• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "조형식"에 대한 통합 검색 내용이 635개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
CAD&Graphics 2025년 11월호 목차
  INFOWORLD   Editorial 17 AI와 CAE의 융합, ‘지능형 시뮬레이션’ 시대를 연다    Hot Window 18 말하면 설계하는 시대를 향해 – AI로 그리는 설계의 미래 / 한명기 21 리얼타임을 통한 디지털 트랜스포메이션의 진화 / 권오찬   Focus 26 AWS, 산업 혁신 이끄는 AI 에이전트 비전과 전략 공개 28 AEC/MFG 산업의 미래는? 지더블유캐드코리아, CAD/CAM/CAE 통합 플랫폼 비전 제시 30 유니티, “게임 엔진 넘어 AI·디지털 트윈 시대의 산업 기반 기술로”   Case Study 33 핵융합 실험을 위한 3D 시뮬레이션 플랫폼 개발 유니티로 구현한 핵융합 디지털 트윈, V-KSTAR 36 인더스트리 4.0을 위한 로봇 예측 유지보수의 발전 / 이웅재 디지털 트윈과 AI가 시뮬레이션과 현실의 간극을 메우다   People&Company 40  지더블유캐드코리아 최종복 대표이사 CAE·PDM까지 라인업 확장… ‘가성비’ 넘어 AI·성능으로 승부   New Product 42 HP Z2 미니 G1a 리뷰 / 이민철 BIM 엔지니어의 실무 프로젝트 성능 검증 50 3D 설계 환경에 통합된 전문 CAE 시뮬레이션 ZW3D Structural & Flow 54 접촉·포스 성능 향상 및 MFBD 후처리, 산업별 툴킷 기능 강화 리커다인 2026 57 실시간 3D 시각화 워크플로의 생산성 향상 트윈모션 2025.2 74 이달의 신제품   On Air 62 캐드앤그래픽스 CNG TV 지식방송 지상중계 AI와 BIM의 융합, 건축 설계의 패러다임을 바꾸다 64 캐드앤그래픽스 CNG TV 지식방송 지상중계 제조 산업에서의 사이버 보안과 위기 상황 대응 방안 65 캐드앤그래픽스 CNG TV 지식방송 지상중계 시뮬레이션의 미래 : AI와 디지털 트윈이 주도하는 제조 혁신   Column 66 디지털 지식전문가 조형식의 지식마당 / 조형식 인공지능 시대의 서바이벌 노트 : 인공지능 마인드세트와 원칙 69 현장에서 얻은 것 No. 23 / 류용효 나만의 AI 에이전트 필살기 Ⅲ – 본질에 집중하는 삶   76 New Books 78 News   Directory 147 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 81 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 코드로 강력한 수학 그래픽 애니메이션을 만드는 매님 84 새로워진 캐디안 2025 살펴보기 (12) / 최영석 유틸리티 기능 소개 Ⅹ 88 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2026 (8) / 천벼리 아레스 커맨더의 동적 블록과 트리니티 블록 라이브러리   Reverse Engineering 91 시점 – 사물이나 현상을 바라보는 눈 (11) / 유우식 무엇을 믿을 것인가?   Mechanical 98 제품 개발 혁신을 돕는 크레오 파라메트릭 12.0 (4) / 박수민 모델 기반 정의 개선사항   Analysis 104 앤시스 워크벤치를 활용한 해석 성공 사례 / 장형진 앤시스 LS-DYNA S-ALE를 활용한 폭발 성형 해석 방법 108 최적화 문제를 통찰하기 위한 심센터 히즈 (9) / 이종학 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 118 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (27) / 나인플러스IT 차세대 다중물리 CFD 설루션의 ‘4A’ 122 설계, 데이터로 다시 쓰다 (2) / 최병열 DX 시대에서 AX 시대로 126 로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (4) / 윤경렬, 김도희 로코드를 활용하여 시뮬레이션 데이터 분석을 따라해 보자 132 가상 제품 개발을 위한 MBSE 및 SysML의 이해와 핵심 전략 (1) / 오재응 디지털 모델 중심 시스템 설계로의 전환 전략   Manufacturing 138 자율제조를 위한 데이터 표준화와 사이버 보안 강화 전략 (2) / 차석근 산업 사이버 위협을 돌파하기 위한 IEC 62443   PLM 144 산업 디지털 전환을 가속화하는 버추얼 트윈 (8) / 이희라 부품 공용화 및 표준화를 위한 AI 기반 3D 형상 분석 설루션
작성일 : 2025-10-31
CNG TV, 시뮬레이션의 미래, AI-디지털 트윈이 주도하는 제조 혁신 공개 예정
CNG TV 발표자 -  박종원 단장(한국기계연구원), 김지원 이사(태성에스엔이)   제조 엔지니어링의 핵심 화두인 CAE와 AI 융합, 디지털 트윈 기술의 미래를 조명하는 특별 방송이 마련된다. 캐드앤그래픽스는 2025년 10월 20일 오후 4시부터 5시까지 CNG TV 인터넷 방송을 통해 ‘시뮬레이션의 미래: AI와 디지털 트윈이 주도하는 제조 혁신’ 프리뷰 방송을 진행한다고 밝혔다. 이 방송은 11월 7일 수원컨벤션센터에서 개최되는 ‘CAE 컨퍼런스 2025’의 사전 공개 성격으로 기획됐다. 왜냐하면, 제조 산업의 디지털 전환(DX) 가속화 속에서 엔지니어들에게 최신 시뮬레이션 기술 트렌드와 실질적인 혁신 방안을 제시하고, 본 컨퍼런스에 대한 기대감을 높이기 위함이다. 이번 방송은 조형식 대표(디지털지식연구소)의 사회로, 박종원 단장(한국기계연구원)과 김지원 이사(태성에스엔이)가 발표자로 나설 예정이다. 이들 전문가는 어떻게 CAE의 방향성, 향후 전망, 트렌드에 대해 심도 있게 다룰 것인지를 소개한다. 특히 AI가 주도하는 CAE 환경 변화, 가상제품 개발, EDA 솔루션과의 통합 등 최신 기술 동향을 집중 조명한다. 또한, 한국기계연구원의 오픈소스 CAE 툴인 KIMM Cyber Lab의 개발 현황 및 발전 방향을 상세히 공개해 엔지니어링 생태계 혁신을 위한 실질적 정보를 제공할 계획이다. 본 방송은 어디서든 온라인을 통해 시청 가능하며, 참여를 원하면  등록링크를 통해 신청할 수 있다.    
