• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "챗GPT"에 대한 통합 검색 내용이 124개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
유아이패스-오픈AI, 엔터프라이즈 에이전틱 자동화 위해 협력
에이전틱 자동화 기술 기업인 유아이패스가 오픈AI와 협력해 ‘챗GPT 커넥터’를 선보인다고 발표했다. 이 커넥터는 오픈AI의 최첨단 모델을 유아이패스의 엔터프라이즈 오케스트레이션 기반의 워크플로와 통합해, 기업들이 에이전틱 AI를 통해 가치를 더 빠르게 실현하고 투자 대비 효과(ROI)를 높일 수 있도록 지원한다. 유아이패스의 에이전틱 자동화 역량과 오픈AI의 모델·API는 AI 에이전트 개발과 배포 과정을 간소화해 사용자가 복잡한 인프라에 구애받지 않고 비즈니스 목표에 집중할 수 있게 하며, 프로세스 관리자가 AI 에이전트에 대한 신뢰를 높일 수 있도록 한다.   오픈AI 모델은 이미 유아이패스 에이전트를 구동하고 있으며, 최근에는 유아이패스 에이전트 빌더(Agent Builder)에 최신 GPT-5 업데이트가 탑재됐다. 유아이패스와 오픈AI는 에이전틱 자동화에서 컴퓨터 활용 모델을 위한 벤치마크를 마련 중이다. 이 벤치마크를 통해 다양한 AI 모델의 컴퓨터 시스템 상호작용 성능을 보다 쉽게 평가하고 비교할 수 있다. 또한 에이전트 기능을 세밀하게 검증할 수 있으며, 실제 엔터프라이즈 환경을 위해 유연하고 확장 가능한 프레임워크를 제공하며, 에이전트가 발전함에 따라 새 시나리오까지 확장할 수 있다.   유아이패스 마에스트로(UiPath Maestro)는 업무 프로세스에서 유아이패스와 오픈AI 및 다양한 타사 AI 에이전트를 통합 관리해 기업용 대형 액션 모델(LAM)의 적용 범위를 넓힌다. 프로세스 관리자는 마에스트로의 단일 화면에서 업무 프로세스를 구축·관리·최적화할 수 있으며, 업무에 가장 적합한 에이전트를 활용해 에이전틱 자동화를 가속화할 수 있다.   또한 유아이패스는 MCP(모델 컨텍스트 프로토콜) 통합을 통해 챗GPT 사용자에게 자동화 기능을 제공한다. 사용자는 챗GPT 엔터프라이즈 내에서 무인 자동화, API 워크플로, 자율 에이전트, 마에스트로 워크플로를 직접 확인할 수 있다. 더 많은 조직이 챗GPT를 도입함에 따라, 유아이패스는 엔터프라이즈급 에이전틱 자동화와 오케스트레이션을 결합해 AI 자동화를 가속화할 수 있다.   유아이패스의 그레이엄 쉘든(Graham Sheldon) 최고제품책임자(CPO)는 “유아이패스 플랫폼은 에이전틱 전환의 전 과정에서 중요하고 반복적인 프로세스를 식별하고, AI 에이전트를 구축하며, 워크플로를 관리할 때까지 지원해 기업이 성과와 ROI를 창출할 수 있도록 돕는다”면서, “챗GPT의 확산과 업계를 선도하는 모델이 유아이패스 플랫폼의 강력한 기능과 결합해 기업 고객에게 최적의 해법으로 자리 잡고 있다”고 말했다.   오픈AI의 지안카를로 리오네티(Giancarlo Lionetti) 최고상업책임자(CCO)는 “오픈AI는 기업용 컴퓨터 활용 에이전트를 빠르게 발전시키고 있으며, 성능 평가는 진행 상황을 가늠하고 더 높은 기준을 마련하는 핵심 수단”이라며, “유아이패스와의 협력을 통해 기업 환경에 맞는 성능 평가를 제공하고, 업계 전반의 수준을 끌어올릴 수 있다”고 말했다.
작성일 : 2025-10-02
요구사항 기반 바이브 코딩의 사용 방법
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 더욱 현실적인 앱 개발을 위해, 요구사항을 먼저 상세히 정의한 후 이를 바탕으로 바이브 코딩(vibe coding)을 하는 방법을 살펴본다. 소프트웨어 공학에서 요구사항 문서를 PRD(Product Requirement Document)라고 한다. PRD 작성은 제미나이 프로(Gemini Pro), 바이브 코딩 도구는 깃허브 코파일럿(Github Copilot), 이때 사용되는 대규모언어 모델(LLM)은 클로드 소넷(Claude Sonet)을 사용하도록 한다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   그림 1   바이브 코딩 준비하기 바이브 코딩을 하는 방법은 다음과 같이 다양하다. 챗GPT(ChatGPT)에 코딩 요청을 해서 생성된 파이썬(Python) 같은 코드를 복사&붙여넣기해 프로그램을 완성해 나가는 방법 제미나이 CLI(Gemini CLI), 클로드 코드 CLI(Claude Code CLI), 코덱스 CLI(Codex CLI) 도구를 사용해 프로젝트 파일 및 소스코드를 생성하는 방법 VS 코드(Visual Studio Code)같은 개발 IDE와 연동되는 깃허브 코파일럿, 커서(Cursor), 윈드서프(Windsurf)와 같은 도구를 사용해 바이브 코딩하는 방법 버블(Bubble.io)이나 캔바(Canva)와 같은 바이브 코딩 웹 서비스에서 직접 요구사항을 입력하여 제공 클라우드에 앱을 생성・빌드・실행하는 방법   깃허브 코파일럿 바이브 도구 설치 및 기능 깃허브 코파일럿은 오픈AI(OpenAI)와 협력하여 개발된 AI 페어 프로그래머(AI Pair Programmer)이다. 그 기반은 오픈AI의 코덱스(Codex) 모델에서 발전한 최신 대규모 언어 모델(LLM)이며, 수십억 줄의 공개 소스 코드를 학습하여 코드 생성 및 이해 능력을 갖추었다. 개발자가 코드를 작성할 때 실시간으로 문맥을 분석하여 다음에 올 코드를 추천하거나, 특정 기능에 대한 전체 코드 블록을 생성해 준다. 이는 단순한 자동 완성을 넘어, 개발자가 문제 해결이라는 본질에 더욱 집중하도록 돕는 지능형 코딩 보조 도구이다. 이번 호에서는 로컬 PC에서 프로젝트 소스 파일을 생성하고 직접 수정할 수 있도록 VS 코드에서 바이브 코딩할 수 있는 방법을 취한다. 이를 위해 다음 환경을 미리 준비한다. Gemini Pro(https://gemini.google.com/app?hl=ko) 가입 ■ 파이썬(https://www.python.org/downloads/), node.js(https://nodejs.org/ko/download) 설치 ■ Github(https://github.com/features/copilot) 가입 ■ Github Copilot(https://github.com/features/copilot) 서비스 가입 ■ VS Code(https://code.visualstudio.com/) 설치 및 코딩 언어 관련 확장(Extension) 애드인 설치(https://code.visualstudio. com/docs/configure/extensions/extension-marketplace)   그림 2. 깃허브 코파일럿 가입 모습   주요 기능 깃허브 코파일럿은 생산성 향상을 위한 다양한 기능을 통합적으로 제공한다.   