• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "재료"에 대한 통합 검색 내용이 2,016개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
무엇을 볼 것인가?
시점 – 사물이나 현상을 바라보는 눈 (10)   지난 호에서는 ‘작용, 반작용, 상호작용’을 주제로 주변에서 일어나는 일을 다양한 사례를 들어가며 조금 특별한 시각으로 바라보았다. 뉴턴의 운동법칙, 작용, 반작용, 상호작용의 사전적 의미, 다양한 물리현상, 생태계의 상호작용, 사회적 상호작용, 관점의 차이, 상관관계를 통해서 세상을 알아가는 방법 등에 관해서 소개했다. 이번 호부터는 3회에 걸쳐서 ‘무엇을 볼 것인가?’, ‘무엇을 믿을 것인가?’, ‘가설, 모델, 이론의 설득력의 시대성’의 이야기를 다룰 예정이다. 이번 호에서는 그 첫 번째 이야기로 ‘무엇을 볼 것인가?’에 관해서 생각해 보고자 한다.   ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com   그림 1. 일제 강점기에 촬영된 청계천의 수위를 관찰하던 수표교의 모습   하천의 수위 측정 수표교는 하천의 수위를 측정할 수 있도록 눈금(수표)이 새겨져 있는 청계천에 있던 다리이다.(그림 1) 세종 2년(1420년)에 만들어질 당시는 그곳에 마전(馬廛)이 있어 마전교라 불렸다. 세종 23년(1441년) 다리 밑을 지나는 개천(청계천)에 흐르는 수위를 측정하기 위해서 수표를 세웠다. 이후부터 수표교로 부르게 되었으며, 주변에 있는 마을은 수표동이라고 부르게 되었다. 수표는 하천의 수위를 과학적, 계량적으로 측정할 수 있는 기구로, 측우기와 함께 세종 때 만들어진 대표적인 과학 기기의 하나로 꼽힌다. 수표교는 현재의 서울특별시 종로구 수표동에 있었으나, 1958년 청계천 복개 공사로 장충단공원에 옮겨졌다. 2005년 청계천 복원 당시 원래 자리에 다시 놓으려고 했으나, 복원된 청계천의 폭과 수표교의 길이가 맞지 않아 옮겨지지 못했다.(그림 2) 대신 그 자리에는 임시 다리가 설치되어 있다. 원래의 수표교는 동대문구 청량리동에 있는 세종대왕기념관으로 이전되었다. 수표교에서 오른쪽으로 다섯 번째 다리의 이름이 오늘날의 마전교로 되어 있다. 초기의 수표는 청계천의 마전교 서쪽과 한강변에 세워졌다. 물속에 기둥을 꽂을 수 있도록 구멍을 판 받침돌을 놓고 그 구멍에 나무 기둥을 세웠다. 나무 기둥에는 눈금을 새겨 수위를 알아볼 수 있도록 하였으나, 나무로 만든 수표는 쉽게 망가져 15세기 성종 때 돌기둥으로 교체하였다. 아마도 물이 차면 부력으로 떠내려가기도 쉽고 물에 젖었다가 마르기를 반복하는 부분은 쉽게 썩지 않았을까 싶다. 돌기둥으로 만들어진 수표 양면에는 1척에서 10척까지 눈금을 새겼으며, 3, 6, 9척의 위치에는 ○표를 새겨서 각각 갈수(渴水), 평수(平水), 대수(大水)를 판단하는 기준으로 삼았다. 6척 안팎의 물이 흐르면 보통의 수위이고, 9척 이상이 되면 위험 수위로 개천의 범람 징후를 미리 헤아릴 수 있도록 한 것이다. 영조 36년(1760년)에 다리를 수리하면서 돌기둥에 ‘庚(경)·辰(진)·地(지)·平(평)’이라는 글씨를 새겨 물 높이를 4단계로 측정하였다. 순조 때 개천을 다시 준설할 때 새로운 수표를 세웠으며, 지금 남아 있는 수표는 이때 만들어진 것이다.   그림 2. 복원된 청계천의 22개 다리 중에서 옛 모습을 찾지 못한 수표교(빨간 별표로 표시된 다리)   강우량을 측정하는 측우기 현존하는 세계 최고의 강우량 측정기구도 우리나라가 가지고 있다. 국보로 지정된 ‘공주 충청감영 측우기’이다.(그림 3) 헌종 3년(1837년)에 제작된 공주 충청감영(금영) 측우기는 농업을 위한 조상의 과학적 발명과 구체적 실행을 증명해주는 유물로 매우 가치가 크다. 금영 측우기는 조선 시대 충남지역 감독관청이었던 충청감영에 설치되었던 것으로, 1915년경 일본인 기상학자 와다 유지가 국외로 반출한 것을 1971년 일본으로부터 환수한 것이다. 현재 서울 기상청 박물관에 보관되어 있다. 조선 시대에는 중앙정부에서 규격이 같은 측우기를 제작해 전국의 감영에 보냈기 때문에, 여러 점이 만들어졌을 것으로 추정된다. 다만 지금까지 남아 있는 것은 금영 측우기가 유일하다. 빗물을 그릇에 받아 강우량을 재는 측우기는 조선 세종 때에 처음 만들어진 후 여러 차례 다시 만들어졌다는 기록은 남아 있으나, 현재 실물로 남아 있는 것은 헌종 3년(1837년)에 만들어진 이 측우기뿐이다. ‘조선왕조실록’ 세종 23년(1441년) 8월 18일의 기록에는 서운관(기상관측 기관)에 대(臺)를 설치해 빗물을 받아 강우량을 측정했으며, 이듬해인 1442년 5월 8일에는 측정방식이 미진해 다시 원칙을 세웠다고 한다. 이때 세운 원칙대로 만들어진 것이 금영 측우기이다. 강우량 측정의 표준이 필요함을 절감하고 표준을 정해서 시행한 셈이다. 오늘날의 표준화 작업과 품질관리가 실행된 구체적인 사례이다. 도량형 표준이 측우기에도 적용된 셈이다. 금영 측우기의 제작 시기와 크기 등은 바깥 면 가운데쯤에 새겨진 명문(銘文)을 통해 알 수 있다. 명문에 따르면 이 측우기는 헌종 3년(1837년)에 만들었으며 높이는 1자(尺) 5치(寸), 지름 7치, 무게 11근으로 제작되었다. 상·중·하단의 3개의 금속 부품으로 구성되었으며, 상부가 약간 넓고 하부가 약간 좁게 만들어져 서로 끼워서 조립하는 형태의 구조이다. 금속 부품을 끼우는 접합부는 대나무 마디처럼 두껍게 만들어 부품의 모양이 변형되지 않도록 고안된 형태이다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
크레오 시뮬레이션 라이브를 활용한 제품 설계 최적화
