• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "콘셉트"에 대한 통합 검색 내용이 482개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
[칼럼] 실용형 AI, 제조의 미래를 바꾸다
트렌드에서 얻은 것 No. 23   “AI는 모든 산업에 새로운 가능성을 열어 준다. 중요한 것은 기술이 아니라, 그것을 어떻게 활용하느냐이다.” – 사티아 나델라(Satya Nadella), 마이크로소프트 CEO 마이크로소프트는 생성형 AI를 다양한 산업에 통합하며, 기술의 활용 방식에 중점을 두고 있고,  나델라의 말은 기술 도입보다 전략적 활용이 중요하다는 점을 강조한다.   생성형 AI와 함께 설계하고, 시뮬레이션하고, 개선하라 지금 이 이야기를 한국의 제조기업에 가서 한다면, 이상한 사람 취급을 받을 수 있다. 당장, 어떻게 할 수 있는지 이야기할 수 있느냐? 우리도 그렇게 하고 싶은데, 어떻게 할 수 있는지 제대로 나온 것도 없고, 사례가 있는지 등의 얘기가 자연스럽게 나온다. 맞는 말이다. 하지만, 지금은 레이스의 출발선에서 모두 같은 상황일 것이다. 다만, 전체를 제어하고 미래를 설계하는 혜안이 있는 사람이나 조직 유무에 따라 회사들의 달리기 속도는 분명 차이가 날 것이다.  우리는 그런 시대를 살아가고 또 지나가고 있다. 뉴스에서 다른 회사의 소식을 들으면서 탄식을 하고 있을 것인가, 아니면 고통스럽더라도 뭔가 해 보는 것이 낫지 않느냐의 갈림길에 있다. “그럼에도 불구하고, 우리는 설계할 수 있다.” 그렇다. ‘생성형 AI로 설계하고, 시뮬레이션하고, 개선하라’는 말은 지금의 제조 현장에선 거대한 간극처럼 느껴진다. 공장의 열기와 노하우 속에서 살아온 실무자에게는 뜬구름 잡는 이야기처럼 들릴 수 있다. “AI가 좋다는데, 어디까지 해봤나?”, “누가 이걸 설계에 실제로 썼대?” 이런 질문은 당연한 것이고, 오히려 현실을 잘 아는 사람일 수록 더 조심스러운 반응을 보인다. 그러나 지금, 우리는 모두 레이스의 출발선에 서 있다. 완성된 길도, 검증된 답도 아직 없다. 그러니 이 때 필요한 건 기술보다 먼저 혜안을 가진 사람, 구조를 설계할 수 있는 리더다. 단 한 줄의 프로토타입이라도 그려보려는 엔지니어, 익숙한 보고서보다 새로운 질문을 고민하는 팀장, 시행착오를 감수하고 방향을 잡으려는 임원이 지금 이 시대의 속도를 결정짓는다. 그리고 그 ‘혜안’은 거창한 청사진이 아닐 수도 있다. 단 하나의 설계 데이터를 기반으로 AI에게 첫 도면을 그리게 해보는 실험, 실시간 현장 일지에서 이상 징후를 요약하게 해 보는 시도, 현장의 사진 데이터로 품질 검사 자동화를 위한 검출 모델을 훈련해 보는 도전 등이 현 시점에서 예상해 볼 수 있는 가까운 미래 모습일 것 같다. “우리는 예상치 못한 상황을 목격하고, 예상된 상황을 보고하며, 결국 승리할 것입니다.” – 알렉스 카프, 팔란티어 CEO 카프는 AI를 활용한 제조업의 혁신이 불확실성을 극복하고 성공으로 이끄는 열쇠라고 보고 있으며, 이는 생성형 AI를 통한 제조업의 미래를 긍정적으로 전망한다.    그림 1. 실용형 AI 맵 ‘제조 미래를 바꾸다’(Map by 류용효) (클릭하면 큰 이미지로 볼 수 있습니다.)   제조, AI를 다시 만나다 “설계는 끝났지만, 고객은 원하지 않는다.”  “시뮬레이션은 끝났지만, 현장은 여전히 오류를 반복한다.”  “보고서는 쌓이지만, 문제는 여전히 현재진행형이다.” 이 문장들은 지금도 수많은 제조 현장에서 반복되고 있다. 전통적인 제조 프로세스는 분업과 효율을 중심으로 설계되었지만, 급변하는 고객의 요구와 복잡해진 제품 환경은 기존 체계의 민첩성과 창의성에 한계를 드러낸다. 이제 제조기업은 하나의 질문 앞에 서 있다. “우리는 더 빠르고 똑똑한 공장을 가질 준비가 되었는가?” 생성형 AI는 단순한 자동화 기술이 아니다. 설계자의 의도를 읽고 CAD 모델을 생성하며, 수십 개의 시뮬레이션으로 프로세스 병목을 알려주고, 품질 이상을 예측할 뿐 아니라 원인을 유추해주는 ‘설계적 사고를 하는 AI’가 등장하고 있다. 이는 기술의 도입이 아니라 제조기업의 ‘운영 철학’ 자체가 전환되는 순간이다. 제조기업이 생성형 AI와 함께 앞으로 어떻게 설계하고, 시뮬레이션하고, 개선할 수 있을지를 구체적으로 조망한다. “AI는 인류가 만든 가장 중요한 기술이다. 우리는 그것을 책임감 있게 개발하고 활용해야 한다.” – 순다르 피차이(Sundar Pichai), 구글 CEO 구글은 AI 개발에 있어 윤리적 책임과 사회적 영향을 고려하고 있으며, 피차이의 말은 기술 발전과 함께 그에 따른 책임도 중요하다는 점을 상기시켜 준다.   디자인의 재정의 - AI는 창의적인 엔지니어인가? 전통적인 제조 설계 과정은 복잡한 조건 설정, 반복적인 수정, 협업 간의 커뮤니케이션 비용 등으로 인해 수많은 시간과 리소스를 요구해왔다. 하지만 이제, 생성형 AI는 텍스트 한 줄로 설계를 시작하게 한다. “3개의 모듈로 구성된 소형 드론 프레임을 설계해 줘. 탄소 섬유 기반으로 무게는 150g 이하로.” 이 한 문장으로 AI는 초기 설계안을 생성하고, 다양한 대안 모델을 제공하며, 사용자 요구조건에 따라 자동 최적화를 제안한다. AI는 도면을 '그리는 도구'가 아니라, '제안하고 비교하는 동료 엔지니어'로 진화하고 있다. 예를 들어, 오토데스크의 퓨전 360(Fusion 360), 엔톱(nTop), 다쏘시스템의 3D익스피리언스 웍스(3DEXPERIENCE Works)는 이미 생성형 디자인 기능을 내장하고 있다.  디자이너는 아이디어를 제공하고, AI는 그에 기반한 설계 패턴을 도출한다. 이는 ‘무에서 유를 만드는’ 것이 아니라, 수많은 설계 데이터를 학습한 AI가 새로운 패턴과 조합을 도출해내는 방식이다. 결과적으로 설계자는 더 이상 반복적인 CAD 작업자가 아니다. 이제 디자이너는 ‘기획자’이자 ‘비평가’, 그리고 ‘AI와 협력하는 설계 전략가’가 된다. 또한, 이러한 생성형 설계는 대량 맞춤형 생산(mass customization)과의 결합으로 그 진가를 발휘한다. 기존에는 옵션이 제한된 범용 제품만이 경제성이 있었지만, 생성형 AI는 고객의 요구사항을 빠르게 읽고 즉시 설계에 반영할 수 있다. 이는 ‘고객이 참여하는 설계’, 즉 코디자인(co-design) 시대의 도래를 가능하게 한다. 기업은 더 빠르게 시장에 대응하고, 고객은 더 높은 만족도를 경험한다. 이처럼 생성형 AI는 설계를 단순히 ‘빠르게’ 만드는 기술이 아니라, 설계의 개념 자체를 ‘재정의’하는 도구이자 기업의 창의성과 기민함을 확장하는 전략 자산이 되고 있다. “퍼플렉시티(Perplexity)는 단순한 답변 엔진에서 행동 엔진으로 전환하고 있다. 이제는 단순히 질문에 답하는 것을 넘어, 사용자에게 행동을 제안하고 실행하는 단계로 나아가고 있다.” – 아라빈드 스리니바스(Aravind Srinivas), 퍼플렉시티 AI CEO 아라빈드의 말은 AI 기술이 단순한 정보 제공을 넘어, 사용자와의 상호작용을 통해 실제 행동을 유도하고 실행하는 방향으로 발전하고 있음을 의미한다.   시뮬레이션의 혁신 - 빠른 판단과 적은 비용 과거의 시뮬레이션은 전문 소프트웨어와 고성능 컴퓨팅 자원, 그리고 숙련된 엔지니어의 직관과 경험에 크게 의존해 왔다. CAE는 분명 설계 검증과 최적화의 핵심이었지만, 조건 설정 → 모델링 → 결과 해석 → 반복이라는 고비용 순환은 여전히 제품 개발의 병목으로 작용해왔다. 그러나 생성형 AI는 이 병목을 타파하는 새로운 접근을 제시한다. 자연어로 “강풍 조건에서 뒤틀림이 가장 적은 하우징 구조를 찾아줘”라고 지시하면, AI는 자동으로 물리 조건을 추론하고, 유사 데이터 기반의 시뮬레이션 템플릿을 구성하며, 수십 개의 대안 시나리오를 병렬 생성해 ‘예측 – 설명 – 추천’이라는 삼중 루프를 빠르게 수행한다. 이러한 기술은 시뮬레이션의 대중화(simulation democratization)를 이끈다. 기술 전공자가 아니어도, 제품 매니저나 품질 담당자가 AI의 도움으로 설계안의 응력 분포나 유동 조건에 대해 인사이트를 얻을 수 있다. 이는 실무자가 더 빠르게 결정을 내릴 수 있도록 돕고, 의사결정의 지연 대신, 다중 시나리오 기반의 ‘실험적 사고’를 가능하게 만든다. 대표적인 사례로는 알테어의 AI 기반 인스파이어 플랫폼(AI-driven Inspire Platform), 앤시스의 AI 기반 시뮬레이션 자동화, 그리고 다쏘시스템의 솔리드웍스 생성형 시뮬레이션(Generative Simulation for SOLIDWORKS)이 있다. 이들은 기존 FEM/CFD 분석의 시간과 비용을 줄이는 동시에, 경험 기반 의사결정에서 데이터 기반 최적화로의 전환을 이끌고 있다. 궁극적으로 생성형 AI는 단순히 ‘더 빠른 계산’을 넘어서, “어떤 시나리오를 먼저 고려해야 하는가?”, “이 조건에서 실패할 가능성은 무엇인가?”라는 전략적 질문에 답하는 보조 엔진이 되어 준다. 이는 시뮬레이션을 단지 제품 검증의 도구가 아니라, 경영 의사결정과 R&D 전략 수립의 인공지능 파트너로 진화시키는 변화의 시작점이다.  “AI는 우리가 상상하는 것보다 훨씬 더 빠르게 발전하고 있다. 자율주행차는 그저 시작일 뿐이다.” – 일론 머스크(Elon Musk), 테슬라 CEO 테슬라는 자율주행 기술 개발에 AGI 수준의 AI를 활용하고 있으며, 이는 단순한 기능 향상을 넘어 차량 설계와 운행 방식 전반을 재정의하는 접근이다.   업무 분석과 프로세스 개선 - 데이터는 말하고 AI는 듣는다 제조 현장의 데이터는 언제나 풍부했다. 