• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "작성"에 대한 통합 검색 내용이 3,110개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
클라우드플레어, “주요 테크 기업과 협력해 클로드 기반의 차세대 AI 에이전트 경험 제공”
클라우드플레어는 아사나, 아틀라시안, 블록, 페이팔, 센트리, 스트라이프 등의 글로벌 테크 기업이 앤트로픽(Anthropic)의 AI 어시스턴트인 클로드(Claude)를 활용해 차세대 AI 사용자 경험을 구축하기 위해 클라우드플레어와 협업 중이라고 발표했다. 이들 기업은 클라우드플레어 워커스(Workers) 기반의 안전한 연결을 통해 클로드 및 기타 AI 어시스턴트가 자사의 서비스를 사용자 대신 활용할 수 있도록 지원하고 있으며, 이를 통해 사용자는 개별 애플리케이션에 직접 접속하지 않고도 클로드와의 자연스러운 대화를 통해 업무를 처리할 수 있게 되었다. AI는 이미 이메일 작성, 코드 생성, 데이터 분석 등 다양한 업무에서 활용되고 있다. 그러나 여전히 사용자는 여러 애플리케이션과 탭을 전환하며 작업을 이어가야 하는 번거로움이 있다. 보다 자율적이고 효율적인 AI 에이전트 경험을 구현하기 위해서는, AI가 사용자를 대신해 다양한 비즈니스 도구와 직접 연동되어 실행할 수 있어야 한다. 클라우드플레어는 이러한 연동을 가능하게 하는 MCP(Model Context Protocol) 서버를 통해 AI 플랫폼이 기업에서 사용하는 다양한 업무 도구와 직접 연결될 수 있도록 지원한다. 이를 통해 사용자는 AI 어시스턴트를 벗어나지 않고도 이메일을 발송하거나, 마케팅 캠페인 관련 질의에 응답하고, 송장 발행 등의 작업을 처리할 수 있다. 그러나 외부 시스템과 데이터를 안정적이면서도 보안성 있게 연결하는 것은 특히 글로벌 환경에서는 기술적으로 매우 도전적인 과제다. 클라우드플레어는 앤트로픽이 개발한 오픈소스 표준 MCP 기반의 원격 MCP 서버를 신속하고 간편하게 구축할 수 있는 툴킷을 제공한다. 이를 통해 개발 팀은 복잡한 인프라 문제로부터 자유로워져, 사용자 중심의 강력한 AI 경험을 설계하는 데 집중할 수 있다. 클라우드플레어는 복잡한 인증 및 권한 관리 과정을 단순화하고, 에이전트 권한 제어 및 접근 로그 추적 기능을 제공함으로써 보안성을 확보한 MCP 서버 구축을 가능하게 한다. 특히 클라우드플레어 글로벌 네트워크를 기반으로 원격 MCP 서버를 수주가 아닌 수일 내에 구축 및 배포할 수 있어, 전 세계 사용자에게 빠르고 신뢰성 있는 AI 경험을 제공할 수 있다. 또한 클라우드플레어는 자사 MCP 서버를 공개하고, 사용자가 클로드와의 대화를 통해 웹 사이트를 더 빠르게 만들고, 애플리케이션을 구축하며, 네트워크와 사이트를 안전하게 운영할 수 있도록 지원한다고 발표했다. 예를 들어, 개발자는 더 이상 복잡한 문서를 읽거나 관찰 도구를 직접 탐색하지 않아도 클로드에게 대화로 요청해 로그를 분석하고 오류 추적 및 디버깅을 손쉽게 수행할 수 있다. 클라우드플레어의 매튜 프린스(Matthew Prince) CEO 겸 공동 창업자는 “클라우드플레어는 AI가 세상과 연결되는 방식을 구현하고 있다. 브라우저, 앱, 혹은 클로드와 같은 AI 어시스턴트를 통해 AI가 사용자와 상호작용할 수 있도록 만드는 핵심 인프라 역할을 하고 있다. 앞으로 에이전트 기반 AI가 새로운 인터페이스로 자리 잡게 되면서, 기업은 AI 전략을 구축하고 확장하기 위해 클라우드플레어를 필수적인 인프라로 활용하게 될 것”이라고 말했다. 앤트로픽의 마헤시 무라그(Mahesh Murag) 프로덕트 매니저는 “AI 애플리케이션이 높은 가치를 제공하기 위해서는 다양한 데이터 및 도구와의 연동이 필수이지만, 이를 안정적으로 구축하는 것은 쉽지 않은 일이다. 클라우드플레어는 MCP를 통해 누구나 간편하고 안전하게 클로드와 자사 앱을 연결할 수 있도록 지원하고 있으며, MCP의 도입을 가속화하고 원격 서버 기반 생태계를 확대하는 데 중요한 역할을 하고 있다”고 말했다.
작성일 : 2025-05-07
AutoForm Car Body Planner, 차체 구매 견적 및 비용 산출 프로세스
AutoForm Car Body Planner   개발 : AutoForm, www.autoform.com 자료 제공 : AutoForm, 02-6332-1150, www.autoform.com/kr   AutoForm(오토폼)은 제품 설계부터 차체 조립에 이르기까지 전체 개발 프로세스 체인의 디지털화를 지원하는 통합 플랫폼을 제공한다. 특히, 디지털화 노력이 상대적으로 미진했던 차체 구매 부문의 견적 및 비용 산출 프로세스의 투명성을 확보하기 위해 ‘AutoForm CarBody Planner’를 도입하여 구매 프로세스의 디지털화를 추진하고 있다. 이는 ESG 경영과 맞물려 고객사로부터 큰 주목을 받고 있다. 또한, ESG 경영을 위한 디지털 트랜스포메이션을 통해 지속 가능한 경영을 실현하고, 환경적, 사회적, 거버넌스 측면에서의 책임을 다하기 위해 노력하고 있다. 1. 주요 특징  자동차 차체 개발 프로세스에서 초기 제품 설계 후, OEM 협력사의 구매 부서가 CBP를 통해 자동으로 수율을 검토한다. 이를 통해 빠른 대응과 OEM의 입찰 원가인 수율 보고서 작성이 간소화된다. 또한, OEM 구매 부서는 차종별 수율 이력 관리를 통해 효율성을 높이고, 협력사의 작업 시간을 단축하며, 입찰 정보 계산의 디지털화를 통해 경험에 의한 편차를 줄일 수 있다. 2. 주요 기능 ■ 웹사이트 기반에서 차체 전체 입력 및 각 제품의3D확인 가능 ■ 제품의 소제 및 정보를 차제 제품 입력과 동시에 적용 가능 ■ AutoForm Simulation 기반의 전체 제품 자동 수율 계산   3. 도입 효과 OEM 구매팀의 입찰 결정 시 정합성 확보로 신뢰성이 높아지며, 자동 수율 검토 덕분에 빠르고 효율적인 대응이 가능하다. 입찰 정보 계산의 디지털화로 경험에 의한 편차가 제거되고, 협력사의 업무 효율성 증대와 작업 시간 단축으로 생산성이 향상된다. 마지막으로, 클라우드 기반의 협업 공간 제공으로 부서 간 원활한 협업이 가능하다. 이러한 특징과 효과를 통해 AutoForm의 디지털 트랜스포메이션은 구매 프로세스의 혁신을 이끌고, ESG 경영을 실현하는데 큰 기여를 하고 있다. 4. 주요 고객 사이트 오토폼은 전 세계 50여 개국, 1,000여 개 회사에서 3,500명 이상의 사용자가 주요 엔지니어링 및 제조 공정을 위해 신뢰하고 있다. 주요 고객은 자동차 및 기타 OEM, 금형 및 스탬핑 업체, 철강 및 알루미늄 공급업체이며, 항공 우주 산업뿐만 아니라 의료, 가전 및 백색 가전 산업으로도 점점 더 진출하고 있다.     상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기
작성일 : 2025-05-06
Automotive Industry의 새로운 지평선에서(HL만도 배홍용 CTO) - 영상보기 & 내용 요약