작성일 : 2025-10-08
[칼럼] 인공지능 기술 : 도입에서 혁신으로
디지털 지식전문가 조형식의 지식마당   빠르게, 그리고 깊게 지난 2년간 필자는 정신없이 AI 지식을 흡수하고 수많은 설루션을 직접 사용했다. 신기함과 불편함이 뒤섞인 체험 끝에, 직감적으로 2025년이 인공지능 기술의 이정표가 될 것이라 확신하게 됐다.   거시 흐름, 지능형 자동화와 에이전트의 부상 인공지능(AI) 기술의 발전은 2024년을 기점으로 단순히 새로운 기술의 도입을 넘어, 산업과 사회 전반의 혁신을 촉발하는 핵심 동력으로 자리 잡았다. 여러 분석가는 2024년이 AI 도입의 해였다면, 2025년은 AI가 기존 산업의 경계를 허물고 운영 방식을 근본적으로 재정의하는 ‘혁신의 해’가 될 것으로 전망하고 있다. 이러한 변화의 물결 속에서 기업들은 막연한 기대감을 넘어, AI 기술을 통해 실질적인 비즈니스 가치(ROI)를 창출하는 데 집중하고 있다. 특히, 반복적이고 명확한 규칙 기반의 작업을 AI로 자동화함으로써 즉각적인 효율성 증대와 함께 투자 성과를 확보하는 전략이 부상하고 있다. 이러한 맥락에서 ‘지능형 자동화(intelligent automation)’는 단순 반복 작업을 넘어 복잡한 워크플로를 자율적으로 처리하고 의사결정까지 내리는 단계로 진화하고 있다. 이는 ‘AI 에이전트’의 형태로 구현되며, 응용 AI의 차세대 진화로 주목받고 있다.  이러한 거시적 흐름 속에서 AI 기술의 3대 핵심 분야인 언어 모델, 이미지 및 영상 모델, 음성 모델의 최신 기술적 동향과 시장 변화를 심층적으로 분석하고, 나아가 이들 간의 융합 현상인 ‘멀티모달 AI’의 부상을 조망함으로써 비즈니스 리더와 기술 전문가에게 전략적 통찰을 만들어 봤다. 첫 번째, 대규모 언어 모델(LLM)의 혁신은 대부분 ‘트랜스포머(transformer)’ 아키텍처에 기반을 두고 있다. GPT-4, LLaMA 2, Falcon 등 현재 시장을 선도하는 모델은 이 아키텍처를 활용하여 방대한 데이터 세트에서 인간 언어의 패턴과 구조를 학습한다. 트랜스포머는 언어 모델의 근간을 이루며, 그 영향력은 비단 텍스트에만 머무르지 않고, 오픈AI(OpenAI)의 최신 비디오 생성 모델인 소라(Sora)의 ‘디퓨전 트랜스포머’ 아키텍처에도 확장 적용되고 있다. 최근 LLM 훈련 방법론은 단순히 모델의 규모를 키우는 것을 넘어, 효율과 특화된 성능을 확보하는 방향으로 진화하고 있다. LLM 시장은 ‘규모’를 추구하는 초대형 모델(LLM)과 ‘효율’을 추구하는 소형 언어 모델(SLM)이 공존하는 양면적 발전 양상을 보인다. GPT-4o나 제미나이(Gemini)와 같은 초대형 모델은 뛰어난 범용성과 성능으로 시장을 선도하는 한편, 특정 산업이나 용도에 맞게 최적화된 SLM은 적은 비용과 빠른 속도를 무기로 틈새시장을 공략하고 있다. 이러한 이원화된 전략은 기업이 적용 업무의 성격에 따라 두 모델을 전략적으로 선택하거나 조합하는 하이브리드 접근법을 채택하도록 유도하고 있다. 두 번째, 최근 이미지 및 영상 생성 모델의 핵심 기술은 ‘디퓨전 모델(diffusion model)’이다. 이 모델은 기존의 생성적 적대 신경망(GAN)이 가진 ‘모드 붕괴(mode collapse)’ 문제를 해결하며 고품질의 다양하고 사실적인 이미지 생성을 가능하게 했다. 디퓨전 모델은 이미지에 점진적으로 노이즈를 추가한 뒤, 이 노이즈를 단계적으로 제거하며 깨끗한 이미지를 복원하는 방식을 사용한다. 이 기술은 스테이블 디퓨전(Stable Diffusion), 달리(DALL-E)와 같은 대표적인 서비스에 활용되고 있다. 대규모 언어 모델과 마찬가지로, 이미지 및 영상 모델 역시 규모의 확장과 효율의 최적화라는 상반된 흐름을 동시에 경험하고 있다. 디퓨전 모델은 모델의 규모가 클수록 더 좋은 성능을 보이지만, 그만큼 막대한 연산 자원과 느린 처리 속도라는 문제에 직면한다. 이러한 한계를 극복하기 위해 모델 경량화와 처리 속도를 높이는 기술적 접근이 중요하게 다루어지고 있다. 이는 AI 기술의 상용화와 대중화를 위한 필수 단계이다. 영상 생성 기술은 미디어 및 엔터테인먼트 산업의 콘텐츠 창작 패러다임을 근본적으로 변화시키고 있다. 텍스트 입력만으로 원하는 비디오를 만들 수 있는 능력은 브레인스토밍을 가속화하고, 마케팅 자료, 게임 비주얼, 와이어프레임 및 프로토타입 제작 시간을 획기적으로 단축시켜 기업의 시장 대응력을 높인다. 특히, 전자상거래 기업은 AI 생성 이미지를 사용하여 다양한 제품 쇼케이스와 맞춤형 마케팅 자료를 대규모로 제작할 수 있다. 세 번째, 음성 모델은 크게 음성 신호를 텍스트로 변환하는 ‘음성 인식(ASR : Automatic Speech Recognition)’과 텍스트를 음성으로 변환하는 ‘음성 합성(TTS : Text-to-Speech)’ 기술로 구분된다. 딥러닝 기술의 발전은 이 두 분야에 혁명적인 변화를 가져왔다. 음성 인식(ASR) : 딥러닝 기반의 엔드 투 엔드 모델은 음향 모델링과 언어 모델링 과정을 통합하여 ASR의 정확도를 비약적으로 향상시켰다. 최신 시스템은 배경 소음을 제거하고 자연어 처리(NLP) 기술을 활용하2025/10여 문맥을 이해함으로써 최대 99%에 가까운 정확도를 달성하고 있다. 이는 단순히 음성을 텍스트로 바꾸는 것을 넘어, 사용자의 의도를 정확히 이해하고 적절하게 대응하는 대화형 AI 시스템의 핵심 기반이 된다. 음성 합성(TTS) : 딥러닝 기반 모델은 기계적인 느낌을 벗어나 사람처럼 자연스럽고 운율이 담긴 목소리를 생성하는 데 큰 발전을 이루었다. 이는 텍스트 분석, 운율 모델링, 그리고 실제 음성 파형을 생성하는 ‘보코더(vocoder)’ 과정을 통해 이루어진다. 현대 음성 합성 기술의 발전 방향은 단순히 자연스러움을 넘어, 인간-기계 상호작용을 더욱 몰입감 있고 개인화된 경험으로 이끄는 데 있다. 감정 표현 TTS : 이는 기계에 감정을 부여하여 인간 언어와 더욱 유사한 음성을 생성하는 것을 목표로 한다. 기쁨, 슬픔, 분노 등 다양한 감정을 표현하는 음성 합성은 사용자 경험을 더욱 풍부하게 만든다. 개인화된 음성 합성(Personalized TTS) : 이 기술은 약 1시간 분량의 데이터만으로 개인의 목소리를 복제하여 맞춤형 TTS를 만드는 연구 단계에 있다. 이는 부모의 목소리로 동화책을 읽어주는 등 감성적이고 따뜻한 응용 분야에 적용될 가능성을 열어준다.   