microsoft 365 Copilot Tuning)은 기업 고유의 데이터, 워크플로, 업무 프로세스를 기반으로 로코드 방식의 AI 모델 학습과 에이전트 생성을 돕는다. 생성된 에이전트는 마이크로소프트 365 환경 내에서 안전하게 실행되며, 조직별 업무에 특화된 작업을 높은 정확도로 수행할 수 있다. 예를 들어, 로펌은 자사의 전문성과 양식에 맞춰 문서를 작성하는 에이전트를 구축할 수 있다.  멀티 에이전트 오케스트레이션 기능도 코파일럿 스튜디오(Copilot Studio)에 새롭게 도입됐다. 이를 통해 다양한 에이전트를 상호 연결하고 기능을 결합함으로써 복잡하고 광범위한 업무를 처리할 수 있다.  이와 함께 마이크로소프트는 AI 에이전트의 미래를 위해 개방형 표준과 공유 인프라를 발전시키는 MCP 생태계 지원 업데이트와 새로운 개방형 프로젝트인 ‘NLWeb’을 발표했다. 마이크로소프트는 깃허브, 코파일럿 스튜디오, 다이나믹스 365(Dynamics 365), 애저 AI 파운드리, 시맨틱 커널, 윈도우 11 등 자사가 보유한 주요 에이전트 및 프레임워크 전반에서 MCP를 지원한다. 마이크로소프트와 깃허브는 MCP 운영 위원회(MCP Steering Committee)에 새롭게 합류해, 개방형 프로토콜의 보안성과 확장성을 높이기 위한 공동 노력을 이어갈 예정이다.  또한 MCP 생태계 확장을 위한 두 가지 업데이트도 공개했다. 첫 번째는 사용자가 기존 로그인 방식을 그대로 활용해 에이전트 및 LLM 기반 애플리케이션에게 개인 저장소나 구독 서비스와 같은 다양한 데이터에 대한 안전한 접근 권한을 부여할 수 있도록 인증 체계를 개선했다. 두 번째는 MCP 서버 항목을 누구나 최신 공용 또는 사설 저장소에서 중앙화해 관리할 수 있도록 지원하는 MCP 서버 등록 서비스를 설계했다.   NLWeb은 에이전틱 웹 환경을 위한 개방형 프로젝트로, 마이크로소프트는 NLWeb이 에이전틱 웹에서 HTML과 유사한 역할을 할 수 있을 것으로 기대한다. NLWeb은 웹사이트 운영자가 원하는 AI 모델과 자체 데이터를 연결해 대화형 인터페이스를 구축함으로써 사용자가 웹 콘텐츠와 직접 상호작용하며 풍부하고 의미 있는 정보를 얻도록 돕는다. 또한 모든 NLWeb 엔드포인트는 MCP 서버이기도 하기 때문에 웹사이트 운영자는 필요시 AI 에이전트들이 해당 사이트의 콘텐츠를 쉽게 검색하고 접근하도록 설정할 수 있다.  한편, 마이크로소프트는 과학 연구를 가속화하기 위한 AI 에이전트 기반 플랫폼 마이크로소프트 디스커버리(Microsoft Discovery)도 선보였다. 이 플랫폼은 연구자가 AI 에이전트를 활용해 과학적 발견 과정 전반을 혁신할 수 있도록 지원한다. 마이크로소프트는 이를 통해 제약, 환경 등 다양한 산업 분야의 연구개발 부서가 신제품 출시 기간을 단축하고, 연구 전반의 속도와 범위를 확장할 수 있을 것으로 기대하고 있다. 