HL만도 배홍용 CTO, 자동차 산업의 미래 심층 분석   PLM DX 베스트 프랙티스 컨퍼런스 2024에서  배홍용 만도 CTO가 'Automotive Industry의 새로운 지평선에서'라는 주제로 강연을 진행하며 자동차 산업의 거대한 변화를 예고했다. 62년 역사의 만도는 섀시, 자율주행, 로보틱스, 소프트웨어 분야를 융합하며 미래 모빌리티 시대를 위한 혁신을 주도하고 있다. 배 CTO는 급변하는 시장 상황 속에서 자동차 부품 산업이 직면한 도전과 기회, 그리고 미래 모빌리티의 핵심 트렌드를 심층적으로 분석했다. 전기차(EV) 대세론, 부품 생태계의 지각변동을 불러오다 배 CTO는 전기차 시장의 폭발적인 성장세를 강조하며, 2030년에는 EV가 자동차 시장의 절반을 넘어설 것으로 전망했다. 특히 글로벌 EV 시장에서 강력한 존재감을 드러내는 BYD를 언급하며, 완성차 업계뿐만 아니라 부품 산업 내 경쟁 심화를 예상했다. EV는 고전압 배터리, 전력 변환 시스템 등 새로운 부품 수요를 창출하는 반면, 내연기관 관련 부품 산업의 축소와 정비 시장의 변화를 불가피하게 만들 것이라고 진단했다. 자율주행, 기술적 난관 속에서도 로봇 택시를 중심으로 현실화될 전망 자율주행 기술의 발전은 미래 모빌리티의 핵심 동력이지만, 배 CTO는 높은 개발 비용, 엄격한 법규 제제, 그리고 아직 해결해야 할 기술적 과제들로 인해 레벨 3 이상의 자율주행 도입이 예상보다 더디게 진행되고 있다고 밝혔다. 하지만 그는 로봇 택시와 같은 특정 영역에서는 레벨 4 수준의 자율주행 기술이 상용화될 가능성이 높다고 예측하며, 자율주행차 시장이 개인 소유 모델과 공유 기반 사용자 모델로 나뉘어 발전할 것이라고 전망했다. 마이크로 모빌리티, 도심 이동의 새로운 해법으로 떠오르다 친환경적이면서도 짧은 거리를 효율적으로 이동할 수 있는 마이크로 모빌리티 시장의 성장 가능성에도 주목했다. 다만 국내에서는 아직 관련 규제가 명확하게 정립되지 않아 시장 활성화에 제약이 있을 수 있다고 지적했다. 소프트웨어 정의 차량(SDV), 자동차 산업의 패러다임 전환 배 CTO는 소프트웨어가 차량의 기능과 성능을 결정하는 SDV 시대가 본격적으로 개막할 것이라고 전망하며, 하드웨어와 소프트웨어의 융합 및 분리 전략이 중요하다고 강조했다. 만도는 이러한 변화에 발맞춰 SDV 관련 소프트웨어 및 하드웨어 솔루션 개발에 박차를 가하고 있으며, 다양한 앱 생태계를 구축할 수 있는 차량용 소프트웨어 앱스토어 사업에도 참여하고 있다고 밝혔다. SDV의 안전성과 신뢰성을 확보하기 위해서는 자동차 제조사, 부품 공급업체, 소프트웨어 기업 간의 긴밀한 협력이 필수적이라고 덧붙였다. 구독 경제와 텔레 오퍼레이션, 미래 모빌리티 서비스의 핵심 축으로 부상 자동차 구매 방식의 변화와 더불어 테슬라의 FSD와 같은 구독 기반 서비스 모델이 확산될 것이라고 예상했다. 또한 자율주행 기술의 한계를 극복하고 안전성을 확보하기 위한 텔레 오퍼레이션(원격 제어) 기술의 중요성을 강조하며, 이를 위해서는 고품질 통신 네트워크와 실시간 데이터 처리 기술 확보가 필수적이라고 설명했다. 친환경 부품과 AI 기술, 지속 가능한 모빌리티 시대를 열다 ESG 경영의 중요성이 강조되는 시대적 흐름에 발맞춰 자동차 부품 산업에서도 친환경 소재 개발과 재활용 기술 도입이 더욱 확대될 것이라고 전망했다. 또한 AI 기술이 자동차 부품의 연구 개발 효율성을 높이고 제품 혁신을 가속화하는 핵심 동력이 될 것이라고 강조하며, 만도는 AI 기반 설계 및 검증 시스템 개발에 적극적으로 투자하고 있다고 밝혔다. 인간 중심의 미래 모빌리티를 향하여 배 CTO는 자동차 산업이 과거의 틀을 벗어나 완전히 새로운 시대로 접어들고 있으며, 미래 모빌리티는 단순한 이동 수단을 넘어 즐거움과 편리함을 제공하고 환경까지 고려하는 '인간 중심'으로 발전해야 한다고 강조했다.   * 해당 내용 정리는 AI(구글 제미나이)의 도움으로 작성되었습니다. 상세 내용은 원본 영상을 통해 확인하시기 바랍니다.  발표자료 다운로드 https://www.cadgraphics.co.kr/newsview.php?pages=lecture&sub=lecture01&catecode=7&num=74990   #모빌리티 #자동차산업 #전기차 #자율주행 #SDV #친환경부품 #AI #만도 #자동차부품산업 #소프트웨어정의차량 #자동차트렌드
작성일 : 2025-05-06
모빌리티 혁명, UAM의 현재와 미래(한국항공우주연구원 황창전) - 영상보기 & 내용 요약
PLM/DX 베스트 프랙티스 컨퍼런스 2024에서 한국항공우주연구원 황창전 UAM연구부장은 'UAM(Urban Air Mobility)'의 현황과 미래에 대한 깊이 있는 발표를 진행했다. 내용을 요약 정리하여 소개한다. 단순한 개인용 비행체를 넘어, 예약 기반 MaaS(Mobility as a Service)로 진화할 UAM 생태계를 조망하며, 미래 도시 이동의 혁신적인 변화를 예고했다. UAM, 도시 이동의 패러다임을 바꿀 혁신 황창전 부장은 UAM을 1900년대 초 마차에서 자동차로의 전환에 비견되는 파괴적 혁신으로 정의했다. 도심 내 이동 효율성을 극대화하고 새로운 이동 옵션을 제공함으로써, 미래 도시인의 삶의 질을 향상시키는 데 기여할 것이라는 전망이다. 핵심은 버티포트(수직 이착륙장) 네트워크를 구축하여 주요 도심 거점을 연결하고, 초기 유인 운항을 시작으로 점진적인 자율 비행 시스템으로 발전시켜 나가는 것이다. UAM 관련 핵심 용어 이해 OPPAV (Optionally Piloted Personal Air Vehicle): 유·무인 겸용 개인 항공기로, 한국의 OPPAV 개발 프로젝트는 UAM 기술 자립화의 중요한 발걸음이다. UAM (Urban Air Mobility): 도시 지역 내 승객과 화물을 아우르는 종합적인 항공 운송 시스템을 의미한다. RAM (Regional Air Mobility): UAM과 유사하지만, 인구 밀도가 낮은 지역을 대상으로 하며 안전 기준이 다소 완화될 수 있다. 플라잉 카 (Flying Car): 지상과 공중 이동이 모두 가능한 차량이나, 현재 기술적 난제와 효율성 문제로 실현 가능성은 낮게 평가된다. 글로벌 UAM 시장 동향 및 한국의 노력 전 세계적으로 도시 교통 문제 해결과 효율적인 이동 수단에 대한 요구가 높아짐에 따라 UAM 개발 경쟁이 치열하게 전개되고 있다. 2010년대부터 다수의 기업들이 eVTOL(electric Vertical Take-Off and Landing) 항공기 개발에 뛰어들었으며, 글로벌 UAM 시장은 2040년까지 수조 달러 규모로 성장할 것으로 예측된다. 한국 역시 OPPAV 개발 프로젝트를 통해 UAM 기술 확보에 적극적으로 나서고 있다. 한국항공우주연구원을 중심으로 현대자동차 등 여러 기관이 협력하여 틸팅 로터와 고정 로터를 결합한 독특한 디자인의 OPPAV 기술 시연기를 개발했으며, 첨단 비행 제어 시스템과 경량 복합 소재 기술을 적용했다. 