제품 개발 혁신을 돕는 크레오 파라메트릭 12.0 (3)   크레오 시뮬레이션 라이브(Creo Simulation Live)는 설계자 중심의 실시간 통합 해석 설루션으로, 빠르고 쉽게 구조·열·모달·유체 해석을 수행할 수 있는 설루션이다. 크레오 12.0 크레오 시뮬레이션 라이브에서는 더욱 향상된 기능으로 제품 개발 효율과 품질을 동시에 높일 수 있다. 이번 호에서는 크레오 12.0에서 추가된 패스너(fastener) 추가 및 예비 하중(preload) 조건 적용, 자동 접촉(contact) 감지 및 생성을 기반으로 하여 구조 해석을 진행해보자.   ■ 김주현 디지테크 기술지원팀의 차장으로 크레오 전 제품의 기술지원 및 교육을 담당하고 있다. 홈페이지 | www.digiteki.com   이번 호에서는 다음과 같은 어셈블리를 해석해보자. 해석하고자 하는 모든 부품에 필요한 재료를 지정한다.     해석을 하기 위해 메뉴에서 ‘라이브 시뮬레이션’을 선택한다.     ‘시뮬레이션 추가’에서 원하는 해석 유형을 선택한다. 이번 호에서는 구조해석을 하기 위해 ‘구조 시뮬레이션 검토’를 선택한다.     어셈블리를 모두 해석하지 않고 원하는 부품만 해석하기 위해 ‘범위’를 통해 부품을 지정한다. ‘B02482.prt’, ‘B02400.prt’ 이 두 부품을 제외하고 나머지 부품을 모두 선택한다.     다음으로 제약조건을 설정해 보자. ‘고정’ 아이콘을 선택한다.     고정하고자 하는 서피스 면을 선택한 후 확인한다. 예제에서는 그림과 같이 네 개의 구멍을 선택한다.     다음으로는 베어링 하중을 부여한다. 크레오 12.0 라이브 시뮬레이션에서는 베어링 하중을 부여할 수 있다. 베어링 하중을 부여하는 경우 힘이 핀/구멍 연결로 적용되며, 하중 분포는 지정된 방향으로 원통의 절반에 걸쳐 자동으로 적용된다. 베어링 하중은 완전 원통형에서만 지원되고, 강도 및 방향의 기준으로 정의되거나 방향 컴포넌트의 기준으로만 정의될 수 있다. 베어링 하중을 부여할 수 있게 되면서 핀/구멍 연결 하중을 좀 더 정확하게 시뮬레이션할 수 있게 되었다. 메뉴에서 ‘베어링 하중’을 선택한다.     그림과 같이 ‘B02521.prt’의 안쪽 면을 참조로 선택한 후 방향에 값을 입력한다. 이번 호에서는 X 방향으로 ‘-500N’, Z 방향으로 ‘-200N’을 입력한 후 확인한다.     다음으로 두 번째 베어링 하중을 입력한다. 베어링 하중 아이콘을 선택한 후 이번에는 ‘GB6LASTSN001228.prt’의 서피스 면을 참조면으로 선택한다. 하중의 값은 X 방향으로 ‘-200N’, Z 방향으로 ‘50N’의 힘을 입력한 후 확인한다.       ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
지멘스, 팀센터에 AI 기반 수명주기 평가 기능 추가
지멘스 디지털 인더스트리 소프트웨어가 제품 수명주기 관리 소프트웨어인 팀센터(Teamcenter)를 확장해 AI 기반 수명주기 평가(LCA) 기능을 추가했다고 발표했다. ‘팀센터 지속가능성 수명주기 평가(Teamcenter Sustainability Lifecycle Assessment)’ 소프트웨어는 설계 전문가, 엔지니어, 제조업체가 AI와 공급망 데이터를 활용해 지속 가능하고, 규제를 준수하며, 혁신적인 제품을 보다 효율적으로 개발할 수 있도록 지원한다. 이는 제품 수명주기 전반에 인텔리전스를 부여하려는 지멘스 전략의 일부분으로, 디지털 트윈과 데이터 백본(backbone)을 활용해 제품, 공정의 모든 단계에 맥락적 인사이트를 제공한다. 지멘스와 메이커사이트(Makersite)가 공동 개발한 팀센터 지속가능성 수명주기 평가는 지멘스가 가장 디지털 트윈에서 얻은 산업 데이터를 활용해 새로운 인사이트를 창출하는 여러 방법 중 하나다. AI 기반의 예측 LCA 데이터와 분석 기능을 팀센터에 추가함으로써 지멘스는 진정한 정보에 기반한 설계 및 제조 의사 결정을 위한 심층적인 인사이트를 제공하는 새로운 수명 주기 인텔리전스 계층을 구축했다. 이를 통해 기업은 데이터 사일로를 제거하고 설계, 엔지니어링, 지속가능성 팀 간 협업을 간소화할 수 있다. 또한 보다 빠르고 정보에 기반한 의사 결정을 내려 규제를 준수하고, 안전하며, 비용 효율적인 친환경 제품을 개발할 수 있다.     팀센터 지속가능성 수명주기 평가 설루션은 엔지니어링 및 제조 팀이 제품 수명주기 전반에 걸쳐 조기에 제품의 환경 규제 준수, 공급망 위험, 비용 등을 평가하도록 지원한다. 이 설루션은 기계 제품 엔지니어링, 전자·전기 설계, 시뮬레이션 애플리케이션에 통합돼 있다. 제품 팀은 초기 제품 개발 단계에서 간접 온실가스 배출량(Scope 2 및 Scope 3)을 포함한 ISO 준수 LCA 보고서를 활용해 제품의 지속가능성, 규제 준수, 장기 수익성을 개선시킬 수 있다. 또한 사용자는 팀센터에서 제품의 BOM(bill of materials)에 직접 내장된 다중 기준(multi-criteria) 시뮬레이션 결과를 분석해 비용, 성능, 지속가능성 요소 간의 균형을 더욱 효과적으로 유지할 수 있다. 이를 통해 기업은 모듈화, 재활용 가능성, 재사용과 같은 친환경 설계 전략을 채택할 수 있다. 지멘스 디지털 인더스트리 소프트웨어의 프랜시스 에반스(Frances Evans) 라이프사이클 협업 소프트웨어 부문 수석 부사장은 “속도, 비용 효율, 규정 준수를 유지하면서 지속가능성을 핵심으로 하는 제품을 개발하려면, 제조 기업 전체에 획기적으로 확장된 수명주기 인텔리전스가 필요하다. 기업들은 까다로운 글로벌 규제 요건과 환경 영향을 줄여야 하는 과제에 직면해 있다”면서, “이런 가운데 지멘스는 고객이 AI를 활용해 지속가능성을 고려한 설계를 수행하고, 순환성(circularity)을 구현하며, 처음부터 재료 선택을 최적화할 수 있도록 지원하고 있다. 팀센터의 제품 수명 전반에 걸친 전체 LCA 기능을 통해, 고객은 실시간 환경 데이터를 토대로 제품 혁신을 전환할 수 있다”고 전했다. 메이커사이트의 닐 드수자(Neil D'Souza) CEO 겸 창립자는 “지멘스와 협업을 통해 제품 수명주기 인텔리전스를 핵심 개발 워크플로에 직접 적용할 수 있게 됐다. 지멘스 팀센터와의 통합으로 메이커사이트는 초기 제품 설계부터 제조 BOM에 이르기까지 엔지니어의 일반적인 도구 내에서 비용, 규제 준수, 위험, 환경 성과에 대한 정확하고 상세한 인사이트를 제공한다. 이 통합은 경제적이고 안전하며 지속 가능한 제품 개발을 가속화한다. 동시에 제품 마스터 데이터를 향상시키며, 기업이 증가하는 규제 준수 요건에 수월하게 선제적으로 대응할 수 있도록 지원한다”고 말했다.
