• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "지멘스"에 대한 통합 검색 내용이 1,844개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
지멘스, 심센터 테스트랩에 AI 기능 추가해 모달 테스트 및 분석 프로세스 혁신
지멘스 디지털 인더스트리 소프트웨어가 심센터 테스트랩(Simcenter Testlab) 소프트웨어의 최신 업데이트를 발표했다. 이번 업데이트에는 AI 기반 워크플로가 새롭게 추가돼, 물리적 충격(임팩트) 테스트 수행 시 필요 인력을 줄이면서 모달(modal) 분석 프로세스를 최대 7배까지 가속화할 수 있다. 또한 자동화된 데이터 수집과 처리 기능이 강화돼 모든 테스트 단계에서 데이터 품질과 일관성을 향상시킨다. 이를 통해 엔지니어는 더욱 빠르고 스마트하게 테스트를 수행할 수 있게 됐다. 새로운 AI 지원 모달 분석은 복잡한 모드 선택과 검증을 자동화해 수동 작업과 작업자 의존도를 줄이고, 궁극적으로 모달 분석 속도를 최대 7배까지 가속화한다. 이러한 테스트 자동화 혁신의 최전선에는 AI 기반 모달 테스트 기능이 있다. 이 기능은 향상된 자동 모드 선택·검증과 전체 모달 테스트 워크플로를 간소화하는 통합 모달 분석 대시보드를 결합해 모달 분석 워크플로를 최대 700%까지 가속화한다. 또한 지능형 센서 배치와 자동 히트(hit) 선택을 통해 충격 데이터 수집 과정을 단순화하고 필요한 인력을 줄여준다.     이와 함께, 심센터 테스트랩은 향상된 테스트/분석 도구를 제공한다. Transfer Path Analysis(TPA)는 심센터 테스트랩의 새로운 자동화 기능과 처리 역량을 통해 전체 분석 시간을 40% 단축한다. 이를 통해 숙련도가 낮은 사용자도 정교한 소음·진동·불쾌감(Noise Vibration Harshness, NVH) 예측을 보다 쉽게 활용할 수 있다. 심센터(Simcenter) 물리적 테스트 하드웨어와 새로운 심센터 테스트랩 오토메이티드 컴포넌트 모델 익스트랙터(Simcenter Testlab Automated Component Model Extractor) 소프트웨어를 활용한 자동화된 컴포넌트 모델 추출 설루션을 통해, 차단력(blocked forces)과 임피던스(impedance) 주파수 응답 함수(Frequency Response Function : FRF)를 자동으로 수집한다. 결과적으로 컴포넌트 특성화에 소요되는 시간을 수 주에서 수 시간으로 단축할 수 있다. 심센터 테스트랩 스케줄 디자이너(Simcenter Testlab Schedule Designer)는 사전 정의된 시퀀스(sequence)로 데이터 처리와 검증을 자동화한다. 이를 통해 데이터 추적성을 제공하고, 불완전하거나 일관성 없는 테스트 데이터 발생 위험을 제거할 수 있다. 이번 업데이트는 스케줄 디자이너에서 정의된 테스트 계획을 심센터 SCADAS RS 데이터 수집 시스템의 Recorder App으로 원활하게 전송한다. 이 통합을 통해 작업자는 무선 태블릿 기반의 명확한 지침을 제공받을 수 있으며, 즉각적인 데이터 검증과 처리가 가능해져 오류를 줄일 수 있다. 지멘스는 심센터 SCADAS RS가 범용 또는 타사 형식으로 데이터를 내보낼 수 있으며, 이를 통해 다른 소프트웨어 플랫폼에서도 데이터 처리와 분석 수행이 가능하다고 소개했다. 지멘스 디지털 인더스트리 소프트웨어의 장클로드 에르콜라넬리(Jean-Claude Ercolanelli) 시뮬레이션 및 테스트 설루션 부문 수석 부사장은 “지멘스는 엔지니어링 수명주기 전반에 걸쳐 AI를 적극 활용해 프로세스와 워크플로를 간소화하고, 수작업을 최소화하며, 제품 출시 속도를 높이는 데 주력하고 있다. 이번 심센터 테스트랩의 최신 개선 사항은 AI를 통합해 팀이 물리적 테스트를 수행·관리·분석하는 방식을 혁신하기 위한 지멘스의 노력을 보여준다. 우리는 설계와 개발에서부터 물리적 테스트의 핵심 단계에 이르기까지 엔지니어링 관행의 중대한 변화를 이끌고 있다”고 말했다.
작성일 : 2025-10-16
지멘스-두카티, 모터사이클 기술 연구 개발 통합 및 최적화 위해 파트너십 확대
지멘스 디지털 인더스트리 소프트웨어가 두카티 코르세와의 기술 파트너십 협약을 향후 2년간 갱신한다고 발표했다. 더불어 지멘스 엑셀러레이터(Siemens Xcelerator) 플랫폼이 더욱 강력하고 안전하며 지속 가능한 모터사이클을 만들고자 하는 두카티의 사명을 달성하는데 어떠한 중요한 역할을 해왔는지 소개했다. 두카티의 연구개발팀이 채택한 지멘스 엑셀러레이터에는 다양한 소프트웨어와 기능이 포함된다. 폴라리온(Polarion) 소프트웨어는 요구사항 파악과 관리 기능을 제공하며, 디자인센터 NX(Designcenter NX) 소프트웨어는 혁신적인 설계를 지원한다. 팀센터(Teamcenter) 소프트웨어는 설계 및 엔지니어링 데이터를 두카티의 ERP(전사 자원 관리) 시스템에 연결하는 디지털 스레드 백본 역할을 수행함으로써 부서 간 협업과 중앙집중식 데이터 동기화를 가능하게 한다. 