• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "진단"에 대한 통합 검색 내용이 1,248개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
민병수 엠아이티 대표 별세
민병수 엠아이티 대표   민병수 엠아이티 대표가 8월 23일 별세했다. 향년 69세. 고 민병수 대표는 현대중공업 해양사업본부 해양정보부장을 역임한 뒤, 2018년 1월 스마트팩토리 솔루션 전문 기업 엠아이티를 창업했다. 그는 기업부설연구소를 설립하고 XR 기술 연구를 통해 산업용 XR 플랫폼을 개발, 기업들의 디지털 역량 강화와 경쟁력 향상에 크게 기여했다. 특히 2021년에는 한국신지식인협회로부터 '중소기업 분야 신지식인'으로 선정되기도 했으며, 같은 해 PTC코리아와 산업 설비 원격 진단 및 제어를 위한 XR 기반 통합 플랫폼 개발 MOU를 체결하는 등 활발한 활동을 펼쳤다. 민병수 대표는 미국 캐롤라인대학교에서 경영학 박사학위를 받았으며, 서울대학교 공과대학 미래융합기술최고위과정(FIP)을 졸업하는 등 학업에도 정진했다. 고인은 2022년 과학기술정보통신부가 주최한 '제23회 소프트웨어산업인의 날' 기념식에서 대한민국 소프트웨어산업 발전 유공자로 선정되어 과학기술정보통신부 장관상을 수상했다. 당시 엠아이티가 개발한 산업용 XR 플랫폼의 혁신성과 산업 발전에 대한 공로를 인정받았다. 그는 평소 "대기업에서 오랜 시간 배우고 익힌 지식과 경험을 중소기업의 시스템을 혁신하여 기업들이 선진화할 수 있는 마중물이 되겠다"는 포부를 밝히며 끊임없는 기술 개발과 인재 발굴에 힘썼다. 또한 메타버스 시장 진출을 통해 글로벌 ICT 기업으로 도약하겠다는 계획을 세우는 등 미래를 향한 비전을 제시해왔다. 고인의 빈소는 울산영락원 100호(1층)에 마련됐다.  빈소 정보 및 상주 확인은 링크에서 확인 가능하다.
작성일 : 2025-08-24
유니티 6.2 정식 출시… “합리적이고 효율적인 개발 생태계 확장”
유니티가 유니티 6의 두 번째 업데이트인 ‘유니티 6.2(Unity 6.2)’ 정식 버전을 출시했다. 이번 업데이트는 데이터 중심의 안정성 개선, AI 기반 생산성 극대화, 최신 플랫폼 개발 환경 강화 등 개발자들이 한층 더 합리적이고 효율적으로 창작할 수 있는 생태계 확장에 초점을 뒀다.     먼저, 유니티는 개발자가 유니티 생태계 전반에서의 데이터 수집, 관리, 사용 등을 파악하고 통제할 수 있도록 새로운 ‘개발자 데이터 프레임워크(Developer Data Framework)’를 제공한다. 이 프레임워크는 각 프로젝트 내에서 데이터가 활용되는 방식을 개발자에게 투명하게 보여주고, 세부적으로 직접 제어할 수 있는 기능을 지원한다. 또한 다양한 기기에 걸쳐 프로젝트의 성능과 안정성을 실시간으로 모니터링하는 데 도움을 주는 ‘향상된 진단 기능’을 제공한다. 충돌 및 ANR(Application Not Responding) 등에 대한 문제를 빠르게 진단하고, 심층적인 데이터를 제공함으로써 더 원활한 게임 플레이와 플레이어 유지율 향상에 도움을 준다. 유니티 6.2부터 에디터에 통합된 ‘유니티 AI(Unity AI)’는 번거로운 작업 자동화, 애셋 생성 등 개발 워크플로 간소화 및 가속화를 지원한다. 컨텍스트 기반 ‘어시스턴트(Assistant)’ 기능을 통해 개발자들은 자세한 내용을 설명하지 않고도 프로젝트 애셋을 프롬프트로 드래그하면 게임 오브젝트, 스크립트, 프리팹 등에 대해 신속한 지원을 받을 수 있다. 스크립트나 오류 메시지 등 문제를 더 쉽게 파악하고 해결하는 ‘콘솔 오류 디버그’ 기능도 제공한다. 아울러 오브젝트 생성, 애셋 배치, 신 설정 자동화를 비롯해 스프라이트, 텍스처, 애니메이션, 사운드 등 다양한 플레이스홀더 애셋을 워크플로 내에서 매끄럽게 생성하고 활용할 수 있다. 일정 기준 이상의 광원이나 리지드보디(Rigidbody, 게임 개체의 물리적 속성을 시뮬레이션하는 데 사용되는 구성 요소)가 없는 오브젝트를 손쉽게 검색하고, 이름·레이어·컴포넌트 등을 일괄 수정 및 정리하는 것도 가능하다. 현재 유니티 AI는 베타 버전으로 제공하며, 개발자 커뮤니티 피드백을 바탕으로 더욱 고도화해 나갈 예정이다. 유니티 6.2는 ‘안드로이드 XR 패키지(Android XR package)’를 통해 관련 애플리케이션 제작에 필요한 안정적이고 완성도 높은 기반을 제공한다. 핸드 메시를 시각화해 오클루전에 활용할 수 있으며, URP(Universal Render Pipeline)에서 후처리 효과에 대한 GPU 부하를 줄여 색 보정 및 비네팅과 같은 이미지 효과를 보다 실용적으로 구현할 수 있다. 또한 디스플레이의 주사율을 동적으로 조정하는 기능을 지원해 더욱 매끄러운 성능을 제공한다. 이밖에 ▲맞춤형 에디터 기반 그래프 툴을 구축할 수 있도록 지원하는 API 프레임워크 ‘그래프 툴킷’ ▲자동으로 LOD(Level of Detail)를 생성해 반복 수정 작업을 최소화하는 ‘메시 LOD’ ▲몰입형 XR 및 게임 환경을 위한 사용자 인터페이스(UI)를 직접 렌더링할 수 있는 ‘월드 스페이스 UI’ 등의 기능도 제공한다.