작성일 : 2025-10-01
고충실도 제트 유동 시뮬레이션으로 항공우주 산업 혁신
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (26)   이번 호에서는 고속 제트 유동 시뮬레이션에서 마주하게 되는 주요 도전 과제를 설명한다. 또한 피델리티 LES 솔버(Fidelity LES Solver)의 기능을 소개하고, 이를 활용한 사례 연구를 통해 그 잠재력을 강조하고자 한다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   초고속 제트 유동을 시뮬레이션하는 것은 기술적으로 매우 도전적인 과제이자 유체역학 분야의 흥미로운 최전선이다. 특히 초음속 및 극초음속 비행 기술이 발전함에 따라, 이러한 극한 속도에서의 복잡한 유동 거동을 이해하는 것은 점점 더 중요해지고 있다. 마하 1 이상의 속도에서는 공기역학적 힘의 성질이 크게 변하며, 충격파가 발생한다. 이 충격파는 특정한 유동 패턴을 만들어내며, 이는 항공기의 성능, 안정성 및 기동성에 큰 영향을 미칠 수 있다. 비행 속도가 마하 3을 넘어 특히 스크램제트 엔진이 작동하는 구간에 이르면, 마찰 및 압축으로 인해 발생하는 온도 변화가 섭씨 1500도 이상에 달할 수 있다. 이러한 극한의 열 환경은 설계 시 제대로 고려되지 않으면 재료 피로와 파손을 초래할 수 있다. 하지만 피델리티 LES 솔버(구 Cascade CharLES)와 같은 전산 유체역학(CFD) 도구의 발전으로, 연구자는 이제 고속 비행의 물리 현상을 과거에는 불가능했던 수준의 정밀도로 탐구할 수 있게 되었다. 그러나 이러한 극한 조건을 정확히 시뮬레이션하려면 무엇이 필요할까? 수많은 시뮬레이션 과제를 어떻게 해결할 수 있을까?     고속 제트 유동 시뮬레이션의 도전 과제 고속 제트 유동을 시뮬레이션하는 것은 온도, 압력, 난류 간의 복잡한 상호작용으로 인해 상당한 어려움을 동반한다. 높은 레이놀즈 수에서는 난류가 매우 불규칙하게 변하기 때문에, 정확한 결과를 얻기 위해서는 강력한 알고리즘과 고성능 컴퓨팅 자원이 필수이다. 가장 큰 과제 중 하나는 압축성 효과를 포착하는 것이다. 고속 유동에서는 밀도 변화 및 충격파와의 상호작용이 유동의 거동을 극적으로 변화시키므로, 이를 정확히 모델링하는 것이 매우 중요하다. 또한 고속 제트 내부의 복잡한 유동 구조를 고려할 때 효과적인 난류 모델링이 필수이며, 정확성과 계산 효율 간의 균형을 찾는 것은 여전히 큰 도전 과제이다. 또 다른 핵심 요소는 열 전달과 수치적 안정성이다. 급격한 온도 구배(gradient)는 경계 조건의 정교한 정의를 요구하며, 그렇지 않으면 시뮬레이션 내에서 반사 오류(artifact)가 발생할 수 있다. 고해상도 수치 기법은 이러한 구배를 포착하는 데 필수이지만, 그만큼 계산 비용도 증가한다. 소음 예측 역시 중요한 과제이다. 제트 소음을 정확하게 예측하려면 유동 시뮬레이션과 함께 공력음향 모델을 통합하여, 다양한 환경에서의 음파 전파를 효과적으로 재현해야 한다. 여기에 연료 분사를 포함하면 혼합(mixing) 모델링이 추가로 필요하며, 이는 전체 제트 성능에 영향을 주는 핵심 요소로 작용한다. 또한, 실험 데이터와의 검증 문제도 간과할 수 없다. 실험적 기준이 제한적인 경우가 많기 때문에 시뮬레이션은 불완전한 데이터와 상이한 가정을 기반으로 진행되어야 하며, 이는 결과 검증을 어렵게 만든다. 이러한 모든 문제는 정교한 전산 도구와 안정적인 고성능 컴퓨팅 인프라가 필수임을 보여준다. 이를 통해 고속 제트 유동 시뮬레이션의 정확도와 효율을 동시에 향상시킬 수 있다.   해결책 : 피델리티 LES 솔버 피델리티 LES 솔버는 극초음속 및 초음속 유동 시뮬레이션을 위해 개발된 고충실도 전산 유체 역학(CFD) 분석 도구이다. 이 도구는 Large Eddy Simulation(LES)을 고속 항공우주 분야에 확장하여, 극한 유동 환경에서의 고유한 과제를 해결하도록 설계되었다. 고급 수치 기법, 고품질 격자 생성, 뛰어난 병렬 확장성을 결합하여 복잡한 유동을 정밀하게 예측할 수 있다. 다면체 격자 생성(polyhedral mesh generation) : 고급 클리핑 보로노이 다이어그램(clipped Voronoi diagrams)을 활용하여 복잡한 형상에서도 강력하고 효율적인 격자 생성을 지원한다. 이를 통해 정밀하고 확장 가능한 시뮬레이션이 가능하다. 확장성(scalability) : CPU 및 GPU 기반 고성능 컴퓨팅 환경 모두에서 원활하게 작동하도록 설계되어, 고해상도 결과를 빠르고 효율적으로 제공한다. 예측 중심 고충실도 시뮬레이션 : 최신 알고리즘을 통해 충격파 상호작용부터 음향파 전파에 이르기까지 고속 제트 유동의 복잡한 물리 현상을 정밀하게 재현할 수 있다.   사례 연구 : 비선형 음향파형 분석 피델리티 LES 솔버의 성능을 입증하기 위해, 고속 제트 유동을 시뮬레이션하고 그 음향 특성을 분석하는 사례 연구가 수행되었다. 이 연구의 주요 목적은 출구 마하수 3(Mach 3)의 제트 노즐에서 방출된 비선형 음향파형의 전파 현상을 분석하고, 그 결과를 실험 데이터와 비교·검증하는 데 있었다.   ▲ 고속 제트 유동에서의 누적 비선형 음향파형 왜곡 분석     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-01
NaviQ v2.0 : BIM 기반 공사비 자동 산출 설루션
개발 및 공급 : 글로텍 www.glotechsoft.com 주요 특징 : BIM 기반 수량–공사비 자동 산출, CBS 단가 DB 연동 공사비 자동 산출, OBS/WBS 연동으로 공정·기성관리까지 지원, 기존 2D 산출 방식과의 통합 지원 등 사용 환경(OS) : 윈도우 10 이상 시스템 권장 사양 : 인텔 코어 i5 이상 CPU, 16GB 이상 RAM, 엔비디아 GTX 1060 이상 GPU(나비스웍스 연동 시), 10GB 이상 여유 저장공간 소프트웨어 요구사항 : .NET Framework 4.7 이상, 레빗 또는 나비스웍스(2022~2024) 설치 권장   그림 1. BIM 기반 견적 산출 설루션 NaviQ v2.0   NaviQ(나비큐) v2.0은 글로텍이 개발한 BIM 기반 견적 산출 설루션으로, 설계자가 작성한 BIM(건설 정보 모델링) 모델로부터 수량을 자동 산출하고, CBS 단가 데이터베이스(DB)와 연계하여 공사비 내역서를 자동 작성할 수 있는 실무형 통합 설루션이다. 이 제품은 철도, 도로, LH, 건축, 항만 등 다양한 인프라 분야에서 설계-시공-기성관리 전 단계를 아우르는 비용 자동화 기능을 지원하며, 특히 기존 EBS 사용자에게 친숙한 인터페이스를 제공하여 도입 장벽을 낮춘 것이 특징이다.   