인라인 코드 제안(Code Suggestions) 깃허브 코파일럿의 가장 핵심적인 기능으로, 사용자가 편집기에서 코드를 입력하는 동시에 다음 코드를 회색 텍스트(ghost text) 형태로 제안하는 것이다. 문맥 기반 제안 : 현재 파일의 내용, 열려 있는 다른 탭의 코드, 프로젝트 구조 등을 종합적으로 분석하여 현재 작성 중인 코드의 의도에 가장 적합한 제안을 생성한다. 다양한 제안 범위 : 변수명이나 단일 라인 완성부터 시작해 알고리즘, 클래스, 유닛 테스트 케이스, 설정 파일 등 복잡하고 긴 코드 블록 전체를 생성할 수 있다. 주석을 코드로 변환 : ‘# Read file and parse JSON’과 같이 자연어 주석을 작성하면, 코파일럿이 해당 작업을 수행하는 실제 코드를 생성해준다. 이는 복잡한 라이브러리나 프레임워크 사용법을 숙지하지 않아도 빠르게 기능을 구현하는 것을 가능하게 한다.   코파일럿 챗(Copilot Chat) IDE 환경을 벗어나지 않고 코파일럿과 대화하며 개발 관련 문제를 해결할 수 있는 강력한 채팅 인터페이스이다. 코드 분석 및 설명 : explain 명령어를 사용해 선택한 코드 블록의 작동 방식, 복잡한 정규 표현식의 의미, 특정 알고리즘의 목적 등에 대한 상세한 설명을 한국어로 받을 수 있다. 디버깅 지원 : 코드의 버그를 찾거나, 발생한 오류 메시지를 붙여넣고 해결책을 질문하는 데 활용된다. 잠재적인 오류를 수정하는 fix 명령어도 지원한다. 테스트 생성 : tests 명령어를 통해 특정 함수나 로직에 대한 단위 테스트 코드를 자동으로 생성하여 코드의 안정성을 높이는 데 기여한다. 코드 리뷰 : 작성된 코드를 분석하여 잠재적인 문제점, 성능 개선 방안, 가독성을 높이기 위한 리팩토링 아이디어 등을 제안받을 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-01
엔비디아, 오픈AI와 10GW 규모 시스템 구축 위해 협력
엔비디아가 오픈AI(OpenAI)와 전략적 파트너십을 체결했다고 밝혔다. 양사는 이번 파트너십의 일환으로 오픈AI의 차세대 AI 인프라 구축을 위해 최소 10GW(기가와트) 규모의 엔비디아 시스템을 도입한다는 의향서를 발표했다. 이번 협력으로 오픈AI는 차세대 모델을 훈련하고, 운영하며, 슈퍼인텔리전스 배포를 위한 기반을 마련하게 된다. 엔비디아는 데이터센터와 전력 용량 확보를 포함한 이번 구축을 지원하기 위해, 신규 시스템이 도입됨에 따라 오픈AI에 최대 1000억 달러를 투자할 계획이다. 첫 번째 단계는 엔비디아 베라 루빈(Vera Rubin) 플랫폼을 통해 2026년 하반기 가동을 목표로 하고 있다. 엔비디아와 오픈AI는 향후 몇 주 안에 이번 전략적 파트너십의 새로운 단계에 대한 세부 사항을 확정할 예정이다. 오픈AI는 “현재 주간 활성 사용자 수가 7억 명을 넘어섰으며, 글로벌 기업, 중소기업, 개발자 전반에서 강력한 활용도를 보이고 있다. 이번 파트너십은 오픈AI가 인류 전체에 이익이 되는 범용 인공지능(AGI) 구축이라는 사명을 추진하는 데 기여할 것”이라고 소개했다. 오픈AI는 AI 팩토리 성장 계획을 위해 전략적 컴퓨팅, 네트워킹 파트너로서 엔비디아와 협력할 예정이다. 양사는 오픈AI의 모델과 인프라 소프트웨어와 엔비디아의 하드웨어와 소프트웨어에 대한 로드맵을 공동 최적화해 나갈 것이다. 이번 파트너십은 오픈AI와 엔비디아가 이미 마이크로소프트, 오라클, 소프트뱅크, 스타게이트 등 파트너사를 비롯한 여러 협력사와 추진 중인 작업을 보완한다. 이를 통해 양사는 세계 최고 수준의 AI 인프라 구축을 위해 한층 더 속도를 낼 계획이다. 엔비디아의 젠슨 황(Jensen Huang) CEO는 “엔비디아와 오픈AI는 지난 10년간 최초의 DGX 슈퍼컴퓨터부터 챗GPT(ChatGPT)의 혁신에 이르기까지 서로를 함께 견인해왔다. 이번 투자와 인프라 파트너십은 차세대 인텔리전스 시대를 이끌 10GW 규모의 인프라 구축이라는 다음 도약을 의미한다”고 말했다. 오픈AI의 샘 알트만(Sam Altman) CEO는 “모든 것은 컴퓨팅에서 시작된다. 컴퓨팅 인프라가 미래 경제의 기반이 될 것이며, 우리는 엔비디아와 함께 구축 중인 인프라를 활용해 새로운 AI 혁신을 창출하고, 이를 사람과 기업이 대규모로 활용할 수 있도록 할 것”이라고 말했다.
작성일 : 2025-09-25
엘릭서 '액티배움' 런칭, 생성AI 실무 교육 콘텐츠 무료 제공
  클라우드 중심 하이테크 교육 기업 엘릭서는 액티배움 오픈을 기념해, 챗GPT, 코파일럿(Copilot), 퍼플렉시티(Perplexity), 제미나이(Gemini) 등 최신 생성형 AI를 활용한 실무 중심 콘텐츠를 무료로 제공한다고 밝혔다. 이 콘텐츠는 실습 위주로 구성돼 학습자가 업무 효율을 높이는 데 직접적인 도움을 줄 것으로 기대된다. 클라우드 기반의 전문 역량 강화 및 취업 지원 액티배움은 앞으로 AI, 데이터, 인프라, 보안 등 클라우드 기반의 다양한 분야 콘텐츠를 지속적으로 선보일 예정이다. 특히, 마이크로소프트 글로벌 공인 자격증 과정(AI900, AZ900, DP900, SC900)을 올인원 패키지로 제공해 이론 학습부터 기출문제 풀이, 모의고사, 실제 응시까지 지원하며, 취업과 진학에 필요한 역량을 강화하는 데 초점을 맞추고 있다. 또한, 마이크로소프트 애저(Azure) 클라우드의 AI 및 데이터 도구를 활용해 기업 맞춤형 앱이나 웹페이지를 직접 만들어보는 실습형 콘텐츠도 준비 중이다. 이는 이론 강의와 실시간 세션을 결합해 학습자가 클라우드 AI와 데이터를 직접 체험하고, 클라우드 인프라의 비용 효율적 운영 및 보안 설계까지 배울 수 있도록 구성됐다. 엘릭서는 배운 내용을 즉시 실무에 적용할 수 있는 교육을 목표로 하며, 향후 구글 클라우드(Google Cloud), 아마존 웹 서비스(AWS) 등 다양한 클라우드 플랫폼으로 콘텐츠를 확장할 계획이라고 밝혔다. 진로 멘토링 프로그램으로 취업 연계 강화 액티배움은 단순 강의 제공을 넘어, 진학과 취업에 실질적인 도움을 줄 수 있는 멘토링 강의도 출시한다. 실시간 온라인 강의를 통해 서류 합격 전략, 면접 대비 노하우 등 실전 경험을 공유하고, 국내외 현업 전문가와의 1:1 멘토링을 통해 학습자 개개인의 진로와 목표에 맞춘 맞춤형 조언을 제공할 예정이다. 엘릭서의 강형주 대표는 “액티배움은 단순한 온라인 강의 플랫폼이 아니라, 학습자가 직접 행동하며 성장할 수 있는 미래형 교육 생태계를 지향한다”며, “클라우드 AI 기반의 실습형 콘텐츠와 개인화된 멘토링을 통해 학습자들의 진학과 취업을 적극 지원하겠다”고 말했다. 액티배움은 매월 새로운 콘텐츠를 꾸준히 선보이며 빠르게 변화하는 기술 환경에 학습자들이 능동적으로 대응할 수 있도록 도울 계획이다.  