심센터(Simcenter) 소프트웨어와 심센터 테스트랩(Simcenter Testlab) 소프트웨어를 통해 두카티 코르세는 가상 시뮬레이션을 수행하고 디지털 시뮬레이션을 주말 레이스 동안 트랙에서 수집한 데이터와 물리적 테스트 과정과 통합할 수 있게 됐다. 아울러 지멘스의 설루션은 설계 및 엔지니어링을 생산 단셰로 연결하는 데에도 중요한 역할을 하는데, 지멘스의 파이버심(Fibersim) 소프트웨어는 복잡한 카본 파이버(탄소섬유) 부품의 개발 기간을 단축할 수 있도록 지원한다. 두카티는 모터사이클 레이싱 트랙에서 우위를 점유하는 것은 물론, 지멘스 엑셀러레이터를 통해 모터 레이싱과 일반 도로용 바이크 사업을 연결하고 있다. 팀센터는 이 둘을 하나로 연결하는 중추 역할을 하고 있다.     두카티 모터 홀딩의 피에트로 마파(Pietro Mappa) CAD/PLM 매니저는 “지멘스 엑셀러레이터 덕분에 레이싱 세계의 데이터를 일반 도로용 바이크 세계로 완벽히 공유해 개발 시간을 단축할 수 있었다. 일반 모터사이클과 레이싱 양쪽의 기계, 전자, 소프트웨어 팀은 협업과 데이터 공유를 위한 단일 도구를 갖게 됐다. 더 이상 부서 간 장벽은 존재하지 않으며, 트랙 엔지니어와 차량 설계 엔지니어가 함께 협업할 수 있는 단일 통합 환경을 구축하게 됐다”고 설명했다. 두카티 모터 홀딩의 마시밀리아노 베르테이(Massimiliano Bertei) CTO는 “지멘스와의 파트너십은 현재의 당면과제를 해결하는 데 도움이 됐을 뿐만 아니라 레이스 트랙과 글로벌 시장에 대한 앞으로의 도전에도 완벽하게 대비할 수 있는 기반을 마련해 줬다. 우리는 혁신을 기본 원칙으로 삼아, 항상 최고의 경쟁력을 유지할 수 있는 기술 파트너와 함께 꾸준히 성공을 이어나갈 준비가 돼 있다. 레이싱 세계에서는 마지막 순간까지 바이크를 수정할 수 있는 능력이 매우 중요하다. 예를 들어, 경기가 있는 주말에는 지멘스의 기술을 사용해 원격으로 새로운 부품을 설계한 다음, 이를 트랙으로 보내 3D 프린터로 출력할 수 있다”고 말했다. 지멘스 디지털 인더스트리 소프트웨어의 프랑코 메갈리(Franco Megali) 이탈리아, 이스라엘, 그리스 지역 부사장 겸 CEO는 “두카티와의 협업은 디지털 전환이 레이싱 트랙을 위한 최첨단 기술을 개발하고 이러한 인사이트를 더욱 광범위한 산업 분야에 신속히 적용하는 데 어떻게 기여하는 지를 보여주는 사례이다. 이는 여러 분야의 팀이 협업해 기업 전체에서 놀라운 속도로 혁신을 달성할 수 있도록 지원하는 지멘스 엑셀러레이터의 힘을 보여주는 완벽한 예시”라고 말했다.
작성일 : 2025-10-15
프로세스 자동화 Ⅲ - 유로 형상 설계 최적화
최적화 문제를 통찰하기 위한 심센터 히즈 (8)   이번 호에서는 파이프 유로 형상 설계 최적화를 위해 NX CAD와 심센터 스타-CCM+(Simcenter STAR-CCM+)를 사용하여 CAD 치수 변수를 수정하며 유동해석의 자동화 워크플로를 구성하고 최적화를 진행하는 과정을 소개한다. ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   이번에 사용할 심센터 스타-CCM+는 2006년에 첫 버전이 공개되었으며, 통합된 환경과 클라이언트-서버 접근 방식은 당시의 CFD 해석 방법에 새로운 패러다임을 제시했다. 첫 출시 이후 주요 기능이 빠르게 확장되었는데, 대표적으로 코드의 기반이 되는 ‘메시 파이프라인(mesh pipeline)’과, 산업용 CFD 최초로 다면체(polyhedral) 메시 기술을 도입한 점이 큰 변화였다. 2010년에는 컴퓨팅 하드웨어의 가격이 저렴해지는 반면, 라이선스 비용이 하드웨어 활용의 제약이 된다는 시장의 목소리를 반영해 ‘파워 세션(Power Session) 라이선스’를 도입하였고, 이를 통해 하나의 고정 비용으로 무제한 코어에서 대규모 병렬 해석을 수행할 수 있게 되어, 소프트웨어 사용 비용과 하드웨어 활용 간의 한계를 완전히 해소하는 사용 환경을 마련하였다. 2012년에는 업계 최초로 ‘오버셋 메시(overset meshes)’ 기능을 도입해 실제 현장에서 움직이는 격자 기반 해석을 더욱 직관적으로 구현할 수 있게 되었고, 2015년에는 산업용 CFD를 넘어 유체-구조 연성 등 진정한 다중물리 해석을 지원하기 위해 유한요소(finite elements) 해석 솔버를 통합했으며 전자기 해석까지 기능을 확장했다. 오늘날 스타-CCM+는 자동화 기능, 설계 탐색 도구, 포괄적인 다중물리 해석, 그리고 산업을 선도하는 데이터 분석 및 협업형 가상현실 환경까지 지원하며 그 성장을 지속하고 있다. 그 외에도 다양한 혁신적 진보를 이루었지만, 이 내용만으로도 지난 짧은 기간 내 스타-CCM+가 얼마나 빠르게 발전했는지 잘 보여준다고 할 수 있다.   그림 1   프로세스 자동화 다분야 설계 최적화(MDO : Multidisciplinary Design Optimization) 수행 시 설계 및 분석에서 효율적인 데이터 교환 및 프로세스 연동이 필수이므로, 데이터를 신속하고 정확하게 받기 위해서는 다이렉트 인터페이스 포털(Direct Interface Portal)이 필요하다. HEEDS(히즈)에서는 심센터 스타-CCM+를 위한 포털(Portal)을 제공하므로 빠른 설정이 가능하다. 