작업자 일지, 설비 로그, 유지보수 메모, 품질검사 리포트, 현장 사진과 동영상, 고객 클레임 이메일… 하지만 이들 대부분은 정형화되지 않은 ‘텍스트’와 ‘문서’ 형태로 존재하며, 기존 시스템은 이를 ‘기록’하는 데에만 집중했고, 의미를 해석하고 연결하는 능력은 인간의 몫이었다. 이제 생성형 AI는 이 방대한 비정형 데이터의 숲에서 맥락을 이해하는 나무를 찾는다. 작업자가 남긴 “라인 3에서 어제도 제품 정렬이 안 맞았고, 자동 이젝터가 두 번 멈췄다”는 기록은, AI에겐 단순한 텍스트가 아니라 ‘패턴’과 ‘이상’의 시그널이다. LLM은 이런 문장을 분석해 작업 단계별 이벤트를 분해하고, 관련된 설비 로그와 품질 데이터를 연결하여 문제 지점을 도출한다. 이제 업무는 ‘기록하고 보고하는 일’이 아니라, ‘데이터가 스스로 분석하고 말하는 환경’으로 바뀌고 있다. 대표적인 활용 사례는 다음과 같다. 업무 요약 자동화 : 업무 일지를 요약해 경영진에게 핵심 이슈를 전달 프로세스 병목 식별 : 여러 부서의 텍스트 기반 보고서에서 공통 키워드와 불만 분석 문서 자동 생성 : SOP(표준작업지침서), 회의록, 개선안 보고서 등의 자동 초안 작성 협업 인텔리전스 : 여러 팀 간의 커뮤니케이션 데이터를 분석해 협업 지연 포인트 도출 실제로 지멘스는 AI 기반 자연어 처리 기술(Natural Language Processing : NLP)을 통해 디지털 작업지시서와 실시간 현장 대응 리포트를 자동 생성하는 기능을 도입했고, 보쉬는 AI를 통해 품질 클레임 문서에서 반복 출현하는 원인 유형을 추출하여 품질 개선의 단초로 활용하고 있다. 핵심은 이것이다. 현장의 수많은 대화와 기록이 AI에게 ‘말을 거는 데이터’가 되었고, AI는 그 말을 듣고, 요약하고, 통찰을 제시하며, 업무 개선을 스스로 제안하는 존재가 되었다는 점이다. 이제 우리는 묻지 않을 수 없다. 우리는 AI에게 말 걸 준비가 되어 있는가? 그리고 그 대답을 조직이 들을 준비는 되었는가? “가장 큰 위험은 아무런 위험도 감수하지 않는 것이다. 모든 것이 급변하는 시대에서 위험을 회피하는 전략은 반드시 실패로 이어진다.” — 마크 저커버그, 메타 CEO 저커버그는 변화와 혁신의 시대에 기존의 방식을 고수하며 위험을 회피하려는 태도가 오히려 더 큰 실패를 초래할 수 있음을 경고한다.   품질 관리의 진화 - AI는 예지적 감각을 가질 수 있는가 품질 관리는 제조업의 마지막 방어선이자, 가장 정교한 신경망이다. 그러나 지금까지의 품질 관리는 주로 사후 대응(postdefect 대응)에 집중되어 있었다. 불량이 발생한 후 원인을 찾고, 재발 방지책을 수립하고, 문서를 정리하는 ‘후행적 품질 관리’가 일반적이었다. 이제 생성형 AI는 이 전통적 프레임을 근본부터 흔들고 있다. AI는 ‘불량을 감지’하는 것이 아니라, ‘불량을 설명하고 예측’하려 한다. 예를 들어, 제품 표면의 이미지를 기반으로 한 비전 검사 시스템은 단순히 OK/NG를 판단하는 데서 그치지 않고, “이 영역의 텍스처 패턴은 온도 편차에 의한 수축 변형일 가능성이 높습니다”라고 말할 수 있는 설명형 모델로 진화하고 있다. 나아가, 생성형 AI는 텍스트, 이미지, 센서 데이터를 통합적으로 분석해 복합적인 이상 징후를 감지하고, 불량의 '가능성'과 '잠재 원인'을 추론해낸다. 예를 들어 다음과 같은 조합이 가능해진다. 작업자 일지 : “이틀 전부터 용접기압이 다소 약한 것 같다.” 센서 로그 : 오전 9~11시에 기압 편차 발생 불량 이미지 : 비드 형성 불균형 AI는 이를 연결해 “용접 조건의 경미한 변화가 반복 불량의 근본 원인일 수 있다”고 보고한다. 이는 단순한 예측모델이 아니다. ‘설명 가능한 품질 관리(Explainable Quality)’, 즉 AI가 품질 이슈에 대해 왜 그런 판단을 했는지를 근거와 함께 제시함으로써, 품질팀은 더 이상 직감이나 경험에만 의존하지 않고 데이터 기반의 합리적 개선 프로세스를 수립할 수 있다. 이미 보쉬, 토요타, GE 항공 등은 ▲AI 기반 비전 검사 시스템에서 ‘불량 예측 + 원인 설명’을 제공하는 모델을 구축 중이고 ▲ISO 9001과 연동되는 AI 품질 리포트 자동화 시스템을 테스트하고 있다. 이는 곧 ‘AI가 품질 시스템의 일원으로 공식 포함되는 시대’가 오고 있음을 뜻한다. 품질의 정의는 바뀌고 있다. 과거의 품질은 발견과 수정의 문제였지만, 앞으로의 품질은 예지와 설득의 문제다. AI는 이제 불량을 찾아내는 것이 아니라, 불량이 만들어지지 않도록 ‘생산 과정 그 자체를 개선하자’고 제안하는 동료가 되어가고 있다. “AI는 전기를 발견한 것과 같은 혁신이다. 모든 산업에 스며들 것이며, 그 영향을 무시할 수 없다.” – 앤드류 응(Andrew Ng), AI 전문가 앤드류 응은 AI의 보편성과 산업 전반에 미치는 영향을 강조하고 있다. 그의 말은 제조업에서도 AI의 통합이 필수임을 시사한다.   경고와 제언 - 생성형 AI는 도입이 아니라 전환이다 많은 제조기업이 생성형 AI에 주목하고 있다. 설계 자동화, 시뮬레이션 최적화, 업무 요약, 품질 예측… 도입 사례는 늘고 있지만, 도입이 곧 성공을 의미하진 않는다. 생성형 AI는 단순한 툴이 아니라, 운영 철학의 변화를 요구한다. 기존의 프로세스는 ‘정해진 절차와 역할’ 속에서 최적화를 추구해왔지만, 생성형 AI는 ‘질문을 던지고 시나리오를 비교하며 판단을 내리는 유연한 사고방식’을 요구한다. 즉, 기술만 바꾸는 것이 아니라 조직의 사고 체계와 역할 구조 자체를 재설계해야 하는 것이다. 예를 들어 <표 1>과 같은 전환이 필요하다.   표 1   하지만 문제는 기술이 아니다. 가장 큰 장벽은 조직이 AI를 받아들일 준비가 되어 있느냐는 것이다. 임원은 AI를 단순히 ‘자동화 툴’로 간주하는 경향이 많고, 현장은 여전히 ‘내 일을 뺏는 존재’로 AI를 경계한다. 이 간극을 메우지 않으면, AI는 시연 단계에서 멈추고, 조직은 변화의 본질을 놓친다. 따라서 다음과 같은 전환 전략이 필요하다. 파일럿이 아닌 전환 설계 특정 부서에서 테스트하는 것이 아니라, 조직 전체의 프로세스 전환 시나리오를 기획해야 한다. ‘도입 교육’이 아닌 ‘공감 설계’ 기술 사용법이 아니라, 왜 이 기술이 필요한지에 대한 비즈니스 관점에서의 스토리텔링이 필요하다. AI Co-Worker 관점 전환 AI는 도구가 아니라, 함께 판단하고 실험하는 동료로 봐야 한다. 이를 위해 직무 정의서(JD)도 다시 써야 한다. 성과 기준의 재정립 AI 도입 이후에는 ‘정확도’보다 ‘학습 속도’와 ‘적응력’이 핵심 성과 지표가 된다. 결국, 생성형 AI는 ‘도입해야 할 기술’이 아니라 ‘다르게 일하고, 다르게 생각하고, 다르게 운영하는 기업’으로 전환하기 위한 촉매제다. 이제 경영진에게 남은 질문은 단 하나다. “우리는 기술을 도입할 준비가 되었는가?”가 아니라, “우리는 조직을 전환할 용기를 가졌는가?”이다. “지금은 스타트업의 시대… 세상은 여전히 변화의 가능성에 잠들어 있다.” – 샘 올트먼, 오픈에이아이 CEO 올트먼은 기술 혁신의 시기에 기존 기업들이 변화에 둔감해질 수 있음을 경고하며, 새로운 도전과 변화를 추구하는 조직만이 미래를 선도할 수 있다는 메시지를 담고 있다.   맺음말 : 생성형 AI 시대의 제조 기업, 당신은 어떤 그림을 그리고 있는가 미래의 공장은 단지 더 정교하고, 더 빠르며, 더 자동화된 곳이 아니다. 그곳은 데이터를 읽고, 상황을 이해하고, 사람과 함께 결정하는 공장이다. 문제를 발견하기 전에 감지하고, 작업자를 지원하며, 스스로 최적의 방식을 제안하는 공장이다. 그리고 그 공장의 핵심 파트너는 인간의 상상력을 확장하는 생성형 AI다. 이제 중요한 질문은 이것이다. “우리는 어떤 그림을 그리고 있는가?” 기술은 빠르게 진화한다. 생성형 AI는 설계와 시뮬레이션, 업무 분석과 품질 관리까지 제조의 전 과정을 유기적으로 연결하며 ‘스마트’를 넘어 ‘지능적’으로 만들고 있다. 하지만 진정한 경쟁력은 기술의 채택이 아닌, 기술과 함께 일하는 방식의 변화에서 비롯된다. 아직 많은 제조기업은 ‘가능성 탐색’ 단계에 머물러 있다. 하지만 머뭇거릴 시간이 없다. AI는 이미 조직 구조, 업무 정의, 리더십의 방식까지 영향을 미치기 시작했다. 이제는 기술을 배우는 것이 아니라, 기술과 함께 일할 조직을 설계해야 할 때다. 생성형 AI 시대의 제조 기업은 세 가지 질문에 답할 수 있어야 한다. 우리는 상상할 수 있는가? 생성형 AI는 ‘주어진 문제를 해결’하는 것이 아니라 ‘가능성을 확장’한다. 제조기업의 조직은 아직도 문제만 찾고 있는가, 아니면 새로운 기회를 그리고 있는가? 우리는 받아들일 수 있는가? AI는 사람의 영역을 침범하지 않는다. 다만 그 옆에 선다. 우리는 전환할 수 있는가? 우리는 그것을 파트너로 받아들일 준비가 되어 있는가? AI 도입은 기술의 문제가 아니라, 사고방식과 리더십의 전환이다. 과연 지금의 조직은 그 전환을 감당할 수 있는가? 미래의 공장은 말하고 있다. “나는 설계하고, 시뮬레이션하고, 개선할 준비가 되어 있다. 너는 나와 함께 걸을 준비가 되어 있는가?”   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다.(블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
어도비, AI 콘텐츠 생성을 위한 ‘파이어플라이’ 올인원 앱 공개