작성일 : 2025-08-20
엔텍시스템, AI 기반 모터 진단 솔루션으로 산업 예지보전 선도
전력 계측 및 AI 기반 모터 진단 솔루션 전문기업, 엔텍시스템   산업 현장에서 고장이나 생산이 중단될 수 있는 상황을 미리 예측해, 장비 가동 중지 등의 사태를 막는 예지보전의 중요성이 높아지고 있다. AI 기반 산업 진단 기술 전문기업 엔텍시스템(www.nteksys.com)은 전력 계측과 모터 진단 분야에서 20년 이상 축적된 기술력으로 산업 설비의 안전성과 효율성을 높이는 데 앞장서고 있다.   엔텍시스템 김영식 부사장   산업 현장의 숨은 위험 신호, AI가 먼저 알아챈다 2002년 설립된 엔텍시스템은 전력 계측 및 AI 기반 모터 진단 솔루션을 전문으로 제공하는 기술 기업이다. 전기 신호 분석과 머신러닝 기술을 융합해 설비의 이상을 조기에 탐지하고, 운영 최적화를 유도하는 ‘AI 예지정비’ 분야에서 독자적 위치를 구축해왔다. 주요 제품으로는 ▲멀티채널 미터(GEMS 3500 시리즈) ▲AI 모터 진단 시스템(GEMS 5500 시리즈) ▲전기실 온라인 진단 시스템(EMS) 등이 있다. 이 중 멀티채널 미터는 수배전반의 인입 및 분기 회로를 동시에 고정밀 측정하여 에너지 효율과 전력 품질 감시에 활용되고, AI 모터 진단 솔루션은 전기 신호를 분석해 이상 징후를 조기에 탐지하고 머신러닝 기반 예지보전으로 설비 안정성 및 운영 효율을 향상시킨다. 또 전기실 온라인 진단 시스템은 실시간 전력 감시와 변압기 진단을 가능케 하여 원격 모니터링과 이상 감지에 강점을 보이고 있다. 삼성전자·LG전자·포스코 등 100여 개 이상의 기업과 150여 개 공장에 솔루션을 공급해 온 엔텍시스템은  2024년에는 미국 메릴랜드 법인을 설립하며 본격적인 글로벌 시장 공략에도 나섰다. 이와 함께 CE, UL, FCC 등 국제 인증을 확보하여 글로벌 경쟁력을 강화하고 있다. 산업AI EXPO에서 혁신적인 AI 진단시스템과 산업현장 적용 사례 소개 이 회사는 9월 3일부터 5일까지 코엑스 마곡에서 열리는 2025 산업AI EXPO에 참가해 대표 제품인 ‘SV500’ 모터 진단 시스템과 클라우드 기반 SaaS 서비스를 선보이며, 산업계의 스마트 유지보수 전환을 본격화할 계획이다. 엔텍시스템이 산업AI EXPO 2025 참가를 결정한 배경에는 “AI 기술의 실효성과 방향성을 업계에 선도적으로 제시하고자 하는 의지”가 있다. “국내 산업 AI 생태계 확산을 위한 첫 이정표로서, AI 기술의 방향성과 산업 현장 적용 사례를 업계에 선도적으로 알릴 수 있는 중요한 기회라고 판단해 산업AI EXPO에 참가하게 되었다”는 엔텍시스템 관계자는 “이번 전시를 통해 이미 여러 산업 현장에서 적용 사례를 갖춘 솔루션인 SV500의 기술 신뢰성과 실제 효과를 널리 알리고 싶다”고 전했다. 엔텍시스템이 주력으로 전시할 SV500은 24비트 해상도와 8kHz 샘플링의 전류·전압 실시간 파형 분석을 기반으로 인버터와 모터 전기 신호를 정밀 분석한다. 또 디지털 트윈 기술을 활용한 이상 탐지와 토크·고조파 분석, 웹기반 대시보드 시각화로 현장 상태를 실시간 확인할 수 있다. 이와 함께 이 회사의 전시부스에서는 클라우드 기반 실시간 모터 진단 SaaS 서비스도 선보일 예정이다. 이 서비스는 모터 이상 탐지 및 진단, 시공간 제약 없이 진단 현황 확인, 원격 실시간 모니터링 기능을 제공하여 현장 유지보수 업무의 효율성을 극대화한다. “산업AI EXPO는 산업계와 AI 기술이 실질적으로 만나는 통합 플랫폼으로서 의미가 크다”는 김영식 부사장은 “제조, 에너지, 인프라 분야에서 디지털 전환이 가속되는 가운데, 기업 간 AI 적용 경험과 니즈를 공유하고 협력할 수 있는 소통의 장이 될 것”이라고 덧붙였다. 특히 엔텍시스템은 이번 EXPO 참가를 통해 ‘스마트 유지보수의 새로운 기준’을 제시하며, 다양한 산업 고객 및 파트너와 실질적인 비즈니스 협업을 확대하는 계기로 삼을 계획이다. 이를 위해 전시 기간 내 SV500 실물 데모를 운영하여 방문객들이 센서 설치와 웹 대시보드를 직접 체험하도록 할 예정이다. 맞춤형 AI 유지보수 솔루션으로 산업계 표준 제시 엔텍시스템의 향후 목표는 명확하다. 산업 현장에서 발생할 수 있는 다양한 모터 고장 패턴을 AI가 정확히 예측할 수 있도록 머신러닝 및 딥러닝 알고리즘을 고도화하고, 고객 맞춤형 유지보수 기능을 강화해 신뢰도 높은 예지보전 시스템을 완성하겠다는 것이다. 특히 사용자 맞춤 알람 임계값 설정 기능, 모바일 최적화 UI·UX 개선, 클라우드 기반 플랫폼 강화 등을 통해 산업 전반에 AI 유지보수 솔루션을 표준화해 나갈 계획이다. 더불어, 일본, 베트남, 중동 등지로의 해외 진출도 확대하며 글로벌 SaaS 플랫폼 기업으로의 도약을 준비 중이다.  