그림 2는 HEEDS에서 제공하는 다양한 설루션의 다이렉트 인터페이스 포털 목록이다.   그림 2   <그림 3>은 파이프 유로 설계 최적화 자동화 워크플로의 주요 단계와 각 툴의 역할을 요약한다.   그림 3   첫째, NX_CAD 포털에서는 HEEDS가 NX CAD의 파트 파일(*.prt)을 NX Expressions를 활용하여 변수(치수 등)를 자동으로 수정한다. 수정된 파이프 형상이 파라솔리드(parasolid) 형식(*.x_t)으로 내보내지는데, 이 파일에는 해석에 필요한 Named Face(경계면) 정보를 포함한다. 둘째, STAR-CCM+ 포털에서는 스타-CCM+ 해석 파일(*. sim)이 전달받은 신규 형상(*.x_t)을 읽고, 메시 업데이트와 경계조건 수정이 자동으로 적용된다. 이후 유동 해석이 수행된 뒤, 결과값은 HEEDS가 자동 추출한다. <그림 3>은 NX CAD와 스타-CCM+ 간의 입력/출력 파일 흐름, 형상 전송, 변수-응답 데이터 매핑 관계를 시각적으로 정리한다. 이처럼 각 단계를 자동화로 설정하면 설계 변수 변경부터 해석 실행 및 결과 평가까지 전체 최적화 과정을 빠르고 효율적으로 반복할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
지멘스, 팀센터에 AI 기반 수명주기 평가 기능 추가
지멘스 디지털 인더스트리 소프트웨어가 제품 수명주기 관리 소프트웨어인 팀센터(Teamcenter)를 확장해 AI 기반 수명주기 평가(LCA) 기능을 추가했다고 발표했다. ‘팀센터 지속가능성 수명주기 평가(Teamcenter Sustainability Lifecycle Assessment)’ 소프트웨어는 설계 전문가, 엔지니어, 제조업체가 AI와 공급망 데이터를 활용해 지속 가능하고, 규제를 준수하며, 혁신적인 제품을 보다 효율적으로 개발할 수 있도록 지원한다. 이는 제품 수명주기 전반에 인텔리전스를 부여하려는 지멘스 전략의 일부분으로, 디지털 트윈과 데이터 백본(backbone)을 활용해 제품, 공정의 모든 단계에 맥락적 인사이트를 제공한다. 지멘스와 메이커사이트(Makersite)가 공동 개발한 팀센터 지속가능성 수명주기 평가는 지멘스가 가장 디지털 트윈에서 얻은 산업 데이터를 활용해 새로운 인사이트를 창출하는 여러 방법 중 하나다. AI 기반의 예측 LCA 데이터와 분석 기능을 팀센터에 추가함으로써 지멘스는 진정한 정보에 기반한 설계 및 제조 의사 결정을 위한 심층적인 인사이트를 제공하는 새로운 수명 주기 인텔리전스 계층을 구축했다. 이를 통해 기업은 데이터 사일로를 제거하고 설계, 엔지니어링, 지속가능성 팀 간 협업을 간소화할 수 있다. 또한 보다 빠르고 정보에 기반한 의사 결정을 내려 규제를 준수하고, 안전하며, 비용 효율적인 친환경 제품을 개발할 수 있다.     팀센터 지속가능성 수명주기 평가 설루션은 엔지니어링 및 제조 팀이 제품 수명주기 전반에 걸쳐 조기에 제품의 환경 규제 준수, 공급망 위험, 비용 등을 평가하도록 지원한다. 이 설루션은 기계 제품 엔지니어링, 전자·전기 설계, 시뮬레이션 애플리케이션에 통합돼 있다. 제품 팀은 초기 제품 개발 단계에서 간접 온실가스 배출량(Scope 2 및 Scope 3)을 포함한 ISO 준수 LCA 보고서를 활용해 제품의 지속가능성, 규제 준수, 장기 수익성을 개선시킬 수 있다. 또한 사용자는 팀센터에서 제품의 BOM(bill of materials)에 직접 내장된 다중 기준(multi-criteria) 시뮬레이션 결과를 분석해 비용, 성능, 지속가능성 요소 간의 균형을 더욱 효과적으로 유지할 수 있다. 이를 통해 기업은 모듈화, 재활용 가능성, 재사용과 같은 친환경 설계 전략을 채택할 수 있다. 지멘스 디지털 인더스트리 소프트웨어의 프랜시스 에반스(Frances Evans) 라이프사이클 협업 소프트웨어 부문 수석 부사장은 “속도, 비용 효율, 규정 준수를 유지하면서 지속가능성을 핵심으로 하는 제품을 개발하려면, 제조 기업 전체에 획기적으로 확장된 수명주기 인텔리전스가 필요하다. 기업들은 까다로운 글로벌 규제 요건과 환경 영향을 줄여야 하는 과제에 직면해 있다”면서, “이런 가운데 지멘스는 고객이 AI를 활용해 지속가능성을 고려한 설계를 수행하고, 순환성(circularity)을 구현하며, 처음부터 재료 선택을 최적화할 수 있도록 지원하고 있다. 팀센터의 제품 수명 전반에 걸친 전체 LCA 기능을 통해, 고객은 실시간 환경 데이터를 토대로 제품 혁신을 전환할 수 있다”고 전했다. 메이커사이트의 닐 드수자(Neil D'Souza) CEO 겸 창립자는 “지멘스와 협업을 통해 제품 수명주기 인텔리전스를 핵심 개발 워크플로에 직접 적용할 수 있게 됐다. 지멘스 팀센터와의 통합으로 메이커사이트는 초기 제품 설계부터 제조 BOM에 이르기까지 엔지니어의 일반적인 도구 내에서 비용, 규제 준수, 위험, 환경 성과에 대한 정확하고 상세한 인사이트를 제공한다. 이 통합은 경제적이고 안전하며 지속 가능한 제품 개발을 가속화한다. 동시에 제품 마스터 데이터를 향상시키며, 기업이 증가하는 규제 준수 요건에 수월하게 선제적으로 대응할 수 있도록 지원한다”고 말했다.