어도비가 AI 기반 콘텐츠 구상, 생성 및 제작을 위한 올인원 앱인 새로운 파이어플라이(Firefly)를 공개했다. 파이어플라이는 크리에이터가 한 곳에서 크리에이티브 제어 기능을 사용해 이미지, 영상, 오디오, 벡터를 생성하고, 어도비의 크리에이티브 앱 전반에서 창작물을 반복 수정하며, 이를 제작 단계로 원활하게 연결할 수 있도록 돕는다. 어도비는 “상업적으로 안전한 파이어플라이 모델군과 더불어 구글 클라우드, 오픈AI(OpenAI)를 비롯한 파트너 모델에 대한 선택, 그리고 크리에이티브 클라우드 앱에 긴밀히 통합된 AI 구동 툴을 통해 업계에서 가장 포괄적인 크리에이티브 AI 플랫폼을 제공한다”고 전했다. 파이어플라이는 또한 크리에이티브 전문가가 파트너 모델을 사용해 다양한 스타일을 탐색할 수 있는 선택권도 제공한다. 현재 구글 클라우드와 오픈AI 모델을 사용할 수 있으며, fal.ai, 이디오그램(Ideogram), 루마(Luma), 피카(Pika), 런웨이(Runway) 등의 파트너 모델은 향후 몇 달 내 제공될 예정이다. 이 밖에도 파이어플라이에서 새롭게 선보이는 파이어플라이 보드(Firefly Boards, 공개 베타)를 통해 무드 보드(moodboarding) 제작, 크리에이티브 콘셉트 탐색 뿐 아니라 한 번에 수백 가지의 변형 작업을 반복하며 아이디어 구상을 위해 협업할 수 있는 AI 퍼스트 공간을 제공한다. 파이어플라이는 이미지, 영상, 오디오 및 벡터 생성을 통합하고 크리에이티브 제어 기능을 제공함으로써, 크리에이티브 전문가들이 더욱 생산적이고 정밀하게 작업할 수 있도록 돕는다. 포토샵(Photoshop), 프리미어 프로(Premiere Pro), 익스프레스(Express) 등 어도비의 크리에이티브 애플리케이션과 통합되어, 아이디어 구상부터 실제 제작까지 콘텐츠 제작 프로세스의 모든 단계에 걸쳐 AI로 구동되는 지원을 제공한다. 파이어플라이의 상업적으로 안전한 모델은 참조 이미지를 기반으로 파이어플라이의 결과물에 대한 가이드를 제공하는 구조 및 스타일 참조(Structure and Style Reference) 외에도 생성된 이미지와 영상의 카메라 앵글을 정밀하게 제어하고, 생성된 영상의 시작 및 종료 프레임을 지정하며, 오디오 및 영상을 다양한 언어로 번역하는 등 여러 기능을 지원한다. 또한, 어도비는 생생한 이미지를 위한 새로운 파이어플라이 이미지 모델 4(Firefly Image Model 4), 디테일하고 복잡한 이미지를 위한 파이어 플라이 모델 4 울트라(Firefly Image Model 4 Ultra), 텍스트 프롬프트와 이미지로 푸티지를 생성하는 파이어플라이 비디오 모델(Firefly Video Model) 등 상업적으로 안전한 어도비 크리에이티브 AI 모델도 정식 출시했다. 파이어플라이 앱은 파이어플라이 이미지 모델 4 및 파이어플라이 이미지 모델 4 울트라를 비롯해 상업적으로 안전하며 바로 제작에 사용 가능한 어도비의 모든 파이어플라이 모델을 포함한다.     파이어플라이 앱은 크리에이티브 전문가가 자신에게 가장 적합한 방식으로 유연하게 AI를 사용할 수 있도록 지원하기 위해 오픈AI의 이미지 생성 역량, 구글의 이마젠3(Imagen 3), 비오2(Veo 2) 및 플럭스 1.1 프로(Flux 1.1 Pro) 등 다양한 미적 스타일을 지닌 파트너의 제작 모델로 실험할 수 있는 선택권을 제공한다. 어도비는  fal.ai, 이디오그램, 루마, 피카 및 런웨이 등의 파트너 모델도 향후 몇 달 내 추가 통합할 계획이다. 파이어플라이 앱에서 공개 베타 버전으로 제공되는 새로운 파이어플라이 보드는 크리에이터가 무드 보드 및 스토리 보드 제작, 브레인스토밍, 크리에이티브 콘셉트 탐색, 한 번에 수백 가지 변형 반복 작업, 아이디어 구상을 위한 협업을 수행하고, 바로 제작에 돌입할 수 있는 AI 퍼스트 작업 공간을 제공한다. 초기에 프로젝트 콘셉트(Project Concept)로서 선공개한 파이어플라이 보드는 본격적인 제작 단계에 들어가기 전 크리에이티브 팀이 아이디어를 빠르고 효율적으로 정리하고 공유할 수 있도록 지원한다. 또한 크리에이터가 한 곳에서 아이디어를 시각화하고, 정교하게 다듬어 다음 단계의 작업으로 원활히 넘어갈 수 있도록 해준다. 생성형 AI와 크리에이티브 API로 구성된 어도비 파이어플라이 서비스(Firefly Services)는 어도비 AI 기술을 콘텐츠 제작 워크플로에 직접 통합해, 기업이 다양한 마케팅 채널에 맞춰 애셋 크기를 조정하는 등 반복적이고 시간 소모적인 작업을 신속하게 처리할 수 있도록 돕는다. 어도비는 상업적으로 안전한 파이어플라이 모델을 기반으로 파이어플라이 서비스에 새로운 API를 도입하고 있다. 현재 베타 버전으로 제공되는 포토샵 API는 기업들이 이미지 편집 워크플로를 보다 빠르게 처리할 수 있도록 하며, 텍스트를 비디오로(Text-to-Video) API와 이미지를 비디오로(Image-to-Video) API는 텍스트와 스틸 샷을 실사 클립으로 변환한다. 파이어플라이 이미지 모델 4를 활용한 최신 텍스트를 이미지로(Text-to-Image) API와 제품 설명 영상 등 몰입도 높은 비디오 콘텐츠 제작을 제작할 수 있는 아바타 API(Avatar API)도 곧 출시될 예정이다. 새로운 파이어플라이는 웹에서 사용할 수 있으며, 모바일 앱도 곧 출시될 예정이다. 한편 파이어플라이 이미지 모델 4, 파이어플라이 이미지 모델 4 울트라 및 새로운 파이어플라이 비디오 모델은 파이어플라이 웹에서 정식 출시됐으며, 파이어플라이 보드는 파이어플라이 앱 내에서 공개 베타 버전으로 제공된다.  어도비의 데이비드 와드와니(David Wadhwani) 디지털 미디어 사업 부문 사장은 “파이어플라이는 이미지, 영상, 오디오 및 벡터 생성을 단일의 공간에서 제공함으로써 AI 기반 크리에이티브 제작 경험을 혁신할 것”이라며, “새로운 파이어플라이 모델과 파트너 모델의 통합으로 이용자들은 자신의 비전을 실현할 수 있는 최고의 선택을 할 수 있다”고 말했다.
작성일 : 2025-04-25
헥사곤, 하노버 메세에서 넥서스 플랫폼의 제조 혁신 성과 공개
헥사곤 매뉴팩처링 인텔리전스는 3월 31일~4월 4일 독일 하노버에서 개최되는 세계 최대 산업 박람회 ‘하노버 메세(Hannover Messe)’에 참가해 포뮬러원(F1) 공장을 재현하고, 넥서스(Nexus)의 글로벌 성과를 공개한다고 발표했다.  ‘품질 속도전(Quality at Speed)’을 콘셉트로 한 포뮬러원 공장에서 관람객은 헥사곤의 공식 혁신 파트너인 오라클 레드불 레이싱(Oracle Red Bull Racing)의 실제 F1 차량과 차량 제작에 활용된 디자인&엔지니어링 소프트웨어, 측정 소프트웨어 및 하드웨어, 프로덕션 소프트웨어, 넥서스 플랫폼 등을 확인할 수 있다. 넥서스는 F1 차량 제작과 같이 고도의 정밀성과 신속한 협업이 요구되는 분야에서 엔지니어링 팀이 더 빠르고 효율적으로 문제를 해결하고 성능을 최적화할 수 있도록 지원한다. 넥서스는 헥사곤의 기술과 마이크로소프트의 최신 클라우드 및 AI 기술을 통합한 플랫폼으로, 헥사곤 및 제3자 플랫폼 데이터와의 연동을 통해 누구나 쉽게 데이터를 주고받을 수 있도록 설계됐다. 또한 간단한 파일 공유부터 마이크로소프트의 플루이드 프레임워크(Fluid Framework)를 활용한 실시간 데이터 교환까지 다양한 방식으로 외부 프로그램과 연결된다.     하노버 메세에서 헥사곤이 소개한 성과 발표에 따르면, 넥서스는 지난 2023년 2월 출시 이후 3만 명 이상의 등록 사용자를 확보했다. 또한 전 세계 다양한 산업 분야에서 50만 명의 사용자가 기술 스택의 일부로 헥사곤의 기술을 매일 활용하고 있다. 넥서스는 전통적으로 생산 시스템, 공장 IoT 및 품질 데이터 소스와 분리되어 운영되던 CAE 도구, 시뮬레이션 및 프로세스 데이터 관리(SPDM), PDM/PLM 시스템을 연결해 제조 가치 사슬 전반에 걸쳐 확장되고 있다. 헥사곤은 넥서스의 제품 포트폴리오를 지속적으로 확장해 왔으며, 이번 하노버 메세 전시장에서는 워크플로 전 단계를 지원하는 다양한 설루션을 선보인다. 전시된 주요 포트폴리오로는 기업 규모에 관계 없이 다양한 고성능 시뮬레이션을 손쉽게 제공하는 ‘넥서스 컴퓨트(Nexus Compute)’, ADAS 및 자율주행 차량 시스템 검증을 위한 클라우드 기반 설루션 ‘버츄얼 테스트 드라이브 X(Virtual Test Drive X, VTDx)’, 품질 보고 프로세스를 간소화하는 ‘메트롤로지 리포팅(Metrology Reporting)’, AI로 자동화된 CAM 프로그래밍 툴 ‘프로플랜AI(ProPlanAI)’와 측정을 지원하는 ‘메트롤로지 멘토(Metrology Mentor)’ 등이 포함된다. 헥사곤 매뉴팩처링 인텔리전스의 스티븐 그레이엄(Stephen Graham) 부사장 겸 넥서스 총괄은 “기업의 성공적인 디지털 전환은 구성원과 그들의 목표에서 시작된다는 인식이 확산되고 있는 만큼, 제조 프로세스 전반에서 모든 구성원이 효율적인 협업과 생산성 향상을 지원하는 넥서스의 가치가 더욱 부각되고 있다”면서, “헥사곤이 워크플로 자동화와 AI 개발에 더욱 박차를 가하면서, 기업의 생산성을 한층 더 끌어올릴 수 있을 것으로 기대된다”고 말했다. 현대자동차의 이진화 차량SW개발지원팀 파트장은 “현대자동차는 헥사곤의 검증된 CAE 제품군과 넥서스를 활용하여 개발 사이클을 가속화하고, 엔지니어링 성능을 최적화하며, 보다 민첩하고 데이터 기반의 차량 개발 접근 방식을 추진하고 있다”면서, “클라우드 기반 차량 개발 플랫폼 구축이 핵심 전략 목표이며, 이를 실현하기 위해 넥서스가 제공하는 혁신적인 접근 방식과 개방형 통합 기능의 도입을 적극 검토하고 있다”고 전했다.