작성일 : 2025-08-09
제조에 특화된 디지털 트윈 플랫폼, Smart Digital Twin
주요 디지털 트윈 소프트웨어 제조에 특화된 디지털 트윈 플랫폼, Smart Digital Twin 개발 및 공급 : 엠아이큐브솔루션, www.micube.co.kr    엠아이큐브솔루션은 제조 현장에서 생성, 수집되는 정보, 즉 데이터를 통합하고 지능화하는 스마트팩토리 및 자율제조 솔루션을 개발, 공급하고 있다. 당사는 제조실행시스템(MES) 구축을 주요 사업 영역으로 하여 2010년에 설립했다. 이후 전기∙전자, 반도체, 디스플레이, 이차전지, 기계∙설비, 자동차, 제철, 금속, 화학, 식품 등 주요 산업의 디지털 전환(DX)에 적용되는 설비 온라인 솔루션, 설비종합효율(OEE, Overall Equipment Effectiveness) 관리 솔루션, 제조 물류 자동화 솔루션, 제조 특화 AI 및 디지털 트윈 플랫폼을 차례로 자체 개발, 출시하였다. 1. 주요 특징 Smart Digital Twin(스마트 디지털 트윈)은 제조 데이터 통합 및 실시간 처리를 통해 자동화된 데이터 파이프라인을 구축하여 가상 제조 현장에서의 공정, 설비 운영 시뮬레이션을 지원하는 제조 특화 디지털 트윈 플랫폼이다. 자동화된 가상 운영 시나리오를 수립하고 검증, 최적화하여 강건한 제조 현장 운영 시스템을 구축하는데 활용하며, 디지털 트윈 모델의 효율적 생성과 배포, 운영을 지원하는 다양한 가상 모델 개발 및 운영 도구를 제공한다. 기간 시스템, 외부 솔루션과의 연계를 통해 신속하고 정확한 업무 실행 및 안정성을 확보하여 실제 공장 운영 및 모니터링, 검증과 진단, 예측 업무를 수행한다. 2. 주요 기능 실시간 데이터 기반의 3D 인터랙티브 뷰 계층 구조를 활용하여 공장 및 설비의 운영 현황을 모니터링하고, 이를 바탕으로 공정 설비의 안정적인 운영과 예지 보전을 위한 AI 플랫폼 연계 방안을 지원한다. 수립된 다양한 가상 시나리오를 통해 최적의 공장 운영 방식을 도출하고, 동적∙정적 변경 사항을 적용하며 What-If 시뮬레이션을 통해 도출된 여러 방안을 검증하고 적용한다. 제조 현장의 핵심 성과 지표(KPI) 분석을 위해 수요, 품질, 안전 등의 예측 분석 결과를 시각화하고, 제조 환경의 조건 변화를 반영하여 최적의 생산 지표를 도출하며 데이터 기반 의사결정을 지원하는 종합 대시보드를 제공한다. 3. 도입 효과 디지털 트윈 플랫폼의 현장 적용을 통해 공장 라인 증설, 설비 신규 투자 등에 앞서 최적의 운영 방안을 가상 시뮬레이션 기반으로 미리 검증해 볼 수 있어 불필요한 투자에 따른 낭비를 예방하고 구축 기간을 단축한다. 제조 데이터의 실시간 수집, 처리, 분석 기반의 신속한 문제 파악과 예측, 의사결정 지원 시스템을 제공하는 국제 표준(ISO 23247) 기반 자율형 공장 구축 및 운영의 핵심 플랫폼이다. 4. 주요 고객 사이트 2022년 출시 이후 삼성SDI, 삼성전자, HL만도, 현대아이에이치엘, 동서기공, 조선내화, 전남테크노파크 등 전기∙전자, 이차전지, 자동차, 세라믹 등 주요 산업 내 제조 대기업과 기관에 적용 및 확산 중이다.      상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기
작성일 : 2025-08-09
데이터 분석에 로코드 설루션이 필요한 이유
로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (1)   이번 호부터 로코드(low code) 설루션을 활용하여 데이터 분석을 활용하는 방법에 대해 설명하고자 한다. 앞으로 4회에 걸쳐 데이터 분석을 위한 로코드 분석 설루션이 어떤 장점을 가지고 있으며 어떻게 활용될 수 있는지 살펴보고, 간단한 데이터 분석 예제를 따라해 보면서 활용하는 방법을 배워보도록 하겠다.   ■ 연재순서 제1회 데이터 분석에 로코드 설루션이 필요한 이유 제2회 데이터 분석 로코드 설루션을 배워보자 제3회 로코드를 활용하여 시뮬레이션 데이터 분석을 따라해 보자 제4회 데이터 분석 로코드 설루션을 클라우드로 확장해 보자   ■ 윤경렬 현대자동차 연구개발본부 책임연구원   ■ 김도희 잘레시아 DX 프로   머신러닝 및 딥러닝 기술의 급격한 발전에 힘입어 최근 몇 년사이에 데이터 분석 시장은 폭발적으로 성장해 왔다. 데이터의 분석을 통해서 패턴을 찾고 이를 통해 행동을 예측할 수 있는 사례는 많은 이들의 관심을 불러 일으켰고, 파이썬(Python) 언어와 관련 라이브러리의 사용법을 배우는 강좌도 덩달아 큰 인기를 누리게 되었다. 이는 지식의 저변 확대와 관련 산업의 활성화라는 측면에서 상당히 좋은 방향이지만, 실제 현장에서는 상대적으로 쉽다고 알려져 있는 파이썬 언어도 교육 강좌를 수강한 이후 막상 본인의 업무에 적용하려고 하면 적지 않은 어려움에 직면하게 된다. 이유는 파이썬 언어의 사용이 어려워서라기보다는 CDS(Citizen Data Scientist : 시민 데이터 과학자)에게는 익숙하지 않기 때문이다. 특히 프로그래밍 언어를 이용한 코딩은 텍스트에 기반한 정보이기 때문에 직관적이지 않고 시행착오를 반복해야 어느 정도 활용 레벨에 올라갈 수 있다. 최근 이러한 문제를 해결하기 위해 로코드 분석 설루션(low code analysis solution)이 대안으로 시도되고 있으며 유의미한 결과를 보여주고 있다.   일반적인 데이터 분석 과정 데이터 분석은 보통 요청을 접수하는 것부터 시작되며, 이 단계에서는 무엇을 분석해야 하는지, 분석의 목적은 무엇인지 명확히 파악하는 것이 중요하다. 분석 대상과 기대하는 결과가 정해지면 그에 필요한 관련 데이터를 확보하게 된다. 