작성일 : 2025-10-01
[포커스] 알테어, 제조 현장의 핵심 기술로 자리 잡는 AI 비전 소개
알테어는 9월 5일 ‘2025 추계 AI 워크숍’을 진행했다. ‘엔지니어를 위한 AI’를 주제로 진행된 이번 워크숍에서 알테어는 AI를 활용해 제품 개발 프로세스를 가속화하고 의사결정의 정확성을 높이며, 지능형 디지털 트윈을 완성한다는 비전을 선보였다. 또한 AI 기반 시뮬레이션, 생성형 AI, AI 에이전트, 지식 그래프 등 최신 AI 기술의 실제 적용 사례와 활용 방안을 소개했다. ■ 정수진 편집장     한국알테어의 김도하 지사장은 개회사를 통해 AI 기술이 산업 고객의 현장에서 빠르게 내재화되며 동반 성장하고 있다면서, “이는 고객들이 명확한 비전과 단계별 로드맵을 가지고 각자의 환경에 맞춰 AI를 접목하고 있기 때문”이라고 설명했다. 또한, 국가 AI 프로젝트가 시작되어 1만 4000 장의 GPU가 1차 도입되는 등 정부가 주도하는 ‘소버린 AI’ 시대가 열리고 있는 점에 주목하면서, “AI를 통한 제조 산업의 르네상스가 도래하고 있으며, 알테어 또한 시장과 함께 성장하기 위해 준비하고 있다”고 전했다.   엔지니어링 언어를 학습하는 AI 알테어의 케샤브 선다레시(Keshav Sundaresh) 디지털 전환 총괄 시니어 디렉터는 “AI는 더 이상 개념이 아니라 실제 현장의 핵심 기술”이라면서, 엔지니어링 수명주기 전반에 걸친 로코드·고효율 AI 접근법을 구현해야 한다고 짚었다. MIT의 연구에 따르면, 기업의 생성형 AI 파일럿 프로젝트 가운데 95%가 실질적인 재무 성과를 내는 데 실패하고 있는 것으로 나타났다. 그 원인으로는 ▲특정 결과에 편중된 데이터 ▲단편적이고 사일로화된 데이터 ▲값비싼 컴퓨팅 자원 ▲도메인 지식과 AI 기술 간 격차 ▲기존 시스템과의 통합 및 신뢰성 문제 등이 꼽힌다. 선다레시 시니어 디렉터는 이런 현실적 장벽을 극복할 수 있도록 알테어와 지멘스의 기술 역량을 결합해 AI 기반의 통합 설루션 포트폴리오를 제공할 수 있다는 점을 강조했다. “제품의 요구사항 정의부터 폐기에 이르는 모든 과정에서 AI를 활용하고, 단절된 디지털 스레드를 통합하여 데이터 기반의 신속한 의사결정을 지원하겠다”는 것이다. 이를 위한 핵심 전략은 ‘AI에게 엔지니어링 및 제조의 언어’를 가르치는 것이다. 기존의 LLM(대규모 언어 모델)이 텍스트나 이미지 등 일반 데이터에 강점을 보인다면, 지멘스와 알테어는 기계 설계, 전기/전자, BOM(Bill-of-Materials), 시뮬레이션 데이터 등 산업 특화 데이터를 학습시켜 신뢰도 높은 ‘산업용 파운데이션 모델(Industrial Foundation Model)’을 구축하고 있다는 것이 선다레시 시니어 디렉터의 설명이다.   AI 확산으로 제조 혁신의 속도 높인다 AI 비전을 구체화하는 방법론으로 알테어는 ‘라이프사이클 인텔리전스(Lifecycle Intelligence)’ 프레임워크를 제시했다. 이 프레임워크는 AI 도입의 장벽을 낮추고 모든 엔지니어가 AI를 손쉽게 활용해 혁신을 가속화할 수 있도록 하는 데에 중점을 두고 있다. 선다레시 시니어 디렉터는 ▲반복 작업의 자동화 및 대규모 데이터 분석으로 인간 전문가의 역량을 강화하고 ▲기존 워크플로와 도구에 AI 기능을 통합하여, 학습 부담 없이 자연스러운 AI 활용을 도우며 ▲코딩 지식과 관계 없이 모든 사용자가 AI를 구축하고 배포할 수 있는 환경을 제공하는 세 가지 접근법을 통해 AI 도입을 가속화한다는 로드맵을 소개했다. 이 프레임워크를 활용하면 전처리 영역에서는 형상 인식 AI 기술로 부품 분류 및 군집화를 자동화하거나, 자연어 처리(NLP) 기반 코파일럿을 통해 모델 정리부터 전체 해석 설정까지 대화형으로 수행할 수 있다. 솔빙 영역에서는 기존의 시뮬레이션 데이터를 학습해 CAD 또는 메시 단계에서 물리 현상을 빠르게 예측할 수 있고, 시스템 레벨의 시뮬레이션 속도를 높일 수 있다. 후처리 영역에서는 AI가 핫스폿이나 파손 영역을 자동 식별해 결과 분석을 돕는다. 이 프레임워크의 기술적 기반은 분산된 데이터를 연결하는 ‘데이터 패브릭’과 AI 모델을 개발·운영하는 ‘AI 팩토리’의 결합이다. 선다레시 시니어 디렉터는 알테어의 데이터 분석/AI 플랫폼인 래피드마이너(RapidMiner)와 로코드 앱 개발을 지원하는 지멘스 멘딕스(Mendix)를 통해 라이프사이클 인텔리전스를 구현할 수 있다고 설명했다.     엔지니어링 AI의 혁신 동력 에이전틱 AI(Agentic AI), 지식 그래프(Knowledge Graph), 생성형 AI 등 최신 AI 기술이 R&D부터 설계와 제조까지 엔지니어링 전반의 혁신을 가속화하고 있다. 알테어는 이들 기술이 개별적으로도 강력하지만, 서로 결합하면서 데이터 기반의 신속한 의사결정을 지원하고 기존 워크플로를 지능적으로 전환하는 핵심 동력으로 작용한다고 소개했다. AI 에이전트는 사용자를 대신해 특정 목표를 이해하고 자율적으로 판단 및 실행하는 ‘지능형 디지털 대리인’이다. 단순 반복 작업을 자동화하는 것을 넘어서, 여러 에이전트가 협업하는 다중 에이전트 구조를 통해 복잡한 과업을 수행하는 것이 최근의 흐름이다. 엔지니어링 현장에도 공정 상 발생한 문제에 대해 자연어로 질문하면 해결 방법을 제시하거나, 생산 라인의 다운타임 원인을 분석하고 관련 데이터를 종합해 보고하는 등의 AI 에이전트가 도입되고 있다. 알테어는 시각적 워크플로 설계 도구를 통해 이러한 AI 에이전트를 쉽게 구축하고 AI 클라우드 프로세스와 원활하게 연결하는 방법을 제시했다. 지식 그래프는 다양한 출처(소스)에 분산된 데이터를 하나의 의미 계층(semantic layer)으로 통합해서 데이터 간의 숨겨진 관계를 파악하게 하는 기술이다. 이는 AI 모델의 가장 큰 문제점으로 꼽히는 환각(hallucination) 현상을 최소화하고, 장기적인 맥락을 이해하는 메모리로 기능하면서 신뢰성 높은 AI 에이전트를 구현할 수 있게 돕는다. 엔지니어링 분야에서 지식 그래프는 여러 AI 에이전트가 일관된 지식 베이스를 공유하게 해서 협업의 효율을 높이고, 공장 문제 해결 시 여러 데이터베이스에 동적으로 접근하여 질문에 답하는 아키텍처를 구현하는 데 쓰인다.   