작성일 : 2025-04-03
기록에서 시청하는 문화를 이끄는 생성형 AI의 미래
전문 분야를 넘나들며 상상을 생동감 있게 디자인하기   최근 생성형 AI(generative AI)가 빠르게 발전하면서, 생성형 AI 툴을 배우면 새로운 서비스와 기능이 금방 등장하고 있다. 이에 여러 생성형 AI 툴을 어떻게 공부하고 활용해야 할지 고민이 늘어나고 있는 시점이다. 이러한 시점에 생성형 AI를 활용하여 사람의 상상을 구체화하는 관점을 바꿔보면 어떨까 생각한다. 이는 생성형 AI가 상상을 기록하는 글과 스케치가 생동감 있는 영상으로 이어주고, 전공 분야를 넘나들며 크레이이티브를 구현할 수 있는 가능성을 제시하고 있기 때문이다.    ■ 장순규 계명대학교 미술대학 시각디자인과 조교수로 UX 디자인과 생성형 AI, 그리고 지역 개선을 위한 도시 브랜드 경험 디자인 프로젝트 연구를 수행하고 있다.   기록 방법의 변화와 생성형 AI의 등장 사람은 까마득히 먼 과거부터 생각과 정보를 기록해왔다. 스페인의 알타미라 동굴 벽화와 프랑스의 라스코 동굴 벽화는 기원전 1만 8000년~1만 5000년 경의 벽화다. 이 벽화는 구석기 시대에 100여 마리의 동물을 사냥하는 모습을 세밀한 묘사와 다양한 색으로 생동감 있게 표현한 그림이다. 이에 예술성을 인정받아 유네스코 세계문화유산으로 등재되었다. 이처럼 인간은 과거부터 어떠한 사실, 정보, 생각을 남기기 위한 문화를 가지고 있었다. 이후 기원전 3000년 전 수메르의 쐐기 문자를 비롯한 문화 별 문자가 등장했다. 문자를 통해 인간은 보다 명확하게 정보를 기록하고 남길 수 있게 되었다.   그림 1. 이미지 출처 : 플리커   시간이 흘러 인간은 도구를 발명하며 기록하는 방법을 다양하게 발전시켜 왔다. 종이와 인쇄술, 그림을 그리는 물감, 사실 그대로를 담으며 동적 시각물을 기록까지 하는 카메라. 현대 사회를 살아가는 우리는 더 이상 종이와 연필을 필요로 하지 않고, 무거운 카메라를 들고 촬영하지 않아도 된다. 이는 언제 어디서든 쉽게 활용할 수 있는 컴퓨터와 스마트폰을 통해 쉽게 기록할 수 있기 때문이다. 이처럼 기록하는 방법이 달라지는 것은 기술의 발전과 밀접하다고 할 수 있다. 하지만 이러한 기록 방법도 한계가 있다. 이는 사용자가 글을 작성하며 이미지를 직접 스케치하거나, 사진을 촬영하고, 편집이나 합성하는 수고가 있기 때문이다. 이러한 수고도 이제 변화할 시점에 놓여있다. 이는 생성형 AI의 등장 때문이다.    디자인 업무의 경계가 모호해진다 생성형 AI는 인간의 글로써 요구하는 프롬프트를 기반으로 학습된 데이터에서 새로운 데이터를 창출하는 인공지능 기술이다. 이 기술이 등장하면서, 자신의 상상과 생각을 작성하고 직접 스케치하며 기억하려는 문화는 사람이 기록하면 생성형 AI가 이미지와 영상으로 변환시켜 주는 문화로 이어지게 될 것이다. 이처럼 생성형 AI는 우리의 기록 문화를 새롭게 변화시킬 도구이다. 이에 우리의 문화를 바꿀 도구로서 디자이너의 경험담을 제시하고자 한다.  생성형 AI가 디자인 업무에 큰 영향을 미칠 것이라는 이야기가 많이 오가고 있다. 틈만 나면 새로운 생성형 AI 서비스가 등장하고 있으나, 디자인 업무에서 사람과 기존 디자인 툴을 생성형 AI가 완벽하게 대체하지는 못하는 실정이다. 여러 연구에서 생성형 AI는 기존 디자인 업무와 아이디어화(ideation) 단계에 효율적이라는 결과가 나타나고 있다.  이를 종합하면 콘셉트 디자인 과정에서 생성형 AI가 기존의 업무 방식보다 효율적이라 할 수 있다. 이는 글로 작성하고, 디자인 스케치를 하며, 콘셉트로 가안의 디자인 이미지를 만드는 과정의 시간을 효율적으로 단축할 수 있기 때문이다.  이 과정에서 생성형 AI는 스케치부터 2D, 3D까지 다양한 이미지를 짧은 시간에 생성하며, 이미지를 기반으로 짧은 영상까지 제작할 수 있다. 글과 목업 이미지로 상상을 불러일으키며 소통하는 콘셉트 단계의 방식이, 직접 디자인과 고객의 상황을 영상을 보며 진짜같이 느낄 수 있는 소통 방식으로 변화하게 된 것이다. 이에 더해, 이제 디자인 전문 교육을 받지 않은 사람도 누구나 상상과 창의력을 완성도 높은 디자인 이미지로 구현할 수 있으니, 디자인 업의 경계가 모호해지게 될 것이다. 이 때문에 어느 누구나 자유롭게 상상을 사실처럼 콘셉트를 보여줄 수 있게 되었다. 비전문가도 디자인을 할 수 있고, 전문가도 자신의 전공을 넘어 여러 디자인 분야를 넘나들 수 있는 것이다. 이처럼 분야를 넘나드는 실험이 모호할 수 있다.   생성형 AI 기반의 디자인 실험 사례 몇 가지 프로젝트 사례를 소개하고자 한다. 이 프로젝트는 미드저니, 런웨이, 루마, 클링과 같이 이미지, 영상 생성형 AI를 기반으로 구성한 디자인 실험 이미지이다.    그림 2. 생성형 AI 휴먼 활용의 실험 사례 1 – 환경 디자인 분야 접근     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-04-02
[칼럼] AI의 거대한 파도, 엔비디아가 만드는 미래
트렌드에서 얻은 것 No. 22    AI 시대, 우리는 어떤 미래를 만들어갈 것인가?” – 젠슨 황   AI의 거대한 파도, 엔비디아가 만드는 미래 엔비디아는 2024년과 2025년 GTC(GPU Technology Conference)에서 AI 기술을 통해 산업 전반에 걸친 변화를 이끌어가고 있다. 젠슨 황은 기조연설에서 기술 혁신이 사회적, 경제적 구조를 재편하는 ‘변화의 파도’라고 강조하며, 엔비디아가 그 중심에서 미래를 설계하고 있음을 확신시켰다.  엔비디아는 두 해 동안 AI 혁신을 가속화하며 다양한 제품과 플랫폼을 선보였다. 2024년에는 GB200 AI 플랫폼과 블랙웰(Blackwell) DGX B200 GPU를 통해 성능 향상에 초점을 맞췄다면, 2025년에는 블랙웰 울트라(Blackwell Ultra) 기반의 NVL72 등 차세대 하드웨어와 지속 가능성을 강조하며 더 큰 비전을 제시했다.   표 1. 2024년과 2025년 엔비디아의 주요 발표 비교   인공지능 혁명의 변곡점에서 인류는 늘 기술의 발전과 함께 새로운 시대를 맞이해 왔다. 산업혁명이 증기기관과 전기를 통해 생산 방식을 혁신했던 것처럼, 디지털 혁명은 인터넷과 스마트폰을 통해 세상을 연결했다. 그리고 지금, 우리는 또 하나의 거대한 변곡점에 서 있다. 바로 AI 혁명이다. 2025년 3월, 엔비디아의 GTC에서 젠슨 황 CEO는 기조연설을 통해 AI가 변화의 중요한 시점에 도달했음을 선언했다. 그는 AI가 단순한 도구를 넘어 ‘스스로 사고하고 결정하는 존재’로 발전하고 있으며, 이 거대한 변화가 기업, 산업, 그리고 인간의 삶 전반에 걸쳐 영향을 미칠 것이라고 강조했다. 이번 GTC 2025에서 가장 주목받은 키워드는 에이전틱 AI(agentic AI)와 추론 AI(reasoning AI)였다. 기존의 AI가 데이터를 분석하고 패턴을 찾는 데 주력했다면, 이제 AI는 자율적으로 목표를 설정하고 스스로 문제를 해결하는 방향으로 나아가고 있다. 이러한 변화는 단순한 업그레이드가 아니라, AI 산업 전반의 패러다임을 뒤흔드는 파도와 같다. 이러한 흐름 속에서 엔비디아는 블랙웰 GPU라는 차세대 칩을 공개하며, 인공지능 모델의 효율성을 비약적으로 향상시키는 새로운 하드웨어 시대를 열었다. 또한 옴니버스 클라우드 API(Omniverse Cloud API), AI 팩토리(AI Factories) 등의 개념을 통해 AI가 단순한 연구 도구가 아니라, 실제 산업을 자동화하고 혁신하는 핵심 인프라로 자리 잡아가고 있음을 보여주었다. 그렇다면 우리는 이러한 변화의 바람 속에서 어떤 선택을 해야 할까? AI 혁명의 파도를 넘는 기업과 뒤처지는 기업의 차이는 무엇일까? 엔비디아의 발표를 중심으로 AI 산업이 어디로 흘러가고 있는지, 그리고 그 변화 속에서 우리는 무엇을 준비해야 하는지를 하나씩 짚어보자. “AI가 단순한 연구 프로젝트에서 벗어나, 본격적인 산업 혁신의 중심으로 자리 잡는 것” – 젠슨 황   블랙웰, AI의 새로운 엔진 기술 혁신의 역사는 더 빠르고 더 강력하며 더 효율적인 도구를 만들려는 인간의 끝 없는 도전과 함께 발전해 왔다. AI 산업도 예외가 아니다. 과거에는 단순한 이미지 분석과 음성 인식이 AI의 주요 활용 분야였다면, 이제는 스스로 학습하고 결정을 내리며 복잡한 문제를 해결하는 AI가 요구되고 있다. 하지만 이런 고도화된 AI 모델을 운용하려면 엄청난 연산 능력이 필요하며, 이를 뒷받침할 강력한 하드웨어가 필수이다. GTC 2025에서 젠슨 황이 가장 먼저 소개한 것은 블랙웰 GPU였다. 그는 “AI의 미래를 가속하는 가장 강력한 엔진”이라며, 블랙웰이 기존 호퍼(Hopper) 아키텍처를 넘어선 새로운 시대의 핵심 기술이라고 강조했다. 그렇다면 블랙웰 GPU는 무엇이 다를까? 블랙웰 GPU는 기존 호퍼 아키텍처 대비 연산 성능이 2배 이상 향상되었으며, 특히 대규모 AI 모델을 실행할 때의 전력 효율이 4배 증가했다. 이는 곧 더 적은 에너지로 더 강력한 AI 모델을 훈련하고 실행할 수 있다는 의미다. 젠슨 황은 연설에서 “블랙웰은 단순한 속도 개선이 아니라, AI 연구자들이 더 크고 복잡한 모델을 현실적으로 활용할 수 있도록 지원하는 플랫폼”이라고 설명했다. 이제 AI 연구자는 엄청난 비용을 감수하지 않고도 보다 정교한 생성형 AI, 실시간 데이터 처리, 고도화된 시뮬레이션 등을 구현할 수 있게 되었다. 엔비디아는 블랙웰 GPU와 함께 옴니버스 클라우드 API를 발표했다. 이는 단순한 클라우드 컴퓨팅 설루션이 아니라, AI 모델 개발 및 실행을 위한 강력한 협업 플랫폼이다. 옴니버스 클라우드 API는 데이터센터, AI 연구소, 기업의 IT 인프라를 하나의 거대한 AI 네트워크로 연결하여, 개발자들이 실시간으로 협업하고 AI 모델을 학습할 수 있도록 지원한다. 이는 특히 자율주행, 산업 자동화, 로보틱스 같은 분야에서 AI의 혁신 속도를 극적으로 끌어올릴 것으로 기대된다. 