이 때 데이터는 내부 시스템, 데이터베이스, 외부 파일 등 다양한 경로를 통해 수집될 수 있다. 다음은 확보한 데이터를 개괄적으로 파악하는 과정인데, 이 때 주요 칼럼과 데이터의 값을 확인하고 누락된 값 또는 이상치가 있는지 등을 점검하게 된다. 데이터의 품질을 빠르게 진단하는 이 단계는 이후 분석의 방향에 큰 영향을 미치게 되기 때문에 아주 중요하다. 이렇게 데이터의 상태를 파악하고 난 뒤에는 분석 전략을 수립하게 되는데, 여기서는 어떤 방식으로 데이터를 다루는 것이 좋을지, 어떤 분석 기법을 적용하는 게 좋을지를 구체적으로 준비하게 된다. 세 번째 단계로는 그 동안 수립한 분석 계획에 따라 본격적인 데이터 정제 작업을 시작하게 된다. 구체적으로는 전처리, 필터링, 파생 변수 생성 등의 작업을 포함하여 분석에 적합한 형태로 데이터를 정돈하는 단계로 볼 수 있다. 다음은 실제 분석을 수행하고 필요한 시각화를 통해 인사이트를 도출하는 것으로 통계 분석, 머신러닝 모델링, 상관관계 파악 등 다양한 방법이 이 부분에 포함된다. 마지막으로 분석 결과는 보고서 형태로 문서화하거나 대시보드로 시각화하여 공유되며, 이는 분석 요청자 또는 조직 내 이해관계자가 쉽게 결과를 활용하여 의사결정을 수행하도록 지원할 수 있다. 요청 접수 → 데이터 확보 → 데이터 검토(칼럼/누락/이상치 확인) → 분석 전략 수립 → 데이터 정제 및 가공 → 분석 수행 및 시각화 → 결과 공유   파이썬 코딩과 로코드 기반 분석의 비교 이제부터 본격적으로 데이터 분석을 진행하기 위해, 우리는 데이터 분석에 대한 요청을 받은 CDS라고 가정을 해 보자. 우리는 유관부서로부터 전력 판매량(Electric Power Sales) 예측에 대한 분석을 요청 받은 상태이고, 언제나처럼 기한은 촉박한 상황이다. 우리에게 주어진 데이터는 발전소 데이터, 기상 정보 데이터, 날짜 및 요일 데이터 등 세 가지로 다행스럽게도 소스 데이터는 엑셀 형태로 정리되어 입수한 상태이다. 우선 ‘발전소 데이터’를 살펴 보면 일자별로 특정 발전소에서 일일 발전량이 자세하게 표시되어 있다. 결국 첫 번째 데이터는 Electricity_sales로, 발전소 명칭, 측정 일자(년, 월, 일), 시간대별 전력 판매량으로 구성되어 있는데 이는 머신러닝에서 예측하게 될 Y값(종속변수)이 포함된 핵심 데이터 영역이다.   그림 1. 발전소 데이터   다음은 ‘기상 정보 데이터’로 일자별로 특정 지역의 날씨 정보가 정리되어 있다. 발전소 위치에 따른 기상 정보로 일시, 평균기온, 강수량, 풍속, 습도, 일사량 등의 정보가 담겨 있다.    그림 2. 기상 정보 데이터   마지막으로 ‘날짜 및 요일 데이터’는 일자별로 요일을 숫자로 매핑한 데이터이다. 날짜 데이터에 매핑 가능한 공휴일 정보가 담겨 있는 데이터 영역이다.   그림 3. 날짜 및 요일 데이터   결국 요청 받은 데이터 분석을 완료하기 위해서는 입수한 데이터에 전처리를 수행하고 이를 기반으로 다중 회귀 분석을 수행하여 머신러닝 예측 모델을 구성해야 한다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-08-04
[케이스 스터디] 성공적인 산업 메타버스 구현을 위한 필수 요소
디지털 전환의 잠재력을 실현하는 메타버스 기술   이번 호에서는 산업 분야 메타버스의 발전을 이끄는 요인과 그 잠재력에 대해 알아보고, 디지털 전환의 중요성과 이를 실현하는 기술을 살펴보고자 한다. 또한, 실제 성공 사례를 통해 산업 분야 메타버스를 즉시 시작해야 하는 세 가지 이유를 제시한다. ■ 자료 제공 : 유니티 코리아     메타버스는 주로 게임, 엔터테인먼트, 소셜 네트워크, 가상 경제 같은 소비자 지향적 활동을 위해 구상되었으며, 현재 로블록스(Roblox), 디센트럴랜드(Decentraland), 호라이즌 월즈(Horizon Worlds) 등의 플랫폼에서 관련 콘텐츠를 찾아볼 수 있다. 반면에 제조, 자동차, 물류 등의 산업 분야에서는 효율과 생산성, 혁신 등에 메타버스를 응용하는 방안을 주목한다. 산업 분야의 메타버스는 디지털 트윈, 시뮬레이션, 실시간 협업 등의 툴을 통합하여 운영과 설계, 교육을 개선한다. 유니티의 헤닝 린(Henning Linn) 인더스트리 고객 성공 담당 시니어 디렉터는 “산업 분야 메타버스는 데이터 연결성과 접근성을 새로운 차원으로 인도하며, 가속화된 연결을 통해 한 시스템에서 다른 시스템으로 데이터를 전송하는 방식을 개선한다”고 전했다.   든든한 토대를 마련하는 산업 분야 메타버스 산업 분야 메타버스는 몰입형 3D 기술과 실제 기업용 애플리케이션을 혼합하는 방법이다. 주된 용도는 비즈니스의 내부 프로세스에 사용하거나 고객의 참여를 유도하는 것이다. 산업 분야 메타버스는 기업에게 디지털 작업 공간이 되며, 현실 공간에서 써야 할 시간이나 비용을 절약하면서 테스트와 디자인을 거쳐 운용 방안을 개선할 수 있다. 공장, 기계 또는 시스템의 첨단 디지털 시뮬레이션, 즉 가상의 모형이 생긴다고 생각해 보자. 디지털 3D 공간에서 여러 팀이 협력하여 문제를 해결하고 작업자를 교육하거나 프로세스를 최적화할 수 있다. 산업 분야 메타버스는 형태나 규모의 제약에서 벗어나 제품을 선보일 수 있는 가상 쇼케이스가 되기도 하며, 한층 새로운 수준으로 고객의 참여를 유도하는 수단이 되기도 한다. 고객이 어디서나 가상 환경을 통해 제품을 체험할 수 있는 몰입형 플랫폼을 제공할 수 있으므로 참여도와 구매 가능성이 높아진다. 산업 분야 메타버스에서는 VR(가상현실), AR(증강현실), XR(확장현실) 같은 툴을 사용하여 이러한 가상 세계에 몰입할 수 있는 환경을 제공한다. 