작성일 : 2025-09-13
바이브 코딩 지원 멀티 에이전트 코덱스의 사용법
BIM 칼럼니스트 강태욱의 이슈 & 토크   요즘 바이브 코딩(vibe coding)이 열풍이다. 이번 호에서는 오픈AI(OpenAI)가 개발한 바이브 코딩을 지원하는 멀티 에이전트 코덱스(Codex)의 사용법을 간략히 소개한다. 얼마 전 챗GPT(ChatGPT) 프로 버전에 무료로 오픈된 코덱스와 오픈소스 코덱스 버전(CLI)의 사용법을 모두 설명한다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   그림 1. Codex | OpenAI   2025년 4월 중순에 OpenAI o3, o4, Codex가 공개되었다. 멀티 AI 에이전트 기능을 충실히 구현한 영상 데모가 업로드되었고, 특히 자동화 코딩을 지원하는 코덱스가 로컬 컴퓨터에서 실행 가능한 형태로 공개된 점이 인상적이었다.   그림 2. 오픈AI o3, o4, 코덱스 공개 영상   코덱스는 단순한 코드 생성에 그치지 않고 버그 수정, 테스트 실행, 코드 리뷰 제안 등 복잡한 개발 업무를 자동화한다. 각 작업은 사용자의 코드 저장소가 사전 로드된 격리된 클라우드 샌드박스 환경에서 독립적으로 실행되며, 작업의 복잡도에 따라 1분에서 30분 이내에 결과를 제공한다. 또한, 코덱스는 작업 수행 과정에서 생성된 터미널 로그와 테스트 출력 등의 증거를 제공하여, 사용자가 변경 사항을 추적하고 검토할 수 있도록 지원한다.코덱스 코드 및 도구는 깃허브(GitHub)에 공개되었다. Codex Lightweight coding agent that runs : https://github.com/openai/codex 6월 초에는 챗GPT 프로 사용자에게 코덱스 기능이 공개되었다. 코덱스는 챗GPT의 사이드바를 통해 접근할 수 있으며, 사용자는 자연어로 코딩 작업을 지시하거나 기존 코드에 대한 질문을 할 수 있다. 또한 코덱스는 사용자의 개발 환경과 유사하게 구성할 수 있어, 실제 개발 환경과의 통합이 용이하다. 보안 측면에서도 코덱스는 격리된 환경에서 실행되며, 인터넷 접근은 기본적으로 비활성화되어 있다. 필요한 경우 특정 도메인에 대한 접근을 허용할 수 있으며, 이를 통해 외부 리소스를 사용하는 테스트나 패키지 설치 등이 가능하다. 코덱스는 현재 챗GPT 프로/팀/엔터프라이즈 사용자에게 제공되며, 플러스 및 에듀 사용자에게도 점차 확대되고 있다. 또한, 코덱스 CLI(Codex CLI)를 통해 터미널 환경에서도 코덱스의 기능을 활용할 수 있어, 다양한 개발 환경에서의 활용이 가능하다.(openai.com)   챗GPT에서 코덱스 사용법 코덱스를 활용한 전체 사용 과정은 단순한 코드 자동 생성 수준을 넘어, 실제 소프트웨어 개발의 전 과정을 자연어 기반으로 자동화하는 방식으로 개발되어 있다. 코덱스는 현재 깃허브를 기본 연결해 사용하도록 되어 있어, 다음과 같이 필자의 깃허브 프로젝트를 연결해 실습을 진행했음을 밝힌다. https://github.com/mac999/AI_agent_simple_function_ call.git 참고로, 필자는 필자의 깃허브 저장소를 이용하였지만, 독자는 각자 깃허브에 로그인한 후 본인의 프로젝트 개발을 진행할 저장소를 선택해야 한다. 아울러, 바이브 코딩 결과물이 제대로 동작하려면 반드시 챗GPT 등을 이용해 미리 PRD(Product Requirement Document)에 요구사항을 명확히 작성한 후, 이를 바이브 코딩 도구에 입력해 프로젝트와 코드를 생성하도록 하는 것이 좋다.   그림 3. 식사 레스토랑 평가용 앱 개발을 위한 PRD 문서 예시(How to vibe code : 11 vibe coding best practices, https://zapier.com)   프로젝트 시작 : 코드 저장소 구성 및 환경 연결 챗GPT 프로의 왼쪽 메뉴에서 <그림 4>와 같이 코덱스를 실행하면, 연결할 깃허브 계정 및 저장소를 요청한다. 코덱스에서 <그림 4>와 같이 본인의 깃허브 계정을 연결한다.   그림 4     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
[칼럼] 나만의 AI 에이전트 필살기 Ⅰ– 나만의 지식 지도를 그리다
현장에서 얻은 것 No. 22   “가장 현명한 사람은 계속해서 배우는 사람이다.” – 소크라테스   거대한 변화의 파도 속에서 AI(인공지능)라는 거대한 변화의 파도는 우리 삶 곳곳을 흔들고 있다. 단순히 새로운 기술 하나가 등장한 것이 아니라, 사고방식과 일하는 방식, 나아가 사회 전체의 구조를 바꾸는 흐름이다. 지난 7개월 동안 필자는 이 변화의 흐름 속에서 매일 배우고 실험하며 자신만의 여정을 이어왔다. 이 글은 단순히 도구를 사용한 후기나 기능 소개가 아니다. 오히려 그 과정을 통해 AI와 필자의 사이에 맺어진 관계, 그리고 인간이 놓치지 말아야 할 본질에 대한 성찰을 담은 기록이다. 필자는 이 시간을 통해 AI를 도구로만 보지 않게 되었다. 그것은 자신의 업무와 창작, 학습과 삶 전반을 통틀어 스스로를 끊임없이 자극하는 동반자였다. 그렇다고 AI를 맹목적으로 신뢰하지도 않았다. 오히려 신중하게 거리를 두고, 동시에 적극적으로 받아들이는 태도를 통해 자신만의 ‘필살기’를 다듬어왔다.   나만의 학습 공식 ― 눈 70%, 손 30% 돌아보면 필자의 학습법은 조금 독특했다. 눈으로 익힌 것이 70%, 손으로 부딪히며 체득한 것이 30%. 이 비율을 받아들인 이유는 필자의 경험이 개발자의 삶이 아니었기 때문이다. 바이브 코딩(vibe coding)이다, 비 개발자도 개발을 한다고 광고한다지만, 실제 뚜껑을 열고 보니 실상은 그것이 아님을 이해했다. 물론 개중에는 바이브 코딩으로 화면을 만들고 기능을 만들고 퍼블리싱해서 프로그램으로 만들 수는 있다. 커서 AI(Cursor AI)로 회사 홈페이지도 만들어보고, REPLIT 프로그램으로 MBTI 판별 프로그램도 바이브 코딩으로 해 보았다. 만들 수도 있고, 또 수정도 바이브 코딩으로 가능하다. 하지만, PLM을 기업에 구축하는 PM으로써 경험한 바로는, 비개발자가 프로그램을 만드는 것은 한계가 있다. 취미삼아 만들어 보는 것은 지금도 환영하지만, 프로그램이 론칭된 이후 발생하는 많은 이슈를 경험한 것을 토대로 필자는 자신만의 학습 공식을 이렇게 정했다. 필자가 하는 방식은 개발자와의 협업이다. 그것이 필자에게 더 효율적이라는 것을 터득했다. 강의와 책, 스터디에서 얻은 지식이 토대가 되었고, 실습과 시행착오가 그 지식을 현실과 연결해 주었다. 이부일 대표의 강의를 들으며 챗GPT(ChatGPT)를 활용한 파이썬 코드를 직접 따라가던 순간, AI가 단순히 언어 모델이 아니라 강력한 실무 도구라는 사실을 처음 체감했다. 첫날은 곧잘 따라갔지만, 둘째 날 노트북 배터리가 나가 낭패를 본 기억은 아직도 생생하다. 하지만 그 경험조차도 학습 과정의 일부였다. AI 학습은 지식을 머리에 담는 것만이 아니라, 삶과 환경 속에서 몸으로 받아들이는 과정임을 깨닫게 된 것이다. 실패와 해프닝도 자산이 되었다. 예측 모델을 돌려보던 설렘, 통계 분석을 따라가던 집중의 순간, 예상치 못한 오류에 당황했던 경험까지. 이 모든 것이 쌓여 필자의 학습 지도 위에 하나씩 좌표가 찍혀갔다. 중요한 건 속도가 아니었다. 정답을 빨리 찾는 것보다, 끊임없이 배우고 기록하고 다시 활용하는 과정이 훨씬 값지었다.   그림 1. 데이터로 보는 핵심 통찰(create by Gemini deep research)   “성공의 비결은 기회를 잡기 위해 준비하는 것이다.” – 벤저민 디즈레일리   집단 지성의 힘 ― 나만의 ‘AI 어벤저스 팀’ AI와 함께한 여정에서 필자는 혼자의 힘이 결코 충분하지 않다는 사실을 절감했다. 그래서 스스로 만든 것이 바로 ‘AI 어벤저스 팀’이다. 각자의 분야에서 뛰어난 전문가들을 연결해놓은 필자만의 네트워크다. AI 시대에 개인이 모든 것을 아는 것은 불가능하다. 그러나 누가 잘 아는지를 아는 것은 가능하다. 그리고 이 능력은 집단 지성을 발휘하는 가장 중요한 힘이 된다. 전문가들과의 대화는 단순히 정보 교환에 그치지 않았다. 