PLM과 AI의 시너지로 더 큰 혁신도 가능 알테어는 지난 3월 지멘스와의 합병을 완료했다. 제조 기술에 강점을 가진 지멘스와 엔지니어링 및 AI 기술에 집중해 온 알테어의 시너지에 대해, 이번 워크숍에서 한 가지 실마리를 발견할 수 있었다. 알테어는 AI와 PLM(제품 수명주기 관리)의 결합이 제조업의 패러다임을 바꿀 것으로 보았다. 한국알테어 최병희 본부장은 “많은 기업이 PLM 시스템에 제품의 설계부터 생산, 운영까지 대량의 데이터를 축적하고 있지만, 이를 제대로 활용하지 못하고 있다. 이 PLM 데이터를 AI로 분석해 기업의 핵심 자산으로 만들고, 경험에 의존하던 사후 대응 방식의 업무 환경을 미래가 예측하고 문제를 예방하는 예측 기반의 업무 환경으로 혁신할 수 있다”고 소개했다. 지멘스의 PLM 설루션인 팀센터(Teamcenter)가 제품의 모든 역사를 기록한 단일 진실 공급원(single source of truth)이라면, 알테어의 래피드마이너는 코딩 지식이 없이도 AI 모델을 개발할 수 있는 ‘똑똑한 AI 분석가’라고 할 수 있다. 두 설루션을 통합하면 래피드마이너가 팀센터의 데이터를 분석해 숨겨진 패턴과 인사이트를 찾아내고, 이를 바탕으로 미래 예측 모델을 생성할 수 있다. 그리고 이 예측 결과를 다시 팀센터에 전달해 시스템 전체가 똑똑해지는 선순환 구조를 만든다. 최종적으로는 현실을 명확히 이해하고 미래를 예측하는 ‘지능형 디지털 트윈’을 완성할 수 있다는 것이 최병희 본부장의 설명이다. 이 외에 공급망 최적화, 품질 이상의 조기 탐지, 고객 피드백의 반영 등 다양한 분야로 시너지를 확장할 수 있는 가능성도 점칠 수 있다. 최병희 본부장은 “PLM 데이터를 시작으로 ERP, MES, CRM 등 분산된 기업 데이터를 통합하면 더 큰 범위의 업무 혁신이 가능하다”고 전했다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[온에어] 개발 기간 단축을 위한 설계자 해석 방안
캐드앤그래픽스 지식방송 CNG TV 지상 중계   지멘스 디지털 인더스트리 소프트웨어는 8월 28일 CNG TV 웨비나를 통해 ‘개발 기간 단축을 위한 설계자향 해석 방안(CAD to CAE)’을 주제로, Simcenter FLOEFD(심센터 플로EFD) 기반의 최신 CFD(전산 유체 역학) 접근법을 소개했다. 이날 권중혁 대표, 김택민 대표, 안정근 프로가 발표자로 참여해 설계·해석 통합 프로세스를 중심으로 사례와 시연을 공유했다. 자세한 내용은 다시보기를 통해 확인할 수 있다. ■ 박경수 기자   ▲ 지멘스 디지털 인더스트리 소프트웨어 권중혁 영업대표, 김택민 영업대표, 안정근 프로   설계자가 직접 활용 가능한 CAD 내장 CFD 이번 웨비나에서는 설계 초기 단계에서 CFD를 활용하는 ‘프런트로딩 CFD(Frontloading CFD)’의 필요성이 강조됐다. 심센터 FLOEFD는 NX, 솔리드 엣지, 카티아, 크레오 등 주요 CAD에 완전 내장되어 별도의 형상 단순화 과정 없이 곧바로 해석을 수행할 수 있다. 스마트셀(SmartCell) 기술과 안정적인 솔버를 기반으로 설계자도 손쉽게 CFD를 활용할 수 있다는 점이 차별화 요소다. 권중혁 영업대표는 “제품 개발에서 설계자향 해석은 이제 선택이 아닌 필수”라며, “CAD에 내장된 FLOEFD를 통해 설계 단계부터 성능을 검증하고 품질과 개발 속도를 동시에 높일 수 있다”고 강조했다. FLOEFD는 방산·항공우주, 자동차, 전자, 냉동공조 등 다양한 산업에 적용되고 있으며, SSD·스마트폰·ADAS 컨트롤러 등 실제 사례도 소개됐다.   파라메트릭 설계와 해석의 연계 김택민 영업대표는 NX 익스프레션(NX Expression)을 활용한 파라메트릭 설계 방안을 발표했다. NX 익스프레션은 변수와 수식을 통해 모델을 지능적으로 제어하며, 팀센터(Teamcenter) PLM과 연계해 제품 옵션과 규칙을 CAD 모델 변수에 직접 연결할 수 있다. FLOEFD와 결합 시 모델 변경이 자동으로 해석 조건에 반영돼 설계와 해석 간 불일치를 최소화한다. 김택민 영업대표는 “설계와 해석을 하나의 연속된 프로세스로 연결함으로써 생산성과 최적화 속도를 크게 높일 수 있다”고 강조했다.   IGBT 냉각 해석 시연 안정근 프로는 IGBT 냉각 해석 데모를 통해 FLOEFD의 실제 활용법을 소개했다. NX CAD 환경에서 곧바로 CFD를 수행할 수 있으며, 자동 체적 검출·위자드 기반 초기 설정·자동 메싱 등 편의 기능이 제공된다. 또한 DOE(실험계획법)와 HEEDS(히즈) 모듈을 통한 최적화 기능으로 다양한 설계안을 빠르게 비교할 수 있다. 안정근 프로는 “FLOEFD는 설계자가 직접 사용할 수 있는 쉽고 빠른 해석 솔루션으로, 초기 설계 단계에서 성능을 검증하는 프런트로딩 CFD의 장점을 극대화한다”고 말했다. 한편, 이번 웨비나는 설계와 해석의 간극을 줄이고, 제품 개발 속도를 높일 수 있는 CAD 내장 CFD의 실제 활용 전략을 제시해 관심을 모았다. 지멘스 디지털 인더스트리 소프트웨어는 FLOEFD를 통해 설계자가 초기 단계부터 성능 검증과 최적화를 수행할 수 있도록 지원하며, 기업의 제품 경쟁력 강화를 돕고 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[칼럼] 인공지능 기술 : 도입에서 혁신으로