감성으로 완성되는 기술 올해는 유난히 더운 것인지 아니면, 우리가 에어컨 환경에 너무 노출되어서 더위에 대한 저항력이 없어진 것인지는 모르지만 너무 더워서 정신적 활동이 힘들었다. 그 와중에 개인 자료를 정리하던 중에 개인적으로는 필자의 입사 이력서 사진을 우연히 찾아봤으나, 손상이 많이 되어서 인공지능으로 복원해 보기로 했다.     그림 1. 옛날 사진을 스마트폰으로 촬영한 이미지와 구글 인공지능으로 생성한 이미지   우선 스마트폰으로 이 사진을 찍은 다음 구글의 제미나이로 복원하고 다양한 모습으로 재현해 봤다. 그리고 동영상도 만들어 봤다. 아주 작고 희미한 흑백 사진이라고 우리의 머리속에 있는 이미지와 유사할 때까지 계속 보강된 이미지를 만들 수 있다. 그래서 최근에는 ‘포즈의 정리(Theorem of Pose)’라는 책을 구입해서 인공지능 생성 이미지 프롬프트를 본격적으로 연구해 보기로 했다.     그림 2. 구글 제미나이로 생성된 이미지   돌이켜보면 생각보다 빠른 속도다. 기술은 때로 불안과 경외를 동시에 불러온다. 그러나 확실한 것은, 인공지능이 우리의 감성을 자극하기 시작했다는 사실이다. 오래된 사진이 되살아나고, 목소리가 감정을 띠며, 텍스트가 움직이는 영상으로 변한다. 도입의 해를 지나 혁신의 해로 들어서는 지금, 우리는 효율을 넘어 의미를 설계해야 한다. AI는 결국, 우리 일과 삶의 이야기를 더 풍부하게 엮어내는 도구다. 기술이 감성을 만나 경험을 재편할 때, 진짜 혁신은 비로소 현실이 된다. 기업의 입장에서 2024년이 ‘도입의 해’였다면 2025년은 운영 방식 자체를 재정의하는 ‘혁신의 해’다. 기업은 막연한 기대가 아니라 ROI로 말하기 시작했고, 반복적·규칙 기반 업무를 AI로 자동화하여 즉각적인 효율과 투자 성과를 확보하는 전략이 주류로 부상했다. 그 중심에는 언어, 시각(이미지·영상), 음성이라는 세 가지 축과 이들을 촘촘히 엮어내는 멀티모달 AI가 있다.   ■ 조형식 항공 유체해석(CFD) 엔지니어로 출발하여 프로젝트 관리자 및 컨설턴트를 걸쳐서 디지털 지식 전문가로 활동하고 있다. 현재 디지털지식연구소 대표와 인더스트리 4.0, MES 강의, 캐드앤그래픽스 CNG 지식교육 방송 사회자 및 컬럼니스트로 활동하고 있다. 보잉, 삼성항공우주연구소, 한국항공(KAI), 지멘스에서 근무했다. 저서로는 ‘PLM 지식’, ‘서비스공학’, ‘스마트 엔지니어링’, ‘MES’, ‘인더스트리 4.0’ 등이 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
CAD&Graphics 2025년 10월호 목차
  INFOWORLD    Editorial 17 AI 기반 스마트홈, 엔지니어링의 새로운 도전과 기회   Focus 18 코리아 그래픽스 2025, AI로 가속하는 산업과 크리에이티브의 변화를 짚다 24 헥사곤, 스마트 제조의 미래 비전 제시… “DX를 넘어 AX로” 26 알테어, 제조 현장의 핵심 기술로 자리 잡는 AI 비전 소개   Case Study 29 포지FX가 VR 훈련 설루션을 만드는 방법 확장현실로 건설 장비의 사용 교육과 운영 효율 강화 32 자동차 HMI 기술 브랜드 실리 아우토 언리얼 엔진으로 향상된 HMI 경험 구현   People&Company 34 앤시스 패드메쉬 맨들로이 부사장, 월트 헌 부사장, 앤시스코리아 박주일 대표 시높시스와 통합 시너지 강화… AI로 엔지니어링 혁신 이끈다 37 글로텍 이재홍 센터장, 한국철도기술연구원 박영곤 수석연구원 BIM 기반의 철도 인프라 통합 운영 설루션 연구·개발   On Air 49 캐드앤그래픽스 CNG TV 지식방송 지상중계 소버린 AI를 주도하는 6가지 코드 50 캐드앤그래픽스 CNG TV 지식방송 지상중계 미래를 여는 비즈니스 혁신 : AI 맞춤형 안경과 3D 프린팅 52 캐드앤그래픽스 CNG TV 지식방송 지상중계 설계 효율 극대화한 PTC 크레오 12.4 업데이트 54 캐드앤그래픽스 CNG TV 지식방송 지상중계 개발 기간 단축을 위한 설계자 해석 방안   New Product 40 BIM 기반 공사비 자동 산출 설루션    NaviQ v2.0 42 HP Z2 미니 G1a 리뷰 초소형 워크스테이션의 AI·3D 실전 성능 46 이달의 신제품   Column 55 디지털 지식전문가 조형식의 지식마당 / 조형식 인공지능 기술 : 도입에서 혁신으로 58 현장에서 얻은 것 No. 23 / 류용효 나만의 AI 에이전트 필살기 Ⅱ – 코드를 이해하는 기획자, 비개발자의 바이브 코딩 입문기   62 News   Directory 139 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 64 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 요구사항 기반 바이브 코딩의 사용 방법 74 새로워진 캐디안 2025 살펴보기 (11) / 최영석 유틸리티 기능 소개 Ⅸ 78 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2026 (7) / 천벼리 AI로 더욱 똑똑해진 CAD 어시스턴트, A3   Reverse Engineering 84    시점 – 사물이나 현상을 바라보는 눈 (10) / 유우식 무엇을 볼 것인가?   Mechanical 69 제조업의 미래를 위한 ZW3D 2026 / 지더블유캐드코리아 통합 3D CAD/CAM 설루션의 전략적 가치 90 제품 개발 혁신을 돕는 크레오 파라메트릭 12.0 (3) / 김주현 크레오 시뮬레이션 라이브를 활용한 제품 설계 최적화   Analysis 97 앤시스 워크벤치를 활용한 해석 성공 사례 / 한성훈 터보기기 해석을 위한 플루언트 터보 워크플로 102 최적화 문제를 통찰하기 위한 심센터 히즈 (8) / 이종학 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 111 산업 디지털 전환을 가속화하는 버추얼 트윈 (7) / 신효주 스티뮬러스의 모델 기반 요구사항 검증 방법 116 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (26) / 나인플러스IT 고충실도 제트 유동 시뮬레이션으로 항공우주 산업 혁신 120 설계, 데이터로 다시 쓰다 (1) / 최병열 DX 시대, 샌드위치로 살아남기 126 로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (3) / 윤경렬, 김도희 데이터 분석 로코드 설루션을 배워보자 Ⅱ   Manufacturing 134 자율제조를 위한 데이터 표준화와 사이버 보안 강화 전략 (1) / 차석근 제조 혁신의 열쇠, 4M2E 생산자원 데이터 표준화     2025-10-aifrom 캐드앤그래픽스     캐드앤그래픽스 당월호 책자 구입하기   캐드앤그래픽스 당월호 PDF 구입하기