작성일 : 2025-05-20
스노우플레이크, “AI 조기 도입한 기업의 92%가 투자 대비 수익 실현”
스노우플레이크가 ‘생성형 AI의 혁신적 ROI(Radical ROI of Generative AI)’ 보고서를 발표했다. 이번 보고서는 글로벌 시장 조사 기관 ESG(Enterprise Strategy Group)와 공동으로 AI를 실제 사용 중인 9개국 1900명의 비즈니스 및 IT 리더를 대상으로 진행한 설문조사 결과를 담았다. 보고서에 따르면 AI를 도입한 기업의 92%가 이미 AI 투자를 통해 실질적 ROI(투자수익률)를 달성했고, 응답자의 98%는 올해 AI에 대한 투자를 더욱 늘릴 계획인 것으로 나타났다. 전 세계 기업의 AI 도입이 빨라지면서 데이터 기반이 성공적인 AI 구현의 핵심 요소로 떠오르고 있다. 그러나 많은 기업이 여전히 자사 데이터를 AI에 적합한 형태로 준비하는 데 어려움을 겪는 것으로 파악됐다.  전반적으로 기업들은 AI 초기 투자에서 성과를 거두고 있는 것으로 나타났다. 93%의 응답자는 자사의 AI 활용 전략이 ‘매우’ 또는 ‘대부분’ 성공적이라고 답했다. 특히 전체 응답자의 3분의 2는 생성형 AI 투자에 따른 ROI를 측정하고 있고, 1달러 투자당 평균 1.41달러의 수익을 올리며 ROI를 높이고 있는 것으로 집계됐다.  또한 국가별 AI 성숙도에 따라 기업이 AI 역량을 주력하는 분야가 달랐으며, 이는 지역별 ROI 성과와 밀접한 연관이 있는 것으로 드러났다. 미국은 AI 투자 ROI가 43%로 AI 운영 최적화 측면에서 가장 앞서 있었다. 뿐만 아니라 자사의 AI를 실제 비즈니스 목표 달성에 ‘매우 성공적’으로 활용하고 있다고 답한 비율이 52%로 전체 응답국 중 가장 높았다. 한국의 경우 AI 투자 ROI는 41%로 나타났다. 보고서에 따르면 한국 기업은 AI 성숙도가 높은 편으로 오픈소스 모델 활용, RAG(검색증강생성) 방식을 활용해 모델을 훈련 및 보강하는 비율이 각각 79%, 82%로 글로벌 평균인 65%, 71%를 웃돌았다.  특히 한국 기업들은 기술 및 데이터 활용에 있어 높은 실행 의지를 보이고 있는 것으로 나타났다. 오픈소스 모델 활용(79%), RAG 방식의 모델 훈련 및 보강(82%), 파인튜닝 모델 내재화(81%), 텍스트 투 SQL(Text to SQL, 자연어로 작성한 질문을 SQL 쿼리로 자동 변환하는 기술) 서비스 활용(74%) 등 고급 AI 기술을 활용한다고 답변한 비율이 글로벌 평균을 크게 웃돌았다. 이러한 데이터 활용 역량은 비정형 데이터 관리 전문성(35%)과 AI 최적화 데이터 보유 비율(20%)에서도 확인된다. 이런 성과에 비해 아직도 전략적 의사결정에 AI 활용하는 데에는 어려움을 겪고 있는 모습도 나타났다. 조사 결과에 따르면 응답자의 71%는 ‘제한된 자원에 대비해 추진할 수 있는 AI 활용 분야가 매우 다양하고, 잘못된 의사결정이 시장 경쟁력에 부정적 영향을 미칠 수 있다’고 답했다. 또한 응답자의 54%는 ‘비용, 사업 효과, 실행 가능성 등 객관적 기준에 따라 최적의 도입 분야를 결정하는 데 어려움을 겪고 있다’고 밝혔다. 59%는 ‘잘못된 선택이 개인의 직무 안정성까지 위협할 수 있다’고 우려했다. 한국 기업의 경우, 기술적 복잡성(39%), 활용 사례 부족(26%), 조직 내 협업 문제(31%) 등의 어려움을 겪고 있다고 답하며 아직 다양한 비즈니스 영역으로의 AI 확대는 더딘 것으로 나타났다. 그럼에도 향후 12개월 내 ‘다수의 대규모 언어 모델(LLM)을 적극적으로 도입’하고 ‘대규모 데이터를 활용할 계획’이라고 답한 기업은 각각 32%와 30%로, AI 도입 확대에 관한 강한 의지를 드러냈다. 