그들은 내가 새로운 프로젝트에 도전할 수 있도록 용기를 주었고, 지식의 공백을 메워주었으며, 때로는 내가 보지 못하는 시야를 열어주었다. 나는 이 네트워크를 하나의 ‘팀’처럼 생각한다. 마치 마블 영화 속 어벤저스가 저마다의 능력을 발휘하듯, 필자의 어벤저스팀 역시 각자의 전문성을 바탕으로 협력한다. 디즈레일리의 말처럼 “성공의 비결은 기회를 잡기 위해 준비하는 것”이라면, 이 팀은 나에게 기회를 포착할 수 있는 준비된 힘이었다.   나만의 AI 필살기 7개월간의 여정 속에서 필자는 점차 자신만의 AI 활용법, 즉 ‘필살기’를 만들어갔다. 업무 헬프데스크 : PLM·APS 분야의 Q&A 시스템을 노트북LM(NotebookLM)으로 구축해 개인화된 지식 관리 체계를 마련했다. 투자 분석가 : AI에게 딥 리서치를 맡기고 이미지 생성을 결합해 주식 시장을 다각도로 분석했다. 콘셉트맵 직원 : 자료를 모아 정리하고 시각화하는 과정을 AI와 협업해 효율과 품질을 동시에 확보했다. 영상 감독: 비오 3(Veo 3)로 8초 영상을 스무 편 이상 제작하면서 프롬프트 기획과 스토리텔링 능력을 키웠다. 작가 : AI의 초안을 바탕으로 단기간에 책 집필 속도를 높였다. 아티스트 : 챗GPT와 제미나이(Gemini)를 활용해 이미지 창작 실험을 이어갔다. 지식 관리자 : 옵시디언으로 디지털 지식 지도를 설계해 자신만의 아카이브를 구축했다. 이렇게 나열하면 마치 여러 갈래의 길처럼 보이지만, 실제로는 하나의 지도 위에 유기적으로 연결되어 있다. AI는 단순히 도구가 아니라, 이 지도를 함께 그려가는 협력자가 되었다.   그림 2. 다섯 가지 핵심 필살기(create by Gemini deep research)   AI의 본질 ― ‘주체’가 아닌 ‘도움’ 그러나 필자는 늘 스스로를 경계했다. AI는 주체가 아니라 도움이라는 사실을 잊지 않으려 했다. AI는 망설임 없이 실행한다. 그러나 그것이 옳은 방향인지 아닌지를 판단하는 것은 인간의 몫이다. 필자는 회의록 요약 같은 업무를 AI에 맡겼다가 보안 문제와 인간 역량 퇴화의 위험성을 깨달았다. 편리함이 언제나 효율을 의미하지는 않는다. 오히려 잘못된 의존은 인간의 중요한 능력을 잃게 만든다. 그래서 필자는 지금도 AI의 답변을 최소 세 번 이상 검증한다. 빠른 실행보다 중요한 것은 올바른 방향 설정이기 때문이다. AI가 주는 답은 끝이 아니라 출발점이다.   AI가 던지는 질문 AI와 함께한 여정은 필자를 끊임없이 질문하게 했다. 나는 앞으로 어떤 역량에 집중해야 할까? AI가 대체할 수 없는 나만의 가치는 무엇일까? 효율을 넘어 의미를 만드는 방법은 무엇일까? 앨런 케이가 말했듯, “미래는 예측하는 것이 아니라 상상하는 것”이다. 그렇다면 필자는 지금 이 순간의 질문과 상상을 통해 미래를 설계하고 있는 셈이다.   인간과 AI, 그리고 나의 길 AI는 인간을 대체하는 기계가 아니다. 오히려 인간이 더 깊은 사고와 창조의 세계로 들어가도록 돕는 동반자다. 필자가 찾은 필살기는 바로 이것이다. AI 덕분에 자신의 본질(core)에 더 많은 시간을 쏟을 수 있게 된 것. 단순 반복 업무를 대신해 주는 AI 덕분에, 필자는 사고하고 기획하고 판단하는 인간 고유의 역량에 집중할 수 있다. 앞으로도 이 여정은 계속될 것이다. 필자는 AI와 함께 자신만의 필살기를 더욱 정교하게 다듬어 갈 것이다. 그리고 이 글을 읽는 독자에게도 묻고 싶다.   당신은 어떤 AI 필살기를 준비하고 있는가? 필자만의 AI 에이전트(agent) 필살기를 한 장의 맵으로 만들었다. 한 장의 맵은 내용을 쉽게 그리고 전체적으로 한번에 이해되도록 하는 효과가 있다. 주요 키워드를 뽑아 보면, 미래는 예측하는 것이 아니라 상상하는 것, AI는 주체가 아닌 도움, 나만의 AI 어벤저스 팀이다.   그림 3. 나만의 AI 필살기(map by 류용효) (클릭하면 큰 그림으로 볼 수 있습니다.)   “나는 똑똑한 것이 아니다. 단지 문제와 더 오래 씨름할 뿐이다.” – 알베르트 아인슈타인   당신의 AI 에이전트 필살기는 무엇인가? 이 칼럼을 통해 독자들도 자신만의 AI 활용 전략과 철학을 정립하고, AI 시대를 능동적으로 헤쳐나갈 수 있는 ‘필살기’를 찾아 나서기를 제안한다. AI는 더 이상 선택이 아닌 필수적인 도구이자 협력자이다. 중요한 것은 이 강력한 도구를 어떻게 나의 본질과 연결하여, 나만의 고유한 가치를 창출하고 미래를 만들어갈 것인가에 대한 깊은 고민과 끊임없는 실행이다. “세계를 정복하려 애쓰지 말라. 당신 스스로가 하나의 깊은 세계가 되면, 모든 것은 당신을 향해 흐른다.” AI는 단순히 기술이 아니라, ‘재능은 있지만 한계에 부딪힌’ 사람들에게 ‘도움’이 되어 AI 가수, AI 영화감독, AI 작가, AI 프로그래머가 될 수 있는 길을 열어준다. 효율만을 쫓기보다는 본질에 집중하고, 변화의 흐름을 읽으면서도 자신만의 ‘필살기’를 계속해서 갈고 닦아야 한다. 앞으로도 AI와 인간의 협업은 더욱 깊어질 것이다. 필자는 이 여정을 계속해서 탐험하며, 자신만의 AI 에이전트 필살기를 더욱 정교하게 다듬어 나갈 것이다. 모든 것에 감사하다.   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다. (블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
오라클, 데이터베이스 및 클라우드 애플리케이션에 GPT-5 도입
오라클이 자사의 데이터베이스 포트폴리오 및 SaaS 애플리케이션 전반에 오픈AI의 GPT-5를 도입했다고 밝혔다. 이번 도입에는 오라클 퓨전 클라우드 애플리케이션(Oracle Fusion Cloud Applications), 오라클 넷스위트(Oracle NetSuite), 오라클 헬스(Oracle Health)와 같은 오라클 인더스트리 애플리케이션(Oracle Industry Applications)이 포함된다. 오라클은 “신뢰할 수 있는 비즈니스 데이터와 최첨단 AI를 결합해 기업 고객이 핵심 비즈니스 워크플로에서 정교한 코딩 및 추론 기능을 기본적으로 활용할 수 있도록 지원한다”고 전했다. GPT-5는 현재까지 공개된 오픈AI의 모델 중 가장 지능적이고, 빠르며 유용한 모델이면서 코드 생성과 편집, 디버깅에 최적화되어 있다. 또한 기업 환경에서 고도화된 에이전트 기능과 정교한 추론 역량을 제공한다. API에서 세 가지 규모로 제공되는 GPT-5는 기업의 다양한 요구사항을 충족시킬 수 있는 유연성과 확장성을 제공하고, 챗GPT 엔터프라이즈(ChatGPT Enterprise)에서도 이용 가능하다. 오라클은 GPT-5를 도입함으로써 비즈니스 프로세스 전반에서 다단계 추론 및 오케스트레이션을 강화하고 코드 생성, 버그 해결, 문서화 속도를 높일 수 있을 것으로 보고 있다. 또한, 비즈니스 인사이트 및 권고 사항의 정확성과 깊이도 강화할 수 있을 전망이다.     오라클의 크리스 라이스 데이터베이스 소프트웨어 개발 부문 수석 부사장은 “오라클 데이터베이스 23ai의 데이터 AI 역량과 GPT-5의 결합은 기업이 획기적인 인사이트를 얻고, 혁신 및 생산성 향상을 달성하는 데 도움을 줄 것”이라면서, “오라클 AI 벡터와 셀렉트 AI(Select AI)가 GPT-5와 결합되면 데이터 검색 및 분석이 더 쉽고 효율적이게 된다. 오라클의 SQLcl MCP 서버는 GPT-5가 오라클 데이터베이스의 데이터에 손쉽게 접근할 수 있도록 한다. 이러한 기능은 사용자가 전체 데이터를 대상으로 검색을 수행하고, 보안성이 확보된 AI 기반 작업을 실행하며, SQL을 통해 생성형 AI를 직접 사용할 수 있도록 지원하여 엔터프라이즈 데이터에서 AI의 잠재력을 극대화한다”고 전했다. 오라클의 미튼 바브사 애플리케이션 개발 부문 수석 부사장은 “GPT-5는 오라클 퓨전 애플리케이션 사용자에게 오픈AI의 정교한 추론과 심층적 사고 역량을 제공할 것”이라면서, “오픈AI의 최신 모델은 고급 자동화와 높은 생산성, 신속한 의사결정을 가능하게 하는 역량으로 더욱 고도화된 AI 에이전트 기반 프로세스를 지원할 수 있을 것”이라고 말했다.