작성일 : 2025-09-26
[온에어] AI로 혁신하는 3D 시각화와 산업의 미래
캐드앤그래픽스 지식방송 CNG TV 지상 중계   CNG TV는 8월 18일 ‘AI로 혁신하는 3D 시각화와 산업의 미래’를 주제로, 오는 9월 11일~12일 온라인으로 개최되는 ‘코리아 그래픽스 2025’의 프리뷰 방송을 진행했다. 이번 방송에는 한양대학교 최종우 교수, 전문건설공제조합 박남용 교수가 참여해 AI 기반 3D 시각화 기술의 최신 트렌드를 중심으로, 시각화 기술의 발전 방향을 살펴보았다. 자세한 내용은 다시보기를 통해 확인할 수 있다. ■ 박경수 기자   ▲ 디지털지식연구소 조형식 대표(사회), 한양대학교 최종우 교수, 전문건설공제조합 박남용 교수   AI가 산업디자인의 전 과정에 깊숙이 스며들며 디자이너의 역할과 사고방식에 큰 변화를 요구하고 있다. 디자인은 더 이상 단순한 ‘예쁜 것’을 만드는 과정이 아니라, AI를 활용해 ‘창의성’과 ‘효율성’을 동시에 극대화하는 방향으로 재편되고 있다.   AI가 바꾸는 산업디자인의 미래 코로나19 팬데믹을 기점으로 디지털 전환이 가속화되면서, AI는 디자인 툴과 워크플로에 혁신적인 변화를 불러왔다. 3D 프린팅, VR, 협업 툴의 급성장으로 디자인 과정이 빠르게 디지털화되었다. 또한 미드저니(Midjourney), 비즈컴(Vizcom), 스테이블 디퓨전(Stable Diffusion) 등의 생성형 AI 툴은 아이디어 발상부터 렌더링, 3D 모델링, 건축 설계 자동화까지 폭넓게 적용되고 있다. 특히 AI는 인간이 직접 처리하기 어려운 방대한 데이터를 신속하게 가공·검증할 수 있어, 디자이너가 아이디어 발상과 선택·조율에 집중할 수 있는 환경을 제공한다. 더 나아가 기업들은 AI를 활용한 맞춤형 서비스와 초개인화된 제품 생산을 시도하고 있으며, 이는 기존의 대량 생산 방식을 넘어 새로운 제조 패러다임을 제시하고 있다. 산업 전반에서 AI는 단순한 ‘보조 도구’를 넘어 핵심 경쟁력으로 자리잡고 있다. 한양대학교 최종우 교수는 “디자이너는 앞으로 단순 창작자가 아니라 AI를 관리하고 조율하는 시스템 디자이너로 진화해야 한다”며, “무엇을 선택하느냐가 곧 디자이너의 경쟁력이 될 것”이라고 말했다.   AI, 건축 설계 도구에서 동반자로 인공지능(AI)이 건축 분야에도 빠르게 확산되고 있다. 박남용 교수는 “건축에서 AI 활용은 단순한 시각화를 넘어 방법론적 영역으로 확장되고 있다”고 밝혔다. 그동안은 대규모 언어 모델(LLM)이 주로 주목받았지만, 최근에는 대규모 비전 모델(LVM)의 영향력이 커지고 있다는 설명이다. 그는 “건축은 스케치, 도면, 이미지 등 시각 자료가 풍부하기 때문에 비전 모델과의 결합 효과가 크다”고 강조했다. 현재 건축계에서 자주 활용되는 도구로는 달리(DALL·E), 미드저니(Midjourney), 스테이블 디퓨전(Stable Diffusion)이 꼽힌다. 특히 건축 설계는 구조적 분석과 단계적 검토가 필요해 스테이블 디퓨전이 더 적합하다고 덧붙였다. AI 활용이 확대되면서 단순 텍스트 입력뿐 아니라 스케치나 간단한 모형 이미지를 기반으로 3차원 모델을 신속하게 구축할 수 있게 됐다. 여기에 GPT와의 결합을 통해 대지 조건, 용도 구분, 층별 계획까지 자동으로 제시되면서 설계 속도가 큰 폭으로 향상되고 있다. 또한 스케치업과 레빗 등 기존 BIM(빌딩 정보 모델링) 툴과의 연동 시도도 활발히 이뤄지고 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
[칼럼] 인생 디지털 스레드 : 삶의 모든 ‘오늘’을 연결하는 새로운 패러다임
디지털 지식전문가 조형식의 지식마당   연결되지 않은 삶의 한계와 LDT의 등장 우리는 매일 새로운 하루를 살아간다. 하지만 삶의 기록을 돌아보면, 그 하루하루는 종종 서로 단절된 채 흩어져 있다. 일기나 메모, 업무 기록, 사진과 영상들이 개별적으로 존재할 뿐, 그 사이의 관계나 맥락은 사라진다. 이로 인해 우리는 배운 것을 잊고, 같은 실수를 반복하며, 기회가 와도 그것이 과거의 경험과 어떻게 연결되는지 인식하지 못한 채 흘려보낸다. 바로 이 한계를 극복하기 위해 생각해 본 개념이 인생 디지털 스레드(Life Digital Thread : LDT)이다. LDT는 제조업과 항공 우주 분야에서 제품의 전 생애 주기를 연결하는 디지털 스레드의 개념을 개인의 삶에 적용한 것으로, 100년의 시간 속 3만 6500개의 ‘오늘’을 디지털 방식으로 연결하는 접근법이다.   그림 1. 인생 디지털 스레드   LDT의 핵심 개념과 철학 LDT는 단순한 데이터 저장 방식이 아니라 연결 중심의 지식 관리 방법론이다. “아무리 오래 살아도 모두는 오늘이 처음이다. 그러나 모든 오늘을 연결할 수 있다면, 우리는 더 현명한 결정을 내리고 더 창의적인 삶을 살 수 있다.” 이 철학의 핵심은, 하루의 경험이 독립적으로 소멸하지 않고 맥락 속에서 재발견되도록 만드는 것이다. 과거의 경험이 현재와 연결되고, 오늘의 생각이 미래의 결정에 영향을 미치게 된다.   세렌디피티를 향한 설계 LDT의 궁극적인 목적은 세렌디피티(serendipity) 또는 예기치 않은 긍정적 발견이다. 이는 단순한 우연이 아니라, 연결된 데이터 네트워크 속에서 우연이 촉발되는 구조이다. 예를 들어, 과거에 읽은 책의 한 문장이 몇 년 뒤 새로운 프로젝트의 아이디어로 연결되거나, 오래 전에 만난 사람과의 기록이 예상치 못한 협업 기회로 이어지는 경우가 이에 해당한다. 이러한 발견은 무작위성이 아니라 의도적으로 설계된 우연이다. LDT는 그 설계도를 제공하는 도구이다.   효율성 향상과 지식의 통합 필자 자신의 지난 수십 년 동안의 기록을 분석한 결과, 80% 이상이 중복이라는 사실을 발견했다. 같은 생각, 동일한 메모, 비슷한 업무 계획이 반복되고 있었던 것이다. LDT는 이런 반복의 정보 노이즈를 줄이는 필터 역할을 한다. 중복이 줄어들면, 새로운 창의 활동과 의미 있는 성찰에 더 많은 시간과 에너지를 쓸 수 있다. 이는 곧 삶의 생산성 최적화로 이어진다. LDT가 단순한 기록 아카이브와 다른 점은 통합성(integrality)이다. 