설문에 응답한 전체 기업의 80%는 ‘자체 데이터를 활용한 모델 파인튜닝을 진행 중’이고 71%는 ‘효과적인 모델 학습을 위해 수 테라바이트의 대규모 데이터가 필요하다’고 답하며, AI의 효과를 극대화하기 위해 자사 데이터를 적극 활용하고 있는 것으로 나타났다. 그러나 여전히 많은 기업들이 데이터를 AI에 적합한 형태로 준비하는 과정에서 어려움을 겪기도 했다. 데이터 준비 과정에서 겪는 주요 과제로 ▲데이터 사일로 해소(64%) ▲데이터 거버넌스 적용(59%) ▲데이터 품질 관리(59%) ▲데이터 준비 작업 통합(58%) ▲스토리지 및 컴퓨팅 자원의 효율적 확장(54%) 등을 꼽았다. 스노우플레이크의 바리스 굴테킨(Baris Gultekin) AI 총괄은 “AI가 기업들에게 실질적인 가치를 보여주기 시작했다”면서, “평균 일주일에 4000개 이상의 고객이 스노우플레이크 플랫폼에서 AI 및 머신러닝을 활용하고 있고 이를 통해 조직 전반의 효율성과 생산성을 높이고 있다”고 강조했다.  스노우플레이크의 아르틴 아바네스(Artin Avanes) 코어 데이터 플랫폼 총괄은 “AI의 발전과 함께 조직 내 데이터 통합 관리의 필요성이 더욱 커지고 있다”면서, “스노우플레이크처럼 사용이 쉽고 상호 운용 가능하며 신뢰할 수 있는 단일 데이터 플랫폼은 단순히 빠른 ROI 달성을 돕는 것을 넘어, 사용자가 전문적인 기술 없이도 안전하고 규정을 준수하며 AI 애플리케이션을 쉽게 확장할 수 있도록 견고한 기반을 마련해 준다”고 말했다. 
작성일 : 2025-04-16
슈나이더 일렉트릭, “AI 시대에 맞춘 데이터 센터 쿨링의 혁신 가속화”
슈나이더 일렉트릭이 AI 기술 발전에 따른 데이터 센터의 에너지 수요 증가와 열 관리 문제에 효과적으로 대응하기 위해 쿨링 시스템 혁신을 가속화하고 있다고 전했다. 최근 생성형 AI, 대규모 언어 모델(LLM) 등 AI 기술의 급속한 발전으로 인해 데이터 센터의 전력 소비는 빠르게 증가하고 있다. 특히, AI 기반의 쿼리는 기존 인터넷 검색에 비해 최대 10배 이상의 전력을 소모하며, 이로 인해 발생하는 열은 데이터 센터의 안정성과 효율성을 위협하고 있다. 슈나이더 일렉트릭은 이러한 환경 변화에 발맞춰, 2024년 액체 냉각 및 열 관리 설루션 전문 기업인 모티브에어(Motivair)를 인수하여 액체 냉각(liquid cooling)을 포함한 첨단 쿨링 기술 포트폴리오를 확대하고 있다. 액체 냉각은 열 전도성이 뛰어나 기존 공랭 방식보다 뛰어난 냉각 효율을 제공하며, AI 및 고밀도 서버 운용 환경에서 필수적인 설루션으로 주목받고 있다.     뿐만 아니라, 슈나이더 일렉트릭은 공기와 액체를 결합한 하이브리드 쿨링 설루션을 통해 다양한 워크로드에 최적화된 쿨링 환경을 제공하고 있다. 이러한 설루션은 핫스팟을 예방하고, 냉각 에너지 소비를 최소화하여 데이터 센터의 전체적인 운영 효율을 높인다. 데이터 센터의 열을 지역 사회에 재활용하는 노력도 확대되고 있다. 슈나이더 일렉트릭은 폐열 활용 기술과 연계해 지속가능한 열 관리 방안을 모색하며, 전 세계 데이터 센터가 지역 난방, 스마트팜 등으로 연결되는 순환형 에너지 생태계로 진화할 수 있도록 지원하고 있다. 슈나이더 일렉트릭 코리아 시큐어파워 사업부의 이창호 팀장은 “AI 시대를 맞아 데이터 센터의 쿨링 시스템은 단순한 냉방을 넘어 지속가능성과 에너지 효율, 운영 안정성까지 포괄하는 전략적 요소가 되고 있다”면서, “슈나이더 일렉트릭은 앞으로도 고성능 AI 워크로드에 최적화된 냉각 설루션을 제공하고, 에너지 전환과 디지털화를 아우르는 데이터 센터 설루션을 통해 지속가능한 디지털 인프라 구축에 기여해 나갈 계획”이라고 밝혔다.