젠슨 황은 “AI 개발은 더 이상 한 기업이나 연구소만의 일이 아니다. 옴니버스 클라우드 API를 통해 전 세계의 AI 개발자가 하나로 연결될 것”이라며, AI 연구의 새로운 생태계를 제시했다. 또 한 가지 주목할 점은 AI 팩토리(인공지능 공장) 개념이다. 젠슨 황은 AI를 ‘새로운 산업 혁명의 동력’으로 표현하며, AI 팩토리가 데이터를 가공하고 AI 모델을 대량으로 생산하는 핵심 인프라가 될 것이라고 설명했다. 이 개념을 이해하려면 기존 제조업과 비교해보면 쉽다. 과거에는 자동차나 전자제품을 생산하는 공장이 경제의 중심이었지만, 미래에는 AI를 학습하고, 최적화하고, 배포하는 ‘AI 공장’이 가장 중요한 인프라가 될 것이다. 젠슨 황은 AI 팩토리가 AI 기반 자율주행, 로봇, 데이터 분석, 금융 모델링 등 다양한 산업에서 필수 역할을 하게 될 것이라고 강조했다. 블랙웰 GPU, 옴니버스 클라우드 API, AI 팩토리는 단순한 기술 발전이 아니다. 이들은 AI가 단순한 연구 프로젝트에서 벗어나 본격적인 산업 혁신의 중심으로 자리 잡는 것을 의미한다. 과거에도 GPU의 성능 향상이 AI 산업에 변화를 가져온 적이 있다. 2012년 알렉스넷(AlexNet)이 GPU 가속을 이용해 딥러닝의 가능성을 처음 보여줬고, 2017년 트랜스포머(transformer) 모델이 등장하며 자연어 처리 AI가 급격히 발전했다. 그리고 2025년에는 블랙웰이 AI의 자율성과 창의성을 한 단계 끌어올리는 전환점이 될 것이다. 젠슨 황이 기조연설에서 블랙웰을 소개하며 한 말이 특히 인상적이었다. “AI는 이제 단순한 도구가 아니라 스스로 사고하고 결정하는 존재로 나아가고 있다.” 이 말은 곧, 우리가 맞이할 AI의 미래가 이전과는 전혀 다른 차원이라는 것을 시사한다. 그리고 그 변화를 가속하는 엔진이 바로 블랙웰이다. “이제 AI는 단순한 계산기가 아니라, 실제로 ‘생각하고 판단하는 존재’가 되어야 한다.” – 젠슨 황   엔비디아가 던진 화두, 에이전틱 AI와 추론 AI AI 기술의 발전은 단순히 연산 능력을 향상시키는 것에 그치지 않는다. 더 중요한 것은 AI의 ‘사고 방식’이 바뀌고 있다는 점이다. 지금까지의 AI는 데이터를 학습하고 패턴을 인식하는 역할을 해왔다. 하지만 이제 AI는 스스로 목표를 설정하고, 상황에 맞게 판단하며, 능동적으로 문제를 해결하는 방향으로 진화하고 있다. GTC 2025에서 젠슨 황이 강조한 에이전틱 AI와 추론 AI는 바로 이러한 변화의 핵심 개념이다. 그는 이 두 가지 개념이 AI를 단순한 도구에서 ‘자율적 지능’으로 변화시키는 결정적 요소라고 설명했다. 그렇다면 에이전틱 AI와 추론 AI는 무엇이며, 어떤 변화를 가져올까? 에이전틱 AI의 핵심은 AI가 인간의 지시 없이도 능동적으로 목표를 설정하고, 실행할 수 있도록 만드는 것이다. 기존의 AI는 주어진 데이터와 명령에 따라 최적의 결과를 도출하는 ‘수동적’ 존재였다. 하지만 에이전틱 AI는 스스로 목표를 설정하고, 문제를 해결하는 ‘능동적’ 존재로 변하고 있다. 젠슨 황은 에이전틱 AI를 활용하면 인간이 직접 개입하지 않아도 AI가 알아서 문제를 해결하는 시대가 열린다고 강조했다. 추론 AI는 한 단계 더 나아가, AI가 단순한 패턴 인식을 넘어 논리적 사고를 수행할 수 있도록 만드는 기술이다. 기존 AI 모델은 데이터를 학습하고 특정 패턴을 기반으로 예측을 수행했지만, 그 과정에서 왜 이런 결론이 나왔는지 설명하지 못하는 경우가 많았다. 그러나 추론 AI는 AI가 논리적인 판단을 수행하고, 의사결정의 과정을 설명할 수 있도록 하는 것을 목표로 한다. 젠슨 황은 “이제 AI는 단순한 계산기가 아니라, 실제로 ‘생각하고 판단하는 존재’가 되어야 한다”며, 추론 AI가 향후 AI 발전의 핵심이 될 것이라고 강조했다. 젠슨 황이 강조한 에이전틱 AI와 추론 AI는 개별적인 개념이 아니라, 서로 결합될 때 가장 강력한 시너지를 발휘한다. 에이전틱 AI는 AI가 스스로 목표를 설정하고, 문제를 해결할 수 있도록 한다. 추론 AI는 AI가 단순한 계산이 아니라, 논리적 사고를 통해 최적의 결정을 내릴 수 있도록 한다. 이 두 가지가 결합되면, AI는 단순한 보조 도구를 넘어서 ‘진정한 지능(Artificial General Intelligence : AGI)’에 가까워질 것이다. 이러한 AI의 발전은 산업 전반에 걸쳐 거대한 변화의 파도를 일으킬 것이며, 기업들은 단순한 AI 도입을 넘어서 AI를 기업 전략의 중심으로 삼아야 하는 시점에 이르렀다. “AI 팩토리를 구축하여 AI 자체를 ‘생산하는 능력’을 가져야 한다.” – 젠슨 황   AI 팩토리, AI 혁명을 생산하는 공장 이제 AI는 단순한 소프트웨어가 아니라 하나의 ‘산업’으로 성장하고 있다. GTC 2025에서 젠슨 황이 강조한 개념 중 하나가 바로 AI 팩토리(인공지능 공장)이다. 그는 AI 팩토리를 가리켜 ‘미래 산업의 심장’이라고 표현했다. 그렇다면 AI 팩토리란 무엇이며, 왜 중요할까? 이 개념이 가져올 변화는 무엇일까? 기존의 데이터센터는 단순한 컴퓨팅 인프라였다. 하지만 AI 팩토리는 데이터를 학습하고, AI 모델을 훈련하며, 새로운 AI 설루션을 ‘생산’하는 역할을 한다. 즉, AI가 AI를 만들어내는 공장이다. 젠슨 황은 AI 팩토리를 자동차 산업에 비유하며 설명했다. “과거에는 사람이 손으로 자동차를 조립했지만, 지금은 로봇이 자동차를 생산한다. AI도 마찬가지다. 미래에는 사람이 AI를 개발하는 것이 아니라, AI 팩토리에서 AI가 스스로 AI를 만들어내게 될 것이다.” 즉, AI 팩토리는 단순한 데이터 센터가 아니라 AI 혁명을 대량 생산하는 공장이 된다. 젠슨 황은 GTC 2025에서 "AI 팩토리를 구동하는 핵심 연산 장치는 블랙웰 GPU가 될 것"이라고 강조했다. AI 팩토리에서 생산되는 것은 반도체나 기계가 아니라 AI 자체다. 이 공장에서 에이전틱 AI, 추론 AI, 자율주행 AI, 생성형 AI 등이 대량으로 생산된다. 즉, AI 팩토리는 단순한 데이터 센터를 넘어 새로운 AI 산업의 허브가 된다. AI 팩토리가 등장하면 기업과 산업이 근본적으로 변화한다. 특히, 데이터를 기반으로 하는 모든 산업이 AI 팩토리를 도입할 가능56 · 성이 높다. 결국 AI 팩토리는 단순한 연구소가 아니라, 실제 AI 모델을 ‘대량 생산’하여 산업에 공급하는 핵심 인프라가 된다. 젠슨 황은 AI 팩토리의 등장이 단순한 기술 발전이 아니라 경제 패러다임의 변화라고 강조했다. 이제 기업은 단순히 AI를 도입하는 것을 넘어, AI 팩토리를 구축하여 AI 자체를 ‘생산하는 능력’을 가져야 한다. “AI를 도입하지 않는 기업은 도태될 것이다.” – 젠슨 황   AI의 도입, AI가 기업을 재설계한다 AI 혁명은 더 이상 선택이 아니다. GTC 2025에서 젠슨 황이 강조한 메시지는 명확했다. "AI를 도입하지 않는 기업은 도태될 것이다." 이제 AI는 기업 운영의 한 요소가 아니라 기업의 핵심 전략, 구조, 성장 엔진 자체로 변화하고 있다. 기업은 어떻게 AI를 도입하고 있으며, AI 도입이 비즈니스에 미치는 영향은 무엇일까? 과거 AI 도입은 단순한 자동화 도구 활용이었다. 그러나 이제 AI 도입(AI adoption)은 기업의 핵심 역량을 AI 중심으로 전환하는 과정이다. AI 도입은 이제 단순한 기술의 도입이 아니라, 기업의 전략과 문화 자체를 AI 중심으로 변화시키는 과정이다. AI 도입이 빠르게 진행될 수록, 기업들은 직접 AI를 개발하는 것이 아니라 필요한 AI 서비스를 구독하는 방식으로 활용하는 시대가 열리고 있다. AI 도입이 가속화되면서 기업들은 완전히 새로운 방식으로 운영되고 있다. 특히, 의사결정 구조, 업무 방식, 조직 문화가 AI 중심으로 변화하고 있다. 이제 AI는 단순한 도구가 아니다. AI 도입이 진행될 수록, 기업의 핵심 전략과 비즈니스 모델 자체가 AI 중심으로 변화하고 있다. 결국, AI 도입을 성공적으로 수행하는 기업만이 미래 시장에서 생존하고 성장할 수 있을 것이다.    표 2. 기존 기업 vs. AI 중심 기업의 차이점   AI는 혼자 발전할 수 없다. 모두가 함께 연결되어야 한다.” – 젠슨 황   네트워킹, AI 시대의 연결과 협업 AI가 기업의 핵심 전략이 되고 산업 전체가 AI 기반으로 재편되는 과정에서, 네트워킹(networking)의 중요성이 더욱 강조되고 있다. 과거 기업은 독립적으로 성장하는 전략을 취했지만, 이제 AI 시대에서는 기업 간 협력, 데이터 공유, AI 연구 협업이 필수이다. GTC 2025에서 젠슨 황은 이렇게 말했다. “AI는 혼자 발전할 수 없다. 모두가 함께 연결되어야 한다.” 그렇다면 AI 시대의 네트워킹은 어떻게 이루어지고 있으며, 어떤 기업이 AI 협업을 통해 새로운 가치를 창출하고 있을까? AI 네트워킹의 의미는 ‘AI는 연결을 필요로 한다’로 해석된다. AI 혁명이 가속화될 수록 기업들은 서로 연결될 필요가 있다.  즉, AI 네트워킹이란 기업들이 AI를 더 빠르고, 더 효율적으로, 더 윤리적으로 활용하기 위해 서로 협력하는 과정을 의미한다. AI 네트워킹을 실현하는 방식은 다양하지만, 현재 가장 중요한 세 가지 협력 모델을 살펴보자. AI 팜(AI farms)을 통해 개별 기업이 AI 인프라를 구축하는 부담을 줄이고, 더 빠르게 AI를 도입할 수 있다. AI 얼라이언스(AI alliance)를 통해 기업들은 경쟁이 아닌 협력을 기반으로 AI 혁신을 가속화하고 있다. 즉, AI 데이터 공유는 이제 개인정보 보호를 유지하면서도 기업들이 협력할 수 있는 새로운 방식으로 발전하고 있다. AI 네트워킹이 활성화됨에 따라, 기업들은 완전히 새로운 방식으로 연결되고 협력하고 있다. AI 시대에는 한 산업 내에서 경쟁하는 것이 아니라, 다양한 산업과 연결되는 것이 핵심 전략이 된다. 결과적으로, AI 네트워킹을 활용하는 기업들은 새로운 기회를 창출하고, 더 빠르게 AI 중심으로 전환하고 있다. “AI 혁명은 이제 되돌릴 수 없는 변곡점에 도달했다. 