그 기반이 되는 실시간 3D 기술을 활용해 센서, IoT(사물인터넷), 글로벌 제품 카탈로그, 소재 정보를 비롯한 현실 세계의 데이터를 연동할 수 있다. 이 모든 것을 하나로 엮으면 실시간으로 가상 세계에서 환경이나 제품을 정확하게 표현할 수 있다. 산업 분야 메타버스를 통해 몰입형 3D 기술을 실제 정보와 결합하면 더 스마트하게 작업하고, 비용을 절감하며, 고객 참여를 유도하고, 보다 안전하고 신속하게 의사 결정을 내리는 데 도움이 된다.   산업 분야 메타버스에 대한 주목도가 높아지는 이유 PwC의 2024년 운영 디지털 트렌드 설문 조사에 따르면, 운영 및 공급망을 담당하는 임원 10명 중 거의 7명(69%)은 기술 투자가 전반적으로 기대치를 충족하지 못한다고 답했다. 산업 분야의 기업들은 다음과 같은 과제에 직면하고 있다.  빠르게 변화하는 시장에 대응 : 기술과 비즈니스 모델은 빠르게 발전하고 있으며, 산업 분야의 기업은 경쟁력을 유지하기 위해 미래를 향한 비전을 제시하고 새로운 기술에 투자해야 한다. 분산된 조직 간 협업 및 전략적 의사 결정 지원 : 인력은 다양한 지역과 시간대에 흩어져 있으며, 직원과 임원 모두 저마다 시간대가 달라 협업하기가 쉽지 않다. 전사적 차원에서 단절된 데이터 파악 : 그 어느 때보다 많은 데이터가 디지털화되고 클라우드에 저장되어 접근성이 높아졌지만, 대부분의 조직에서 데이터는 여전히 상당 부분 고립되어 있다. 사용자가 데이터와 상호 작용하고 데이터를 이해할 수 있도록 지원 : 복잡한 데이터 세트를 다른 데이터 세트와 통합하고, 사람들이 그 안에 담긴 맥락과 의미를 파악할 수 있도록 데이터를 시각화해야 한다.   산업 분야 메타버스가 지닌 혁신적인 잠재력 산업 분야 메타버스가 다양한 유형의 비즈니스에 적합한 이유는 무엇일까? 교육, 고객 경험, 협업 툴, 영업 및 마케팅 실무와 같은 실질적인 응용 사례에 집중하면 그 가능성은 무궁무진하다. 몇 가지 가능한 사례를 살펴보겠다.   운영 프로세스 간소화 목표 : 기존 프로세스, 워크플로, 시스템을 진단한다. 응용 사례 : 정유소에서 공장 전체의 디지털 트윈을 제작한다. 유지 관리 담당자는 가상 환경에서 디지털 트윈을 탐색하고, 그 구성 요소와 상호 작용하고, 유지 관리 작업을 시뮬레이션할 수 있다. 여기에는 마모된 부분이 있는지 파악하고, 수리 절차를 계획하고, 모든 안전 프로토콜이 준수되었는지 확인하는 작업이 포함된다. 장점 : 더 효과적으로 계획을 수립하고 휴먼 에러를 줄일 수 있으므로 유지 관리 다운타임 및 비용이 대폭 감소한다.   비즈니스 모델 전환 목표 : 기존 비즈니스 모델에서 더 혁신적인 모델로 전환 응용 사례 : 중장비 제조업체가 PaaS(Product-as-a-Service) 모델로 전환한다. PaaS 모델을 도입하면 고객은 제품 사용 비용을 한 번에 전부 지불하는 대신 사용한 만큼만 지불하면 된다. 기업은 장비의 디지털 트윈을 구축하고 실제 기계의 IoT 센서와 동기화함으로써 성능, 사용량, 마모 관련 데이터에 액세스할 수 있다. 고객은 장비를 구매하지 않고 사용량(예 : 작동 시간, 생산 산출량)을 기준으로 요금을 납부할 수 있다. 장점 : 제조업체는 PaaS 모델을 통해 반복적인 수입이 발생하는 새로운 수익원을 창출하여 재무적 예측 가능성을 높일 수 있다.   업종 전환 목표 : 새로운 지역, 업종 또는 프로젝트 모색 응용 사례 : 건설 회사가 디지털 기술을 사용해 건물의 설계, 건축, 관리 방식을 혁신하는 3D 프로젝트 모델을 구축함으로써 효율성과 지속 가능성, 비용 절감을 전체적으로 개선한다. 장점 : 실제 건설을 시작하기 전에 잠재적인 문제를 탐지하면 비용을 절감하고, 오류를 최소화하며, 프로젝트 일정을 줄일 수 있다.   인력과 조직 문화의 변화 목표 : 직원의 협업과 혁신을 촉진하고 민첩성 강화 응용 사례 : 다양한 지역에 떨어져 있는 여러 팀이 마치 같은 현장에 있는 것처럼 서로 보고 들을 수 있는 가상 3D 회의실에서 실시간으로 협업하고, 다 함께 제품의 3D 디지털 버전을 검토한다. 장점 : 직원 간의 커뮤니케이션을 개선하고, 더욱 빠르게 의사 결정을 내리고, 프로젝트를 완료하는 데 걸리는 시간을 단축한다.   고객과 파트너의 경험 혁신 목표 : 고객에게 더 흥미로운 경험 제공 응용 사례 : 자동차 제조업체가 고객에게 집에서 차량을 자세히 살펴보고 원하는 대로 커스터마이즈해 볼 수 있는 3D 가상 쇼룸을 제공한다. 고객은 실시간으로 차량의 기능을 사용해 보고, 차량의 색상, 인테리어 옵션, 액세서리를 변경하고, 모든 각도에서 변경에 따른 차이를 확인할 수 있다. 장점 : 자동차 제조업체는 고객이 더욱 많은 정보를 바탕으로 의사 결정을 내릴 수 있도록 도와주며, 고객 만족도와 참여 수준이 높아진다.   디지털 전환이 중요한 이유 기업이 소프트웨어와 전자 제품을 통해 기능과 사용자 경험을 개선할 방안을 모색하는 한편 지속 가능한 설루션에 대한 관심이 증가함에 따라, 많은 산업 분야에서 스마트 제품과 커넥티드 제품이 점점 더 다양하게 보급되고 있다. 공급망 관리, 인력 역학, 지속 가능한 혁신을 둘러싼 과제들로 인해 불확실성이 늘어나지만, 동시에 창의적인 솔루션을 통해 기업이 경쟁 우위를 확보할 기회가 생겨나기도 한다. 이러한 압박과 어려움으로 인해 기업은 운영 방식뿐 아니라 시장에 출시하는 제품과 서비스도 혁신해야 하는 상황에 놓였다. 실시간 3D 렌더링, AI, 클라우드 컴퓨팅이 발전하면서 산업 분야 메타버스에는 새로운 길이 열렸다. 미래의 성공을 위해 기업은 더 탄력적이고 민첩해져야 하며, 역동적으로 변하는 환경에 대한 적응력을 높여야 한다. 그러려면 디지털 전환과 산업 분야 메타버스를 핵심 요소로 채택해야 한다. 린 시니어 디렉터는 “데이터가 디지털화되었다고 해서 연동되었다는 것은 아니다. 