정부 주도의 UAM 상용화 준비와 미래 정부 주도로 설립된 UAM 팀 코리아는 산업계, 학계, 연구 기관, 정부 간 협력을 통해 UAM 개발 및 상용화를 촉진하는 핵심적인 역할을 수행하고 있다. 정부는 2025년 초기 상업 서비스 개시를 목표로 UAM 로드맵을 수립하고, 그랜드 챌린지 프로젝트를 통해 통합적인 기술 실증을 진행 중이다. 또한, NASA와의 협력을 통해 UAM 관련 기술 개발 및 안전성 확보에도 힘쓰고 있다. 황창전 부장은 UAM의 미래를 자율 비행 능력 향상, 전천후 운용 능력 확보, 그리고 높은 수준의 안전성과 신뢰성 확보로 전망했다. 상용화를 위해서는 항공기 인증 및 안전 표준 마련이 필수적이며, eVTOL 항공기의 설계 표준화 및 대량 생산을 위한 혁신적인 재료 개발과 제조 공정 개선이 요구된다. 지속적인 연구 개발과 기술적 난제 해결 노력을 통해 UAM은 가까운 미래에 도시 이동의 혁신을 이끌어낼 것으로 기대된다.   * 해당 내용 정리는 AI(구글 제미나이)의 도움으로 작성되었습니다. 상세 내용은 원본 영상을 통해 확인하시기 바랍니다.  영상보기 발표자료 다운로드 https://www.cadgraphics.co.kr/newsview.php?pages=lecture&sub=lecture01&catecode=7&num=74990  
작성일 : 2025-05-05
AI 기반 크리에이티브 워크플로 혁신
AI 크리에이터 시대 : 영상 제작의 새로운 패러다임 (2)   영상 제작은 수작업 중심의 접근 방식에서 디지털화와 함께 컴퓨터 기반의 자동화된 워크플로까지 변화했다. 최근에는 AI 기술과 멀티모달 제작 방식이 결합되어 콘텐츠 제작의 효율과 창의성을 극대화하고 있다.   ■ 연재순서 제1회 AI 영상 제작 생태계의 현재와 미래 제2회 AI 기반 크리에이티브 워크플로 혁신 제3회 소셜 미디어 최적화 AI 영상 제작 전략 제4회 AI 특수효과 및 후반작업 마스터하기 제5회 AI 기반 몰입형 사운드 디자인   ■ 최석영 AI프로덕션 감성놀이터의 대표이며, 국제고양이AI필름페스티벌 총감독이다. AI 칼럼니스트로도 활동하고 있다.    이미지와 영상 제작을 위한 기존의 제작 방식   그림 1. ‘달리는 열차(Arrival of a Train at La Ciotat)’, 뤼미에르 형제, 1896   아날로그 제작 방식 : 개념과 흐름 디지털 도구가 도입되기 전에, 이미지와 영상 제작은 사전 기획과 여러 단계에 걸친 수작업 과정을 기반으로 한 접근 방식을 따랐다. 이 과정에서 기획자는 제작자와 협력하여 구체적인 제작을 위한 기획 단계를 만들어 낸다. 모든 작업은 계획적으로 이루어지며, 각 단계에서 창작자의 직접적인 개입과 섬세한 조정이 이루어진다. 디지털 도구가 상용화되기 전에는 스토리보드 작성, 레이아웃 결정, 시나리오 등이 기획 단계에서 만들어졌다. 영화용 카메라로 장면을 촬영하고, 촬영 감독과 조명 팀이 각종 기기를 수동으로 조작하며 원하는 장면을 구현한다. 후반 작업에서는 필름을 절단하고 이어 붙여 편집하며, 음향은 따로 녹음하여 영상을 보완한다. 이러한 방식은 기술적인 장치뿐만 아니라 창작자의 기술과 창의성에 크게 의존하며, 디지털화가 이루어지기 전까지 오랜 시간 이어져 온 기본적인 영상 제작 방식이다.   그림 2. ‘달나라 여행(Le Voyage dans la Lune)’, 1902   ‘달나라 여행’ 작품은 아이디어가 스토리보드화되어 영상화되는 전형적인 제작 과정으로 만들어졌다. 영상 제작 과정을 3단계로 보통 나누어지는데, 좀 더 자세히 5단계로 구조화하여 설명한다.  기획 단계 디자인 및 촬영 준비 제작 단계 후반 작업 단계 배포 및 관리 기존의 제작 방식은 오랜 기간 창작자의 창의적 역량을 극대화하고, 하나의 결과물을 정교하게 다듬는 데 중점을 둔 체계적인 접근법이었다. 하지만 이 과정은 기술적 도구와 인력이 많이 요구되며, 비용과 시간이 많이 들었다. 이러한 점에서 기존 제작 방식은 디지털화를 통해 새로운 워크플로로 발전하게 되었다.   디지털 도구의 도입과 디지털화된 제작 방식   그림 3. The iconic ship · ‘스타워즈’의 특수 효과,1977   디지털 도구의 도입 이후, 이미지와 영상 제작은 큰 변화를 겪으며 효율성과 창의성을 동시에 향상시킬 수 있는 새로운 접근 방식을 채택하게 되었다. 디지털화된 제작 방식은 전통적인 수작업 기반 방식에서 벗어나, 컴퓨터와 소프트웨어를 활용한 자동화 및 고도화된 기술을 중심으로 이루어진다.  이 과정은 기획, 디자인 및 촬영 준비, 제작 단계, 후반 제작 단계, 배포 및 관리 등 여러 단계로 나뉘며, 각 단계마다 디지털 기술이 어떻게 적용되는지 구체적으로 살펴볼 수 있다.    그림 4. ‘아바타’의 제임스 카메론 감독   필자가 영화를 공부하던 1997년에는 전통적인 아날로그 제작 방식을 공부하면서 비디오 캠코더가 나왔으며, 촬영과 후반 제작 과정에서 디지털화가 가속화되었다. 컴퓨터의 발전과 응용 프로그램의 향상에 힘입어, ‘스타워즈’가 아날로그 촬영을 디지털화하고 CG를 추가하여 다시 상영하였다. 아날로그 제작 방식과 디지털 제작 방식 믹스되는 부분이 있었으며, 2000년대 이후 점차 디지털화되어 갔다. 현재의 방식은  촬영, 편집, 후반 제작 과정 모두 디지털화(데이터로 저장)하여 제작되고 있다. 디지털화된 제작 방식에 모션 캡처나 리얼타임 엔진을 활용한 가상 프로덕션 등 새로운 기술이 적용되고 있다. 대표적인 예로 영화 ‘아바타’의 혁신을 말할 수 있다. ‘아바타’는 디지털 기술과 혁신된 모션 캡처 방식을 활용하여 영화 제작 방식을 혁신적으로 변화시켰다. 특히, 3D 촬영 기술과 모션 캡처 기술을 통해 캐릭터와 환경을 사실감 있게 재현하며 영화의 몰입감을 극대화했다. 이러한 시각적 혁신은 3D 영화의 새로운 가능성을 열었고, 3D 영화의 인기를 끌어올리는 데 큰 역할을 했다. 또한, 디지털 환경 디자인과 가상 세트를 활용하여 판도라라는 상상의 세계를 창조했으며, 이는 다른 영화가 디지털 가상 세트를 활용하는 데 영향을 미쳤다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
카티아 VMU를 활용한 설계 검증 혁신