데이터에 맥락(context)을 부여하고, 서로 간의 연관성을 설정하며, 필요할 때 즉시 검색 및 활용이 가능하게 만든다. 이 과정을 통해 개인의 삶은 거대한 지식 네트워크로 재구성된다. 이는 디지털 시대의 개인 지식 그래프라고 부를 수 있다.   적용 영역의 확장성 : 삶의 모든 흔적을 연결하는 기술 인생 디지털 스레드는 특정 분야에 국한되지 않고 삶의 거의 모든 영역에 폭넓게 적용될 수 있는 잠재력을 지니고 있다. 이는 단순한 기록을 넘어, 우리가 살아가는 모든 순간을 연결하고 의미를 부여하는 기술이기 때문이다. 우선, LDT는 개인의 삶과 인생 전반에 대한 관리를 가능하게 한다. 매일의 생활 패턴부터 시작해, 장기적인 인생 궤적까지 모든 데이터를 연결함으로써 우리는 자신을 더 깊이 이해할 수 있다. 예를 들어, 특정 시기의 수면 패턴이 업무 생산성에 어떤 영향을 미쳤는지, 혹은 5년 전의 독서 기록이 현재의 직업적 선택과 어떻게 이어지는 지를 입체적으로 파악할 수 있게 된다. 또한, 사건과 경험을 관리하는 데에도 매우 유용하다. 진행했던 프로젝트의 과정과 결과, 떠났던 여행에서 느꼈던 감정과 배운 점, 그리고 삶의 중요한 특별한 만남에 대한 기록들이 서로 연결되면, 과거의 경험이 현재의 결정을 돕는 중요한 자산이 된다.   그림 2. 스레드   지식 관리는 LDT의 핵심 기능 중 하나이다. 학습한 내용, 독서하며 남긴 메모, 그리고 진행했던 연구 기록이 흩어져 있지 않고 하나의 거대한 네트워크를 형성한다. 이 네트워크 속에서 새로운 통찰을 얻거나, 과거의 지식이 새로운 아이디어와 결합되는 창의적인 순간을 맞이할 수 있다. 뿐만 아니라 시간 관리 영역에서도 LDT는 빛을 발한다. 하루의 일정, 반복되는 루틴, 그리고 중요한 마감 기록들이 연결되면, 자신의 시간 활용 패턴을 분석하고 비효율적인 부분을 찾아 개선할 수 있다. 인간관계에 있어서도 관계의 변화나 네트워크 기록을 관리함으로써 의미 있는 관계를 더욱 깊게 다져나갈 수 있다. 나아가 LDT는 정서 관리를 위한 도구로도 활용된다. 기쁨, 슬픔, 기대, 불안 등 내면의 기록을 연결하면, 자신의 감정 패턴을 파악하고 심리적 안정감을 찾는데 도움을 준다. 궁극적으로, LDT는 인생의 중요한 변곡점인 혁신과 변화를 의도적으로 설계하고 만들어내는 강력한 도구가 될 수 있다. 이처럼 LDT는 삶의 모든 데이터를 연결하여 우리 자신을 입체적으로 이해하게 하고, 더욱 의도적이고 의미 있는 삶을 설계할 수 있는 길을 열어준다.   맺음말 : 삶을 ‘대화’하게 만드는 기술 인생 디지털 스레드는 단순히 지나온 날을 기록하고 저장하는 도구를 넘어선다. 그것은 과거와 현재, 그리고 미래를 서로 대화하게 만드는 혁신적인 기술이다. 이 대화는 우리의 삶에 깊은 변화를 가져온다. 불필요한 반복을 줄이는 중복 제거를 통해 우리는 에너지를 낭비하지 않게 된다. 시간의 효율적 재분배로 효율 향상을 이루고, 그 여유 속에서 더 깊은 통찰 증진을 얻을 수 있다. 궁극적으로 LDT는 의도적으로 설계된 우연, 즉 세렌디피티의 촉발을 가능하게 한다. 과거의 기록이 현재의 맥락과 연결되면서 우리는 창의적인 아이디어를 발견하고 예상치 못한 기회를 포착하게 된다. 향후 LDT가 인공지능(AI)과 결합하여 개인 디지털 트윈으로 발전한다면, 우리는 단순히 기억을 보존하는 것을 넘어 기억이 스스로 새로운 미래를 제안하는 시대를 맞이하게 될 것이다. LDT는 살아온 날을 보관하는 아카이브가 아니라, 그 날들이 서로 이야기를 나누게 만드는 작업이다. 그리고 그 이야기 속에서, 우리는 미래를 바꾸는 실마리를 발견하게 될 것이다.   ■ 조형식 항공 유체해석(CFD) 엔지니어로 출발하여 프로젝트 관리자 및 컨설턴트를 걸쳐서 디지털 지식 전문가로 활동하고 있다. 현재 디지털지식연구소 대표와 인더스트리 4.0, MES 강의, 캐드앤그래픽스 CNG 지식교육 방송 사회자 및 컬럼니스트로 활동하고 있다. 보잉, 삼성항공우주연구소, 한국항공(KAI), 지멘스에서 근무했다. 저서로는 ‘PLM 지식’, ‘서비스공학’, ‘스마트 엔지니어링’, ‘MES’, ‘인더스트리 4.0’ 등이 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
CAD&Graphics 2025년 9월호 목차
  18ㅤTheme. PLM과 AI로 가속화하는 제조 디지털 전환의 미래 Ⅱ 제조산업의 미래, 산업 AI 트렌드와 과제 / 조영임 AI 혁신을 기회로 : SAP의 통합형 PLM 전략 / 고건 미래 제조 패러다임의 전환 : SDM 기반 자율 제조의 도래 / 박한구 엔비디아 옴니버스만 가능한 디지털 트윈의 비즈니스 실현 / 김건우 패스트 포워드 디지털 전환과 제품 개발 / 윤중근 소프트웨어 정의 자동화가 바꾸는 산업의 미래 / 김건   Infoworld   Editorial 17ㅤAI 시대, 그래픽 산업과 한국 기업의 대응 전략은?   People&Company 39ㅤ헥사곤 매뉴팩처링 인텔리전스 성 브라이언 사장ㅤ시뮬레이션·디지털 트윈·AI 결합해 제품 개발의 미래 제시 42ㅤ한국기계가공학회 안동규 회장ㅤ뿌리기술로 미래 제조 혁신 이끈다   Case Study 44ㅤKAI의 언리얼 엔진 기반 차세대 시뮬레이션 에코시스템ㅤ비행 훈련부터 제품 개발·운영까지 아우르는 핵심 인프라를 목표로 47ㅤ가상 커미셔닝으로 산업 과제를 해결하는 스피라텍ㅤ개방형 커미셔닝과 협업 혁신으로 제조업을 재정의하다   Focus 50ㅤ넥스트콘 2025에서 만난 건설 디지털 전환의 미래   New Product 52ㅤ사용자 경험 혁신하는 3D CAD/CAE/CAM 소프트웨어ㅤZW3D 2026 57ㅤAI·스마트 자동화 기반의 차세대 디지털 엔지니어링 설루션ㅤ앤시스 2025 R2 60ㅤ이달의 신제품   On Air 63ㅤ캐드앤그래픽스 CNG TV 지식방송 지상중계ㅤAI로 혁신하는 3D 시각화와 산업의 미래   Column 70ㅤ디지털 지식전문가 조형식의 지식마당 / 조형식ㅤ인생 디지털 스레드 : 삶의 모든 ‘오늘’을 연결하는 새로운 패러다임 72ㅤ현장에서 얻은 것 No. 22 / 류용효ㅤ나만의 AI 에이전트 필살기 Ⅰ – 나만의 지식 지도를 그리다   64ㅤNew Books 66ㅤNews   Directory 123ㅤ국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 75ㅤ새로워진 캐디안 2025 살펴보기 (10) / 최영석ㅤ유틸리티 기능 소개 Ⅷ 78ㅤ데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2026 (6) / 천벼리ㅤ모바일 CAD 아레스 터치의 새로운 기능 116ㅤBIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱ㅤ바이브 코딩 지원 멀티 에이전트 코덱스의 사용법   Mechanical 80ㅤ제품 개발 혁신을 돕는 크레오 파라메트릭 12.0 (2) / 김성철ㅤ부품 모델링 개선 사항   Reverse Engineering 86ㅤ시점 - 사물이나 현상을 바라보는 눈 (9) / 유우식ㅤ작용, 반작용, 상호작용   Analysis 93ㅤ앤시스 워크벤치를 활용한 해석 성공 사례 / 박건ㅤ포토닉스 소자 시뮬레이션을 위한 앤시스 루메리컬 98ㅤ산업 디지털 전환을 가속화하는 버추얼 트윈 (6) / 이현충ㅤ시뮬리아 웨이브6를 활용한 환경 소음 시뮬레이션 100ㅤ로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (2) / 윤경렬, 김도희ㅤ데이터 분석 로코드 설루션을 배워보자 Ⅰ 106ㅤ최적화 문제를 통찰하기 위한 심센터 히즈 (7) / 이종학ㅤ프로세스 자동화 Ⅱ – 모터 설계 최적화 113ㅤ성공적인 유동 해석을 위한 케이던스의 CFD 기술 (25) / 나인플러스ITㅤ처리 시간이 10시간 미만인 LES 워크플로         캐드앤그래픽스 당월호 책자 구입하기   캐드앤그래픽스 당월호 PDF 구입하기
작성일 : 2025-08-31
[칼럼] 스마트 디지털 트윈을 위한 디지털 온톨로지와 디지털 스레드
디지털 지식전문가 조형식의 지식마당   인공지능(AI)은 단순한 기술을 넘어 우리의 삶과 산업 전반을 재편하는 거대한 흐름이 되었고, 이 거대한 흐름 속에서 스마트 디지털 트윈(smart digital twin)과 디지털 스레드(digital thread)는 미래 혁신을 이끌 핵심 동력으로 될 것으로 생각된다. 이번 호 칼럼에서는 AI 시대에 이 두 가지 개념이 왜 필수인지 그 핵심 역할과 의미, 그리고 우리가 직면한 과제를 심층 조명하고자 한다. 미래 제품 개발의 최전선에는 스마트 디지털 트윈이 자리하고 있다. 이는 단순한 물리적 객체의 디지털 복제본을 넘어선다. 우리는 이를 ‘인공지능 중심 디지털 트윈 (AI defined digital twin)’이라고 부르며, 궁극적으로는 AI 에이전트 디지털 트윈으로 진화할 것으로 생각된다.   그림 1. 인공지능 중심의 디지털 트윈과 디지털 스레드의 통합(출처 : Lifecycle Insights)   스마트 디지털 트윈의 핵심은 미래 예측과 시뮬레이션 능력에 있다. 가상 환경과 인공지능 환경에서 미래 제품의 성능과 기능을 사전에 예측하고 다양한 시나리오를 시뮬레이션함으로써, 우리는 현실 세계에서 발생할 수 있는 시행착오를 최소화하고 최적의 설계를 도출할 수 있다. 예를 들어, 자율주행 자동차를 개발할 때 스마트 디지털 트윈은 수십만 가지의 주행 상황을 가상으로 재현하고 AI 모델을 훈련시켜 실제 도로에서의 안전성을 극대화할 수 있다. 이는 제품 개발의 시간과 비용을 획기적으로 절감할 뿐만 아니라, 혁신적인 제품의 출시를 가속화하는 핵심 역할을 수행한다. 그러나 스마트 디지털 트윈이 그 잠재력을 온전히 발휘하기 위해서는 거대한 양의 데이터가 끊김 없이 흐르고, 이 데이터가 의미 있는 정보로 변환되어 AI의 추론과 학습에 활용될 수 있는 환경이 조성되어야 한다. 바로 이 지점에서 디지털 스레드의 역할이 부각된다. 인공지능이 강화되는 스마트 디지털 트윈 환경에서 디지털 스레드는 단순한 연결을 넘어 혁신의 실핏줄과 같은 역할을 수행한다. 이는 정보의 단절, 즉 데이터 사일로(data silo)를 극복하고 정보의 흐름을 원활하게 하는 유일무이한 기술이다. 기존의 단절된 시스템과 프로세스 속에서는 데이터가 각자의 고립된 공간에 갇혀 효율적인 활용이 불가능했다. 디지털 스레드는 이러한 장벽을 허물고, 정보가 마치 혈액처럼 유기적으로 순환하며 지식으로 축적될 수 있도록 도와준다. 디지털 스레드의 핵심 기능은 크게 다섯 가지 유형의 단절된 데이터 사일로를 연결하는 데 있다. 첫째, 제품 수명주기(product lifecycle) 내 소통이다. 요구사항 정의에서부터 제품 스펙, 엔지니어링 BOM(Bill Of Materials), 제조 BOM, Bill of Process, 그리고 서비스 BOM에 이르기까지, 제품의 전 수명주기 단계에서 발생하는 모든 데이터가 디지털 스레드를 통해 끊김 없이 연결된다. 과거에는 각 단계별로 데이터가 사일로화되어 정보 흐름이 원활하지 못했고, 이는 곧 비효율적인 의사결정과 불필요한 재작업으로 이어졌다. 디지털 스레드는 이러한 문제점을 해결하여 제품 개발의 전 과정에서 일관된 정보와 최신 데이터를 공유할 수 있도록 한다. 둘째, 제품 수명주기 관리(PLM)와 인공지능 간의 소통이다. 제품 개발 환경에서 인간의 생각과 인공지능의 추론 기능 간에는 디지털 온톨로지(digital ontology)의 표준적 개념과 디지털 스레드를 통해 다양하고 복잡한 생각과 용어 등이 소통될 필요가 있다. 디지털 스레드는 복잡한 제품 구조, 기능, 요구사항 등을 AI가 이해하고 추론할 수 있도록 의미론적으로 연결하는 다리 역할을 한다. 이를 통해 AI는 단순한 데이터 분석을 넘어, 인간의 의도를 파악하고 창의적인 해결책을 제시하는 진정한 협력자가 될 수 있다. 셋째, 서로 다른 설루션 간의 소통이다. 소프트웨어 형상 관리 설루션, PLM, 요구사항 관리 설루션, 해석 데이터 관리 설루션 등 수많은 서로 다른 설루션이 존재하지만, 이들 간의 데이터 연동은 늘 골칫거리였다. 디지털 스레드는 이처럼 분리된 설루션을 메시(mesh) 관계로 연결하여 데이터가 원활하게 연동될 수 있도록 한다. 마치 거미줄처럼 촘촘하게 연결된 이 망은 각 설루션이 생성하는 데이터가 실시간으로 다른 설루션과 공유되고 활용될 수 있는 기반을 제공한다. 넷째, 서로 다른 조직 간의 소통이다. 마케팅 부서, 기본 설계 부서, 생산 부서, 그리고 최종 서비스 부서 등 각기 다른 용어와 문화를 가진 조직간의 소통은 늘 쉽지 않은 과제였다. 디지털 스레드는 이러한 소통 장벽을 허물고 협업을 원활하게 한다. 각 조직이 사용하는 용어와 개념을 디지털 스레드 위에서 표준화하고 연결함으로써, 오해를 줄이고 목표 지향적인 협업을 가능하게 하는 것이다. 이는 궁극적으로 조직 전체의 시너지를 극대화하고, 혁신적인 아이디어가 자유롭게 교환될 수 있는 환경을 조성한다. 