작성일 : 2025-04-02
세일즈포스, AI 에이전트 플랫폼에 구글 제미나이 도입 
세일즈포스가 구글 클라우드와 전략적 파트너십을 확장한다고 발표했다. 세일즈포스는 구글의 AI 모델과 클라우드 인프라를 기반으로 기업이 비즈니스 환경에 최적화된 AI 모델을 자유롭게 선택하고, AI 에이전트를 안전하게 구축할 수 있도록 지원 역량을 지속 강화해 나갈 계획이다. 2024년 9월 구글과의 전략적 파트너십을 발표한 세일즈포스는 이번 파트너십 확장을 통해 자사의 AI 에이전트 플랫폼 ‘에이전트포스’에 구글의 최신 AI 모델인 ‘제미나이(Gemini)’를 도입한다. 또한, 에이전트포스, 데이터 클라우드, 커스터머 360 등 주요 AI 서비스를 구글 클라우드에서 운영할 수 있도록 지원하여, 기업이 특정 AI 모델에 종속되지 않고 비즈니스 목표에 맞는 최적의 AI 모델을 선택할 수 있는 환경을 마련했다. 제미나이의 도입으로 에이전트포스는 이미지, 오디오 및 비디오 데이터를 모두 처리할 수 있는 멀티모달 기능을 구현할 수 있으며, 제미나이의 200만 ‘토큰 컨텍스트 윈도우(Two-million-token Context Windows)’를 활용해 더욱 복잡한 잡업을 처리할 수 있게 된다. 또한, 구글의 ‘버텍스 AI(Vertex AI)’와의 연동으로 실시간 검색 및 분석 기능이 한층 강화되어 보다 신뢰할 수 있는 답변 제공이 가능해진다. 세일즈포스는 제미나이가 포함된 에이전트포스를 각 산업군별 현업 환경에서 다양한 방식으로 활용할 수 있다고 소개했다. 보험 업계에서는 사고 현장 사진과 음성 증언을 AI가 자동 분석해 보험금 청구의 타당성을 즉시 평가하고, 음성 합성 기술을 활용해 고객에게 결과를 전달할 수 있다. 공급망 관리(SCM) 분야에서는 AI가 커머스 클라우드의 배송 추적 데이터와 구글 검색의 실시간 기상 정보, 항구 혼잡도 등을 종합 분석해 잠재적인 위험을 사전에 파악할 수 있도록 지원한다.     세일즈포스는 이번 파트너십을 통해 AI 보안과 신뢰도 강화에도 주력할 계획이다. 세일즈포스의 고객은 이제 세일즈포스의 ‘통합 플랫폼(Unified Platform)’을 구글 클라우드의 AI 최적화 인프라에서 운영할 수 있으며, 세일즈포스의 ‘아인슈타인 트러스트 레이어(Einstein Trust Layer)’로부터 제공되는 ▲다이나믹 그라운딩 ▲제로 데이터 리텐션 ▲독성검사 등의 기능을 바탕으로 엔터프라이즈급 보안 환경을 경험할 수 있다. 또한 이후 세일즈포스의 제품이 구글 클라우드에 출시될 경우, 고객은 구글 클라우드 마켓플레이스에서 세일즈포스의 각종 설루션을 구매할 수 있다. 이번 파트너십 확대는 고객 서비스 부문에도 변화를 가져온다. 세일즈포스는 서비스 클라우드와 구글의 ‘고객 인게이지먼트 제품군(Customer Engagement Suite)’의 통합으로 AI 기반의 실시간 음성 번역, 상담원 간 지능형 업무 전환, 맞춤형 상담 가이드 등 고도화된 컨택센터 기능을 제공할 것이라고 밝혔다. 이를 통해 기업은 모든 고객접점 채널에서 일관된 AI 기반 상담 서비스를 제공할 수 있으며, 고객 문의의 특성에 따라 효율적인 상담원 연계가 가능해진다. 이외에도 세일즈포스는 AI 기반 지능형 생산성 플랫폼 슬랙(Slack)과 구글 워크스페이스의 통합을 기반으로 협업 환경을 한층 강화할 것이라고 밝혔다. 