산업 디지털 전환을 가속화하는 버추얼 트윈 (2)   이번 호에서는 VMU(가상 목업)의 개념과 기술적 특성, 주요 산업 사례, 그리고 VMU의 혁신적 가치와 향후 확장 가능성에 대해 살펴본다.    ■ 최윤정 다쏘시스템의 기술 컨설턴트로 디자인&엔지니어링 팀에서 3DEXPERIENCE CATIA 제품을 담당하고 있다. 자동차 산업을 위한 고급 서피스 모델링 및 가상 검증 영역을 전문으로 하고 있으며, 제조업의 VMU 도입 효과성 관련 학술연구 또한 수행 중에 있다. 홈페이지 | www.3ds.com/ko   가상 시뮬레이션 기술이 점차 고도화됨에 따라, 제품 개발 전 과정에서 디지털 모델을 활용하여 제품 품질과 개발 효율성을 높이려는 시도가 활발하게 이루어지고 있다. VMU(Virtual Mock-Up, 가상 목업) 기술은 3D익스피리언스 카티아(3DEXPERIENCE CATIA)에 기반한 가상 검증 프로세스로, 설계 오류와 품질 상의 문제점을 조기에 식별·개선하고 개발 비용과 시간을 절감하는 혁신적 방식으로 주목받고 있다. 제품의 실물을 제작하지 않고도 고품질 렌더링을 통해 시각적·감성적 요소를 평가할 수 있기 때문에, 다양한 산업 분야에서 VMU의 필요성이 커지고 있다.   그림 1. 카티아 설계 데이터 화면   그림 2. 카티아에서 재질을 적용한 설계 데이터 화면   VMU의 개념과 기술적 특징 VMU는 고품질 렌더링 기술을 활용해 설계 데이터를 가상 환경에서 실물과 유사하게 재현하여, 설계 오류와 품질 상의 문제점을 조기에 식별·개선하는 기술이다. 이 프로세스는 실물 목업을 제작하지 않고도 제품 외관을 정확히 시뮬레이션함으로써 제품 개발 시간과 비용을 단축한다. 기존의 DMU(Digital Mock-up, 디지털 목업)는 주로 설계 과정에서 형상과 구조 검증에 초점을 둔다. 즉, 3D 설계 데이터 상에서 간섭 검사, 조립 순서·공정 시뮬레이션, 각 부품의 형상 적합성 등을 확인하는 용도로 사용된다. 한편, VMU는 DMU에서 한발 더 나아가, 광학 특성(반사·굴절), 질감, 점등 이미지 등 외관 품질을 실사 수준으로 구현하며, 인체공학 기반의 휴먼 모델(human model)을 연계해 실제 사용 환경에서의 조작성, 시야 확보성 등을 종합적으로 검토할 수 있다. XR(확장현실) 기술과의 융합을 통해 몰입형 품평 환경도 제공된다. 자동차 외장 램프처럼 미세한 빛의 반사·굴절을 예측 및 검증해야 하는 제품은 VMU를 활용할 경우 실물 목업 없이 외관 이미지를 높은 정확도로 검토함으로써 개발 리스크를 크게 줄일 수 있다. 기존에 카티아를 기반으로 제품 설계를 하고 있는 다양한 산업군에서 VMU는 이미 필수 프로세스로 자리매김하고 있다. 설계, 렌더링, 검증 및 품평을 하나의 일관된 프로세스로 결합함으로써 제품 개발 방식에 혁신적인 변화를 가져올 수 있다. 데이터 변환이나 별도 인터페이스가 필요 없이 동일 플랫폼에서 모든 단계가 이뤄지므로, 데이터 손실이나 형상 왜곡을 최소화하고 기존에 없던 빠르고 유연한 협업 환경을 구축할 수 있다. 이를 통해 제품의 완성도와 품질을 높이는 긍정적 효과가 입증되었다.    표 1. 실물 목업 및 기존 렌더링 툴과의 비교   3D익스피리언스 카티아 기반의 VMU 프로세스 적용 사례 자동차 외장 램프 품질 검증 사례 자동차 외장 램프는 외관과 점등 이미지가 모두 중요하여, 시각적 품질 검증이 설계 단계에서 핵심 과제로 부각된다. 기존에는 정확도를 높이기 위해 실물 금형과 목업을 제작했으나, 이 방식은 과도한 시간과 비용 투자를 요구했다. 대체 방법으로 3D 프린팅 등의 기술을 이용하기도 했지만, 정밀도가 부족하다는 한계가 있었다. 이 문제를 해결하기 위해 최근 카티아 기반 VMU 프로세스를 적용한 디지털 선행 검증이 주목을 받고 있다. 미세 광학 요소와 복잡한 반사·굴절 특성을 지닌 램프를 고정밀 시뮬레이션할 수 있어, 점등·비점등 시의 실제 이미지를 실물 목업 수준으로 재현한다. 특히 스캔을 통해 확보한 시편 데이터의 정확한 물성을 설계 데이터에 적용함으로써 곡률에 따른 왜곡이나 광원으로 인한 반사를 사실적으로 재현하고, 실차에 장착했을 때 예상되는 품질 이슈까지 가상 환경에서 검토할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
비즈니스 프로세스 모델링을 배워보자
BPMN을 활용하여 제품 개발의 소통과 협업 극대화하기 (3)   지난 호에서는 BPMN(Business Process Modeling Notation)의 구성 요소를 살펴보고, 간단한 예제를 통해 주요 기능과 특징을 개괄적으로 파악해 보았다. 이번 호에서는 BPMN을 작성하기 위한 모델링 툴을 살펴보고, 이를 활용하여 비교적 간단한 비즈니스 프로세스 모델을 작성하는 방법을 소개하도록 하겠다.   ■ 연재순서 제1회 비즈니스 프로세스 모델링이 필요한 이유 제2회 BPMN은 무엇일까? 제3회 비즈니스 프로세스 모델링을 배워보자 제4회 간단한 제품 개발 프로세스를 디자인해보기 제5회 클라우드 서버 환경에서 BPMN을 연결하는 설루션 탐구   ■ 윤경렬 현대자동차 연구개발본부 책임연구원 ■ 가브리엘 데그라시 이탈리아 Esteco사의 프로젝트 매니저   우리는 지난 호에서 BPMN이 무엇인지에 대해 알아보았다. 우선 BPMN의 구성 요소를 살펴보았고 아주 간단한 BPMN 예제를 통해 주요 기능과 특징을 개괄적으로 파악해 보았다. 또한 BPMN을 활용하여 리프 스프링 개발 프로세스를 모델링하는 사례를 통해, 일반적인 WBS와 비교해 보았을 때 개발에 참여한 이해관계자들이 어떻게 협업을 해야 하는지 명확하게 파악할 수 있다는 것을 알게 되었다.   BPMN 웹사이트에서 모델러 확인 및 다운로드받기 BPMN을 작성하기 위한 모델링 툴을 알아보기에 앞서, 지난 호에서 소개한 바 있는 OMG 그룹에서 운영하고 있는 BPMN 웹사이트를 우선 찾아가 보도록 하겠다. OMG의 웹사이트(www.bpmn.org)에서는 기본적인 BPMN 개념 정의부터 새로운 BPMN 표준에 대한 연구까지 자세하게 소개하고 있으며, BPMN의 개념, 문서, 예제, 표준화 진행 등에 대한 내용이 자세하게 기술되어 있어서 BPMN을 이해하고 활용하는데 많은 도움을 받을 수 있다.   그림 1. OMG 그룹에서 운영하는 BPMN 웹사이트   우리는 여기서 세 가지 정도를 간단하게 살펴보고자 한다. 우선 ‘Examples’에는 BPMN을 보다 쉽게 이해할 수 있도록 다양한 분야의 예제를 템플릿 형태로 제공하고 있어, 사용자가 이를 활용하여 빠르게 BPMN을 적용해 볼 수 있도록 도움을 주고 있다. 다음은 ‘Implementers’로 현재 BPMN을 지원하고 활용하는 산업과 사례를 소개하고 있는데, 생각보다 다양하고 유명한 회사에서 어떻게 활용되고 있는지 확인할 수 있다.   그림 2. 다양한 예제를 보여주는 Examples   그림 3. 사례를 보여주는 Implementers   마지막으로 ‘BPMN MIWG’에서는 BPMN 표준을 준수하고 상호 모델을 교환하고 위한 목적으로 다양한 툴(소프트웨어)을 소개하고 비교 분석을 수행하고 있다. 우리가 여기서 관심 있게 살펴보려고 하는 것은 ‘View current test results on various tools’의 내용이다. 개인적 취향 및 선호도에 따라 모델링을 하기 위한 툴을 선택할 수 있지만, 대부분 표준을 잘 준수하고 있어서 표준 모델링의 경우 선택의 차이는 크지 않을 것으로 생각된다. 그래서 BPMN 모델을 작성하기 위해 우리는 상대적인 차이가 크지 않지만 인지도가 높은 ‘Camunda Modeler’를 선택하였다.   그림 4. 다양한 모델러에 대한 표준 및 상호 모델 교환 수준에 대한 정리     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[칼럼] 실용형 AI, 제조의 미래를 바꾸다