NaviQ 2.0의 주요 특징 BIM 모델 기반 수량 산출(체적, 면적, 길이, 갯수 자동 인식) CBS 일위대가 DB 연동 공사비 자동 산출 OBS(단위 기준), WBS(공정 기준)와의 매핑을 통한 공정 연계 기존 2D 산출 수량과의 혼합 사용 가능 가근거, 수량근거 자동 기록 및 내역서 엑셀 출력 무료 뷰어 및 7일 체험판(trial) 제공으로 도입 부담 최소화   제품 구성   그림 2. NaviQ v2.0 제품군   NaviQ v2.0은 다음과 같은 구성으로 이루어져 있다. NaviQ Viewer : BIM 수량 확인 전용 툴(무상 배포) NaviQ Trial : 7일간 전체 기능 사용 가능 NaviQ Standard : 1년 기간제 라이선스(1 유저), 정식 제품(단가DB 연동, 자동산식 적용, 내역서 출력 등 전체 기능 포함) NaviQ Site : 1년 기간제 라이선스(1 사이트), Standard 제품을 한 개 회사가 인원 제한 없이 사용할 경우   NaviQ 2.0의 주요 기능 NaviQ v2.0은 설계자가 작성한 BIM 모델을 기반으로 수량 – 공사비 – 공정 – 기성관리까지 전 주기 데이터를 자동으로 연계할 수 있는 BIM 5D 실무 특화 설루션이다. 특히 국내 표준품셈 기반의 CBS 일위대가 DB를 직접 연동하고, BIM 물량을 공정 단위(WBS)로 분개하여 기성관리까지 연결할 수 있는 구조를 갖추고 있다. 뿐만 아니라 기존 2D 방식의 수동 산출 물량도 함께 병합할 수 있어 디지털 전환에 대한 진입 장벽을 낮추었으며, CBS-WBS 매트릭스 구조 기반의 정량화된 내역서 산출도 가능하다. 또한, 상용 공정관리 소프트웨어와의 연동을 통해 기성율, 공정 진척도, 물량 실적까지 통합 관리할 수 있다.   그림 3. NaviQ v2.0의 사용자별 활용 시나리오   CBS 일위대가 DB 데이터 활용 가능 : 국내 표준품셈 기반 CBS 단가 DB와 자동 연동되어 BIM 수량에 따른 재료비, 노무비, 경비가 자동 산출되며, 내역서 구조에 맞게 자동 적용된다. BIM 산출물량 WBS 단위 물량분개 : BIM 모델로부터 추출한 자동 수량은 WBS 공정 단위별로 분개되며, 각 공정에 해당하는 수량·공사비·일정 정보를 정량화할 수 있다. 수동물량 산입 및 WBS 단위 물량분개 : BIM 미적용 구간의 수동 물량(2D CAD 기반 또는 직접 입력)은 자동 수량과 병합 가능하며, 동일하게 WBS 단위로 분배되어 기성관리까지 연계된다. 매트릭스 기반 CBS-WBS 조합 5D 내역서 산출 : CBS(공사비 단가 기준)와 WBS(공정 기준)를 매트릭스(matrix) 형태로 매핑하여 각 공정별 비용 집계와 실행 계획 비교가 가능하며, 실시간 내역서 산출이 이루어진다. 상용 공정관리 SW 연동을 통한 공정–기성 관리 : MS 프로젝트(MS Project), 프리마베라(Primavera) 등 상용 공정관리 소프트웨어와 연동되어 기성 진척도·공정률·수량 실적을 통합 추적할 수 있으며, 실적 기반 예산 통제가 가능하다.   그림 4. NaviQ v2.0의 BIM 견적산출 실행 화면   고객 지원 전략 NaviQ v2.0의 개발·공급·확산은 3개사의 전략적 협업을 기반으로 시작되었다. 제품의 개발 및 기술지원은 글로텍이 주관하고, 공식 판매는 라인테크가 담당하며, 사용자 교육과 도입 지원은 한국디지털교육원이 맡는 구조로 3개사가 MOU를 체결하고 제품 생태계를 공동 구축하고 있다. 이러한 역할 분담 체계는 단순한 유통을 넘어, 고객의 도입–학습–실무 적용까지 전 주기를 통합 지원할 수 있는 파트너십 기반 운영 모델로 자리 잡고 있으며, 향후에는 NaviQ 제품을 도입한 설계사, 시공사, 발주기관 고객을 비즈니스 파트너로 확대 공유하는 전략도 함께 추진 중이다. 특히 BIM 기반 공공사업 확대와 디지털 건설 수요가 증가하는 가운데, 파트너 기업 간 공동 브랜딩, 공동 제안, 공동 마케팅 체계를 통해 기술 + 서비스 + 확산 전략이 결합된 실질적 BIM 5D 산업 플랫폼 구축을 목표로 하고 있다.   향후 계획 글로텍은 2025년 하반기를 NaviQ 신제품의 본격적인 시장 랜딩 시점으로 설정하고, 이를 위해 다각도의 홍보 전략을 추진할 계획이다. 포털 키워드 광고, 전문지 신문기사, SNS·블로그 채널을 활용한 온라인 홍보는 물론, 설계사·시공사·발주처 등 핵심 타깃을 대상으로 한 제품 설명회 및 세미나도 개최하여 인지도 확대와 실질적 도입 확산을 동시에 노린다. 이와 함께, 2026년부터는 사용자 현장의 피드백을 반영한 고도화 업데이트를 지속적으로 추진할 예정이다. BIM 5D 기반의 기능을 넘어 디지털 트윈 연계, AI 기반 수량 예측·기성 분석, 실적 리포트 자동화 등 차세대 건설 자동화를 실현하기 위한 기술 개발이 본격화될 전망이다. 이를 위해 글로텍은 전담 기술지원 조직을 통해 사용자 교육, 온라인 매뉴얼 제공, 커뮤니티 운영, 정기 기술 세미나 개최 등 제품 사용 전·중·후 단계 전반에 걸친 지원 체계를 갖추고 있으며, 공공기관의 BIM 의무화 정책 흐름에 발맞춰 관련 인증 획득과 제도 연계 확대도 병행하여 추진할 방침이다.   ■ 같이 보기 : [피플&컴퍼니] 글로텍 이재홍 센터장, 한국철도기술연구원 박영곤 수석연구원     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
씨게이트, 높은 내구성의 고성능 SSD ‘라씨 러기드 SSD4’ 출시
  씨게이트 테크놀로지의 프리미엄 브랜드인 라씨(LaCie)가 스튜디오를 벗어나 외부에서 작업하는 크리에이터를 위한 소형 외장형 SSD인 ‘라씨 러기드 SSD4(LaCie Rugged SSD4)’를 출시했다. 라씨 러기드 SSD4는 최대 4000MB/s, 3800MB/s의 읽기 및 쓰기 속도를 제공해, 신뢰할 수 있는 고성능 데이터 스토리지가 필요한 영화 제작자, 사진 작가 및 오디오 전문가에게 적합하다. USB 40Gbps 포트가 탑재돼 맥, 아이패드, PC, 휴대폰에서 파일을 빠르게 전송하고 드라이브에서 직접 작업할 수 있다. 또한 USB 20Gbps, USB 10Gbps, 썬더볼트(Thunderbolt) 5, 썬더볼트 4 및 썬더볼트 3 연결을 모두 지원하며, USB-C 아이폰과 호환돼 프로레스 4K를 120fps로 촬영할 수 있어 빠른 오프로딩과 모바일 편집에 적합하다. 이외에도 러기드 SSD4는 IP54 등급의 방진 및 방수 기능과 최대 3m 높이에서의 낙하를 견딜 수 있는 내구성을 제공한다. 닐 풀턴(Neil Poulton)이 디자인한 시그니처 오렌지색 범퍼를 갖춰 원격 촬영이나 이동 중 편집 시에도 내구성을 강화한다. 러기드 SSD4는 최대 4TB 용량으로 제공돼 RAW 영상부터 고해상도 오디오까지 모든 작업을 처리하는 데 적합하다. 이번 신제품은 라씨의 친환경적 디자인에 기반해 중량 기준 35% 이상이 재활용 가능 재료로 제작된 것이 특징이다. 해당 드라이브 구매 시 2개월 분의 어도비 크리에이티브 클라우드 프로(Adobe Creative Cloud Pro) 멤버십, 3년 제한 보증 및 우발적 데이터 손실에 대비할 수 있는 데이터 복구 서비스(Rescue Data Recovery Services)를 제공한다. 라씨 러기드 SSD4는 용량별로 소비자권장가 26만 9000원(1TB),  45만 9000원(2TB), 85만 9000원(4TB)에 판매되며, 씨게이트 공식 유통사를 통해 구매할 수 있다.