작성일 : 2025-08-19
[신간] 한 번에 완성하는 AI 영상 제작 with 챗GPT+소라+브루
권유라 지음 / 20,000원 / 제이펍   챗GPT로 기획하고, 소라로 제작하고, 브루로 편집한다.  이제 누구나 영상 창작자가 될 수 있는 시대가 열렸다. 챗GPT로 영상 기획과 프롬프트를 생성하고, 소라(Sora)에 프롬프트를 입력하기만 하면 완성도 높은 영상을 제작할 수 있다. 여기에 브루(Vrew)로 컷 편집과 자막을 더하면, 누구나 전문가 못지않은 결과물을 만들어 낼 수 있다. 이 책은 AI 영상 제작 입문자를 위한 체계적인 가이드를 담았다. 챗GPT, 소라, 브루를 처음 접하는 사람도 차근차근 따라 하다 보면 어느새 AI 영상 제작이 가능해진다. 영상 콘텐츠, 이제 쉽고 빠르게 시작해 보자. 1. AI 영상 제작의 A to Z, 한 권으로 짧게 끝내는 진짜 실용서  챗GPT - 소라 - 브루로 이어지는 AI 영상 제작의 전 과정을 한 권에 담았다. 초보자도 프로그램 간 연계 흐름을 자연스럽게 익히고, 직접 다양한 영상을 제작해 보도록 구성했다. 특히 ‘애니메이션’과 ‘유튜브 쇼츠’, 두 가지 실전 프로젝트를 중심으로 프롬프트 작성부터 영상 스타일 유지, 자막 편집까지 전 과정을 꼼꼼하게 다루어 책의 완성도를 높였다. 단순한 사용법을 넘어, 기획부터 편집까지 이 책으로 한 번에 완성할 수 있다. 2. 챗GPT 100% 활용, 프롬프트 작성부터 기획 노하우까지 AI 영상 제작의 핵심은 ‘프롬프트’이다. 이 책은 챗GPT를 활용해 주제, 세부 설정, 스타일 등 소라에 필요한 프롬프트를 체계적으로 기획하고 다듬는 방법을 설명한다. 덕분에 막연했던 아이디어가 구체적인 스토리로 정리되고, 소라로 자신만의 영상 스타일과 메시지를 구현할 수 있다. 따라 하기만 하는 책이 아니다. 작은 아이디어 하나를 시작으로, 스스로 기획하고 영상을 완성하는 능력을 기르는 데 집중한 실전서이다.
작성일 : 2025-07-22
PINOKIO : 스마트 제조의 실현 위한 물류 디지털 트윈 설루션
개발 및 공급 : 이노쏘비 주요 특징 : 제조 물류 전반에 걸친 시뮬레이터/디지털 트윈/AI 에이전시의 통합 플랫폼, 설계~운영 과정의 최적화 지원, 다양한 제조 운영 시스템과 실시간 연동으로 대용량 데이터를 수집 및 처리, LLM/sLLM을 활용해 직관적인 데이터 분석 및 의사결정 지원 등 사용 환경(OS) : 윈도우 10/11(64비트) 시스템 권장 사양 : 인텔 i5 10세대 이상 또는 AMD 라이젠 5 이상 CPU, 최소 16GB RAM(32GB 권장), 엔비디아 RTX 4060 이상 GPU(AI 기능 사용 시 필요), 30GB 이상 여유 저장공간   최근 제조 기업들은 디지털 트윈 기반의 스마트 공장 도입과 더불어 급속한 디지털 전환(DX)을 위해 노력하고 있다. 불과 몇 해전만 하더라도 그 실체와 사례에 대해 의문이 있었지만, 다양한 도입 사례와 성과가 공개되면서 이제는 DX에서 나아가 AI 기술 도입과 AI로의 전환(AX : AI Transformation)을 활발히 검토하고 있고, 적극적인 도입 의사를 밝히고 있다. ‘PINOKIO(피노키오)’는 최신 기술 흐름을 반영해 탄생한 차세대 물류 디지털 트윈 설루션으로, 기존 상용 시스템의 한계를 극복하고 제조 산업의 스마트화를 가속화하는데 최적화된 해답을 제시한다. 기술 대전환의 시대를 맞아 기존의 전통적인 DX 설루션 기업들은 3D 모델링 및 시뮬레이션 등 낮은 단계의 디지털 트윈 기술을 기반으로 DX 설루션으로 개선 및 확장하고 있다. 이와 달리, PINOKIO는 초기부터 현장의 대용량 데이터 기반 실시간 물류 모니터링 및 실시간 시뮬레이션을 제공하는 디지털 트윈 기반의 운영 시스템을 목적으로 출발하였다. 그 결과 SK 하이닉스, LG전자 등 대량의 혼류 생산 제조 현장에서 디지털 트윈의 정합성과 예측의 정확도 등을 검증받았고 도입 효과를 증명했다. 이를 바탕으로 최근에는 기존 상용 설루션보다 높은 성능의 시뮬레이터까지 라인업하여 다양한 요구를 충족시킬 수 있게 되었다. 기존 상용 물류 시뮬레이션 설루션은 대부분 20~30년 전 개발된 구조를 가지고 있어, 최신 IT/OT 시스템과의 연동과 AI 기술을 적용하기 어렵다. 이로 인해 대용량 데이터 처리에 한계가 있으며, 사용자 API(애플리케이션 프로그래밍 인터페이스) 미제공으로 커스터마이징과 타 시스템 연계, 현장 실시간 운영에 필요한 유연성과 확장성에서도 제약이 있다. PINOKIO는 이러한 기존 설루션의 문제점을 개선해 제조 물류 관련 다양한 AI 모델을 지원하며, 기존 설루션 대비 높은 모델링 속도를 구현할 수 있다. 그리고 멀티 스레드, GPU 기반의 고속 시뮬레이션 연산 기능과 2차전지, AMR(자율이동로봇), OHT(오버헤드 트랜스퍼), 자동창고 등 다양한 제조 환경에 맞는 특화 라이브러리를 제공한다. 특히, 생산 현장에서 발생하는 실시간 빅데이터를 효과적으로 처리하고, 대화형 어시스턴트(assistant) 방식의 직관적인 사용자 인터페이스(UI)를 통해 사용자 편의성을 높였다. 또한, 사용자 API를 통한 고도화된 커스터마이징이 가능하며, MES(제조 실행 시스템), 센서, PLC(프로그래머블 로직 컨트롤러), IoT(사물인터넷) 등 다양한 운영 시스템과의 실시간 연동 기능도 갖췄다. 나아가, 전력 사용량 분석과 탄소세 예측 기능까지 탑재돼 지속 가능한 제조 환경 구축을 위한 의사결정도 지원한다. PINOKIO는 AI 기반 제조 혁신의 길을 여는 실질적인 도구로, 앞으로 제조업계의 디지털 전환을 선도할 핵심 설루션으로 자리매김할 전망이다.   주요 기능 소개 PINOKIO는 시뮬레이터, 디지털 트윈, AI 에이전시(agancy)를 통합한 차세대 DES(이산 이벤트 시뮬레이션) 기반 플랫폼으로, 제조 물류 전반에 걸친 통합 설루션을 제공한다. PINOKIO는 세 가지 핵심 모듈로 구성된다. 첫 번째는 ‘Pino SIM’으로, 공정 흐름 설계부터 시뮬레이션, 분석까지 수행하는 시뮬레이터다. Pino SIM은 도면 편집과 레이아웃 설계를 위한 Pino Editor를 내장하고 있어, 단순한 시뮬레이션을 넘어 제조 기준정보 입력, 물류 시나리오 구성, 시뮬레이션 실행 및 시각화 분석까지 다양한 기능을 제공한다. 