트렌드에서 얻은 것 No. 23   “AI는 모든 산업에 새로운 가능성을 열어 준다. 중요한 것은 기술이 아니라, 그것을 어떻게 활용하느냐이다.” – 사티아 나델라(Satya Nadella), 마이크로소프트 CEO 마이크로소프트는 생성형 AI를 다양한 산업에 통합하며, 기술의 활용 방식에 중점을 두고 있고,  나델라의 말은 기술 도입보다 전략적 활용이 중요하다는 점을 강조한다.   생성형 AI와 함께 설계하고, 시뮬레이션하고, 개선하라 지금 이 이야기를 한국의 제조기업에 가서 한다면, 이상한 사람 취급을 받을 수 있다. 당장, 어떻게 할 수 있는지 이야기할 수 있느냐? 우리도 그렇게 하고 싶은데, 어떻게 할 수 있는지 제대로 나온 것도 없고, 사례가 있는지 등의 얘기가 자연스럽게 나온다. 맞는 말이다. 하지만, 지금은 레이스의 출발선에서 모두 같은 상황일 것이다. 다만, 전체를 제어하고 미래를 설계하는 혜안이 있는 사람이나 조직 유무에 따라 회사들의 달리기 속도는 분명 차이가 날 것이다.  우리는 그런 시대를 살아가고 또 지나가고 있다. 뉴스에서 다른 회사의 소식을 들으면서 탄식을 하고 있을 것인가, 아니면 고통스럽더라도 뭔가 해 보는 것이 낫지 않느냐의 갈림길에 있다. “그럼에도 불구하고, 우리는 설계할 수 있다.” 그렇다. ‘생성형 AI로 설계하고, 시뮬레이션하고, 개선하라’는 말은 지금의 제조 현장에선 거대한 간극처럼 느껴진다. 공장의 열기와 노하우 속에서 살아온 실무자에게는 뜬구름 잡는 이야기처럼 들릴 수 있다. “AI가 좋다는데, 어디까지 해봤나?”, “누가 이걸 설계에 실제로 썼대?” 이런 질문은 당연한 것이고, 오히려 현실을 잘 아는 사람일 수록 더 조심스러운 반응을 보인다. 그러나 지금, 우리는 모두 레이스의 출발선에 서 있다. 완성된 길도, 검증된 답도 아직 없다. 그러니 이 때 필요한 건 기술보다 먼저 혜안을 가진 사람, 구조를 설계할 수 있는 리더다. 단 한 줄의 프로토타입이라도 그려보려는 엔지니어, 익숙한 보고서보다 새로운 질문을 고민하는 팀장, 시행착오를 감수하고 방향을 잡으려는 임원이 지금 이 시대의 속도를 결정짓는다. 그리고 그 ‘혜안’은 거창한 청사진이 아닐 수도 있다. 단 하나의 설계 데이터를 기반으로 AI에게 첫 도면을 그리게 해보는 실험, 실시간 현장 일지에서 이상 징후를 요약하게 해 보는 시도, 현장의 사진 데이터로 품질 검사 자동화를 위한 검출 모델을 훈련해 보는 도전 등이 현 시점에서 예상해 볼 수 있는 가까운 미래 모습일 것 같다. “우리는 예상치 못한 상황을 목격하고, 예상된 상황을 보고하며, 결국 승리할 것입니다.” – 알렉스 카프, 팔란티어 CEO 카프는 AI를 활용한 제조업의 혁신이 불확실성을 극복하고 성공으로 이끄는 열쇠라고 보고 있으며, 이는 생성형 AI를 통한 제조업의 미래를 긍정적으로 전망한다.    그림 1. 실용형 AI 맵 ‘제조 미래를 바꾸다’(Map by 류용효) (클릭하면 큰 이미지로 볼 수 있습니다.)   제조, AI를 다시 만나다 “설계는 끝났지만, 고객은 원하지 않는다.”  “시뮬레이션은 끝났지만, 현장은 여전히 오류를 반복한다.”  “보고서는 쌓이지만, 문제는 여전히 현재진행형이다.” 이 문장들은 지금도 수많은 제조 현장에서 반복되고 있다. 전통적인 제조 프로세스는 분업과 효율을 중심으로 설계되었지만, 급변하는 고객의 요구와 복잡해진 제품 환경은 기존 체계의 민첩성과 창의성에 한계를 드러낸다. 이제 제조기업은 하나의 질문 앞에 서 있다. “우리는 더 빠르고 똑똑한 공장을 가질 준비가 되었는가?” 생성형 AI는 단순한 자동화 기술이 아니다. 설계자의 의도를 읽고 CAD 모델을 생성하며, 수십 개의 시뮬레이션으로 프로세스 병목을 알려주고, 품질 이상을 예측할 뿐 아니라 원인을 유추해주는 ‘설계적 사고를 하는 AI’가 등장하고 있다. 이는 기술의 도입이 아니라 제조기업의 ‘운영 철학’ 자체가 전환되는 순간이다. 제조기업이 생성형 AI와 함께 앞으로 어떻게 설계하고, 시뮬레이션하고, 개선할 수 있을지를 구체적으로 조망한다. “AI는 인류가 만든 가장 중요한 기술이다. 우리는 그것을 책임감 있게 개발하고 활용해야 한다.” – 순다르 피차이(Sundar Pichai), 구글 CEO 구글은 AI 개발에 있어 윤리적 책임과 사회적 영향을 고려하고 있으며, 피차이의 말은 기술 발전과 함께 그에 따른 책임도 중요하다는 점을 상기시켜 준다.   디자인의 재정의 - AI는 창의적인 엔지니어인가? 전통적인 제조 설계 과정은 복잡한 조건 설정, 반복적인 수정, 협업 간의 커뮤니케이션 비용 등으로 인해 수많은 시간과 리소스를 요구해왔다. 하지만 이제, 생성형 AI는 텍스트 한 줄로 설계를 시작하게 한다. “3개의 모듈로 구성된 소형 드론 프레임을 설계해 줘. 탄소 섬유 기반으로 무게는 150g 이하로.” 이 한 문장으로 AI는 초기 설계안을 생성하고, 다양한 대안 모델을 제공하며, 사용자 요구조건에 따라 자동 최적화를 제안한다. AI는 도면을 '그리는 도구'가 아니라, '제안하고 비교하는 동료 엔지니어'로 진화하고 있다. 예를 들어, 오토데스크의 퓨전 360(Fusion 360), 엔톱(nTop), 다쏘시스템의 3D익스피리언스 웍스(3DEXPERIENCE Works)는 이미 생성형 디자인 기능을 내장하고 있다.  디자이너는 아이디어를 제공하고, AI는 그에 기반한 설계 패턴을 도출한다. 이는 ‘무에서 유를 만드는’ 것이 아니라, 수많은 설계 데이터를 학습한 AI가 새로운 패턴과 조합을 도출해내는 방식이다. 결과적으로 설계자는 더 이상 반복적인 CAD 작업자가 아니다. 이제 디자이너는 ‘기획자’이자 ‘비평가’, 그리고 ‘AI와 협력하는 설계 전략가’가 된다. 또한, 이러한 생성형 설계는 대량 맞춤형 생산(mass customization)과의 결합으로 그 진가를 발휘한다. 기존에는 옵션이 제한된 범용 제품만이 경제성이 있었지만, 생성형 AI는 고객의 요구사항을 빠르게 읽고 즉시 설계에 반영할 수 있다. 이는 ‘고객이 참여하는 설계’, 즉 코디자인(co-design) 시대의 도래를 가능하게 한다. 기업은 더 빠르게 시장에 대응하고, 고객은 더 높은 만족도를 경험한다. 이처럼 생성형 AI는 설계를 단순히 ‘빠르게’ 만드는 기술이 아니라, 설계의 개념 자체를 ‘재정의’하는 도구이자 기업의 창의성과 기민함을 확장하는 전략 자산이 되고 있다. “퍼플렉시티(Perplexity)는 단순한 답변 엔진에서 행동 엔진으로 전환하고 있다. 이제는 단순히 질문에 답하는 것을 넘어, 사용자에게 행동을 제안하고 실행하는 단계로 나아가고 있다.” – 아라빈드 스리니바스(Aravind Srinivas), 퍼플렉시티 AI CEO 아라빈드의 말은 AI 기술이 단순한 정보 제공을 넘어, 사용자와의 상호작용을 통해 실제 행동을 유도하고 실행하는 방향으로 발전하고 있음을 의미한다.   