예를 들면 제품의 동작을 설명하는 데이터라고 하더라도 제품 데이터와는 연동되지 않을 수 있다. 동작을 시뮬레이션하려면 수동으로 데이터를 연결해야 한다. 산업 분야 메타버스는 데이터 사일로(silo)를 연결하며, 이는 디지털 전환을 통해 실현할 수 있다”고 짚었다.   실시간 3D : 산업 분야 메타버스의 기반 기술 현재 디지털 전환을 시작하는 조직에 중요한 혁신 중 하나는 바로 실시간 3D이다. 실시간 3D는 컴퓨터로 생성되어 단순히 보는 것에 그치지 않고, 직접 체험할 수 있는 3D 이미지를 만들고 표시하는 기술이다. 그 이름에서 알 수 있듯이 이 이미지는 실시간으로 업데이트된다. 즉, 사용자의 행동에 따라 바로 바뀌는 것이다. 실시간 3D는 원래 비디오 게임을 제작하기 위해 개발되었지만 이제는 산업 분야에서도 널리 응용되고 있으며, 가상 세계가 사용자 행동에 즉각적으로 반응하는 몰입형 인터랙티브 경험의 근간이 된다.   검증된 실시간 3D 응용 사례 고도로 발전한 고성능 실시간 3D 기술은 이미 존재한다. 제조업체, 사치품 소매 업체, 자동차 제조 업체 등 다양한 기업들이 이미 실시간 3D 기술을 활용하고 있다. 다음은 몇 가지 예시이다.   단일 에셋 라이브러리로 XR 제작 과정을 간소화 글로벌 과학 및 임상 연구 회사인 써모피셔사이언티픽(Thermo Fisher Scientific)은 디지털 트윈, 영업 지원, 교육, 기능성 게임 같은 설루션을 제공하기 위해 단일 소스의 3D 애셋을 활용하는 XR 기반 플랫폼을 구축했다. 이 XR 플랫폼의 성과는 다음과 같다. 애셋 파이프라인 효율 250% 향상 로코드/노코드 비주얼 스크립팅을 통한 개발 시간 단축   ▲ 이미지 출처 : 써모피셔사이언티픽   사이버 공간에 오프라인 매장 경험을 구현 파리의 럭셔리 가죽 제품 브랜드 카뮤포네(Camille Fournet)는 섬세한 디자인과 장인 정신으로 잘 알려져 있지만, 실시간 3D를 사용하여 고객의 경험을 향상하는 데 앞장선 브랜드이기도 하다. 이 기업에서는 고객이 매장에서 누리는 럭셔리한 경험을 온라인에도 똑같이 제공하고자 했다. 유니티를 기반으로 스마트픽셀(SmartPixels)에서 제작한 실시간 3D 제품 컨피규레이터 덕분에 카뮤포네는 다음과 같은 성과를 거뒀다. 탐색에서 구매로 이어지는 전환 수 5배 증가 고객 참여도 66% 상승   ▲ 이미지 출처 : 스마트픽셀   교육 비용을 절감 칼스 주니어(Carl’s Jr.)는 미국에 뿌리를 둔 패스트푸드 체인으로, 30개국에서 1100개가 넘는 식당을 운영한다. 만 명에 달하는 직원 대부분이 서로 멀리 떨어져 다양한 지역에서 근무하고 있다. 안전, 위생 및 고객 서비스에 대한 높은 기준을 유지하려면 지속적이고 일관된 신입 직원 교육이 필수이다. 칼스주니어는 AR 기반의 자기 주도형 인력 교육을 통해 다음과 같은 성과를 달성했다. 교육 비용 73% 절감 고객 만족도 43% 증가   ▲ 이미지 출처 : 비저너리스 777(Visionaries 777)   지금 산업 분야 메타버스를 시작해야 하는 세 가지 이유 디지털 기술은 빠르게 발전하고 있다. 산업 분야의 기업이 뒤처지지 않으려면 더 전략적으로, 더 장기적인 관점에서 변화를 예측해야 한다. 경쟁력 확보 : 경쟁 업체는 이미 실시간 3D를 활용할 방법을 모색하고 있고, 움직임이 더딘 조직을 빠르게 앞지를 것이다. 실시간 3D에 대한 고객의 수요와 기대치가 모두 증가하고 있으며, 고객이 원하는 것을 제공하지 않는 조직은 고객 이탈을 겪게 될 것이다. 인재 확보 : 최고의 인재, 특히 기술 인력은 늘 부족하며 수요가 많다. 새로운 기술을 도입하여 디지털 전환을 추진하는 기업은 기술 커뮤니티의 이목을 끌 수 있다. 혁신 실현 : 복잡한 3D 데이터에 대한 보편적인 액세스 권한을 제공하고 전 세계의 관계자가 협업할 수 있도록 지원하면 작업자가 더욱 생산적이고 효과적인 동시에 보다 빠르게 작업할 수 있다.   향후 전망 살펴보기 기술의 융합 그 자체인 산업 분야 메타버스의 목표는 가상 세계와 증강현실을 서로 연결하는 것이다. 유연함이라는 본질 덕분에 기술과 활용 사례가 발전함에 따라 그 정의도 계속 변화할 것이다. 기업은 IoT, AI, XR 같은 디지털 전환 툴을 연동하여 공장, 공급망, 제품을 세밀한 부분까지 그대로 재현함으로써 몰입도 높은 산업 분야 메타버스 애플리케이션을 제작할 수 있다. 이 가상 모형은 실시간 모니터링, 예측형 유지 관리, 시나리오 테스트, 교육, 협업 등을 가능케 한다. 결론적으로, 산업 분야 메타버스는 기존 프로세스를 개선하는 것을 넘어서 더욱 민첩하고 지속 가능하며 혁신적인 산업으로 향하는 혁신의 기틀이 되고 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-08-04
산업용 AI 솔루션, 가디원 터보
주요 디지털 트윈 소프트웨어 산업용 AI 솔루션, 가디원 터보 개발 및 자료 제공 : 원프레딕트, www.onepredict.com    1. 가디원 터보란? 가디원 터보는 대형 회전설비의 디지털 운영 및 유지보수(O&M)를 위한 혁신적인 산업용 AI 솔루션이다. 설비의 상태를 실시간으로 모니터링하고, 고장 가능성을 사전에 예측하며, 설비의 안정성과 운영 효율성을 극대화하는데 중점을 두고 있다.  가디원 터보는 첨단 AI 기술과 디지털 트윈 기술을 기반으로 설계 되었으며, 주요 개발 배경은 대형 회전설비의 복잡성과 고장 리스크를 효과적으로 관리하려는 산업적 요구에 있다. 이 제품은 설비의 안정적인 운영이 필수적인 연속 공정 산업에서 시작하여, 발전소, 석유 및 가스, 철강, 화학, 시멘트, 제지 등 다양한 분야로 확장되었다.  