이를 통해 설계 초기 단계부터 실제 운영에 이르기까지 전 과정의 최적화를 효과적으로 지원한다. 두 번째는 실시간 디지털 트윈 모듈인 ‘Pino DT’다. MES, IoT, PLC, 센서 등 다양한 제조 운영 시스템과의 실시간 연동을 통해 대용량 데이터를 실시간으로 수집하고 처리하며, 이를 바탕으로 실시간 모니터링은 물론 미래 상황 예측, 예지 보전 기반의 시뮬레이션이 가능하다. 이는 생산 현장의 가시성과 민첩성을 높이는 데 기여한다. 세 번째는 인공지능 기반의 ‘Pino AI’다. LLM(대규모 언어 모델)과 sLLM(전문 도메인 특화 언어 모델)을 활용한 대화형 UI를 통해 사용자가 직관적으로 데이터를 분석하고 의사결정에 활용할 수 있다. 또한 목적에 따라 강화학습, 파라미터 최적화 등 다양한 AI 기법을 적용할 수 있어 생산성과 품질 향상을 동시에 도모할 수 있다. PINOKIO는 엔비디아 옴니버스(NVIDIA Omniverse)와 같은 고급 시각화 플랫폼과 연동 가능하며, 파이썬(Python) 개발 환경 확장도 지원함으로써 사용자 맞춤형 라이브러리 개발이 가능하다. 이를 통해 제조 기업은 사전 공정 및 물류 최적화는 물론 실시간 생산 모니터링, 미래 예측, AI 기반 정확도 향상 등 다양한 지능형 서비스를 구현할 수 있다. 제조업의 디지털 전환이 본격화되는 시대에 PINOKIO는 스마트 공장을 넘어 AI 전환을 실현하는 핵심 파트너로 부상하고 있다.   PINOKIO의 특징 PINOKIO는 고도화된 시뮬레이션 엔진과 AI 통합 기능을 바탕으로 대규모 데이터 처리 및 실시간 예측 분석을 지원하며 스마트 제조 시대의 경쟁력을 강화하고 있다. PINOKIO는 이벤트 처리 기법 최적화 및 단순화된 시뮬레이션 엔진 설계로 빠른 연산 속도를 제공한다. 특히, 초당 60프레임(FPS) 기준으로 500만 개 수준의 대규모 3D 데이터를 안정적으로 처리할 수 있으며, 선택적 컴파일 방식(C# 기반 네이티브 코드)을 활용한 별도 계산 도구를 통해 집약적인 연산 작업도 고속으로 수행할 수 있다. 디지털 트윈 구축에서도 PINOKIO는 강력한 성능을 발휘한다. MES, ACS, MCS 등 다양한 제조 운영 시스템과 연동과 IoT, 센서, PLC 등 생산 현장에서 수집되는 대용량 데이터를 실시간으로 처리한다. 이를 통해 실시간 모니터링과 동시에 백그라운드 시뮬레이션을 수행하고, 타임 호라이즌(Time Horizon) 방식의 미래 예측 기술을 통해 병목, 이상 징후 탐지 및 알람 기능도 제공된다. 또한, AI를 활용하기 위한 정상/이상 데이터 제공과 파라미터 최적화 및 시나리오별 분석 기능이 포함되어 있으며, LLM과 sLLM, 챗GPT(ChatGPT), 메타 라마(Meta LLaMA) 등 다양한 AI 모델을 통합한 AI 에이전시 기능을 통해 대화형 데이터 분석, 자동 의사결정 지원, 데이터 해석 및 운영 최적화를 구현한다. 시뮬레이션 설계 및 모델링 측면에서도 사용자 편의성이 강화됐다. Pino Editor를 활용해 레이아웃 도면을 직관적으로 확인 및 편집할 수 있으며, 제조 기준 정보 입력 및 템플릿 매칭 기능을 통해 모델링 작업 시간을 획기적으로 단축시킨다. 또한, 2차전지 및 반도체 공정에 특화된 전용 라이브러리도 제공되며, 고객 맞춤형 커스터마이징 시뮬레이터를 통해 사용자의 목적에 따라 분석 및 최적화가 가능한 유연한 개발 환경을 지원한다. 이처럼 PINOKIO는 고속 시뮬레이션, 실시간 예측, AI 기반 의사결정, 그리고 유연한 모델링 기능을 종합적으로 제공하며, 제조업의 지능화·자동화를 실현하는 설루션이다.   그림 1. PINOKIO UI 화면 – 반도체 FAB   사전 레이아웃 및 물류 검토를 위한 설루션 : Pino SIM 디지털 트윈 구축 시 미래 예측을 위한 시뮬레이터 역할과 기존 상용 설루션과 같이 공장 신축 또는 생산 라인 변경 등 제조 현장의 변화가 요구된다. 이런 상황에서 Pino SIM은 사전에 최적의 물류 계획과 레이아웃 구성을 지원하고 공정의 효율성과 안정성을 미리 확보할 수 있는 디지털 전환 핵심 도구이자 가상 공장 구현 설루션이다. Pino SIM은 제조 기준 정보(제품, 공정, 레이아웃, 물류 흐름, 작업 순서, 스케줄링 등)를 기반으로 공정을 시뮬레이션하며, 그 결과를 차트, 그래프 등 다양한 시각화 도구를 통해 분석할 수 있다. 이를 통해 레이아웃 검증 및 최적화, 생산성 향상 등 공장 운용 전반의 효율화를 실현할 수 있다. 특히, OHT, AMR 등 신 산업군을 위한 특화 라이브러리를 제공하며, 이송 설비 구현을 위한 이동, 충돌 방지, 회피 제어를 위한 OCS, ACS 기능도 탑재되어 있다. 이를 통해 코드 작성 오류를 줄이고 디버깅 시간을 줄일 수 있으며, 보다 쉽고 효율적으로 시뮬레이션 모델을 구축할 수 있다. 또한, 자동창고 모델링에 필요한 Stocker(Crane, Rack, Rail)를 그룹화 형태로 제공하여 빠른 모델링이 가능하다. 환경과 에너지 측면에서도 전력 사용량 및 탄소 배출량(탄소세) 분석 기능을 통해 지속 가능한 생산 전략 수립에 도움을 주며, 제조업의 친환경화와 ESG 경영 대응에도 기여할 수 있다. 이처럼 Pino SIM은 공장 설계 단계에서의 의사결정 품질을 높이고, 새로운 제조 환경에 유연하게 대응할 수 있는 설루션이다.   그림 2. 라이브러리 제공 – Stocker   그림 3. 개발(코딩) 없이 기능 구현   그림 4. 시뮬레이션 결과 리포트 예제   디지털 트윈 설루션 : Pino DT 제조 현장에서 물류는 제품의 사이클 타임을 결정하는 요소 중에 하나이다. 물류 정체가 발생할 경우 제품의 사이클 타임이 길어지거나 라인이 정지되는 등 심각한 손실이 발생할 수 있다. 이러한 문제를 해결하기 위해 시뮬레이션을 통한 최적화된 운영 방식을 시스템에 적용하려는 노력이 이어져왔다. 기존의 물류 설루션은 현장에서 발생하는 대용량의 데이터를 시뮬레이션에 반영하여 실시간으로 의사결정하는 과정에서 다양한 제약으로 인해 어려움이 있었다. 