시뮬레이션의 혁신 - 빠른 판단과 적은 비용 과거의 시뮬레이션은 전문 소프트웨어와 고성능 컴퓨팅 자원, 그리고 숙련된 엔지니어의 직관과 경험에 크게 의존해 왔다. CAE는 분명 설계 검증과 최적화의 핵심이었지만, 조건 설정 → 모델링 → 결과 해석 → 반복이라는 고비용 순환은 여전히 제품 개발의 병목으로 작용해왔다. 그러나 생성형 AI는 이 병목을 타파하는 새로운 접근을 제시한다. 자연어로 “강풍 조건에서 뒤틀림이 가장 적은 하우징 구조를 찾아줘”라고 지시하면, AI는 자동으로 물리 조건을 추론하고, 유사 데이터 기반의 시뮬레이션 템플릿을 구성하며, 수십 개의 대안 시나리오를 병렬 생성해 ‘예측 – 설명 – 추천’이라는 삼중 루프를 빠르게 수행한다. 이러한 기술은 시뮬레이션의 대중화(simulation democratization)를 이끈다. 기술 전공자가 아니어도, 제품 매니저나 품질 담당자가 AI의 도움으로 설계안의 응력 분포나 유동 조건에 대해 인사이트를 얻을 수 있다. 이는 실무자가 더 빠르게 결정을 내릴 수 있도록 돕고, 의사결정의 지연 대신, 다중 시나리오 기반의 ‘실험적 사고’를 가능하게 만든다. 대표적인 사례로는 알테어의 AI 기반 인스파이어 플랫폼(AI-driven Inspire Platform), 앤시스의 AI 기반 시뮬레이션 자동화, 그리고 다쏘시스템의 솔리드웍스 생성형 시뮬레이션(Generative Simulation for SOLIDWORKS)이 있다. 이들은 기존 FEM/CFD 분석의 시간과 비용을 줄이는 동시에, 경험 기반 의사결정에서 데이터 기반 최적화로의 전환을 이끌고 있다. 궁극적으로 생성형 AI는 단순히 ‘더 빠른 계산’을 넘어서, “어떤 시나리오를 먼저 고려해야 하는가?”, “이 조건에서 실패할 가능성은 무엇인가?”라는 전략적 질문에 답하는 보조 엔진이 되어 준다. 이는 시뮬레이션을 단지 제품 검증의 도구가 아니라, 경영 의사결정과 R&D 전략 수립의 인공지능 파트너로 진화시키는 변화의 시작점이다.  “AI는 우리가 상상하는 것보다 훨씬 더 빠르게 발전하고 있다. 자율주행차는 그저 시작일 뿐이다.” – 일론 머스크(Elon Musk), 테슬라 CEO 테슬라는 자율주행 기술 개발에 AGI 수준의 AI를 활용하고 있으며, 이는 단순한 기능 향상을 넘어 차량 설계와 운행 방식 전반을 재정의하는 접근이다.   업무 분석과 프로세스 개선 - 데이터는 말하고 AI는 듣는다 제조 현장의 데이터는 언제나 풍부했다. 작업자 일지, 설비 로그, 유지보수 메모, 품질검사 리포트, 현장 사진과 동영상, 고객 클레임 이메일… 하지만 이들 대부분은 정형화되지 않은 ‘텍스트’와 ‘문서’ 형태로 존재하며, 기존 시스템은 이를 ‘기록’하는 데에만 집중했고, 의미를 해석하고 연결하는 능력은 인간의 몫이었다. 이제 생성형 AI는 이 방대한 비정형 데이터의 숲에서 맥락을 이해하는 나무를 찾는다. 작업자가 남긴 “라인 3에서 어제도 제품 정렬이 안 맞았고, 자동 이젝터가 두 번 멈췄다”는 기록은, AI에겐 단순한 텍스트가 아니라 ‘패턴’과 ‘이상’의 시그널이다. LLM은 이런 문장을 분석해 작업 단계별 이벤트를 분해하고, 관련된 설비 로그와 품질 데이터를 연결하여 문제 지점을 도출한다. 이제 업무는 ‘기록하고 보고하는 일’이 아니라, ‘데이터가 스스로 분석하고 말하는 환경’으로 바뀌고 있다. 대표적인 활용 사례는 다음과 같다. 업무 요약 자동화 : 업무 일지를 요약해 경영진에게 핵심 이슈를 전달 프로세스 병목 식별 : 여러 부서의 텍스트 기반 보고서에서 공통 키워드와 불만 분석 문서 자동 생성 : SOP(표준작업지침서), 회의록, 개선안 보고서 등의 자동 초안 작성 협업 인텔리전스 : 여러 팀 간의 커뮤니케이션 데이터를 분석해 협업 지연 포인트 도출 실제로 지멘스는 AI 기반 자연어 처리 기술(Natural Language Processing : NLP)을 통해 디지털 작업지시서와 실시간 현장 대응 리포트를 자동 생성하는 기능을 도입했고, 보쉬는 AI를 통해 품질 클레임 문서에서 반복 출현하는 원인 유형을 추출하여 품질 개선의 단초로 활용하고 있다. 핵심은 이것이다. 현장의 수많은 대화와 기록이 AI에게 ‘말을 거는 데이터’가 되었고, AI는 그 말을 듣고, 요약하고, 통찰을 제시하며, 업무 개선을 스스로 제안하는 존재가 되었다는 점이다. 이제 우리는 묻지 않을 수 없다. 우리는 AI에게 말 걸 준비가 되어 있는가? 그리고 그 대답을 조직이 들을 준비는 되었는가? “가장 큰 위험은 아무런 위험도 감수하지 않는 것이다. 모든 것이 급변하는 시대에서 위험을 회피하는 전략은 반드시 실패로 이어진다.” — 마크 저커버그, 메타 CEO 저커버그는 변화와 혁신의 시대에 기존의 방식을 고수하며 위험을 회피하려는 태도가 오히려 더 큰 실패를 초래할 수 있음을 경고한다.   품질 관리의 진화 - AI는 예지적 감각을 가질 수 있는가 품질 관리는 제조업의 마지막 방어선이자, 가장 정교한 신경망이다. 그러나 지금까지의 품질 관리는 주로 사후 대응(postdefect 대응)에 집중되어 있었다. 불량이 발생한 후 원인을 찾고, 재발 방지책을 수립하고, 문서를 정리하는 ‘후행적 품질 관리’가 일반적이었다. 이제 생성형 AI는 이 전통적 프레임을 근본부터 흔들고 있다. AI는 ‘불량을 감지’하는 것이 아니라, ‘불량을 설명하고 예측’하려 한다. 예를 들어, 제품 표면의 이미지를 기반으로 한 비전 검사 시스템은 단순히 OK/NG를 판단하는 데서 그치지 않고, “이 영역의 텍스처 패턴은 온도 편차에 의한 수축 변형일 가능성이 높습니다”라고 말할 수 있는 설명형 모델로 진화하고 있다. 나아가, 생성형 AI는 텍스트, 이미지, 센서 데이터를 통합적으로 분석해 복합적인 이상 징후를 감지하고, 불량의 '가능성'과 '잠재 원인'을 추론해낸다. 예를 들어 다음과 같은 조합이 가능해진다. 작업자 일지 : “이틀 전부터 용접기압이 다소 약한 것 같다.” 센서 로그 : 오전 9~11시에 기압 편차 발생 불량 이미지 : 비드 형성 불균형 AI는 이를 연결해 “용접 조건의 경미한 변화가 반복 불량의 근본 원인일 수 있다”고 보고한다. 이는 단순한 예측모델이 아니다. ‘설명 가능한 품질 관리(Explainable Quality)’, 즉 AI가 품질 이슈에 대해 왜 그런 판단을 했는지를 근거와 함께 제시함으로써, 품질팀은 더 이상 직감이나 경험에만 의존하지 않고 데이터 기반의 합리적 개선 프로세스를 수립할 수 있다. 이미 보쉬, 토요타, GE 항공 등은 ▲AI 기반 비전 검사 시스템에서 ‘불량 예측 + 원인 설명’을 제공하는 모델을 구축 중이고 ▲ISO 9001과 연동되는 AI 품질 리포트 자동화 시스템을 테스트하고 있다. 이는 곧 ‘AI가 품질 시스템의 일원으로 공식 포함되는 시대’가 오고 있음을 뜻한다. 품질의 정의는 바뀌고 있다. 과거의 품질은 발견과 수정의 문제였지만, 앞으로의 품질은 예지와 설득의 문제다. AI는 이제 불량을 찾아내는 것이 아니라, 불량이 만들어지지 않도록 ‘생산 과정 그 자체를 개선하자’고 제안하는 동료가 되어가고 있다. “AI는 전기를 발견한 것과 같은 혁신이다. 