디지털 지식전문가 조형식의 지식마당   빠르게, 그리고 깊게 지난 2년간 필자는 정신없이 AI 지식을 흡수하고 수많은 설루션을 직접 사용했다. 신기함과 불편함이 뒤섞인 체험 끝에, 직감적으로 2025년이 인공지능 기술의 이정표가 될 것이라 확신하게 됐다.   거시 흐름, 지능형 자동화와 에이전트의 부상 인공지능(AI) 기술의 발전은 2024년을 기점으로 단순히 새로운 기술의 도입을 넘어, 산업과 사회 전반의 혁신을 촉발하는 핵심 동력으로 자리 잡았다. 여러 분석가는 2024년이 AI 도입의 해였다면, 2025년은 AI가 기존 산업의 경계를 허물고 운영 방식을 근본적으로 재정의하는 ‘혁신의 해’가 될 것으로 전망하고 있다. 이러한 변화의 물결 속에서 기업들은 막연한 기대감을 넘어, AI 기술을 통해 실질적인 비즈니스 가치(ROI)를 창출하는 데 집중하고 있다. 특히, 반복적이고 명확한 규칙 기반의 작업을 AI로 자동화함으로써 즉각적인 효율성 증대와 함께 투자 성과를 확보하는 전략이 부상하고 있다. 이러한 맥락에서 ‘지능형 자동화(intelligent automation)’는 단순 반복 작업을 넘어 복잡한 워크플로를 자율적으로 처리하고 의사결정까지 내리는 단계로 진화하고 있다. 이는 ‘AI 에이전트’의 형태로 구현되며, 응용 AI의 차세대 진화로 주목받고 있다.  이러한 거시적 흐름 속에서 AI 기술의 3대 핵심 분야인 언어 모델, 이미지 및 영상 모델, 음성 모델의 최신 기술적 동향과 시장 변화를 심층적으로 분석하고, 나아가 이들 간의 융합 현상인 ‘멀티모달 AI’의 부상을 조망함으로써 비즈니스 리더와 기술 전문가에게 전략적 통찰을 만들어 봤다. 첫 번째, 대규모 언어 모델(LLM)의 혁신은 대부분 ‘트랜스포머(transformer)’ 아키텍처에 기반을 두고 있다. GPT-4, LLaMA 2, Falcon 등 현재 시장을 선도하는 모델은 이 아키텍처를 활용하여 방대한 데이터 세트에서 인간 언어의 패턴과 구조를 학습한다. 트랜스포머는 언어 모델의 근간을 이루며, 그 영향력은 비단 텍스트에만 머무르지 않고, 오픈AI(OpenAI)의 최신 비디오 생성 모델인 소라(Sora)의 ‘디퓨전 트랜스포머’ 아키텍처에도 확장 적용되고 있다. 최근 LLM 훈련 방법론은 단순히 모델의 규모를 키우는 것을 넘어, 효율과 특화된 성능을 확보하는 방향으로 진화하고 있다. LLM 시장은 ‘규모’를 추구하는 초대형 모델(LLM)과 ‘효율’을 추구하는 소형 언어 모델(SLM)이 공존하는 양면적 발전 양상을 보인다. GPT-4o나 제미나이(Gemini)와 같은 초대형 모델은 뛰어난 범용성과 성능으로 시장을 선도하는 한편, 특정 산업이나 용도에 맞게 최적화된 SLM은 적은 비용과 빠른 속도를 무기로 틈새시장을 공략하고 있다. 이러한 이원화된 전략은 기업이 적용 업무의 성격에 따라 두 모델을 전략적으로 선택하거나 조합하는 하이브리드 접근법을 채택하도록 유도하고 있다. 두 번째, 최근 이미지 및 영상 생성 모델의 핵심 기술은 ‘디퓨전 모델(diffusion model)’이다. 이 모델은 기존의 생성적 적대 신경망(GAN)이 가진 ‘모드 붕괴(mode collapse)’ 문제를 해결하며 고품질의 다양하고 사실적인 이미지 생성을 가능하게 했다. 디퓨전 모델은 이미지에 점진적으로 노이즈를 추가한 뒤, 이 노이즈를 단계적으로 제거하며 깨끗한 이미지를 복원하는 방식을 사용한다. 이 기술은 스테이블 디퓨전(Stable Diffusion), 달리(DALL-E)와 같은 대표적인 서비스에 활용되고 있다. 대규모 언어 모델과 마찬가지로, 이미지 및 영상 모델 역시 규모의 확장과 효율의 최적화라는 상반된 흐름을 동시에 경험하고 있다. 디퓨전 모델은 모델의 규모가 클수록 더 좋은 성능을 보이지만, 그만큼 막대한 연산 자원과 느린 처리 속도라는 문제에 직면한다. 이러한 한계를 극복하기 위해 모델 경량화와 처리 속도를 높이는 기술적 접근이 중요하게 다루어지고 있다. 이는 AI 기술의 상용화와 대중화를 위한 필수 단계이다. 영상 생성 기술은 미디어 및 엔터테인먼트 산업의 콘텐츠 창작 패러다임을 근본적으로 변화시키고 있다. 텍스트 입력만으로 원하는 비디오를 만들 수 있는 능력은 브레인스토밍을 가속화하고, 마케팅 자료, 게임 비주얼, 와이어프레임 및 프로토타입 제작 시간을 획기적으로 단축시켜 기업의 시장 대응력을 높인다. 특히, 전자상거래 기업은 AI 생성 이미지를 사용하여 다양한 제품 쇼케이스와 맞춤형 마케팅 자료를 대규모로 제작할 수 있다. 세 번째, 음성 모델은 크게 음성 신호를 텍스트로 변환하는 ‘음성 인식(ASR : Automatic Speech Recognition)’과 텍스트를 음성으로 변환하는 ‘음성 합성(TTS : Text-to-Speech)’ 기술로 구분된다. 딥러닝 기술의 발전은 이 두 분야에 혁명적인 변화를 가져왔다. 음성 인식(ASR) : 딥러닝 기반의 엔드 투 엔드 모델은 음향 모델링과 언어 모델링 과정을 통합하여 ASR의 정확도를 비약적으로 향상시켰다. 최신 시스템은 배경 소음을 제거하고 자연어 처리(NLP) 기술을 활용하2025/10여 문맥을 이해함으로써 최대 99%에 가까운 정확도를 달성하고 있다. 이는 단순히 음성을 텍스트로 바꾸는 것을 넘어, 사용자의 의도를 정확히 이해하고 적절하게 대응하는 대화형 AI 시스템의 핵심 기반이 된다. 음성 합성(TTS) : 딥러닝 기반 모델은 기계적인 느낌을 벗어나 사람처럼 자연스럽고 운율이 담긴 목소리를 생성하는 데 큰 발전을 이루었다. 이는 텍스트 분석, 운율 모델링, 그리고 실제 음성 파형을 생성하는 ‘보코더(vocoder)’ 과정을 통해 이루어진다. 현대 음성 합성 기술의 발전 방향은 단순히 자연스러움을 넘어, 인간-기계 상호작용을 더욱 몰입감 있고 개인화된 경험으로 이끄는 데 있다. 감정 표현 TTS : 이는 기계에 감정을 부여하여 인간 언어와 더욱 유사한 음성을 생성하는 것을 목표로 한다. 기쁨, 슬픔, 분노 등 다양한 감정을 표현하는 음성 합성은 사용자 경험을 더욱 풍부하게 만든다. 개인화된 음성 합성(Personalized TTS) : 이 기술은 약 1시간 분량의 데이터만으로 개인의 목소리를 복제하여 맞춤형 TTS를 만드는 연구 단계에 있다. 이는 부모의 목소리로 동화책을 읽어주는 등 감성적이고 따뜻한 응용 분야에 적용될 가능성을 열어준다.   감성으로 완성되는 기술 올해는 유난히 더운 것인지 아니면, 우리가 에어컨 환경에 너무 노출되어서 더위에 대한 저항력이 없어진 것인지는 모르지만 너무 더워서 정신적 활동이 힘들었다. 그 와중에 개인 자료를 정리하던 중에 개인적으로는 필자의 입사 이력서 사진을 우연히 찾아봤으나, 손상이 많이 되어서 인공지능으로 복원해 보기로 했다.     그림 1. 옛날 사진을 스마트폰으로 촬영한 이미지와 구글 인공지능으로 생성한 이미지   우선 스마트폰으로 이 사진을 찍은 다음 구글의 제미나이로 복원하고 다양한 모습으로 재현해 봤다. 