또한, 현장 작업자의 개입과 같은 인간적 오류는 시스템이 예측할 수 없는 데이터를 발생시키기 때문에 생산 계획 단계에서의 사전 분석 및 검증만으로는 시뮬레이션 정합성을 높이는데 한계가 있다. Pino DT는 최적화된 자체 개발 시뮬레이션과 모니터링 엔진을 탑재하여 이를 해결하였다. 시뮬레이션의 이벤트 횟수를 최적화하여 최소한의 이벤트로 시뮬레이션이 가능하도록 설계했다. 또한 계산 속도에 이점이 있는 C, C++ 언어로 물류 경로를 최적화하는 알고리즘을 구현하여 기존 설루션 대비 약 2만평 규모의 공장에서 약 70배의 향상된 성능을 검증하였다.   그림 5. Pino DT의 UI 화면   대용량 데이터 처리 및 실시간 모니터링 Pino DT는 시뮬레이션에 최적화된 알고리즘을 사용함으로써 대용량 데이터 처리가 가능하고, 현장 데이터를 실시간으로 시뮬레이션에 반영할 수 있다. 기존 물류 시뮬레이션 설루션에 비해 60~700배 뛰어난 가속 성능을 제공하는 시뮬레이션 도구이다. 제조 현장과 동일한 상황을 시뮬레이션하기 위해 현장과 연동 후 데이터를 가공하여 디지털 트윈 모델로 표현하여 가시화하고, 사용자가 설정한 시간 주기마다 미래를 예측하는 시뮬레이션(proactive simulation)을 백그라운드로 수행한다. 이는 제품의 공정 시간보다 짧은 시간 안에 결과를 확인할 수 있고, AI를 통해 보다 정확한 의사결정을 내릴 수 있도록 지원한다.   그림 6. Pino DT의 모니터링 화면   디지털 트윈 실시간 시뮬레이션 : 미래 예측 실시간 현장 상황을 반영하여 미래를 예측하는 시뮬레이션(proactive simulation)은 제품의 택트 타임(tact time)보다 짧은 시간 내에 결과를 도출해내지 못하면 현장에서 선제 대응하지 못하는 결과를 초래할 수 있다. 모니터링 엔진으로부터 라인 상황에 대한 데이터를 수집하고, 현재로부터 예측하고자 하는 시간 동안 발생하는 이상상황에 대해 피드백을 준다. 예를 들어 조립 라인의 경우에는 부품이 5분 뒤에 부족하다는 알람을 작업자에게 즉시 전달하여 선제적 대응을 가능케 함으로써, 라인 정지 등 비상 상황을 사전에 방지할 수 있다. PINOKIO 디지털 트윈 시뮬레이션은 이러한 역할이 가능하도록 가속화한 고속 시뮬레이션 엔진을 보유하고 있다.   그림 7. 현장 FAB(왼쪽)과 PINOKIO에서 생성된 디지털 트윈(오른쪽)   제조 물류 현장에 특화된 AI 플랫폼 : Pino AI AI를 이용한 설루션을 만들기 위해서는 다양한 상황에 대한 데이터가 필요하다. 하지만 제조 현장의 특성 상 여러 상황에 대한 데이터를 획득하기 어렵다. PINOKIO에서는 현장에서 획득하기 어려운 데이터를 시뮬레이션을 통해 데이터를 확보할 수 있다. 즉, Pino DT 모델이 AI를 위한 데이터를 생성하고, 이를 AI가 최적 값을 도출하여 시뮬레이션에 반영한다. Pino DT에서 획득한 데이터를 파이썬, C, 자바(JAVA) 등 다양한 언어로 구현한 로직을 적용할 수 있도록 개발 환경을 제공하고 있다. 이를 통해 예측 정확도 향상, 데이터 기반 의사 결정, Scheduling, Routing, Dispatching 등 목적에 따라 AI 활용이 가능하다. 또한 LLM, sLLM, 챗GPT(ChatGPT), 메타 라마(Meta Llama) 등과 결합한 대화형 UI를 통해 사용자가 직관적으로 데이터를 분석하고 의사결정에 활용할 수 있다.   그림 8. 대화형 UI 및 결과 리포트   그림 9. Pino DT와 AI 모델 활용 원리   Pino DT와 현장 데이터 인터페이스 디지털 트윈에 가장 중요한 요소는 현장과의 연결이다. 대부분의 물류 전문 설루션이 현장과의 연결을 위한 인터페이스를 지원하지만, 많은 양의 데이터를 처리하면서 실시간으로 시뮬레이션하는데 어려움이 있다. Pino DT는 대용량 데이터 처리와 시뮬레이션 가속 성능이 뛰어나 실시간 모니터링 시스템까지 가능하다. <그림 10>은 현장에 있는 MES와 Pino DT가 인터페이스되는 과정이다. 현장에 있는 PLC가 MES에 데이터를 전달하고, MES는 그 데이터를 데이터베이스에 저장한다. 이를 Pino DT에서 외부 통신(IP)을 통해 데이터베이스에 접근하여 데이터를 시뮬레이션에 반영한다. 이 과정에서 현장 데이터의 상태가 중요하다. 불필요한 데이터가 있거나 로스 또는 시간 순서가 맞지 않은 경우가 대부분이다. Pino DT에서는 현장 데이터를 올바르게 정제하는 작업을 거쳐 현장과 동일한 디지털 트윈 모델을 만든다.   그림 10. 현장 데이터 인터페이스 과정   PINOKIO의 기대 효과 PINOKIO는 현장 운영 데이터를 실시간으로 디지털 트윈과 연동함으로써 모니터링이 가능하며, 전체 공장을 PC, 웹, 모바일 등 다양한 형태로 여러 사용자와 함께 직관적으로 확인하면서 공유하고 협업할 수 있다. 또한 현장과 연결된 디지털 트윈 모델을 이용하여, 미래에 발생 가능한 문제점을 예지(predictive)하고, 이러한 문제점을 사전에 해결하기 위한 선제대응(proactive) 의사결정을 가능하게 한다. 이 때 디지털 트윈을 이용한 사전예지는 온라인 시뮬레이션 기술에 기반하고, 선제대응은 AI 기술에 기반한다고 볼 수 있다. 디지털 트윈 기반 사전예지의 시간적 범위(time horizon)는 현장의 특성에 따라서 0.1시간~10시간으로 달라질 수 있으며, 문제점의 종류는 주로 생산 손실(loss), 부품의 혼류 비율 불균형, 설비 고장예지 및 물류 정체 등을 포함한다. 문제점이 예지되면 이를 해결하기 위한 즉각적인 의사결정 AI 기술을 활용하여 최적 운영을 달성함으로써 생산성, 경제성, 안정성 및 경쟁력 향상 효과가 있다.   맺음말 생산 계획 단계에서 Pino SIM을 통해 레이아웃 검증과 물류를 최적화하고, Pino SIM 모델 데이터를 생산 운영 단계에서 PINOKIO와 연계하여 현장 데이터 기반 실시간 모니터링과 미래 상황 예측 및 선제 대응함으로써 현실적이고 실제 활용 가능한 스마트한 디지털 트윈을 구축할 수 있다. 다음 호부터는 Pino SIM, Pino DT, Pino AI 등 각 제품별 소개 및 적용 사례를 소개하고자 한다.   그림 11. 디지털 트윈을 위한 플랜트 시뮬레이션과 PINOKIO     ■ 기사 내용은 PDF로도 제공됩니다. 