작성일 : 2025-09-29
작용, 반작용, 상호작용
시점 – 사물이나 현상을 바라보는 눈 (9)   지난 호에서는 ‘개별 관찰’, ‘집단 관찰’, ‘확률과 통계’에 관한 주제의 세 번째 이야기로 ‘확률과 통계’에 관해서 생각해 보았다. 통계는 단순한 숫자놀음이지만 그 숫자를 어떻게 얻었는지 어떻게 해석해야 하는지를 고민하지 않고 사용하게 되면 의도와는 다르게 엉뚱한 결론에 도달할 수 있다. 룰렛 돌림판과 주사위의 경우를 예로 들어 확률과 통계에 관해서 생각해 보았다.  이번 호에서는 ‘작용, 반작용, 상호작용’을 주제로 주변에서 일어나는 일들을 조금 특별한 시각으로 바라보고자 한다. 뉴턴의 운동법칙, 작용, 반작용, 상호작용의 사전적 의미, 다양한 물리 현상, 생태계의 상호작용, 사회적 상호작용, 관점의 차이, 상관관계를 통해서 세상을 알아가는 방법 등을 예로 들어가며 이야기를 전개한다.   ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com   그림 1. 분수대 위에서 작은 힘만 가해도 자유롭게 회전하는 돌로 만든 지구본   유체 베어링 오래전에 분수대 위에서 작은 힘만 가해도 자유롭게 회전하는 돌로 만든 지구본을 보고 신기해했던 기억이 있다.(그림 1) 마치 중력이 작동하지 않는 듯한 인상을 받았다. 지구본을 만든 돌의 무게를 상상하면 그런 느낌이 들 수밖에 없다. 기계적 베어링 대신에 물을 베어링으로 사용한 유체 베어링이 사용된 것이다. 유체 베어링(fluid bearing 또는 fluid dynamic bearing)은 베어링 표면 사이에서 빠르게 움직이는 가압 액체 또는 가스의 얇은 층에 의해 하중이 지지되는 베어링이다. 움직이는 부품 사이에 접촉이 없다. 부품 사이에 마찰이 없어 유체 베어링은 다른 많은 종류의 베어링보다 마찰, 마모 및 진동이 적은 것이 특징이다. 일부 유체 베어링은 올바르게 작동하는 조건에서는 부품의 마모가 거의 없다. <그림 1>의 경우에는 지구본이 완벽한 구의 형태가 되어야만 물이 베어링의 역할을 할 수 있다. 물이 지구본에 작용하는 중력을 거슬러 지구본을 들어올려야 하는데 지구본을 감싸고 있는 링(ring)과의 간격이 장소에 따라 차이가 있으면 압력이 고르게 걸리지 않게 된다. 따라서 무거운 지구본을 부양할 수 없게 되고 지구본을 자유롭게 회전시킬 수도 없다. 지구본이 떠 있는 상태에서 자유롭게 회전할 수 있다면 작은 힘으로 회전 방향과 속도를 바꿀 수 있다. 마찰력이 거의 없기 때문이다.   뉴턴의 운동법칙 고전역학에서 뉴턴의 운동법칙(Newton's laws of motion)은 물체의 운동을 세 가지의 원리로 설명한 물리 법칙이다.(그림 2) 영국의 수학자, 물리학자, 천문학자였던 아이작 뉴턴이 도입한 이 법칙은 고전역학의 기본 바탕을 이루고 있다. 라틴어로 1687년에 출판된 ‘자연철학의 수학적 원리(Philosophiæ Naturalis Principia Mathematica, Mathematical Principles of Natural Philosophy)’라는 책에서 뉴턴의 운동법칙 세 가지가 소개되었다. 제1법칙은 ‘관성의 법칙’ 또는 ‘갈릴레이의 법칙’으로 불린다. 물체의 질량 중심은 외부 힘이 작용하지 않는 한 일정한 속도로 움직인다. 마찰이나 에너지 손실이 없다면 관성으로 속도가 유지된다. 즉, 물체에 가해진 알짜 힘(net force)이 0일 때 물체의 속도가 변하지 않으므로 질량 중심의 가속도는 0(a = 0, V : Constant)이다. 제2법칙은 ‘가속도의 법칙’으로 불린다. 물체의 운동량의 시간에 따른 변화율(가속도, a)은 그 물체에 작용하는 힘(F, 크기와 방향에 있어서)과 같다. 물체에 더 큰 알짜 힘이 가해질 수록 물체의 운동량 변화는 더 커진다.(F = ma) 물체에 힘을 가하면 힘이 가해진 물체는 운동량이 바뀐다. 제3법칙은 ‘작용과 반작용의 법칙’으로 불리며, 물체 A가 다른 물체 B에 힘을 가하면 물체 B는 물체 A에 크기는 같고 방향은 반대인 힘을 동시에 가한다.(FAB = -FBA ). ‘모든 작용에 대해 크기는 같고 방향은 반대인 반작용이 존재한다’라고 설명하기도 한다. 당연한 이야기같기도 하고 알 듯 말 듯한 이야기같기도 하다. 필자도 글을 쓰면서 아무리 간단한 사실도 언어를 사용해서 표현한다는 것이 얼마나 어려운 일인지 생각하게 된다. 실제로 언어로 표현된 많은 사실, 느낌, 감정이 얼마나 정확하게 표현된 것이고 그 의미를 얼마나 정확하게 이해할 수 있는지 의문스러울 때가 많다.   그림 2. 뉴턴의 세 가지 운동법칙   작용, 반작용, 상호작용의 사전적 의미 때로는 이미 잘 알고 있고 자주 사용하는 용어나 단어도 어떤 의미로 사용되는지 살펴보면 의외로 새로운 발견을 하게 되는 경우가 있다. 이번 기회에 작용, 반작용, 상호작용이라는 단어의 뜻을 사전에서 찾아보자. 작용(action) 어떠한 현상을 일으키거나 영향을 미침 [물리] 어떠한 물리적 원인이나 대상이 다른 대상이나 원인에 기여함 또는 그런 현상. 역학에서 물체 사이의 힘도 이 결과로 생긴다.  [철학] 현상학에서, 표상·의식·체험 따위의 심리적 과정에 있어서 대상의 의미 내용을 지향하는 능동적인 계기를 이르는 말 반작용(reaction)  어떤 움직임에 대하여 그것을 거스르는 반대의 움직임이 생겨남 또는 그 움직임 [물리] 물체 A가 물체 B에 힘을 작용시킬 때, B가 똑같은 크기의 반대 방향의 힘을 A에 미치는 작용. 한쪽에 미치는 힘을 작용이라 할 때, 그 다른 쪽에 미치는 힘을 이른다.  상호작용(interaction)  [생명] 생물체 부분들의 기능 사이나, 생물체의 한 부분의 기능과 개체의 기능 사이에서 이루어지는 일정한 작용 [사회] 일반 사람이 주어진 환경에서 다른 사람이나 사물과 서로 관계를 맺는 모든 과정과 방식     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
포토닉스 소자 시뮬레이션을 위한 앤시스 루메리컬