세일즈포스에 따르면 슬랙에서 구글 드라이브 파일을 검색 및 활용하는 기능과 지메일(Gmail)과 슬랙 간의 연동 등의 기능을 포함한다. 데이터 분석 환경 역시 한층 고도화될 예정이다. 세일즈포스는 데이터 클라우드와 구글의 빅쿼리(BigQuery), 코텍스 프레임워크(Cortex Framework) 간의 연결성을 강화하여, 기업이 조직 내 데이터 전반에 걸쳐 AI 에이전트를 안전하고 손쉽게 구축할 수 있게 될 것이라고 밝혔다. 이에 더해 세일즈포스의 지능형 데이터 분석 플랫폼, 태블로(Tableau)와 구글의 루커(Looker) 및 빅쿼리 간의 통합을 바탕으로 모든 플랫폼상의 비즈니스 데이터를 단일 플랫폼 내에서 분석 및 시각화할 수 있는 데이터 분석 환경을 제공할 것이라고 전했다. 세일즈포스의 스리니 탈라프라가다(Srini Tallapragada) 최고 엔지니어링 및 고객 성공 책임자는 “세일즈포스와 구글 클라우드는 고객이 최적의 AI 모델과 애플리케이션을 자유롭게 선택하고 활용할 수 있는 개방적이고 유연한 환경을 만들어 나가고 있다”면서, “세일즈포스는 엔터프라이즈급 AI 에이전트 플랫폼을 통해 기업의 신속한 AI 도입과 비즈니스 가치 창출을 지원하고 있으며, ‘디지털 레이버(Digital Labor)’ 플랫폼으로서 구글 클라우드와 함께 전 세계 기업의 AI 혁신 가속화를 견인할 것”이라고 밝혔다. 세일즈포스 코리아의 손부한 대표는 “구글 클라우드와의 이번 파트너십을 기점으로, 국내 기업들 또한 AI 기술을 보다 안전하고 유연한 환경에서 도입 및 활용할 수 있게 될 것으로 기대한다”면서, “이미 국내 시장에서도 대기업을 필두로 AI 에이전트 기반의 혁신을 가속화하고 있으며, 그 중심에서 세일즈포스는 신뢰할 수 있는 파트너로서 인간과 AI 에이전트가 함께 협업하는 새로운 미래를 만들어 나가기 위한 지원을 아끼지 않을 것”이라고 전했다.
작성일 : 2025-02-26
스노우플레이크, 거버넌스 준수하고 정확도 높인 AI 에이전트 ‘코텍스 에이전트’ 출시
스노우플레이크가 정형 혹은 비정형 데이터에 액세스해 자동으로 업무를 실행하는 AI 에이전트인 ‘코텍스 에이전트(Cortex Agents)’를 출시했다. 이를 통해 기업은 데이터 전문가 없이도 데이터를 검색, 분석해 엔터프라이즈 데이터를 더욱 효과적으로 관리할 수 있게 되었다. 코텍스 에이전트는 퍼블릭 프리뷰로 제공되며, 코텍스 애널리스트(Cortex Analyst)와 코텍스 서치(Cortex Search) 기능을 강화해 자동으로 데이터를 통합, 검색하고, 복잡한 쿼리를 분석해 정확한 답변을 생성한다. 이 과정에서 기업들은 정확성, 효율성 및 거버넌스를 실현할 수 있다, 코텍스 애널리스트는 정형화된 SQL 데이터를 분석하며, 앤스로픽(Anthropic)의 클로드 3.5 소넷(Claude 3.5 Sonnet)을 활용해 텍스트를 SQL로 변환하는 데 정확도를 높였다. 사용자가 자연어로 데이터를 조회하고 인사이트를 도출할 수 있으며 복잡한 추론, 코드 생성, 멀티모달 데이터 분석을 수행할 수 있는 엔터프라이즈급 AI 기능을 제공한다. 코텍스 서치는 텍스트, 오디오, 이미지, 비디오 등 비정형 데이터의 검색 정확도를 높인다. 