우리는 AI와 함께 새로운 미래를 설계해야 한다.” – 젠슨 황   AI 시대의 미래, 우리는 어디로 가는가 AI 혁명은 이제 단순한 기술 발전을 넘어 산업, 사회, 인간의 삶 자체를 근본적으로 변화시키고 있다. GTC 2025에서 젠슨 황은 말했다. “AI 혁명은 이제 되돌릴 수 없는 변곡점에 도달했다. 우리는 AI와 함께 새로운 미래를 설계해야 한다. ”그렇다면 AI의 미래는 어디로 향하고 있으며, 우리는 AI와 함께 어떤 세상을 만들어가야 할까? 에이전틱 AI와 추론 AI의 발전이다. 즉, AI가 단순한 ‘도구’가 아니라, 인간과 협력하는 ‘실제적인 파트너’가 되는 시대가 다가오고 있다. 기존의 AI는 패턴을 학습하는 방식이었다. 그러나 추론 AI는 스스로 논리적으로 사고하고 추론하는 능력을 갖춘다. 즉, AI가 더 이상 단순한 자동화 도구가 아니라, 지능적인 사고를 할 수 있는 존재로 변화하고 있다. AI가 점점 더 지능적으로 발전하면서, 우리는 ‘AI와의 관계를 어떻게 설정할 것인가’라는 근본적인 질문을 마주하게 되었다. 이제 AI는 단순한 도구를 넘어, 인간과 협력하여 새로운 가치를 창출하는 존재로 변화하고 있다. AI가 고도화될 수록 우리는 AI의 윤리적 문제와 사회적 책임에 대한 고민을 깊게 해야 한다. 결과적으로, 각국이 AI 규제와 발전 전략을 다르게 설정하면서 AI 패권 경쟁이 더욱 치열해지고 있다. AI는 단순한 기술이 아니라, 인류가 새로운 방식으로 사고하고 일하고 살아가는 방식을 바꾸는 거대한 전환점이 되고 있다. “AI는 이제 단순한 도구가 아니라, 스스로 사고하고 결정하는 존재로 나아가고 있다.” – 젠슨 황   변화의 바람을 넘어, AI와 함께 새로운 항해를 시작하다 AI 혁명은 거대한 바람이 아니라, 이제는 우리가 타고 항해해야 할 파도다. 과거에는 변화가 두려운 것이었다. 그러나, AI와 함께라면 우리는 변화 속에서도 새로운 기회를 창출할 수 있다. 엔비디아 GTC 2025에서 젠슨 황이 던진 질문을 기억하자. “AI 시대, 우리는 어떤 미래를 만들어갈 것인가?” 이제 우리는 AI와 함께 새로운 항해를 시작할 준비를 해야 한다.   그림 1. 엔비디아 기업 성장 맵(GTC 2024, 2025, Map by 류용효) (클릭하면 큰 이미지로 볼 수 있습니다.)   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다. (블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-04-02
엔비디아, “블랙웰 플랫폼으로 CAE 소프트웨어 최대 50배 빨라진다”
엔비디아가 미국 새너제이에서 열린 GTC에서 주요 CAE 소프트웨어 공급업체들이 엔비디아 블랙웰(NVIDIA Blackwell) 플랫폼을 도입해 자사 시뮬레이션 도구를 최대 50배까지 가속화한다고 발표했다. 이들 공급업체에는 앤시스, 알테어, 케이던스, 지멘스, 시높시스 등이 포함된다. 가속화된 CAE 소프트웨어와 엔비디아 쿠다-X(CUDA-X) 라이브러리 그리고 성능을 최적화하는 블루프린트를 병용하면 자동차, 항공우주, 에너지, 제조, 생명과학 분야 제품의 개발 시간과 비용을 줄일 수 있으며, 설계 정확도는 높이면서 에너지 효율을 유지할 수 있다는 것이 엔비디아의 설명이다. 소프트웨어 제공업체는 고객이 실시간 인터랙티브 기능을 갖춘 디지털 트윈을 개발하도록 지원할 수 있으며, 이제 엔비디아 블랙웰 기술을 통해 이를 가속화할 수 있다. CAE 소프트웨어 업계에서는 자사 소프트웨어에 블랙웰을 통합하는 생태계가 확장되고 있다. 여기에는 대표적으로 알테어, 앤시스, 비욘드매스, 케이던스, 콤솔, 엔지스(ENGYS), 플렉스컴퓨트, 헥사곤, 루미너리 클라우드, M-스타, 오토데스크 계열사인 나바스토, 뉴럴 콘셉트, 엔톱, 리스케일, 지멘스, 심스케일, 시높시스, 볼케이노 플랫폼스 등이 있다.     케이던스는 엔비디아 그레이스(Grace) 블랙웰 가속 시스템을 활용해 항공기의 이착륙 시뮬레이션이라는 전산유체역학(CFD)의 대형 과제를 해결하고 있다. 케이던스는 단일 엔비디아 GB200 NVL72 서버에서 케이던스 피델리티(Fidelity) CFD 솔버를 사용해 수십억 개의 셀 시뮬레이션을 24시간 이내에 실행했다. 이는 기존의 수백만 개 코어를 가진 CPU 클러스터에서도 며칠이 지나야 완료가 가능한 작업이었다. 이 혁신을 바탕으로 항공우주 산업은 더 안전하고 효율적인 항공기를 설계하면서도, 비용이 많이 드는 풍동 실험 횟수는 줄여 출시까지 걸리는 시간을 단축할 수 있을 전망이다. 리스케일이 새롭게 출시한 CAE 허브(CAE Hub)를 활용하면 엔비디아 기술과 더불어 다수의 독립 소프트웨어 공급업체가 개발한 쿠다 가속 소프트웨어에 간편하게 접속할 수 있다. 리스케일 CAE 허브는 클라우드에서 엔비디아 GPU와 엔비디아 DGX Cloud(DGX 클라우드)에 기반한 유연하고 향상된 성능의 컴퓨팅과 AI 기술을 제공한다. 고속 항공기를 만드는 붐 슈퍼소닉(Boom Supersonic)은 리스케일 CAE 허브에서 실시간 디지털 트윈을 위한 엔비디아 옴니버스 블루프린트(Omniverse Blueprint)와 블랙웰 가속 CFD 솔버를 사용할 예정이다. 이를 통해 새로운 초음속 항공기 설계와 최적화에 나설 계획이다. 제품 개발 주기의 대부분이 시뮬레이션에 기반한 붐 슈퍼소닉은 블랙웰 GPU로 가속화된 리스케일 플랫폼을 통해 다양한 비행 조건을 테스트하고 시뮬레이션을 반복하며 요구 사항을 개선할 전망이다. 실시간 디지털 트윈을 위한 엔비디아 옴니버스 블루프린트는 현재 일반적으로 사용이 가능하며, 리스케일 CAE 허브에도 포함돼 있다. 이 블루프린트는 엔비디아 쿠다-X 라이브러리와 엔비디아 피직스네모 AI, 엔비디아 옴니버스 플랫폼을 통합했다. 더불어 물체 부근의 공기 움직임을 연구하는 외부 공기역학을 위한 엔비디아 NIM 마이크로서비스를 최초로 추가했다. 엔비디아의 젠슨 황(Jensen Huang) 창립자 겸 CEO는 “엔비디아 블랙웰에서의 쿠다 가속 물리 시뮬레이션은 실시간 디지털 트윈을 개선하고 엔지니어링 프로세스 전반을 재구상하고 있다. 사실상 모든 제품이 물리적으로 구현되기 훨씬 전에 디지털 트윈으로 먼저 생성되고 생명력을 얻을 날이 다가오고 있다”고 말했다.
작성일 : 2025-03-20
델, ‘델 프로 플러스’ 업무용 모니터 및 QHD 게이밍 모니터 신제품 6종 공개
델 테크놀로지스는 업무 생산성과 게임플레이 경험을 한 차원 높이는 업무용 모니터 및 프리미엄 게이밍 모니터 신모델 6종을 공개했다. 이번에 발표한 신제품은 업무용 모니터인 ▲델 프로 14 플러스 포터블 모니터(P1425) ▲델 프로 34 플러스 USB-C 허브 모니터(P3425WE) ▲델 프로 32 플러스 4K USB-C 허브 모니터(P3225QE) ▲델 프로 27 플러스 4K USB-C 허브 모니터(P2725QE)와 게이밍 모니터인 ▲에일리언웨어 34 커브드 게이밍 모니터(AW3425DWM) ▲ 에일리언웨어 27 IPS 게이밍 모니터(AW2725DM) 등 총 6종이다. 올 초, 델 테크놀로지스는 사용자의 니즈에 따라 최적의 디바이스를 보다 쉽게 선택할 수 있도록 PC, 디스플레이, 서비스, 액세서리 전반에서 간소화된 통합 브랜딩을 새로 선보인 바 있다. 디스플레이 제품군의 경우, 사용자는 ▲혁신 디자인과 기술을 적용한 프리미엄 제품군인 델 울트라샤프(Dell UltraSharp) ▲전문가급 생산성을 위한 제품군인 델 프로(Dell Pro) ▲엔터테인먼트·학습·업무용 제품군인 델(Dell)의 세 가지 제품군 중에서 각 니즈에 맞는 최적의 디바이스를 택할 수 있다. 또한, 각각의 제품군은 ‘엔트리급 티어’와 다양한 수준의 성능을 제공하는 메인스트림급 ‘플러스(Plus) 티어’의 두 가지 등급으로 제공된다. 이번에 선보인 업무용 모니터 신제품은 ‘델 프로 플러스’ 제품군에 속하며, 높은 성능과 협업 기능, 원활한 연결성을 통해 비즈니스 전문가에게 향상된 생산성과 사용자 경험을 제공하는 데에 초점을 맞추었다. ‘델 프로 14 플러스 포터블 모니터(Dell Pro 14 Plus Portable Monitor, P1425)’는 16:10 화면 비율의 14인치 IPS 디스플레이를 탑재한 초경량 휴대용 모니터로, 이동 중에 노트북에 연결해 사용하도록 설계됐다. 65W 전력 공급 및 데이터 전송, 영상 출력을 위한 USB-C타입 단자를 내장해 사용자의 편의성을 높였고, 10도부터 90도까지 기울기 조절이 가능한 틸트(tilt) 기능으로 사용자의 세컨드 모니터로 활용하거나 대면 회의 중 모니터를 기울여 다른 참석자와 편하게 화면을 공유할 수도 있다. 자동 회전 기능을 지원해 와이드스크린 가로∙세로 모드를 자유롭게 사용할 수 있으며, 베사(VESA) 마운트로 모니터 암에 거치해 공간을 효율적으로 활용할 수 있다. 청색광 방출을 낮추는 ‘컴포트뷰 플러스(ComfortView Plus)’ 기능을 지원해 장시간 작업에서도 눈의 피로감을 덜어준다.   ▲ 델 프로 34 플러스 USB-C 허브 모니터   ‘델 프로 34 플러스 USB-C 허브 모니터(Dell Pro 34 Plus USB-C Hub Monitor, P3425WE)’와 ‘델 프로 32∙27 플러스 USB-C 허브 모니터(Dell Pro 32∙27 Plus 4K USB-C Hub Monitors, P3225QE∙P2725QE)’는 100Hz의 고주사율과 높은 명암비에 TUV 라인란드(TUV Rhineland)의 ‘아이 컴포트(eye comfort)’ 부문 ‘4-star’ 인증을 받아 선명하면서도 편안한 시각 경험을 제공하는 WQHD(P3425WE) 및 4K(P3225QE∙P2725QE) 모니터이다. 이들 제품은 USB-C(90W) 및 RJ45 이더넷 연결을 지원하고, 모니터 전면 하단에 팝 아웃 방식의 USB 퀵 액세스 포트를 탑재하여 외부 장치와 보다 손쉽게 연결할 수 있다. 