특히 발전소에서는 가스터빈 및 증기터빈 같은 핵심 설비의 안정성을 높이는 데 활용되며, 석유 및 가스 산업에서는 설비 가동 중단을 방지하고 효율적인 운영을 지원한다. 또한, 철강 및 화학 산업에서는 연속 공정의 원활한 운영을 보장하며, 전체 생산성을 향상시키는데 기여한다. 2. 주요 특징 가디원 터보는 경쟁사 제품과 비교해 진동 데이터와 운전 데이터를 통합 분석하여 고장의 원인을 정확히 진단하고, AI 기반의 고급 알고리즘을 통해 실시간 예지 보전을 제공한다.  특히, 직관적인 사용자 인터페이스(UI)와 3D 오빗 선도 등 고급 시각화 기능으로 비전문가도 쉽게 활용할 수 있으며, 맞춤형 유지보수 솔루션을 통해 설비 가동 중단과 유지보수 비용을 최소화한다.  또한, 자동화된 진단 보고서 생성 기능과 지속적인 소프트웨어 업데이트로 고객의 요구를 유연하게 충족시키며, 글로벌 경쟁사 대비 신속하고 현지화된 지원을 제공하는 점이 차별화된 강점이다. 3. 주요 기능 가디원 터보의 주요 기능은 다음과 같다. (1) 실시간 설비 상태 모니터링 가디원 터보는 진동 데이터와 운전 데이터를 실시간으로 수집하고 분석하여 설비 상태를 정밀하게 파악한다. 이를 통해 관리자는 설비의 작동 상태를 즉각적으로 확인할 수 있으며, 이상 징후가 감지되면 즉시 경고를 받아 빠르게 대처할 수 있다. 온도, 압력, 회전 속도 등의 핵심 데이터를 모니터링하며, 잠재적인 문제를 사전에 예측할 수 있다. (2) AI 기반 고장 예측 및 이상 감지 고급 딥러닝 알고리즘과 비지도 학습 기술(VAE 기반)을 활용하여 설비의 정상 작동 패턴을 학습하고, 비정상 상태를 감지한다. 특히, 15가지 주요 고장 모드를 실시간으로 진단할 수 있는 기능을 제공하며 고장 모드에는 축의 불균형(Unbalance), 정렬 오류(Misalignment), 윤활유 문제(Oil Whirl/Whip), 베어링 손상 등이 포함된다. 또한, 설비의 운전 조건에 따라 동적으로 경계값을 설정하여 오경보를 줄이고, 고장의 사전 예측 정확도를 높입니다. (3) 상세 진단 보고서 자동 생성 가디원 터보는 수집된 데이터를 기반으로 상세 진단 보고서를 자동 생성한다. 이 보고서는 설비 상태 평가, 고장 원인 분석, 판단 근거, 그리고 유지보수를 위한 권장 조치 사항 등을 포함한다. 유지보수 팀은 이 보고서를 활용하여 문제를 신속히 파악하고, 적절한 대응 방안을 수립할 수 있어, 의사결정 과정을 단축하고 유지보수 효율성을 높인다. (4) 3D 오빗 선도 기능 설비의 회전축 운동을 3차원 공간에서 시각화하여 설비의 동적 거동을 한 눈에 파악할 수 있도록 지원한다. 이 기능은 미세한 정렬 오류, 불균형, 베어링 손상 등의 문제를 식별하는 데 유용하며, 설비 상태를 직관적으로 이해할 수 있는 강력한 시각화 도구이다. (5) 디지털 트윈 및 직관적 UI 디지털 트윈 기술을 활용하여 실제 설비와 동일한 3D 모델을 제공하고, 설비의 상태와 변화 과정을 실시간으로 시각화한다. 또한, 카드형 대시보드와 같은 직관적인 UI를 통해 비전문가도 쉽게 설비 데이터를 이해하고 활용할 수 있다. (6) 맞춤형 유지보수 솔루션 설비 상태와 데이터를 바탕으로 고객의 요구에 맞춘 유지보수 계획을 제안한다. 이를 통해 설비 가동 중단을 최소화하고, 불필요한 유지보수를 줄이며, 설비 수명을 연장한다. 고객 맞춤형 접근 방식을 통해 설비 운영 효율성과 비용 절감을 동시에 실현할 수 있다. 4. 도입 효과 설비관리자들의 가장 큰 고민은 ‘설비 고장으로 인한 Downtime’이며 이를 최소화하는 것이  굉장히 중요한 과제다. 설비에 문제가 생기면 필연적으로 Downtime이 발생하며, 이로 인해 생산이 중단되면 납기 지연, 수리 및 유지보수 비용 발생, 리소스 낭비, 직원들의 초과근무 등 여러가지 문제가 연쇄적으로 일어나 그 피해가 매우 크다. 가디원 터보는 이런 문제점을 해결하고자, Root cause, Recommended action을 지원함으로써 고객의 빠른 의사결정을 돕고 있다. 특히 많은 운영사에서 운전데이터와 진동데이터를 수집하는 소프트웨어가 다르다는 점 때문에 데이터를 통합하여 모니터링하는데 어려움을 겪고 있는데 가디원 터보는 운전데이터와 진동데이터를 통합하여 모니터링 할 수 있을 뿐 아니라, 진동 발생의 원인까지 분석함으로써 빠른 의사결정을 돕고 이에 따라 Downtime 최소화를 실현할 수 있는 제품이다. 5. 주요 고객 사이트 석유화학산업, 공공발전산업, 민간발전산업 전반 걸쳐 두루 존재하며, 석유화학산업으로는 GS칼텍스가 대표적이고, 민간발전 영역에서는 GS파워 안양열병합 발전소, 2025년에는 GS파워 부천열병합 발전소에 가디원 터보를 도입하게 될 예정이다. 공공발전사 중 한국중부발전의 신보령, 신서천 화력발전소에 가디원 터보를 도입되어 있다. 특히 신보령화력발전소의 경우, 2024년 한국중부발전 내부 동반성장 우수사례 경진대회에서 최우수상을 받은 바 있다.   상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기    
작성일 : 2025-07-30
대원씨티에스, 마이크론 크루셜 T710 Gen5 NVMe SSD 출시