다섯째는 세렌디피티(serendipity)이다. 이런 거미줄 같은 메시 관계에서 오는 네트워크된 지식(Networked Knowledge) 생태계는 이해당사자인 개발책임자, 엔지니어, 생산 엔지니어, 마케팅 전문가, 안전 전문가, 형상관리자 등에게 생각지 못한 발견과 창의적 환경을 제공하며, 자료를 찾는데 소모되는 엄청난 시간과 노력을 절감하게 하며 더 창조적인 작업에 투자할 수 있다.   그림 2. 제품 수명주기의 디지털 스레드 지식 그래프(knowledge graph)(출처 : Eigner Engineering Consult)   이처럼 디지털 스레드는 AI 시대, 특히 스마트 디지털 트윈 환경에서 데이터의 고립을 해소하고, 정보의 흐름을 최적화하며, 궁극적으로는 AI의 잠재력을 최대한으로 끌어내는 필수 기반 기술이라고 할 수 있다. 인공지능 시대에 디지털 스레드를 통한 창조성과 필연적 세렌디피티가 분야 전문가의 유일한 생존 전략이라고 할 수 있다. 그럼에도 불구하고 디지털 스레드는 여전히 많은 이에게 생소하고 도전적인 개념으로 여겨진다. 현장에서는 디지털 트윈 개발에 디지털 스레드가 필수임에도 불구하고 고객을 설득하기 쉽지 않다는 어려움을 토로한다. 심지어 일부 미국 전문가 사이에서는 ‘디지털 스레드 무용론’이 제기되기도 한다. 이러한 오해와 도전은 디지털 스레드가 가지는 혁신적인 속성 때문일 수 있다. 우리가 직면한 과제는 명확하다. 첫째, 설득의 어려움이다. 디지털 스레드의 필요성을 현장의 이해관계자에게 명확히 전달하고 공감대를 형성하는 것이 중요하다. 단기적인 효율 증대 뿐만 아니라 장기적인 관점에서 AI 시대의 경쟁 우위를 확보하는 핵심 요소임을 강조해야 한다. 둘째, 개념의 생소함과 도전적인 특성이다. 현재에도 디지털 스레드에 대해 정확하게 아는 사람이 드물며, 이는 비교적 생소하고 혁신적이며 도전적인 개념이기 때문이다. 따라서 이에 대한 지속적인 교육과 홍보, 그리고 성공 사례 발굴을 통해 이해의 폭을 넓혀야 한다. 그러나 이러한 도전에도 불구하고, 인공지능 시대에 스마트 디지털 트윈에서 디지털 스레드가 필요한 이유는 존재하는 것이 아니라 만드는 것이라는 관점에서 접근해야 한다. 이는 디지털 스레드가 단순히 현존하는 문제를 해결하는 도구를 넘어, 미래의 복잡한 인공지능 기반 시스템을 구축하고 그 잠재력을 최대한 발휘하기 위한 능동적이고 필수적인 기반임을 시사한다. 디지털 스레드는 이미 존재하는 데이터나 시스템을 연결하는 수동적인 도구가 아니다. 그것은 미래에 우리가 만들어낼 혁신 제품과 서비스를 위한 데이터와 정보의 연결고리를 능동적으로 구축하는 의미를 가진다. AI 시대의 복잡성은 끊임없이 새로운 데이터 유형과 상호작용 방식을 요구할 것이다. 디지털 스레드는 이러한 변화에 유연하게 대응하며 새로운 연결고리를 지속적으로 생성하고 발전시키는, 살아있는 유기체와 같다.   ■ 조형식 항공 유체해석(CFD) 엔지니어로 출발하여 프로젝트 관리자 및 컨설턴트를 걸쳐서 디지털 지식 전문가로 활동하고 있다. 현재 디지털지식연구소 대표와 인더스트리 4.0, MES 강의, 캐드앤그래픽스 CNG 지식교육 방송 사회자 및 컬럼니스트로 활동하고 있다. 보잉, 삼성항공우주연구소, 한국항공(KAI), 지멘스에서 근무했다. 저서로는 ‘PLM 지식’, ‘서비스공학’, ‘스마트 엔지니어링’, ‘MES’, ‘인더스트리 4.0’ 등이 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-08-04
CAD&Graphics 2025년 8월호 목차
  18 THEME . PLM과 AI로 가속화하는 제조 디지털 전환의 미래 Ⅰ   설계 데이터를 연결하다 : 퍼시스그룹의 디지털 트윈 기반 DX 전략 / 정연석 생성형 경험 기반 PLM을 통한 업무 혁신 : 다쏘시스템의 새로운 접근 / 김병균 현장이 원하는 디지털 트윈 : 최소 인프라, 최대 효과를 위한 접근법 / 송희삼 수주형 제조기업을 위한 PLM 연계 프로젝트형 생산 관리 DX / 김장순   Infoworld   Editorial 17 AI 에이전트와 함께 하는 제조업 혁신의 골든타임   Case Study 30 올림픽 금메달을 뒷받침한 3D 프린팅 혁신 금속 3D 프린팅으로 경기용 요트의 부품 제작 32 디지털 전환의 잠재력을 실현하는 메타버스 기술 성공적인 산업 메타버스 구현을 위한 필수 요소   New Product 36 2D CAD의 새로운 기준 제시하는 차세대 설계 플랫폼 ZWCAD 2026 42 디지털 휴먼의 제작 워크플로 향상 및 생태계 확장 메타휴먼 5.6 79 이달의 신제품   Focus 46 AI와 클라우드로 뻗어나가는 NX, 제품 개발의 혁신을 뒷받침한다 48 트림블 코리아, ‘파워팹’으로 철골 제작의 디지털화 및 효율 향상 지원 50 3D 콘텐츠 제작 시대, 어도비 서브스턴스가 펼치는 미래 52 3D 프린팅, 제조 혁신 이끌 생산 기술 될까…현실의 벽과 돌파구는? 54 SAP, 모든 설루션에 AI 탑재…“데이터 중심의 선순환 구조로 비즈니스 AI 혁신” 56 AWS, “다양한 기술로 국내 기업의 생성형 AI 활용 고도화 돕는다” 58 한국생산제조학회 2025 춘계학술대회, 생산제조 기술의 미래를 논의하다   On Air 60 캐드앤그래픽스 CNG TV 지식방송 지상중계 자율주행의 미래 : AI와 데이터 통합을 통한 지멘스 ADAS 혁신 62 캐드앤그래픽스 CNG TV 지식방송 지상중계 HP Z북 울트라, AI 워크스테이션의 새로운 기준 제시 63 캐드앤그래픽스 CNG TV 지식방송 지상중계 창의적 디자인의 미래, AI와 3D 프린팅에서 찾는다 64 캐드앤그래픽스 CNG TV 지식방송 지상중계 제조업을 바꾸는 양자 컴퓨팅의 힘 66 캐드앤그래픽스 CNG TV 지식방송 지상중계 디지털 트윈 시대의 3D 자산 관리 혁신하는 유니티 애셋 매니저   Column 67 포괄적 디지털 트윈으로 제조 공장의 미래를 설계하다 / 오병준 70 디지털 지식전문가 조형식의 지식마당 / 조형식 스마트 디지털 트윈을 위한 디지털 온톨로지와 디지털 스레드 74 현장에서 얻은 것 No. 21 / 류용효 AI 시대 제조업 생존 전략 : ‘듀얼 브레인’을 장착하라   82 New Books   Directory 147 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 84 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2026 (5) / 천벼리 온라인 CAD 아레스 