앤시스 워크벤치를 활용한 해석 성공 사례   포토닉스 소자와 시스템 설계 및 해석이 가능한 광학 및 포토닉스 소자 시뮬레이션 소프트웨어 앤시스 루메리컬(Ansys Lumerical)은 오늘날 통신, 반도체, 바이오포토닉스, 센서, 디스플레이 등 다양한 산업에서 활용되고 있다. 이번 호에서는 앤시스 루메리컬에 대한 간단한 소개부터 다양한 솔버에 대해 소개하고자 한다.   ■ 박건 태성에스엔이 SBU팀의 매니저로 포토닉스, 파동광학 해석 기술 지원 및 교육, 용역 업무를 담당하고 있다. 홈페이지 | www.tsne.co.kr   앤시스 루메리컬 앤시스 루메리컬은 포토닉스 소자, 프로세스 설계 및 재료 모델링을 위한 goldstandard 제품으로, 다양한 응용 분야에서 강력하고 신뢰할 수 있는 설루션을 제공한다. 또한 광학 소자와 시스템을 설계하고 분석하는데 있어 높은 성능을 보여준다. 앤시스 루메리컬은 <그림 1>과 같이 통신, 반도체, 바이오포토닉스, 센서, 디스플레이, 복잡한 포토닉스 소자 등 다양한 산업에서 활용되고 있다.   그림 1. 앤시스 루메리컬의 응용 분야   표 1. 앤시스 루메리컬 제품 및 솔버   앤시스 루메리컬 제품은 <표 1>과 같이 크게 디바이스 레벨(device level)과 시스템 레벨(system level)의 두 가지로 분류할 수 있다. 포토닉스 소자 설계 및 해석이 가능한 디바이스 레벨에는 광학적 해석을 하는 FDTD, 웨이브가이드(waveguide) 설계 및 해석에 특화된 모드(MODE), 전기적 특성 및 열적 특성 등 다양한 물리적 해석이 가능한 멀티피직스(Multiphysics)가 있으며, 설계한 포토닉스 소자를 회로 레벨에서 시뮬레이션 가능한 인터커넥트(INTERCONNECT)가 있다.   그림 2. 앤시스 루메리컬의 다양한 솔버를 사용한 설계 예시   <그림 2>처럼 앤시스 루메리컬의 다양한 솔버를 사용하여 소자를 설계하면 광학적 특성 해석 뿐만 아닌 광학적으로 생성된 전기, 열 특성 분석도 가능하다. 반대로 전기, 열, 양자적 특성으로 발생하는 광학적 특성도 해석이 가능하다.   앤시스 루메리컬 FDTD 앤시스 루메리컬 FDTD(Finite-Difference TimeDomain)는 시간 영역에서 맥스웰(Maxwell) 방정식을 직접 풀어 전자기파의 전파를 시뮬레이션한다. 이를 통해 전자기장의 시간적 변화를 정확하게 분석할 수 있다. FDTD를 통해 분석할 수 있는 결과는 근거리 전자기장, 원거리 전자기장, 반사 스펙트럼, 투과 스펙트럼, 흡수 스펙트럼, 포인팅(Poynting) 벡터 등이 있다. 앤시스 루메리컬 FDTD에는 FDTD, RCWA, STACK 등 총 세 가지의 솔버가 있다. FDTD는 RCWA와 STACK으로 수행하는 모든 해석이 가능하지만, 특정한 해석 구조와 조건에서 RCWA와 STACK 솔버를 사용한다면 FDTD보다 훨씬 빠른 속도로 해석이 가능하며 데이터 사용량도 줄일 수 있다.   그림 3. FDTD 솔버 선택 방법   <그림 3>처럼 서로 다른 굴절률을 가진 여러 층(다층 구조)에 평면파가 입사되는 조건에 대해 시뮬레이션할 때, 구조의 형태에 따라 적합한 솔버를 선택하면 해석 시간과 컴퓨터 자원을 효율적으로 쓸 수 있다. 다층박막 및 필름 같은 형태의 구조 : STACK 솔버 동일한 형태의 구조가 규칙성을 가지고, 반복적으로 배치된 와이어 그리드(wire grid) 및 창살(grating)같은 형태의 구조 : RCWA 솔버 주기성이 없는 랜덤한 형태의 구조 : FDTD 솔버     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
[칼럼] 2025년 하노버 산업박람회가 던진 시사점과 교훈
세계는 지금 기술패권 시대다. 국가와 기업의 명운이 기술에 달려 있다고 해도 과언이 아니다. 인류 사회를 총체적으로 혁신하고 있는 디지털·그린·문명 대전환도 기술 혁신이 핵심이다. 한편으로 위협받고 있는 인류의 지속가능성을 확보하고 인류의 비전을 실현하기 위한 수단으로서, 다른 한편으로 국가의 명운을 좌우하는 패권의 핵심으로서 과학기술의 중요성이 국가 최우선 이슈로 자리 잡고 있다. AI를 비롯한 기술 트렌드를 따라잡지 못하면 기업 경영은 물론 국가 경영도 어렵다. 기술의 미래 트렌드를 제시하는 양대 기술 전시회인 매년 1월초 미국 라스베이거스 CES(소비자전자쇼)와 4월초 독일 하노버 산업박람회에 세계인의 관심이 쏠리는 이유다.    주영섭 / 서울대학교 공학전문대학원 특임교수 전 중소기업청장 하노버 산업박람회, 왜 우리에게 중요한가 미국 CES와 함께 우리나라가 특히 많은 관심을 가져야 할 세계적 기술 전시회가 매년 4월 독일의 북부 도시 하노버에서 열리는 산업박람회다. 세계 산업계의최신 기술과 트렌드를 선보이는 글로벌 산업 기술의 메카로 주목받고 있는 하노버 산업박람회가 우리에 중요한 이유는 대한민국 경제의 중추를 이루고 있는 주력 및 미래 산업의 기술 트렌드를 제시하는 핵심 전시회이기 때문이다. 우리 경제의 근간인 수출의 대부분을 반도체, 자동차, 철강·화학, 선박, 기계 등 제조업이주도하고 있기 때문에 산업 기술 트렌드를 보여주는 하노버 산업박람회는 우리나라에 특히 중요한 기술 전시회라 할 수 있다. 지대한 중요성에도 불구하고 미국CES 대비하여 국내 기업 및 정부의 관심이 상대적으로 낮은 것은 속히 개선해야할 점이다. 산업 AI 대전환, 지속가능성의 열쇠 올해로 78회를 맞은 하노버 산업박람회는 우리 산업의 전략적 방향에 많은 시사점을 제시하여 우리 기업은 물론 정부, 대학 및 연구기관의 많은 관심과 연구가 요구된다. 올해는 지난 3월 31일부터 4월 4일까지 5일간 60개 국가에서 약 4000개 전시업체, 150개 국가에서 12만 7천명의 관람객이 참가해 성황리에 개최되었다. 전시와 컨퍼런스 프로그램에 온라인으로 참가한 관람객을 합치면 수십만에 이를 것으로 추산된다.  하노버 산업박람회는 올해 슬로건으로 “기술로 미래를 만들자”를 내세웠다. 그리고 지난 해 슬로건 “지속가능한 산업에 활력을 불어넣자”에서 강조한 지속가능성을 확보하기 위한 수단으로 기술 혁신을 강조했다. 