모든 산업에 스며들 것이며, 그 영향을 무시할 수 없다.” – 앤드류 응(Andrew Ng), AI 전문가 앤드류 응은 AI의 보편성과 산업 전반에 미치는 영향을 강조하고 있다. 그의 말은 제조업에서도 AI의 통합이 필수임을 시사한다.   경고와 제언 - 생성형 AI는 도입이 아니라 전환이다 많은 제조기업이 생성형 AI에 주목하고 있다. 설계 자동화, 시뮬레이션 최적화, 업무 요약, 품질 예측… 도입 사례는 늘고 있지만, 도입이 곧 성공을 의미하진 않는다. 생성형 AI는 단순한 툴이 아니라, 운영 철학의 변화를 요구한다. 기존의 프로세스는 ‘정해진 절차와 역할’ 속에서 최적화를 추구해왔지만, 생성형 AI는 ‘질문을 던지고 시나리오를 비교하며 판단을 내리는 유연한 사고방식’을 요구한다. 즉, 기술만 바꾸는 것이 아니라 조직의 사고 체계와 역할 구조 자체를 재설계해야 하는 것이다. 예를 들어 <표 1>과 같은 전환이 필요하다.   표 1   하지만 문제는 기술이 아니다. 가장 큰 장벽은 조직이 AI를 받아들일 준비가 되어 있느냐는 것이다. 임원은 AI를 단순히 ‘자동화 툴’로 간주하는 경향이 많고, 현장은 여전히 ‘내 일을 뺏는 존재’로 AI를 경계한다. 이 간극을 메우지 않으면, AI는 시연 단계에서 멈추고, 조직은 변화의 본질을 놓친다. 따라서 다음과 같은 전환 전략이 필요하다. 파일럿이 아닌 전환 설계 특정 부서에서 테스트하는 것이 아니라, 조직 전체의 프로세스 전환 시나리오를 기획해야 한다. ‘도입 교육’이 아닌 ‘공감 설계’ 기술 사용법이 아니라, 왜 이 기술이 필요한지에 대한 비즈니스 관점에서의 스토리텔링이 필요하다. AI Co-Worker 관점 전환 AI는 도구가 아니라, 함께 판단하고 실험하는 동료로 봐야 한다. 이를 위해 직무 정의서(JD)도 다시 써야 한다. 성과 기준의 재정립 AI 도입 이후에는 ‘정확도’보다 ‘학습 속도’와 ‘적응력’이 핵심 성과 지표가 된다. 결국, 생성형 AI는 ‘도입해야 할 기술’이 아니라 ‘다르게 일하고, 다르게 생각하고, 다르게 운영하는 기업’으로 전환하기 위한 촉매제다. 이제 경영진에게 남은 질문은 단 하나다. “우리는 기술을 도입할 준비가 되었는가?”가 아니라, “우리는 조직을 전환할 용기를 가졌는가?”이다. “지금은 스타트업의 시대… 세상은 여전히 변화의 가능성에 잠들어 있다.” – 샘 올트먼, 오픈에이아이 CEO 올트먼은 기술 혁신의 시기에 기존 기업들이 변화에 둔감해질 수 있음을 경고하며, 새로운 도전과 변화를 추구하는 조직만이 미래를 선도할 수 있다는 메시지를 담고 있다.   맺음말 : 생성형 AI 시대의 제조 기업, 당신은 어떤 그림을 그리고 있는가 미래의 공장은 단지 더 정교하고, 더 빠르며, 더 자동화된 곳이 아니다. 그곳은 데이터를 읽고, 상황을 이해하고, 사람과 함께 결정하는 공장이다. 문제를 발견하기 전에 감지하고, 작업자를 지원하며, 스스로 최적의 방식을 제안하는 공장이다. 그리고 그 공장의 핵심 파트너는 인간의 상상력을 확장하는 생성형 AI다. 이제 중요한 질문은 이것이다. “우리는 어떤 그림을 그리고 있는가?” 기술은 빠르게 진화한다. 생성형 AI는 설계와 시뮬레이션, 업무 분석과 품질 관리까지 제조의 전 과정을 유기적으로 연결하며 ‘스마트’를 넘어 ‘지능적’으로 만들고 있다. 하지만 진정한 경쟁력은 기술의 채택이 아닌, 기술과 함께 일하는 방식의 변화에서 비롯된다. 아직 많은 제조기업은 ‘가능성 탐색’ 단계에 머물러 있다. 하지만 머뭇거릴 시간이 없다. AI는 이미 조직 구조, 업무 정의, 리더십의 방식까지 영향을 미치기 시작했다. 이제는 기술을 배우는 것이 아니라, 기술과 함께 일할 조직을 설계해야 할 때다. 생성형 AI 시대의 제조 기업은 세 가지 질문에 답할 수 있어야 한다. 우리는 상상할 수 있는가? 생성형 AI는 ‘주어진 문제를 해결’하는 것이 아니라 ‘가능성을 확장’한다. 제조기업의 조직은 아직도 문제만 찾고 있는가, 아니면 새로운 기회를 그리고 있는가? 우리는 받아들일 수 있는가? AI는 사람의 영역을 침범하지 않는다. 다만 그 옆에 선다. 우리는 전환할 수 있는가? 우리는 그것을 파트너로 받아들일 준비가 되어 있는가? AI 도입은 기술의 문제가 아니라, 사고방식과 리더십의 전환이다. 과연 지금의 조직은 그 전환을 감당할 수 있는가? 미래의 공장은 말하고 있다. “나는 설계하고, 시뮬레이션하고, 개선할 준비가 되어 있다. 너는 나와 함께 걸을 준비가 되어 있는가?”   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다.(블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
앤시스코리아, 대학생·대학원생 대상 시뮬레이션 경진대회 개최
앤시스코리아가 대학생 및 대학원생을 대상으로 시뮬레이션 경진대회인 ‘앤시스 시뮬레이션 챌린지 2025’를 개최한다고 밝혔다. 올해 처음 치러지는 ‘앤시스 시뮬레이션 챌린지’는 미래의 엔지니어를 꿈꾸는 대학생 및 대학원생을 위해 앤시스코리아가 기획한 아카데믹 경진대회다. 참가자들은 앤시스의 시뮬레이션 소프트웨어 중 하나 이상을 활용해 기술적인 문제를 해결하는 경험과 함께, 수상할 경우 다양한 특전을 받게 된다. 참가 신청은 이공계 및 공학을 전공한 대학생, 대학원생이라면 누구나 가능하다. 공식 홈페이지를 통해 오는 5월 23일까지 개인 또는 최대 3인의 팀 자격으로 지원서를 접수하면 된다. 참가 부문은 ▲구조 해석 ▲전자기 해석 ▲유체 해석 ▲열 해석 및 멀티피직스 ▲광학 해석 ▲최적 설계 및 AI 활용의 6개 부문으로 복수 선택이 가능하다. 신청 시 제목과 설명을 포함 국문 500자 이내의 연구 초록 등록이 필요하다. 접수 마감 이후 5월 26일부터 6월 20일까지는 챌린지 예선 기간으로, 참가자들은 해당 기간 내에 연구에 대한 최종 결과를 PPT 형식으로 작성해 제출해야 한다. 제출된 PPT를 바탕으로 심사가 이루어지며, 본선 진출자에 개별 연락하여 본선에 대해 안내할 예정이다. 본선은 7월 첫째 주에 치러지며 당일 발표 및 수상자 발표가 이어진다. 대상 수상 1팀에게는 장학금 300만 원과 함께 앤시스코리아 3개월 인턴십 기회 그리고 오는 9월 개최되는 시뮬레이션 콘퍼런스인 ‘앤시스 시뮬레이션 월드 코리아 2025’에서 발표자로 설 기회가 주어진다. 이외 최우수 혁신상 수상 1팀은 장학금 100만 원, 우수 해석상 수상 3팀은 장학금 50만 원을 각각 받을 수 있다. 또한, 본선 참가자 전원에게 앤시스 관련 기념품과 앤시스 시뮬레이션 월드 코리아 2025 내 전시 기회를 제공할 계획이다. 앤시스코리아의 박주일 대표는 “장래 엔지니어를 목표로 정진하고 있는 대학생과 대학원생들에게 앤시스의 시뮬레이션을 활용한 연구 기회와 함께 다양한 혜택을 드릴 수 있도록 본 챌린지를 마련하게 됐다”면서, “오늘날 당면한 다방면의 도전을 해결하기 위해 시뮬레이션은 필수로 자리매김한 만큼, 보다 많은 대학생 및 대학원생이 챌린지에 참가해 특별한 경험을 쌓을 수 있기를 바란다”고 밝혔다.  