쿠도의 주요 기능 88 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 오픈소스 LLM 모델 젬마 3 기반 AI 에이전트 개발해 보기 97 새로워진 캐디안 2025 살펴보기 (9) / 최영석 유틸리티 기능 소개 Ⅶ 100 BIM 전문인력 양성을 위한 해법을 찾는다 / 함남혁 BIM 전문가 민간자격 국가공인 현황과 발전 방향   Visualization 104 AI 크리에이터 시대 : 영상 제작의 새로운 패러다임 (5) / 최석영 AI 기반 몰입형 사운드 디자인   Reverse Engineering 110 시점 – 사물이나 현상을 바라보는 눈 (8) / 유우식 확률과 통계   Mechanical 116 제품 개발 혁신을 돕는 크레오 파라메트릭 12.0 (1) / 박수민 크레오 파라메트릭 12의 개선된 인터페이스 기능   Manufacturing 122 생산 계획부터 운영까지 혁신하는 스마트 제조 / 이노쏘비 PINOKIO가 선보이는 스마트 공장 기술과 사례   Analysis 107 로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (1) / 윤경렬, 김도희 데이터 분석에 로코드 설루션이 필요한 이유 128 앤시스 워크벤치를 활용한 해석 성공 사례 / 이효행 바닥 충격음과 층간 소음 문제 해결을 위한 예측 모델 및 실험 분석 133 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (24) / 나인플러스IT 충실도 흐름 솔버로 항공 엔진의 시뮬레이션 정확도 업그레이드 136 최적화 문제를 통찰하기 위한 심센터 히즈 (6) / 이종학 프로세스 자동화 | – 구조 설계 최적화 142 산업 디지털 전환을 가속화하는 버추얼 트윈 (5) / 강주연, 임영빈 아바쿠스의 Contact Wear 기능을 활용한 마모 해석과 응용     캐드앤그래픽스 당월호 책자 구입하기   캐드앤그래픽스 당월호 PDF 구입하기
작성일 : 2025-07-25
[온에어] AI 시대, 지식과 경험의 디지털 트윈 전략과 도구
캐드앤그래픽스 지식방송 CNG TV 지상 중계   CNG TV는 6월 9일 ‘AI 시대, 지식과 경험의 디지털 트윈 전략과 도구’를 주제로 웨비나를 개최했다. ‘AI 시대에 개인의 지식과 경험을 디지털 트윈화하는 최고의 전략은 무엇인가’라는 물음에 디지털지식연구소 조형식 대표는 “AI 시대에 개인의 지식과 경험을 디지털 트윈화하는 최고의 전략은 인공지능과 디지털 트윈의 결합에 있다”고 말했다. 자세한 내용은 다시보기를 통해 확인할 수 있다. ■ 박경수 기자   ▲ 디지털 트윈(Digital Twin)의 발전 과정을 연도별로 정리한 타임라인   AI와 디지털 트윈, 왜 지금 결합해야 하는가? “과거에는 10년 주기로 바뀌던 지식이 이제는 1~2년 만에 달라지는 시대이다.” CNG TV 진행자이자 캐드앤그래픽스 편집자문위원인 조형식 대표는 AI와 디지털 트윈(DT)의 결합이 더 이상 선택이 아닌 필수 전략임을 강조했다. 조 대표는 전문가조차 AI 활용에 주저하는 현실을 지적하며, 이제는 개인이 디지털 전환을 통해 미래 경쟁력을 갖춰야 할 때라고 말했다. 디지털 트윈은 현실의 사물, 시스템, 조직 등을 가상공간에 복제하여 예측과 시뮬레이션을 수행하는 기술이다. 하지만 디지털 트윈은 구현이 어렵고 비용이 많이 들며, AI는 빠른 분석은 가능하지만 맥락을 이해하지 못하는 단점이 있다. 이 약점을 보완하는 가장 강력한 전략이 바로 AI + DT의 결합이다. 조 대표는 “디지털 트윈은 현실을 복제하는 가상 쌍둥이이며, AI와 결합되어야 비로소 실질적인 성과를 낸다”고 강조했다. 이 기술의 적용 범위도 점점 확장되고 있다. 초기에는 제품이나 설비 단위였지만 이제는 시스템 트윈, 프로세스 트윈을 넘어 스마트시티, 헬스케어 등 복잡한 영역까지도 디지털화되고 있다. 심지어 점심 메뉴, 회식 장소 선택, 회사의 조직 구조 같은 존재하지 않는 개념조차 디지털 트윈화할 수 있는 시대, ‘디지털 트윈화(digital twinification)’가 도래한 것이다. 이런 흐름은 세계적인 데이터 분석 기업 팔란티어(Palantir)에서도 볼 수 있다. 팔란티어는 기업의 모든 데이터와 시스템을 디지털 트윈으로 재현하고, 이를 AI 기반으로 운용하는 방식을 도입했다. 여기서 핵심이 되는 개념이 ‘온톨로지(ontology)’이다. 이는 AI가 인간처럼 의미를 파악하고 연결망을 이해할 수 있도록 설계하는 방식으로, 앞으로의 프롬프트 설계나 데이터 관리에서 필수적인 구조다.   ▲ 2025년 AI 기반 지식 관리 도구 20가지를 주제로 한 시각적 요약   나만의 디지털 쌍둥이를 만드는 5단계 전략 조형식 대표는 개인이 자신의 지식과 경험을 디지털 트윈화하기 위한 실전 전략을 다음과 같이 5단계 + α로 제안했다. 구조화 : 에버노트, 노션 등을 통해 정보를 정리 네트워크화 : 옵시디언, 롬 리서치 등으로 개념과 연결성 강화 AI 강화 : 챗GPT, 구글 노트북LM 등을 통해 콘텐츠 해석과 보완 트윈화 : 기능 단위로 구체적인 디지털 복제물 생성 자동화 : 반복되는 작업은 FastAPI, Make.com, Zapier 등으로 자동화 α(지속적 학습) : 반복 학습과 개선으로 궁극적인 지식 자산화 조 대표는 “지식은 데이터이고, 경험은 프로세스다. 이 둘을 함께 디지털화하는 것이 개인 디지털 트윈의 핵심”이라고 정리했다. 그리고 “AI 시대는 기억력의 싸움이 아니라 상상력의 싸움이다. 거창한 계획보다는 작은 디지털 트윈부터 만들어보자”고 조언했다. 또한, 조 대표는 이러한 실전 전략을 뒷받침하는 다양한 도구도 소개했다. AI 음성 복제 도구 : 일랩스(자신의 목소리로 다국어 출력 가능) 오프라인 LLM 실행 : LM Studio를 활용해 나만의 AI 구축 자동화 플랫폼 : 노션 + Make.com, Jasper, Zapier 등 추천 학습 : MCP(Model Context Protocol), 그래프 DB에 대한 이해   ▲ CNG TV 진행자이자 캐드앤그래픽스 편집자문위원인 디지털지식연구소 조형식 대표   AI와 디지털 트윈의 결합은 개인의 지식과 경험을 ‘복제·확장·자동화’할 수 있는 가장 효과적인 전략이다. 거창한 기술이 아니라, 지금 당장 나만의 작은 디지털 쌍둥이 하나를 만드는 것부터 시작하면 누구든지 미래의 경쟁력을 키울 수 있다.     ■ 기사 내용은 PDF로도 제공됩니다. 
작성일 : 2025-07-01