그리고 동영상도 만들어 봤다. 아주 작고 희미한 흑백 사진이라고 우리의 머리속에 있는 이미지와 유사할 때까지 계속 보강된 이미지를 만들 수 있다. 그래서 최근에는 ‘포즈의 정리(Theorem of Pose)’라는 책을 구입해서 인공지능 생성 이미지 프롬프트를 본격적으로 연구해 보기로 했다.     그림 2. 구글 제미나이로 생성된 이미지   돌이켜보면 생각보다 빠른 속도다. 기술은 때로 불안과 경외를 동시에 불러온다. 그러나 확실한 것은, 인공지능이 우리의 감성을 자극하기 시작했다는 사실이다. 오래된 사진이 되살아나고, 목소리가 감정을 띠며, 텍스트가 움직이는 영상으로 변한다. 도입의 해를 지나 혁신의 해로 들어서는 지금, 우리는 효율을 넘어 의미를 설계해야 한다. AI는 결국, 우리 일과 삶의 이야기를 더 풍부하게 엮어내는 도구다. 기술이 감성을 만나 경험을 재편할 때, 진짜 혁신은 비로소 현실이 된다. 기업의 입장에서 2024년이 ‘도입의 해’였다면 2025년은 운영 방식 자체를 재정의하는 ‘혁신의 해’다. 기업은 막연한 기대가 아니라 ROI로 말하기 시작했고, 반복적·규칙 기반 업무를 AI로 자동화하여 즉각적인 효율과 투자 성과를 확보하는 전략이 주류로 부상했다. 그 중심에는 언어, 시각(이미지·영상), 음성이라는 세 가지 축과 이들을 촘촘히 엮어내는 멀티모달 AI가 있다.   ■ 조형식 항공 유체해석(CFD) 엔지니어로 출발하여 프로젝트 관리자 및 컨설턴트를 걸쳐서 디지털 지식 전문가로 활동하고 있다. 현재 디지털지식연구소 대표와 인더스트리 4.0, MES 강의, 캐드앤그래픽스 CNG 지식교육 방송 사회자 및 컬럼니스트로 활동하고 있다. 보잉, 삼성항공우주연구소, 한국항공(KAI), 지멘스에서 근무했다. 저서로는 ‘PLM 지식’, ‘서비스공학’, ‘스마트 엔지니어링’, ‘MES’, ‘인더스트리 4.0’ 등이 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
멘딕스, 메가존과 파트너십 맺고 국내 로코드 기반 디지털 혁신 가속화
지멘스 디지털 인더스트리 소프트웨어의 사업부인 멘딕스는 한국 시장에서 입지를 확대하기 위해 AI·클라우드 기업 메가존클라우드의 모회사인 메가존과 전략적 파트너십을 맺었다고 밝혔다. 이번 파트너십은 시장 개발, 고객사 공동 대응 및 기술 지원 등을 제공하기 위한 포괄적인 프레임워크를 구축하여, 현지 전문성과 지원 체계를 바탕으로 디지털 혁신 전략을 가속화하고자 하는 국내 기업들이 세계적 수준의 로코드(low-code) 개발 역량을 활용할 수 있도록 지원하기 위한 것이다. 멘딕스는 “스튜디오 프로(Studio Pro)에 통합된 마이아(Maia)를 통해서 AI 에이전트 시대를 선도함과 동시에 이번 파트너십을 통해 한국 시장에서 로코드 애플리케이션 개발 역량을 대중화하고, 글로벌 확장 전략을 강화하는 데 중요한 이정표를 수립했다”고 평가했다. 메가존은 한국 시장에 대한 전문성과 견고한 유통망을 바탕으로, 국내 기업이 멘딕스의 포괄적인 개발 플랫폼을 보다 손쉽게 활용해 아이디어를 실효성 있는 애플리케이션으로 구현하는 동시에, 엔터프라이즈급 보안과 거버넌스를 유지할 수 있도록 지원할 예정이다. 멘딕스는 자사의 플랫폼이 고객에게 생성형 AI(GenAI) 기술에 대한 턴키 액세스를 제공하는 GenAI 리소스 팩(GenAI Resource Pack)과 고급 AI 기반 개발 툴과 같은 최신 개선 기능을 통해 애플리케이션 개발 프로세스에 AI를 활용하고자 하는 한국 기업들에게 상당한 가치를 제공할 것으로 기대하고 있다. 멘딕스의 역량과 메가존의 현지 시장에 대한 전문성 및 지원 인프라가 결합됨으로써 한국 시장에 로코드 도입을 가속화할 수 있는 기반이 마련되었다는 것이 멘딕스의 평가이다. 메가존은 멘딕스의 공식 총판 파트너로서 파트너 생태계 개발과 세일즈 활성화를 비롯해 시장 개발을 위한 마케팅, 티어-2 리셀러 리크루팅, 기술 지원 등을 지멘스와 함께 적극 리드할 예정이다. 이를 위해 리셀러 발굴·영입, 과천 사옥 및 역삼 센터 내 전문 교육 프로그램 운영, 세일즈 역량 강화, 제품 인증 제공뿐 아니라 세일즈 프로세스 관리, 공동 제안서 작성, 고객 서비스 지원 등을 수행하며, 연간 매출 목표 달성과 협력적 성장 전략을 통해 비즈니스 성과를 견인하는데 기여할 것으로 보고 있다. 이번 협력의 핵심은 전략적 접근방식을 통해 공동 마케팅 및 세일즈 개발을 가속화하기 위한 것이다. 양사는 한국 시장에서 멘딕스 브랜드의 인지도를 높이고 비즈니스 성과를 강화하기 위한 구체적인 계획을 수립하고, 함께 협력할 예정이다. 공동 세미나와 웨비나 개최는 물론, 성공 사례 개발 및 디지털 캠페인에 이르기까지, 공동의 마케팅 활동을 통해 고객과의 상호작용 및 시장 확장을 위한 다양한 접점을 창출할 계획이다. 지멘스 디지털 인더스트리 소프트웨어의 오병준 한국 지사장은 “메가존과의 파트너십은 멘딕스가 아태지역에서 지속적으로 사업을 확장하는데 중요한 이정표가 될 것”이라면서, “한국은 기업들이 최신 개발 설루션을 도입하는데 매우 역동적이고 혁신적인 시장이다. 멘딕스는 메가존의 검증된 현지 전문성과 시장을 선도하는 파트너 네트워크를 활용하여, 국내 기업들이 로코드 개발 방식의 혁신적인 잠재력을 실현하고, 디지털 중심 경제에서 성장을 가속화할 수 있도록 지원하는 보다 효과적인 서비스를 제공하게 될 것”이라고 말했다. 메가존의 조영국 부사장은 “국내 기업들은 현대적이고 민첩한 개발 설루션을 도입하는데 상당히 적극적이다. 메가존은 멘딕스의 로코드 플랫폼을 통해 국내 기업들의 역량 강화를 지원할 수 있는 최적의 위치에 있다”면서, “메가존은 한국 시장 전반에 걸쳐 최첨단 디지털 설루션을 신속하게 공급하고, 안정적으로 지원할 수 있는 입증된 실적을 바탕으로, 기술 도입 격차를 해소할 수 있는 핵심 강점을 보유하고 있다. 앞으로도 기업들이 멘딕스를 효과적으로 활용하여 디지털 혁신 목표를 가속화하고, 전략적 비즈니스 목표를 달성할 수 있도록 원활한 도입 프로세스를 지원하는데 주력할 것”이라고 밝혔다.