그 중에서도 올해 최고 화두는 단연 산업 AI 대전환이었다. 사실상 모든 전시업체가 제시한 제품이나 솔루션에 AI를 활용하지 않은 사례가 없을 만큼 이제 산업 AI 대전환은 기본이 되고 있다. 작년부터 CES와 하노버 산업박람회가 공히 제시하기 시작한 ‘디지털 및 AI 대전환을 통한 인류의 지속가능성 확보’가 새로운 패러다임이자 시대정신으로 자리매김하고 있다. 심각한 위험에 처한 환경·사회 및 인류의 지속가능성 확보와 같은 난제 해결과 인류 비전 실현을 위해서는 AI 활용 및 대전환을 통한 인류의 지적·신체적 역량의 확장이 필수적이라는 의미다.  올해 하노버 산업박람회는 산업 AI 대전환에 의한 에너지 효율화, 탄소배출 감축, 자원 최적화를 통해 환경의 지속가능성에 크게 기여하고, 산업의 효율성 및 생산성 향상과 새로운 비즈니스 모델 창출, 산업 인력의 교육 및 지식 관리로 경제적 및 사회적 지속가능성에 획기적 기여를 할 수 있는 많은 가능성을 제시했다.  이러한 맥락에서 하노버 산업박람회가 우리 산업에 던진 가장 중요한 교훈은 무엇보다도 산업 AI 대전환에 민관 협력의 국가적 총력을 경주해야 한다는 것이다. 한 시도 지체할 수 없이 시급한 국가 최우선 과제다. 이를 위해서는 산업 AI 대전환을 위한 미국과 유럽의 불꽃 튀는 경쟁과 협력 구도를 잘 이해하고 대비해야 한다. 세계 AI 및 클라우드 분야를 선도하는 마이크로소프트, 아마존(AWS), 구글 등 미국의 빅테크 기업과 지멘스, SAP, 슈나이더 일렉트릭, 보쉬 등 유럽의 제조 솔루션 기업 간에 피나는 경쟁을 하는 동시에 서로 협력하는 이중적 관계를 가지고 있다. 액센추어, EY, 딜로이트, KPMG 등 세계적 컨설팅 기업들도 AI 역량을 바탕으로 이 경쟁구도에 뛰어들고 있다.  산업 AI 주도권 경쟁과 글로벌 전략 산업 AI 대전환 분야에서 이처럼 독보적 기업이 나타나지 않고 군웅할거의 전국시대가 전개되는 이유는어느 누구도 산업 AI 대전환의 핵심 성공 요인인 AI 역량과 데이터 및 도메인 노하우를 다 가지고 있지 못하기 때문이다.  미국은 세계 최고의 AI 및 클라우드 역량을 가지고 있는 반면에 제조업 등 산업 현장의 해외 이전 심화로 산업 데이터 및 도메인 노하우는 열세를 면치 못하고 있다. 독일이 주도하는 유럽은 상황이 정반대다. 산업 데이터 및 도메인 노하우는 강세를 보이고 있는 반면 AI 및 클라우드 역량은 열세다. 비유하자면 미국은 짜장면 그릇은 잘 만드는데 담을 짜장면이 시원치 않고 유럽은 그 반대인 셈이다. 이번 박람회에서 미국과 유럽의 세계적 기업들이 서로 약속이나 한 듯 하나같이 타 기업들과의 협력 및 연합을 통한 공동 전시에 나선 배경으로 분석된다.  미국 빅테크 기업들은 미국 및 유럽의 대·중소 솔루션 기업들과 함께, 유럽의 메이저 기업들도 미국의 빅테크 기업 및 미국·유럽의 소프트웨어·컨설팅 기업과 함께 전시장을 꾸미고 운영하는 협력 사례가 대종을 이루었다. 미국의 마이크로소프트가 영국의 항공기 엔진 기업 롤스로이스와 협력하여 개발한 AI 기반의 항공기 엔진 검사 솔루션을 제시한 것이 좋은 사례다. 마이크로소프트 전시장에 AI 검사 솔루션을 장착한 롤스로이스 항공기 엔진을 최초로 공개해 참관객의 눈길을 사로잡았다. 내시경 형태의 LED 조명의 검사 시스템과 AI 기반 실시간 영상 분석을 통한 솔루션 개발로 엔진 검사 시간을 기존 12시간에서 5~6시간으로 대폭 단축하여 엔진 가동시간 확대와 수익성 제고에 기여하고 있다. 아울러 롤스로이스는 항공기 엔진 가격이 아니라 항공기 운행시간에 따라 엔진 사용 요금을 청구하는 서비스형 제품(PaaS)을 신규 비즈니스 모델로 추진하여 사업 확대에도 기여하고 있다.  현재로서는 이렇듯 시너지가 큰 협력에 주력하지만 서로의 속내는 오월동주처럼 달라 향후 귀추가 주목된다. 내재적 성장만이 아니라 M&A(인수·합병)를 통한 주도권 쟁탈전이 커질 것으로 전망된다.  올해 박람회 직전 발표된 대로 유럽의 메이저 제조 솔루션 기업인 지멘스가 미국의 디지털 트윈 기반 시뮬레이션 및 데이터 분석 기업인 알테어를 무려 15조원에 인수한 것이 좋은 사례다. 알테어는 이번 박람회에서 통상 20~30시간 걸리던 자동차 공조시스템 시뮬레이션을 20분으로줄이고 판금 성형 작업의 재료 손실을 15% 이상 줄이는획기적 기술을 제시해 주목을 받았다. 대한민국의 전략 : 경쟁과 협력의 균형 하노버 산업박람회가 보여준 협력과 경쟁 사례는 글로벌 협력이 상대적으로 약한 우리 기업 생태계가 잘 유념하여 참고해야 할 대목이다. 우리의 기회이기도 하다. 산업 AI 대전환의 핵심 성공요소 중 하나인 AI 및 클라우드 역량은 미국보다는 열세이나 유럽 대비 강세로 볼 수 있어 민관이 합심하여 네이버, LG 등 국내 기업의 AI 역량 강화에 주력하는 한편 미국의 빅테크 기업과의 전략적 제휴 및 협력을 모색하면 훌륭한 시너지를 기대할 수 있다.  다른 성공요소인 산업 데이터 및 도메인 노하우에서 미국 대비 강점을 가지고 있기 때문이다. 이 점에서 우리와 유사한 상황에 있는 유럽과는 AI 및 클라우드 역량을 공동 개발하고 산업 데이터 및 도메인 노하우 측면에서 시장 지배력을 확보할 수 있는 데이터 표준화 및 생태계 구축의 협력에 적극 나서야 한다.  특히, 독일이 제조 데이터 생태계 구축을 통한 디지털 주권 및 세계 산업 주도권 확보를 위해 강력히 추진하고 있는 매뉴팩처링-X 프로젝트에 적극 참여하여 협력할 필요가 있다. 자동차 산업의 Catena-X, 화학 산업의 Chem-X, 항공 산업의 Aerospace-X 등 추진 중인 10여개의 산업 특화 데이터 생태계 구축 프로젝트에 대한 개별 또는 전체 참여 및 협력이 대상이다.  우리가 AI 대전환의 핵심인 산업 데이터와 도메인 노하우의 구조화 및 표준화를 국내외로 주도할 수 있으면 산업 AI 대전환 최강국이 될 수 있다는 점도 올해 하노버 산업박람회가 남긴 중요한 교훈이다. AI는 늦었지만 AI 대전환은 앞서 가자!    