윈도우, 맥OS 등 다양한 운영체제를 지원해 애널리스트, 크리에이터, 마케터 및 IT 관리자를 포함해, 방대한 워크로드를 다뤄야 하는 사용자에게 최적의 성능을 제공한다.  ‘델 프로 14 플러스 포터블 모니터(P1425)’는 2월 말부터, ‘델 프로 34 플러스 USB-C 허브 모니터(P3425WE)’, ‘델 프로 32 플러스 USB-C 허브 모니터(P3225QE)’와 ‘델 프로 27 플러스 USB-C 허브 모니터(P2725QE)’는 3월 초부터 국내에서 판매 중이다.   ‘에일리언웨어 34 커브드 게이밍 모니터(Alienware 34 Curved VA Gaming Monitor, AW3425DWM)’와 ‘에일리언웨어 27 IPS 모니터(Alienware 27 IPS Monitor, AW2725DM)’는 QHD 디스플레이의 34 및 27인치 게이밍 모니터다. ‘에일리언웨어 34 커브드 게이밍 모니터(AW3425DWM)’는 21:9 화면비와 WQHD 해상도(3440×1440), 1500R 곡률을 지원해 대규모 데스크톱 PC 게임에 최적화된 제품으로 높은 몰입도를 제공한다. AW3425DWM의 경우, 보다 많은 게임 사용자들이 에일리언웨어 모니터를 경험할 수 있도록 델 테크놀로지스의 공식 홈페이지 기준 62만 1500원의 가격으로 출시됐다. 한편, ‘에일리언웨어 27 IPS 모니터(AW2725DM)’는 더 컴팩트한 폼팩터를 원하는 사용자들을 위한 27인치 디스플레이로, Fast IPS 패널을 탑재했으며 QHD 해상도(2560×1440)를 지원한다. 이들 제품은 180Hz 고주사율과 1ms(GtG)의 응답 속도를 지원해 모션 블러 없이 부드러운 게임 플레이를 보장하며, DCI-P3 95%의 색재현율과 베사 디스플레이 HDR 400 인증으로 생동감 넘치는 색감을 표현한다. 또한, 엔비디아 G-싱크(NVIDIA G-SYNC) 호환성, AMD 프리싱크(AMD FreeSync) 및 VESA 어댑티브싱크(VESA AdaptiveSync) 인증을 통해 게임 화면이 찢어져 보이는 테어링(tearing) 현상을 없애고, 끊김 없는 쾌적한 게임 환경을 제공한다. 이 제품들은 올해 CES에서 첫 선을 보인 ‘AW30’ 디자인 콘셉트를 바탕으로 신비롭고 미래 지향적인 디자인에 사용자 중심적인 기능과 혁신적인 성능을 결합했다. 에일리언웨어 고유의 로고 엠블렘인 외계인 캐릭터와 아이덴티티는 그대로 유지하면서 오로라와 같은 자연 현상에서 영감을 얻은 신비로운 아름다움과 초월적인 미학을 제품 외관에 담았다. 사용자 중심적인 기능 면에서는 보다 깔끔한 케이블 관리, 360도 환기 구조, 공간 효율적인 소형 받침대를 탑재했으며, 게이밍 환경 최적화 소프트웨어인 '에일리언웨어 커맨드 센터 6.6(Alienware Command Center 6.6)'을 지원하는 직관적인 온-스크린 디스플레이(OSD) 인터페이스를 탑재해 사용자들이 데스크톱에서 직접 모니터 설정을 관리할 수 있도록 했다. ‘에일리언웨어 34 커브드 게이밍 모니터(AW3425DWM)’는 3월 초부터 국내에서 판매 중이며, ‘에일리언웨어 27 IPS 모니터(AW2725DM)’는 4월경 출시 예정이다. 한국 델 테크놀로지스의 김경진 총괄사장은 “델은 이번 신제품을 통해 다양한 사이즈와 기능, 가격대로 모니터 제품군을 확장하고 소비자들에게 더 넓은 선택지를 제공하게 되었다. 전세계 PC 모니터 업계 1위 기업으로서 델은 극강의 성능을 갖춘 제품을 선보이는 것은 물론, 전문적인 사용부터 엔터테인먼트 및 일상생활에 이르기까지 모든 사용자에게 적합한 다양한 옵션을 제공하고 있다”고 말했다.
작성일 : 2025-03-14
비즈니스 프로세스 모델링이 필요한 이유
BPMN을 활용하여 제품 개발의 소통과 협업 극대화하기 (1)   해가 갈수록 제품의 복잡도는 크게 증가하고 있고 이와 대조적으로 개발 주기는 급격하게 짧아지고 있기 때문에, 그동안 성공 스토리에 기여할 수도 있었던 개인의 역량 의존과 독립된 의사결정은 더 이상 유용한 전략일 수 없게 되었다. 제품 개발의 참여자들이 소통하고 협력하는 플랫폼과 커뮤니티를 통해 서로 숙고하고 숙의하는 환경이 보다 성공적인 비즈니스로 자리잡아 가게 되었다. 이번 호부터 제품 개발의 프로젝트를 소통과 협력의 프로세스로 전환해 가기 위한 좋은 방안으로써 BPMN(Business Process Modeling Notation)을 살펴보고, 이를 활용해 보고자 한다. 앞으로 5회의 연재를 통해 제품 개발 프로젝트를 비즈니스 프로세스로 연착륙하는 방법에 대해 논의하고자 한다.   ■ 연재순서 제1회 비즈니스 프로세스 모델링이 필요한 이유 제2회 BPMN은 무엇일까? 제3회 비즈니스 프로세스 모델링을 배워보자 제4회 간단한 제품 개발 프로세스를 디자인해보기 제5회 클라우드 서버 환경에서 BPMN을 연결하는 설루션 탐구   ■ 윤경렬 현대자동차 연구개발본부 책임연구원   ■ 가브리엘 데그라시 이탈리아 Esteco사의 프로젝트 매니저   제품 개발 과정의 효율적 관리 필요성 일반적으로 제품 개발은 복잡한 절차와 다양한 참여자, 그리고 광범위한 자원의 투입으로 이루어지는 경우가 많다. 그리고 상대적으로 긴 제품 개발 기간 및 오랜 생애주기(long lifecycle)를 가지는 특징이 있다. 최근 요구되는 부품 개발과 구조가 다소 단순화가 되었다고는 해도, 여전히 복잡한 아키텍처와 콘셉트 개발부터 양산에 이르는 과정에서 변경되는 정보를 추적하고 빠르고 효율적인 의사결정을 진행하는 것은 상당히 복잡한 문제이다.  그동안 이러한 문제를 해결하기 위해 다양한 방법과 노력이 진행되어 왔으며 특정 영역에서는 상당한 성과를 나타내고 있다. 특히 프로젝트 관리 시스템(project management system)의 구축 및 업무 전반에 걸친 프로세스의 정립 등은 업무를 보다 체계화하며 추적성을 높일 수 있는 유용한 방법임을 입증하고 있다. 하지만 이렇게 유용한 방법을 제대로 정의하기 위해서는 실제 업무를 수행하는 실무 단위 레벨로 내려가 참여자들이 비즈니스를 이해하고 토의를 하는 자리를 마련하고 상호 협의해 나가는 도구(툴, 설루션)의 역할 또한 중요하게 된다.   그림 1. 대표적인 프로젝트 관리 시스템   그동안 대부분의 실무 부서에서 업무를 정의하고 분류하면서 참여자의 역할과 권한을 설정하고 단계적 액티비티를 할당하는 등의 비즈니스 프로세스를 구현하는 도구는 오피스 문서(파워포인트 및 엑셀)가 전적이었다고 해도 과언이 아닐 정도로 비중이 높은 것이 현실이었다. 오피스 문서는 차량 개발의 참여자 누구나 손쉽게 접근하여 사용할 수 있다는 장점이 있지만, 문서를 만들어 저장하고 공유하는 것 이외에는 비즈니스 프로세스를 정의하고 역할과 권한을 분류하여 체계화하는 데에는 어려움이 많았다. 또한 프로젝트 관리 시스템같은 IT 시스템과의 연결성과 추적성을 확보하는 것에도 한계가 뚜렷했다.   그림 2. 오피스 기반 비즈니스 프로세스 정의   이번 호부터 연재를 통해 비영리 컴퓨터 산업 표준을 연구하고 제정하는 OMG(Object Management Group)에서 개발하여 오픈소스로 배포하는 BPMN(Business Process Modeling Notation)을 활용하여 이러한 문제를 해결하려는 시도를 공유해보고자 한다.    그림 3. BPMN 활용 예제(https://camunda.com/bpmn)   이번 연재에서는 다음과 같은 내용을 다루어 보고자 한다. BPMN에 대한 기술을 개괄적으로 요약하고 오픈소스인 비즈니스 프로세스 모델러(Business Process Modeler)를 통해 간단한 프로세스를 정의해 나가는 방법을 정의하고 비교적 단순한 콘셉트 단계 제품 개발 프로세스를 선정하여 구현해 보고 이를 데이터 워크플로와 결합하여 클라우드 서버(설루션) 기반으로 데이터의 저장 및 관리 영역으로의 확장 가능성을 탐색해 보고자 한다.      ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-03-06
[칼럼] AI 대전환 : 주도권을 선점하라
트렌드에서 얻은 것 No. 20   “AI 시대에도 변하지 않는 것은 인간의 창의성과 호기심이다.” – 사티아 나델라 딥시크(DeepSeek)로 온 세상이 떠들썩하지만, ‘2025 AI 대전환’의 두 저자가 쓴 “주도권을 선점하라”는 메시지는 여전히 유효하다. 이 책은 두 저자의 대담 형식으로 써 내려가는 부분과 두 저자의 전문 경험으로 써 내려가는 부분이 인상적이다. AI(인공지능)의 주도권을 어떻게 잡을지 책 속으로 들어가 보자.   AI 대전환의 시대, 주도권을 잡아야 하는 이유 AI는 이제 선택이 아니라 필수다. 2023년 생성형 AI의 태동 이후, AI 기술은 산업과 사회 전반에 걸쳐 급속도로 확산되었으며 개인, 기업, 국가의 경쟁력을 결정하는 핵심 요소로 자리 잡고 있다. 단순히 AI를 도입하는 것이 아니라 그 흐름을 주도하는 것이 무엇보다 중요해지고 있다. AI는 단순한 기술 혁신을 넘어 경제와 사회 구조 자체를 변화시키는 촉매제가 되고 있으며, 이에 따라 AI의 주도권을 잡는 것은 곧 미래 경쟁력을 확보하는 것과 같다. AI 기술이 발전하면서 기업과 정부는 AI를 자동화 도구로 활용하는 수준을 넘어 새로운 가치 창출의 중심에 두고 있다. 특히 AI의 발전은 제조업, 금융, 헬스케어, 교육 등 다양한 산업에 영향을 미치고 있으며, AI의 활용 여부에 따라 기업의 성패가 결정될 가능성이 커지고 있다. 그렇다면 AI 대전환이 가져올 변화는 무엇이며, 우리는 어떻게 주도권을 잡을 수 있을까? “변화는 불가피하지만, 성장은 선택이다.” – 존 맥스웰   AI의 변화와 주요 트렌드 2025년을 주도할 AI의 주요 트렌드는 다음과 같다. 멀티모달 AI : 텍스트뿐만 아니라 이미지, 음성, 영상, 센서 데이터 등을 종합적으로 활용하는 AI가 확산된다. 이는 검색 엔진, 고객 서비스, 의료 진단 등 다양한 분야에서 혁신을 가져올 것이다. 