대원씨티에스가 마이크론 크루셜 T710 Gen5 NVMe 솔리드 스테이트 드라이브(SSD)를 한국 시장에 정식 출시했다. Ai 애플리케이션과 고부하 작업을 매끄럽게 처리할 수 있도록 설계된 이번 신제품은 용도와 목적에 따라 선택할 수 있게 1TB, 2TB, 4TB의 세 가지 용량으로 나뉜다. 신제품 마이크론 크루셜 T710 Gen5 NVMe SSD은 PCIe 5.0 인터페이스와 실리콘모션 SM2508 컨트롤러, 마이크론 G9 TLC NAND 조합으로 초고속 전송 과정에서도 일관된 지연시간을 유지한다. 특히 순차 읽기 1만 4900MB/s, 쓰기 1만 3800MB/s, 랜덤 4KB 작업시 쓰기 기준 최대 2.3M IOPS를 구현해 소비자용 스토리지의 성능 한계를 끌어올렸다.     또한 Microsoft DirectStorage 최적화를 갖춰 AAA 타이틀 게임의 오픈월드 스트리밍, 실시간 레이트레이싱, 대규모 AI 모델 호출 같은 고부하 상황에서 시스템 병목을 줄이고, 8K RAW 영상이나 초대형 디자인 파일도 빠르게 캐시·편집할 수 있다. 전력 회로와 열 설계도 개선됐다. 이전 세대 Gen5 SSD 대비 IOPS당 전력 효율은 67% 향상됐고 소비 전력은 약 25% 낮췄다. 기본 부착된 구리 코팅 라벨이 컨트롤러와 낸드 발열을 방열판으로 빠르게 전달하며, 연속 부하 환경을 겨냥한 통합 히트싱크 모델도 마련돼 노트북·데스크톱·워크스테이션 등 다양한 사용 환경에서 안정된 온도를 유지한다. 내구성은 4TB 제품 기준 최대 2400TBW에 달한다. 이외에도 다단계 데이터 무결성 알고리즘, ECC 오류 수정, TCG Opal 2.01 암호화, SMART 자가 진단, TRIM, 동적 쓰기 가속, 디바이스 슬립 모드 등 고급 기능도 기본 탑재해 대용량 프로젝트 파일과 민감한 업무 데이터도 안전하게 보호한다. 1TB·2TB·4TB로 나뉘는 각각의 제품은 구형 PCIe 3.0과 4.0 플랫폼에서도 동작하기에 업그레이드 주기를 앞둔 사용자는 물론 게이머, 크리에이터, AI 연구·개발 환경까지 포괄적으로 대응할 수 있다. 대원씨티에스는 자사가 공급하는 마이크론 제품에 대해 자체 운영하는 직영 서비스 센터를 통해 최대 5년간 프리미엄 기술지원 및 차별화된 A/S 서비스를 제공한다고 밝혔다. 제품 구분은 패키지 겉면에 부착된 대원씨티에스 정품 스티커 유/무로 확인할 수 있다.  대원씨티에스의 남혁민 본부장은 “AI 시대에는 데이터 처리 속도가 곧 경쟁력이다. 초고속 스토리지는 시스템 전체 응답성을 좌우하는 핵심 부품이며, 마이크론 크루셜 T710은 업계의 요구를 충족하는 차세대 저장 장치”라면서, “PCIe 5.0의 잠재력을 온전히 발휘하면서도 전력 효율과 발열 제어까지 만족시킨 T710은 게이머와 크리에이터, AI 연구자 모두에게 안정적인 설루션이 될 것”이라고 밝혔다.
작성일 : 2025-07-08
'AI 신뢰성' 검증 민간 공인 자격 과정 개설, 미래 일자리 창출 기대
씽크포비엘은 6월 25일 국립군산대에서 ‘AI 신뢰성’ 검증 기술 다루는비교과 교육과정을 운영했다.   'AI 신뢰성' 검증 기술 관련 민간 공인 자격을 취득한 전문가가 배출되어 미래 일자리 창출에 기여할 것으로 기대된다. AI 신뢰성 전문기업 씽크포비엘은 6월 25일(수)부터 27일(금)까지 국립군산대학교 IT융합통신공학과 재학생을 대상으로 ‘AI 신뢰성’ 검증 기술 교육을 실시했다고 밝혔다. 이번 교육은 전북특별자치도와 전북테크노파크의 지원을 받아 국립군산대 ICT특성화취업연계형사업단이 마련한 비교과 프로그램으로, 실무 교육은 씽크포비엘에서 맡아 진행했다. 교육 과정은 농생명 분야의 AI 데이터 활용에 필요한 다양성‧편향성 진단 시나리오 설계, 신뢰할 수 있는 AI 개발 개론, 검증 프로세스 적용 방법 등 이론 강의와 실습, 토론으로 구성됐다. 마지막 날에는 수강생을 대상으로 한 자격 시험도 진행됐다. 교육을 수료하고 자격 기준을 충족한 수강생에게는 한국산업지능화협회(KOIIA)가 발급하는 ‘산업인공지능데이터검증전문가’ 2급 자격증이 주어진다. 이 자격은 씽크포비엘이 준비 중인 ‘AI 신뢰성 검증전문가’ 자격과는 별개로, AI 신뢰성 검증 기술 중 ‘데이터 밸런스’ 기법에 초점을 맞춘 것이다. 해당 자격은 2024년 2월, 한국직업능력연구원에 정식 등록됐다. 씽크포비엘과 국립군산대는 산업부 산하 인가 단체의 공인 자격을 취득할 수 있는 교육 과정이 처음 마련됐다는 점에 의미를 두고 있다. 씽크포비엘에서는 2020년부터 국립군산대와 함께 동일한 교육과정을 6년째 운영 중이며, 지난해에는 자격증을 시범 발급한 바 있다. 그러나 공인 자격이 부재했던 과거에는 교육 이수자들의 취업에 실질적인 도움이 되지 못했다는 평가도 있었다. 국립군산대 관계자는 “AI 신뢰성 관련 기술을 배우고 자격까지 취득함으로써 학생들의 실무 역량과 현장 이해도가 높아질 것으로 기대된다”고 밝혔다. 한편, 한국산업지능화협회는 향후 ‘산업디지털전환촉진법’에 따른 디지털전환(DX) 전문기업 인증 기준에 ‘산업인공지능데이터검증전문가’ 보유 인력 여부를 포함하는 방안을 검토 중이다. 기업 수요 확대와 전문 인력 양성을 동시에 꾀한다는 전략이다. 이 자격과 교육은 특히 지방대 출신 구직자에게 새로운 기회가 될 전망이다. 씽크포비엘은 “AI 신뢰성 분야는 아직 초기 단계로, 수도권 대학 출신과의 경쟁에서 대등한 조건을 만들 수 있는 영역”이라고 강조했다. 또한 AI 신뢰성 교육은 해외에서도 주목받고 있다. 씽크포비엘에 따르면 태국 정부에서는 지난해부터 관련 아카데미 설립을 준비 중이며, 우즈베키스탄도 정부 주도의 교육 기관 설립을 검토하고 있다. 이 같은 글로벌 관심 속에서 국내 전문 인력 양성이 본격화되면 AI 신뢰성 분야의 세계적 성장 가능성도 높아질 것으로 보고 있다. 박지환 씽크포비엘 대표는 “AI 기반 바이브 코딩이 부상하면서 기존 SW 개발자 직무에 변화가 생기고 있는 상황에서, AI 신뢰성 분야는 새로운 일자리로 주목받고 있다”며, “국립군산대에 데이터 취급 전문가 역량을 파악할 자격 과정을 최초 개설된 것은 의미가 크다. 하반기에는 AI 신뢰성 전문가 자격도 공인 민간자격으로 등록해 전문 인력 양성에 속도를 낼 계획”이라고 밝혔다.  
작성일 : 2025-07-01