스노우플레이크는 “오픈AI 임베딩 모델 대비 최소 11% 높은 정확도를 기록하며 다양한 벤치마크 테스트에서 우수한 성능을 입증했다”고 밝혔으며, 이 외에도 대규모 데이터 인덱싱, 맞춤형 벡터 임베딩 모델 선택 기능이 추가됐다.     정확한 데이터 분석, 보안 유지 및 거버넌스 준수는 AI 에이전트가 기업 환경에서 효과적으로 확장되기 위한 필수 요소다. 코텍스 에이전트는 다양한 데이터 소스를 검색하고, 보안 정책을 준수하며 신뢰할 수 있는 결과를 제공하도록 설계됐다. 배포 이후에도 성능과 동작을 지속적으로 모니터링하고 개선할 수 있어, 기업이 AI 에이전트를 안전하게 확장하면서 보안과 컴플라이언스를 유지할 수 있도록 돕는다. 예를 들어, 재무 분석가는 정형 데이터인 수익 데이터와 비정형 데이터인 재무 보고서 및 시장 데이터와 결합해야 하는 경우가 많다. 엔드 투 엔드 거버넌스를 통해 안전하게 AI에 정보를 제공하는 것이 필요한데, 이 때 코텍스 에이전트를 활용하면 된다. 코텍스 에이전트는 두 데이터 소스의 통합, 검색 및 처리를 단순하게 해 기업들은 쉽게 대규모로 고품질 에이전트를 구축할 수 있도록 지원한다.  스노우플레이크의 크리스티안 클레이너만(Christian Kleinerman) 제품 담당 수석 부사장은 “AI 전략은 데이터 전략 없이는 존재할 수 없다”면서, “많은 고객이 AI 가치를 극대화하기 위해 데이터를 체계적으로 관리하고 거버넌스를 구축하는데 어려움을 겪고 있다. 스노우플레이크는 코텍스 에이전트를 통해 고객들이 데이터 전문가가 아니더라도 더욱 쉽게 데이터를 관리하고 실질적인 성과를 얻을 수 있도록 지원하고 있다”고 강조했다.
작성일 : 2025-02-21
엔비디아, 더 강력하고 지능적인 AI 구축을 돕는 ‘스케일링 법칙’ 소개
엔비디아가 더 강력하고 지능적인 AI 구축을 지원하는 ‘스케일링 법칙’을 소개했다. 엔비디아는 이 법칙이 훈련 데이터, 모델 파라미터 또는 컴퓨팅 리소스 크기가 증가함에 따라 AI 시스템 성능이 향상되는 방식을 설명한다고 밝혔다. AI 분야에서 오랫동안 정의된 아이디어 중 하나는 컴퓨팅, 훈련 데이터, 파라미터가 더 많을수록 더 나은 AI 모델이 만들어진다는 것이다. 하지만 이후 AI에는 컴퓨팅 리소스를 다양한 방식으로 적용하는 것이 모델 성능에 어떻게 영향을 미치는지 설명하는 세 가지 법칙이 대두됐다. 이는 사전 훈련 스케일링(pretraining scaling), 사후 훈련 스케일링(post-training scaling), 긴 사고(long thinking)라고도 불리는 테스트 타임 스케일링(test-time scaling)이다. 이들 법칙은 점점 더 복잡해지는 다양한 AI 사용 사례에서 추가 컴퓨팅을 사용하는 기술을 통해 AI 분야가 어떻게 발전해왔는지를 보여준다. 최근 추론 시 더 많은 컴퓨팅을 적용해 정확도를 향상시키는 테스트 타임 스케일링이 부상하면서 AI 추론 모델의 발전을 가능하게 했다. 이 모델은 작업을 해결하는 데 필요한 단계를 설명하면서 복잡한 문제를 해결하기 위해 여러 추론 패스를 수행하는 새로운 종류의 대규모 언어 모델(LLM)이다. 테스트 타임 스케일링은 AI 추론을 지원하기 위해 많은 양의 컴퓨팅 리소스를 필요로 하며, 이는 가속 컴퓨팅에 대한 수요를 더욱 증가시킬 것이다.     사전 훈련 스케일링은 AI 개발의 기본 법칙이다. 