작성일 : 2025-09-19
멘딕스, 스노우플레이크와 협력해 자동차 산업의 SW 개발 혁신 가속
지멘스의 사업부인 멘딕스는 AI 데이터 클라우드 기업인 스노우플레이크와 협력을 지속하면서, 기업이 최신 소프트웨어 개발을 통해 데이터 기반 가치 창출을 더욱 가속화할 수 있도록 지원한다고 밝혔다. 멘딕스는 스노우플레이크와 협업을 통해 양사의 고객에게 여러 비즈니스 성과를 제공할 수 있었다고 전했다. 산업 분야의 한 제조 기업은 멘딕스와 함께 스노우플레이크의 데이터 툴을 활용해 16주 만에 애플리케이션을 구현하고 배포할 수 있었다. 또 다른 산업 분야의 제조 기업은 노후화된 시스템을 최신 포트폴리오로 교체하고, 4개월 만에 첫 번째 신규 애플리케이션을 구현 및 출시했다. 한 대형 석유 및 가스 기업은 100개 이상의 멘딕스 애플리케이션을 구현했으며, 그 중 75%가 스노우플레이크와 연결되어 있다. 데이터 엔지니어는 이러한 통합 툴을 통해 사일로(silo) 형태로 운영되던 사내 개발자 팀뿐 아니라 비즈니스 최종 사용자와도 협업하여 소프트웨어 개발을 지원할 수 있다. 항공우주 분야의 한 제조업체는 멘딕스와 스노우플레이크의 통합 기능을 활용해 데이터 보안을 유지하고, 작업 현장의 운영 효율을 개선했다. 스노우플레이크의 AI 데이터 클라우드(AI Data Cloud) 동적 데이터 마스킹 기능은 민감한 데이터를 제한하고, 보호할 수 있도록 지원하며, 멘딕스 플랫폼은 애플리케이션 개발 라이프사이클 전반을 제어할 수 있는 내장 가드레일을 제공한다. 한 교통 당국은 멘딕스를 활용해 10개 이상의 애플리케이션을 구현하고, 다양한 소스에서 데이터를 수집한 다음, 이를 스노우플레이크로 전달해 분석을 수행하는 단일 통합 관리 및 모니터링(SPOG : Single Pane of Glass) 체계를 구축했다. 이를 통해 데이터에 대한 가시성을 확보하고, 프로세스 및 의사결정 개선을 위한 인사이트를 도출할 수 있다.     멘딕스는 공동 고객들에게 더 큰 가치를 제공하기 위해, 2025년 5월 스노우플레이크의 자동차 설루션 출시와 함께 스노우플레이크 데이터 클라우드 제품 파트너가 되었다. 스노우플레이크의 자동차 설루션은 고객에게 더 빠르고 효율적인 개발 주기를 지원하는 확장 가능한 플랫폼을 비롯해 공급업체와 재고 시스템, 물류 파트너 전반에 대한 실시간 공급망 가시성, 그리고 AI/ML 기반의 고급 분석 기능 등을 제공한다. 멘딕스 플랫폼은 핵심 기술 구성요소가 유연하게 설계되어 있어 스노우플레이크가 새로운 모델이나 기능을 도입하더라도 멘딕스와 쉽게 연동이 가능하다는 점을 내세운다. 이를 통해 더 많은 사용자가 스노우플레이크 AI를 활용하여 자동차 업계 고유의 요구사항을 충족하고, ‘개념 검증(Proof-of-Concept)에서 실제 운영(Production)’에 이르기까지 원활하게 적용할 수 있도록 한다는 것이 멘딕스의 설명이다. 점점 더 많은 기업들이 데이터의 중앙집중화에 대한 중요성을 인식함에 따라, 멘딕스와 스노우플레이크는 고객들에게 보다 포괄적인 설루션을 제공하는데 주력하고 있다. 양사의 이번 파트너십은 기업들이 디지털 혁신 프로젝트를 추진하고, 여러 플랫폼을 도입하는 과정에서 AI 사일로를 제거하고, 데이터에 대한 포괄적인 거버넌스와 제어권을 유지할 수 있도록 지원하는 데에 초점을 맞추고 있다. 스노우플레이크의 팀 롱(Tim Long) 글로벌 제조 부문 책임자는 “스노우플레이크 고객들은 기존 분석 방식을 뛰어넘는 새로운 차원의 설루션을 필요로 하고 있다. 우리는 멘딕스와의 협업을 바탕으로, 고객들이 스노우플레이크의 코텍스 AI(Cortex AI)를 활용해 지능적이고, 실행 가능한 엔터프라이즈 애플리케이션을 신속하게 개발할 수 있도록 지원하고 있다.”며, “이러한 원활한 통합 환경을 통해 고객들이 새로운 차원의 비즈니스 가치를 실현할 수 있을 것으로 기대한다”고 밝혔다.
작성일 : 2025-09-16