작성일 : 2025-07-01
[포커스] 가상제품개발연구회, 춘계 심포지엄에서AI 전환 시대의 제품 개발 방향 논의
대한기계학회 가상제품개발연구회가 지난 6월 12일 2025년 춘계 심포지엄을 개최했다. ‘AI와 VPD의 만남 : Journey to the Digital Transformation’을 주제로 한 이번 심포지엄에서는 제조업 분야의 인공지능 전환(AX) 시대에 발맞춘 가상 제품 개발(VPD) 기술 및 디지털 전환 사례가 소개됐다. ■ 정수진 편집장     디지털 전환에서 AI 전환으로, 새로운 시대가 열린다 지난 2020년 출범한 가상제품개발연구회는 제조업 분야의 가상 제품 개발 기술과 디지털 전환 사례를 공유하고 기술 교류를 통해 산업 분야의 글로벌 경쟁력을 높이는 것을 목표로 삼았다. 2021년부터는 매년 봄·가을 심포지엄과 특별 세션을 열고 있다. 가상제품개발연구회의 오세기 회장은 개회사에서 “빅데이터와 딥러닝으로 시작된 디지털 전환(DX)은 생성형 AI(generative AI)가 등장하면서 기업의 문화, 전략, 비즈니스 모델까지 인공지능 중심으로 재설계하는 인공지능 전환(AX) 시대로 진화하고 있다”면서, 그 동안 연구회 심포지엄의 모토였던 ‘디지털 전환으로의 여정’이 이제는 ‘인공지능 전환으로의 여정’으로 바뀌어야 할 시점이라고 밝혔다. 대한기계학회의 배중면 회장은 축사를 통해 “챗GPT (ChatGPT)나 생성형 AI로 대표되는 현대 인공지능 시대의 개막은 기계공학 분야에서도 예외가 아니며, 물리기반 모델과 인공지능의 융합, 시뮬레이션의 자동화, 그리고 설계 최적화의 지능화가 실현 가능한 시대가 되었다”고 짚었다. 그리고 “가상제품개발연구회는 디지털 기반 제품 개발의 혁신을 선도해 왔으며, 대한기계학회 역시 이 분야의 발전을 적극 뒷받침하겠다”고 전했다.   물리지식 기반 AI와 생성형 AI를 활용한 VPD KAIST의 이승철 교수는 ‘제품 개발 가상화를 위한 물리지식 기반 인공지능의 역할’을 주제로 기조연설을 진행했다. 생성형 AI를 활용한 제품 가상화 설계 및 공학 문제 해결 방법에 대한 고민을 전한 이승철 교수는 “생성형 AI의 출현 이후 디지털 전환에서 인공지능 전환의 시대로 진화했으며, 기계공학 분야에서도 물리기반 모델과 AI의 융합, 시뮬레이션 자동화, 설계 최적화의 지능화가 가능해졌다”고 강조했다. 생성형 AI는 하나의 입력값에서 많은 수의 결과를 생성하여 설계의 다양성을 확보하는 데에 유용하다. 특히, 위상 최적화에서 문제를 ‘불량 설정(ill-posed)’하여 다양한 최적화 설루션을 생성하고, 이를 전통적인 최적화 방법의 초기 조건으로 활용하여 설계 시간을 줄일 수 있다. 이승철 교수는 “생성형 AI를 제품 설계에 적용하는 과정에서는 정밀도와 다양성의 절충점을 찾는 것이 중요하다”고 짚었다. 또한, 이승철 교수는 VPD에 AI 신경망 학습을 접목하기 위한 방법론을 소개했다. 물리지식 기반 인공지능(PINN)은 물리 지식을 데이터 프레임워크에 결합하여 인공지능 학습에 활용하는 방식으로, 특히 알려지지 않은 물리적 특성을 예측하는 ‘역방향 문제 해결’에 장점이 있다. 딥 오퍼레이터 네트워크(DeepONet)는 입력 매개변수나 형상이 바뀌어도 재학습 없이 거의 실시간으로 해석 결과를 예측할 수 있어서, 입력 파라미터의 변경이 예측 결과에 곧바로 반영되지 못하는 PINN의 단점을 극복할 수 있을 것으로 보인다. 이승철 교수는 “물리지식 기반의 DeepONet은 유동장 및 압력 분포를 실시간으로 예측하고, 복잡한 형상 변화에 따른 유동, 압력, 온도장 등을 실시간으로 예측할 수 있음을 입증했다”면서, “인공지능 기반의 새로운 도구들이 공학 문제를 해결하고 설계 분야를 혁신하는 데에 기여할 것”이라고 전망했다.   ▲ KAIST의 이승철 교수는 물리지식 기반의 AI를 제품 개발에 적용하기 위한 방법론을 소개했다.   AI/ML 기반 가상 검증 사례와 활용 전략 이번 심포지엄을 가상제품개발연구회와 공동 주관한 다쏘시스템코리아의 김문성 파트너는 ‘AI/ML 기반 가상 검증 사례와 활용 전략’에 대해 소개했다. 그는 인공지능 기반의 생성형 경험(generative experience)이 창의적이고 자동화된 설계를 가능하게 하며, 인공지능/머신러닝이 제품 개발 과정에서 반복 작업을 줄이고 비용과 시간을 절감하는 데 기여한다고 전했다. 이번 발표에서는 시뮬레이션에 적용할 수 있는 다양한 머신러닝 기법이 소개됐다. 합성곱 신경망(CNN)은 이미지 특징 추출에, 순환 신경망(RNN)과 장단기 메모리(LSTM)는 시계열 데이터 예측에, 딥러닝은 복잡한 3차원 필드 데이터 예측에, 그리고 그래프 신경망(GNN)은 유한요소모델(FEM)과 같은 그래프 구조 데이터 처리에 유용하다는 것이 김문성 파트너의 설명이다. 또한, 김문성 파트너는 문제 정의 − 학습 데이터 준비(실험 계획법 및 자동화 스크립트 활용) − 모델 학습 − 신뢰도 검증 − 예측 모델 구축까지 다쏘시스템의 아바쿠스(Abaqus)와 아이사이트(Isight)를 활용하는 머신러닝 프로세스 구현 단계를 소개했다. 김문성 파트너는 AI/ML 기법의 시뮬레이션 적용 사례로 LSTM을 활용한 하중-변위 선도 예측, 디스플레이 스트레인 예측, 전자기 성능 예측 등을 소개했으며, GNN을 사용해 빔과 항공기 랜딩기어 부재의 3차원 응력/변형량 예측이 가능하다고 전했다. 그는 “머신러닝 기술이 시뮬레이션 작업의 효율을 높이고, 데이터 기반의 정확한 의사 결정을 지원하는 강력한 도구가 될 것”이라고 전망했다.   ▲ 다쏘시스템코리아 김문성 파트너는 AI/ML 기반의 가상 검증 전략과 사례를 소개했다.   VPD와 AI의 융합, R&D 혁신을 이끈다 이외에도 이번 심포지엄에서는 물리지식 기반 인공지능과 생성형 AI를 활용한 제품 가상화 설계 방안, AI/머신러닝 기반 가상 검증 사례와 활용 전략 등에 관한 논의를 통해 미래 제품 개발의 방향을 짚어보는 기회가 마련됐다. 주제 발표로는 ▲히타치 야마자키 미키 박사의 ‘AI가 주도하는 MBSE·MBD와 VPD의 융합 : 가상화를 통한 차세대 제품 개발 가속 및 DX 추진’ ▲피도텍 대표인 한양대 최동훈 교수의 ‘VPD 대중화로 가는 길 : Al-Aided Design Optimization’ ▲현대모비스 송준영 팀장의 ‘AI를 이용한 R&D Shift’ ▲LG전자 백영진 팀장의 ‘AI와 VPD 연계를 통한 효율적 제어 시스템 개발 프레임워크’ ▲한화에어로스페이스 윤용상 상무의 ‘디지털 해석 기술을 활용한 항공엔진 개발과 국내 항공엔진의 미래’ 등이 진행됐다. 또한 패널토론에서는 VPD와 AI의 융합을 통해 R&D 혁신을 이끌어낼 수 있는 가능성과 미래 방향에 대해 논의했다.      ■ 기사 내용은 PDF로도 제공됩니다. 
작성일 : 2025-07-01