작성일 : 2025-04-28
IBM 엑스포스 보고서, “정보 탈취형 악성코드 이메일 작년 대비 84% 증가”
IBM이 발표한 ‘2025 엑스포스 위협 인텔리전스 인덱스 보고서(2025 X-Force Threat Intelligence Index)’에 따르면, 사이버 공격자들이 더 교묘한 수법을 사용하며 기업에 대한 랜섬웨어 공격은 감소한 반면, 눈에 띄지 않는(lower-profile) 자격 증명 도용은 급증했다. IBM 엑스포스는 사이버 공격자들이 신원 탈취 공격을 확대하는 수단으로 인포스틸러 악성코드를 포함한 이메일을 주로 활용하고 있으며, 2024년 이러한 유형의 이메일이 전년 대비 84% 증가했다고 밝혔다. 2025 보고서는 IBM 엑스포스에서 관찰한 신규 및 기존 트렌드와 공격 패턴을 추적하고 침해 사고 대응, 다크 웹 및 기타 위협 인텔리전스 소스에서 얻은 정보를 바탕으로 작성했다. 2023년은 생성형 인공지능(Gen AI)의 본격적인 확산이 시작된 한 해였다. 예견되었던 대로, 사이버 공격자들은 AI를 활용해 웹사이트를 제작하거나, 딥페이크 기술을 피싱 공격에 접목시키기 시작했다. IBM 엑스포스는 공격자들이 생성형 AI를 활용해 피싱 이메일을 작성하거나 악성 코드를 제작하는 사례를 포착하기도 했다. IBM 엑스포스는 과거 보고서에서 하나의 AI 설루션 시장 점유율 50%에 가까워지거나 시장이 소수의 3개 이하 설루션으로 재편되면, 공격자 입장에서는 특정 AI 모델이나 설루션을 노리기가 더 쉬워지고 그만큼 공격할 유인도 커진다고 밝혔다. 아직 그 시점에 도달하지는 않았지만, 도입 속도는 빠르게 증가하고 있다. 실제로, 2024년 기준 최소 하나 이상의 비즈니스에 AI를 도입한 기업의 비율은 72%로, 전년 대비 55% 이상 증가한 것으로 나타났다. 2024년에는 AI를 겨냥한 대규모 공격이 발생하지는 않았다. 보안 전문가들은 사이버 공격자들이 악용하기 전에 취약점을 선제적으로 식별하고 보완하기 위한 대응에 속도를 내고 있다. IBM 엑스포스가 AI 에이전트 구축 프레임워크에서 원격 코드 실행 취약점을 발견한 사례처럼, 이와 같은 문제는 앞으로 더욱 빈번해질 것으로 보인다. 2025년 AI 도입이 확대될 것으로 예상됨에 따라, 공격자들이 AI를 겨냥한 특화된 공격 도구를 개발할 유인도 커지고 있다. 이에 따라 기업들은 데이터, 모델, 활용 방식, 인프라 등 AI 전반에 걸친 보안을 초기 단계부터 강화하는 것이 필수이다.     지난해 가장 많은 공격은 주요 기반시설 조직을 대상으로 감행됐다. IBM 엑스포스가 대응한 2024년 전체 공격 중 70%가 주요 인프라 조직에서 발생했으며, 이 중 4분의 1 이상이 취약점 악용으로 인한 공격이었다. 주요 인프라 조직들은 기존 기술에 대한 의존과 느린 보안 패치 적용으로 인해 여전히 보안 위협에 직면해 있는 것이다. 다크웹 포럼에서 자주 언급된 공통 취약점 및 노출(CVEs)을 분석한 결과, 상위 10개 중 4개가 국가 차원의 지원을 받는 공격자를 포함한 정교한 위협 그룹과 연관된 것으로 나타났다. 해당 취약점들의 악용 코드는 여러 포럼에서 공개적으로 유통되고 있었으며, 이는 전력망, 의료 시스템, 산업 설비 등을 노린 공격의 확산으로 이어지고 있다. 이처럼 금전적 목적의 공격자와 국가 차원의 위협 세력이 정보를 공유하는 흐름은, 패치 관리 전략 수립과 위협 사전 탐지를 위한 다크웹 감시의 중요성을 더욱 부각시키고 있다. 또 다른 주목할 만한 공격은 인포스틸러(infostealer, 정보 탈취형 악성코드)를 활용한 공격이다. 2024년에 인포스틸러를 활용한 이메일은 전년 대비 84% 증가했으며, 2025년 초기 데이터에 따르면 이는 더욱 급증하는데, 주간 발생 건수가 2023년 대비 180% 이상 증가한 것으로 예상된다. 자격 증명 피싱과 인포스틸러를 통해 신원 공격은 저렴하고, 확장 가능하며, 수익성이 좋아졌다. 인포스틸러는 데이터를 빠르게 유출할 수 있어 타깃 지점에 머무는 시간을 줄이고, 포렌식 흔적을 거의 남기지 않는다. 2024년에 다크웹에서 800만 개 이상의 광고가 상위 5개의 인포스틸러만을 위한 것이었으며, 각 광고에는 수백 개의 자격 증명이 포함될 수 있다. 또, 사이버 공격자들은 다크웹에서 다중인증(MFA)을 우회하기 위해 중간자 공격(AITM) 피싱 키트와 맞춤형 AITM 공격 서비스를 판매하고 있다. 손상된 자격 증명과 다중인증 우회 방법이 만연하다는 것은 수요 또한 높다는 것을 의미하며 이러한 추세는 멈출 기미가 보이지 않는다. 지역으로 살펴보면, 2024년 한 해 동안 IBM 엑스포스가 전 세계적으로 대응한 사이버 공격 중 약 34%가 아시아태평양에서 발생하며 아태 지역이 세계에서 가장 많은 사이버 공격을 경험한 것으로 나타났다. 데이터 도용(12%), 인증정보 탈취(10%), 갈취(extortion, 10%) 등이 순위가 높은 공격 대상이었다. 일본은 전체 조사 대상 인시던트의 66%를 차지했으며, 한국, 필리핀, 인도네시아, 태국이 각각 5%의 비율을 차지했다. 분야별로는 제조업이 공격 대상의 26%를 차지하며 4년 연속 사이버 공격이 가장 많이 발생한 산업으로 집계됐다. 특히 랜섬웨어 피해 사례가 가장 많았으며, 시스템 중단에 대한 허용 범위가 극히 낮은 산업 특성상 암호화 공격에 대한 범죄자의 수익성이 여전히 높은 것으로 분석된다. 한국IBM 컨설팅 사이버보안서비스 사업총괄 이재웅 상무는 “사이버 공격은 이제 더욱 조용하고 치밀해지고 있다. 공격자들은 파괴적인 행위 없이 자격 증명을 탈취해 기업 시스템에 접근하며, 인포스틸러와 같은 악성코드를 통해 빠르게 데이터를 유출하고 흔적을 남기지 않는다”고 말하며, “이러한 저위험·고수익 공격이 확산되는 지금, 기업은 단순 방어를 넘어, 인증 시스템 강화와 위협 사전 탐지 체계를 통해 공격 표적이 되지 않도록 대비해야 한다”고 강조했다.
작성일 : 2025-04-24