작성일 : 2025-08-08
확률과 통계
시점 – 사물이나 현상을 바라보는 눈 (8)   지난 호에서는 개별 관찰, 집단 관찰, 확률과 통계에 관한 주제의 두 번째 이야기로 ‘집단 관찰’에 관한 이야기를 소개하였다. 압력, 온도, 비중, 밀도의 개념에 관한 이야기를 시작으로 기체, 액체, 고체의 성질과 온도에 따른 수축·팽창 현상에 이르기까지 집단 관찰이라는 시각에서 자연현상을 생각해 보았다. 이번 호에서는 개별 관찰, 집단 관찰, 확률과 통계에 관한 주제의 세 번째 이야기로 ‘확률과 통계’에 관해서 생각해 보기로 한다. 통계는 장단점을 숙지하고 활용하면 매우 유용하지만, 가정과 약점을 이해하지 못하고 사용하게 되면 의도와는 다르게 엉뚱한 결론에 도달할 수 있다. 몇 가지 구체적 사례를 바탕으로 확률과 통계에 얽힌 이야기를 소개하고자 한다.   ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com   그림 1. 확률은 때로는 호의적이고 때로는 적대적이다. 우연일까 필연일까?   확률 확률(probability)은 어떤 일이 일어날 가능성 또는 개연성으로, 일어날 가능성이 있는 비율이나 빈도로 표현한다.(그림 1) 확률은 수학적으로 계산된 확률과 실제로 일어난 일을 바탕으로 계산한 경험적 확률이 있다. 모든 경우의 수에 대해 그 일이 일어날 경우의 수를 수학적으로 계산한 것을 수학적 확률이라고 한다. 수학적 확률은 모든 경우의 수 중에서 어떤 일이 일어날 경우의 수를 비율로 나타낸다. 예를 들어 정육면체인 주사위는 6개의 동일한 크기와 각도를 가지고 있어 주사위를 던졌을 때 나타날 수 있는 눈의 모든 경우의 수는 6이다. 그중에 어떤 눈이 나올 확률은 1/6이다. 반대로 경험적 확률은 실제로 주사위 던지기를 무수히 반복했을 때 나타난 확률로 경험을 바탕으로 추측한 값이다. 수학적 확률은 물리학, 화학, 생물학 등의 과학 분야와 다양한 공학 분야를 비롯하여 스포츠, 도박, 복권 추첨과 같은 분야에서도 활용되고 있다. 다루는 대상이 무수히 많은 원자, 분자, 전자 등의 경우 통계 역학에서 이를 확률적으로 계산하고, 물질과 에너지의 상호 작용을 양자 역학에서는 확률로 계산한다. 확률은 비율로 표시하면 0에서 1 사이의 값을 갖는다. 확률 0은 그 일이 절대로 일어나지 않는다는 0%를 의미하고, 확률 1은 그 일이 100% 일어난다는 것을 의미한다.   수학적 확률   그림 2. 확률과 경우의 수   룰렛 돌림판과 정육면체 주사위를 사용하여 수학적 확률을 계산해 보자. 룰렛 돌림판은 6등분되어 있고 주사위도 6면이 있다.(그림 2) 따라서 룰렛의 화살이 어떤 영역에서 멈출 확률은 1/6이다. 주사위 또한 어느 눈이 나올 확률은 1/6이다. 물론 룰렛 돌림판의 축이 한 가운데 있어서 어느 특별한 곳이 멈추기 쉽게 되어 있지 않다는 것이 전제조건이다. 주사위 또한 마찬가지로 어느 특별한 눈이 나오기 쉽게 되어 있지 않다는 것이 전제된다. 확률 0은 정해진 경우의 수 가운데 어떤 일이 일어나지 않는다는 것을 의미하지만, 예상 외의 일이 일어날 가능성까지 없다고 할 수는 없다. 실제로 룰렛 돌림판의 점수는 가는 선으로 구획된 칸을 기준으로 계산되지만, 화살표가 칸 사이의 눈금에서 멈추는 일도 있다. 이런 일은 룰렛 돌림판의 점수 체계에서 계산된 수학적 확률은 0이지만, 실제 게임에선 종종 발생한다. 이것은 점수 체계가 각 칸의 점수로만 계산하고 화살표가 눈금 위에 멈추는 경우는 고려하지 않았기 때문이다. 눈금 선의 두께를 고려하여 화살이 선 위에 멈출 가능성까지 고려하여 확률을 계산할 수도 있다. 눈금의 두께는 다른 칸의 각도에 비해서 매우 작으므로 선위에 화살이 멈출 확률은 매우 작을 것이다. 비슷한 사례는 주사위의 한 면이 지면에 닿지 않고 기울어져 있는 경우를 들 수 있다. 윷놀이에서 경우의 수와 확률을 계산할 때도 윷가락이 완전하게 엎어지거나 젖혀지지 않아 판정이 애매한 일도 생긴다. 그런 애매한 조건까지 고려한 경우의 수를 정확하게 판단해서 확률을 계산하는 것은 쉽지 않다.   n 개의 주사위로 나올 수 있는 숫자 주사위 하나의 경우는 1부터 6까지 1/6의 확률로 나올 수 있으리라는 것은 쉽게 이해할 수 있다. 주사위 두 개를 던질 때의 경우의 수와 확률은 어떻게 될까? <그림 3>처럼 모든 숫자의 조합을 표로 정리해서 보면, 두 개의 주사위에서 나온 숫자의 합은 2부터 12까지의 숫자가 나올 수 있으며 숫자에 따라서 확률이 달라진다. 이것도 수학적 확률에 지나지 않는다. 실제로 두 개의 주사위를 던져 보면 왼쪽의 확률 분포가 되지는 않는다. 상당히 많은 실험을 해야 비슷한 분포가 될 것이다.   그림 3. 두 개의 주사위를 던져서 나오는 수의 합     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-08-04