이는 훈련 데이터 세트 크기, 모델 파라미터 수, 컴퓨팅 리소스를 늘림으로써 개발자가 모델 지능과 정확도의 예측 가능한 향상을 기대할 수 있음을 입증했다. 한 연구 논문에서 설명한 사전 훈련 스케일링 법칙에 따르면, 규모가 큰 모델에 더 많은 데이터가 공급되면 모델의 전반적인 성능이 향상된다. 이를 실현하려면 개발자는 컴퓨팅을 확장해야 하며, 이 거대한 훈련 워크로드를 실행하기 위해서는 강력한 가속 컴퓨팅 리소스가 필요하다. 사후 훈련 기법은 조직이 원하는 사용 사례에 맞춰 모델의 특이성과 관련성을 더욱 향상시킬 수 있다. 사전 훈련이 AI 모델을 학교에 보내 파운데이션 기술을 배우게 하는 것이라면, 사후 훈련은 목표한 업무에 적용할 수 있는 기술을 갖추도록 모델을 향상시키는 과정이다. 예를 들어, LLM은 감정 분석이나 번역과 같은 작업을 수행하거나 의료, 법률과 같은 특정 분야의 전문 용어를 이해하도록 사후 훈련될 수 있다. 긴 사고라고도 하는 테스트 타임 스케일링은 추론 중에 발생한다. 사용자 프롬프트에 대한 단답형 답변을 빠르게 생성하는 기존 AI 모델과 달리, 이 기술을 사용하는 모델은 추론 중에 추가적인 계산 작업을 할당한다. 이를 통해 여러 가지 잠재적 답변을 추론한 후 최적의 답변에 도달할 수 있도록 한다. 테스트 타임 컴퓨팅의 부상으로 AI는 복잡한 개방형 사용자 쿼리에 대해 합리적이고 유용하며 보다 정확한 답변을 제공하는 능력을 갖추게 됐다. 이러한 기능은 자율 에이전틱 AI와 피지컬 AI(Physical AI) 애플리케이션에서 기대되는 세밀하고 다단계의 추론 작업에 매우 중요하다. 또한, 산업 전반에서 사용자에게 업무 속도를 높일 수 있는 고성능 비서를 제공해 효율성과 생산성을 향상시킬 수 있다. 의료 분야에서는 모델이 테스트 타임 스케일링을 사용해 방대한 양의 데이터를 분석하고 질병이 어떻게 진행될지 추론할 수 있다. 뿐만 아니라, 약물 분자의 화학 구조를 기반으로 새로운 치료법이 불러올 수 있는 잠재적인 합병증을 예측할 수 있다. 소매와 공급망 물류 분야에서는 긴 사고가 단기적인 운영 과제와 장기적인 전략 목표를 해결하는 데 필요한 복잡한 의사 결정을 도와줄 수 있다. 추론 기법은 여러 시나리오를 동시에 예측하고 평가해 기업이 위험을 줄이고 확장성 문제를 해결하는 데 도움이 된다. 이를 통해 보다 정확한 수요 예측, 간소화된 공급망 이동 경로, 조직의 지속 가능성 이니셔티브에 부합하는 소싱 결정을 가능하게 한다. 나아가 글로벌 기업에서는 이 기술을 세부적인 사업 계획 작성, 소프트웨어 디버깅을 위한 복잡한 코드 생성, 배송 트럭과 창고 로봇, 로보택시의 이동 경로 최적화 등에 적용할 수 있다. AI 추론 모델은 빠르게 진화하고 있다. 최근 몇 주 동안 OpenAI(오픈AI) o1-미니(o1-mini)와 o3-미니(o3-mini), 딥시크(DeepSeek) R1, 구글 딥마인드(Google DeepMind) 제미나이 2.0 플래시 씽킹(Gemini 2.0 Flash Thinking)이 소개됐으며, 곧 새로운 모델이 추가로 출시될 예정이다. 이러한 모델은 추론 중에 사고하고, 복잡한 질문에 대한 정답을 생성하기 위해 훨씬 더 많은 컴퓨팅이 필요하다. 따라서 기업은 복잡한 문제 해결, 코딩, 다단계 계획을 지원할 수 있는 차세대 AI 추론 도구를 제공하기 위해 가속 컴퓨팅 리소스를 확장해야 한다.
작성일 : 2025-02-14