할루시네이션(Hallucination) 문제 해결 : AI가 실제 존재하지 않는 정보를 생성하는 문제를 해결하기 위한 기술이 발전하고 있다. 이를 통해 AI의 신뢰성과 정확성이 높아질 것이며, 기업은 AI를 보다 적극적으로 도입할 수 있을 것이다. 온디바이스 AI로의 확산 : 클라우드 기반 AI에서 벗어나 개별 기기에서 AI가 실행됨으로써 보안성과 개인화가 강화된다. 이는 스마트폰, IoT 기기, 자동차 등 다양한 영역에서 AI의 활용을 촉진할 것이다. 생성형 AI가 부활시킨 AI 에이전트 : 챗지피티(ChatGPT)와 같은 생성형 AI 기술이 발전하면서, 인간과 자연스럽게 상호작용하는 AI 에이전트가 다시 주목받고 있다. 이는 고객 응대, 비즈니스 자동화, 교육 등 다양한 분야에서 활용될 것이다. 오픈소스 AI 생태계의 확장 : AI 기술이 오픈소스로 개방되면서 혁신 속도가 더욱 빨라지고 있다. 이는 기업과 연구기관이 협력하여 AI 기술을 발전시키는 환경을 조성할 것이다. 비용 감소 노력과 AI 반도체 발전 : AI 연산 비용을 줄이기 위한 반도체 및 소프트웨어 혁신이 가속화되고 있다. AI 전용 반도체 개발과 최적화된 알고리즘이 AI의 대중화를 촉진할 것이다. 안정성과 책임성 강화 : AI의 윤리적 문제와 신뢰성 확보를 위한 규제 및 정책이 강화될 전망이다. 기업과 정부는 AI의 공정성과 투명성을 확보하기 위한 대응 전략을 마련해야 한다. 소비린 AI(Sovereign AI) : 국가별 AI 독립 전략이 중요해지고 있다. 글로벌 기술 패권 경쟁 속에서 각국은 자체 AI 인프라를 구축하고, 자국의 데이터를 보호하는 방향으로 나아가고 있다. 이러한 트렌드를 기반으로 AI 대전환을 주도하기 위해서는 개인, 기업, 국가가 각각의 역할을 이해하고, 효과적으로 대응해야 한다. “AI가 창조하는 것은 데이터이지만, 인간이 창조하는 것은 의미다.” – 레이 커즈와일   ▲ ‘2025 AI 대전환 : 주도권을 선점하라(오순영, 하정우)’ 서평 맵(Map by 류용효) (클릭하면 큰 이미지로 볼 수 있습니다.)   AI 내비게이터 : 개인, 기업, 국가의 역할 개인을 위한 AI 내비게이터 AI의 확산은 개인의 역량 강화와 직업 시장의 변화를 의미한다. AI와 협업하는 형태로 업무 방식이 변화하면서, AI 리터러시(AI 활용 능력)가 필수적으로 요구된다. 따라서 개인은 AI 도구를 익히고 창의적 사고와 문제 해결 능력을 키우는 것이 중요하다. 또한, AI는 새로운 일자리의 창출과 기존 직업의 변화도 가져올 것이다. 예를 들어, 데이터 분석가, AI 윤리 전문가, AI 트레이너 등의 직업이 증가할 것으로 예상된다. 반면 단순 반복 업무를 수행하는 직업은 감소할 가능성이 크다. 따라서 개인은 AI 시대에 맞는 새로운 역량을 갖추는 것이 필요하다.   기업을 위한 AI 내비게이터 기업은 AI를 단순한 도구가 아니라 전략적 자산으로 활용해야 한다. 이를 위해서는 다음과 같은 전략이 필요하다. AI를 활용한 비즈니스 프로세스 혁신 데이터 기반 의사 결정 강화 AI 기술을 내재화하는 조직 문화 구축 AI 윤리 및 규제 대응 전략 마련 AI 도입을 망설이는 기업은 시장에서 도태될 가능성이 높다. 따라서 기업은 AI 트렌드를 면밀히 분석하고, 조직 내 AI 역량을 체계적으로 강화해야 한다. 특히 AI를 활용한 고객 맞춤형 서비스 제공, 자동화 시스템 도입, AI 기반 예측 모델 구축 등이 기업의 경쟁력을 높이는 핵심 요소가 될 것이다.   국가를 위한 AI 내비게이터 AI 대전환은 국가 경쟁력과 직결된다. 글로벌 AI 패권 경쟁에서 앞서 나가기 위해서는 다음과 같은 정책이 필요하다. AI 연구개발(R&D) 투자 확대 AI 전문 인력 양성 AI 친화적 규제 환경 조성 AI 인프라(클라우드, 반도체, 데이터) 구축 국가 차원에서 AI를 적극적으로 육성하지 않으면 기술 종속의 위험이 커진다. 특히 한국과 같은 기술 강국은 AI 산업을 선도하는 전략적 접근이 필수이다. 또한, AI 거버넌스 체계를 확립하고 국제 협력을 강화하는 것도 중요한 요소가 될 것이다.  “우리는 도구를 만들고, 그 도구가 우리를 만든다.” – 마셜 매클루언   AI 주도권을 위한 방향성 2025년 AI 대전환은 개인, 기업, 국가의 모든 영역에서 거대한 변화를 초래할 것이다. 이 변화를 단순히 따라가는 것이 아니라, 주도하는 것이 곧 생존 전략이 된다. 개인은 AI 리터러시를 갖추고, 기업은 AI를 전략적으로 활용하며, 국가는 AI 산업을 체계적으로 육성해야 한다. 결국 AI 대전환의 시대에서 승자는 누구보다 먼저 변화를 준비하고 주도권을 선점한 자들이 될 것이다. 당신은 AI 대전환의 흐름 속에서 어떤 역할을 할 것인가?   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다. (블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-03-06
어도비, 파이어플라이 앱에 영상 만드는 AI 모델 탑재
어도비가 ‘파이어플라이 비디오 모델(Firefly Video Model)’의 공개 베타 버전과 함께 이미지, 벡터 및 영상을 생성할 수 있는 새로운 ‘파이어플라이 앱(Adobe Firefly application)’을 출시했다. 파이어플라이 앱은 크리에이티브 제어와 멀티 모달 워크플로, 크리에이티브 클라우드 애플리케이션과의 통합을 통해 사용자가 아이디어 구상부터 바로 사용 가능한 단계의 제작물을 생성할 수 있도록 지원하는 전문가용 올인원 툴이다. 상업적으로 안전한 AI 비디오 생성 모델인 파이어플라이 비디오 모델은 파이어플라이 앱의 비디오 생성(Generate Video, 베타)과 어도비 프리미어 프로(Adobe Premiere Pro)의 생성형 확장(Generative Extend, 베타)을 지원하며 바로 사용 가능한 영상 콘텐츠를 생성할 수 있다. 이번엔 공개된 파이어플라이 비디오 모델은 전 세계적으로 180억 개 이상의 에셋 생성에 사용된 크리에이티브 생성형 AI 모델군인 파이어플라이(Adobe Firefly)의 최신 모델이다. 이와 함께 어도비는 파이어플라이의 프리미엄 영상 및 오디오 기능을 이용할 수 있는 파이어플라이 스탠다드(Firefly Standard) 및 파이어플라이 프로(Firefly Pro) 구독 플랜을 새롭게 선보인다. 모든 파이어플라이 구독 플랜은 사용자가 필요에 따라 선택할 수 있도록 파이어플라이 이미징 및 벡터 기능에 대한 무제한 액세스와 프리미엄 영상 및 오디오 기능에 대한 단계별 용량을 제공한다. 사용자는 파이어플라이의 다양한 역량을 통해 이미지를 생성 및 편집하고 영상으로 전환하며, 영화 같은 움직임을 더한 후 어도비 크리에이티브 클라우드 앱으로 이동, 아이디어 구상부터 제작까지 매끄럽게 작업할 수 있다. 크리에이티브 전문가는 웹용 포토샵(Photoshop on the web), 프리미어 프로, 어도비 익스프레스(Adobe Express) 등 어도비의 크리에이티브 앱을 사용해 작업물을 다듬거나, 포토샵의 생성형 채우기(Generative Fill), 라이트룸(Lightroom)의 생성형 제거(Generative Remove)와 같은 파이어플라이 구동 기능을 비디오 모델과 함께 사용할 수 있다.     파이어플라이 비디오 모델로 구동되는 비디오 생성은 현재 베타 단계이다. 크리에이티브 전문가가 텍스트 프롬프트나 이미지로 영상 클립을 생성하고, 카메라 각도를 조정해 장면을 제어하거나 3D 스케치로 전문가급 이미지를 만들며, 분위기 있는 요소와 맞춤형 모션 디자인 등을 제작할 수 있는 툴을 제공한다. 현재 1080p 해상도를 지원하는 이 모델은 신속한 반복 작업을 위한 저해상도 아이디어 구상 모델과 전문가 수준의 작업을 위한 4K 모델으로도 출시될 예정이다.  파이어플라이 앱은 크리에이티브 전문가가 아이디어 구상부터 제작까지 뛰어난 작품을 선보일 수 있는 전문가급 제어를 제공한다. 새로워진 파이어플라이 웹 앱에서는 원하는 스타일과 구조 참조 이미지로 3D 작품을 생성하고, 전문적인 카메라 각도로 완벽한 장면을 연출하며, 실제 음성은 유지하면서 오디오와 영상을 여러 언어로 번역할 수 있다. 또한 포토샵, 프리미어 프로, 어도비 익스프레스 등 어도비 크리에이티브 클라우드 앱과 통합되며, 상업적으로 안전하게 사용할 수 있는 파이어플라이로 안심하고 콘텐츠를 제작할 수 있도록 한다. 파이어플라이는 고품질 이미지 생성 외에도 전문적인 카메라 각도 및 위치 선정, 풍부한 디테일과 정확성, 참조 이미지 스타일 구조에 맞는 이미지, 영상, 3D 결과물 등 고도의 크리에이티브 제어를 제공한다.  얼리 액세스로 제공되는 새로운 파이어플라이 스탠다드 및 파이어플라이 프로 구독 플랜을 통해 사용자는 파이어플라이의 이미징 및 벡터 기능을 무제한으로 이용하고, 플랜에 따라 영상 및 오디오 기능을 사용할 수 있다. 파이어플라이 스탠다드 플랜은 월 1만 3200원(부가세 포함)에 5초 분량의 1080p 영상을 최대 20건 생성할 수 있는 2000 건의 영상 및 오디오 크레딧을 제공하며, 파이어플라이 프로 플랜은 월 3만 9600원(부가세 포함)에 5초 분량의 1080p 영상을 최대 70건 생성할 수 있는 7000 건의 영상 및 오디오 크레딧을 제공한다. 정기적으로 영상 콘텐츠를 생성하는 전문가를 위한 새로운 파이어플라이 프리미엄(Firefly Premium) 플랜은 조만간 선보일 예정이다. 어도비의 데이비드 와드와니(David Wadhwani) 디지털 미디어 사업부문 사장은 “파이어플라이는 아이디어 구상 및 제작 과정에서 안전하고 효과적으로 사용할 수 있는 고도의 크리에이티브 제어가 필요한 크리에이티브 전문가를 위해 설계됐다”면서, “파이어플라이 비디오 모델이 콘셉트를 구상하고 훌륭한 영상을 제작하는 데 획기적이라는 베타 버전 고객의 반응은 매우 고무적이다. 크리에이티브 커뮤니티가 앞으로 파이어플라이를 통해 자신의 이야기를 전 세계에 어떻게 전해 나갈지 기대된다”고 말했다.
작성일 : 2025-02-13