• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "인사"에 대한 통합 검색 내용이 2,530개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
다쏘시스템, ‘3D익스피리언스 콘퍼런스 코리아 2025’에서 AI 시대 선도하는 버추얼 트윈 혁신 제시
다쏘시스템은 5월 29일 서울 코엑스에서 ‘3D익스피리언스 콘퍼런스 코리아 2025(3DEXPERIENCE CONFERENCE KOREA 2025)’를 개최한다고 밝혔다. ‘모두를 위한 모든 것의 버추얼 트윈(Virtual Twin of Everything for Everyone)’을 주제로 열리는 이번 행사는, 생성형 AI와 결합해 한층 진화한 버추얼 트윈 기술을 중심으로 대한민국 산업의 미래를 만들어 나갈 혁신 비전을 소개한다. 이번 콘퍼런스에서는 다쏘시스템이 올해 초 새롭게 발표한 기술 비전 ‘3D유니버스(3D UNIV+RSES)’를 소개하고, 7개 혁신 브랜드를 통해 다양한 산업 분야에 적용되는 최신 기술 트렌드를 선보인다. 특히 다쏘시스템은 ▲40개 이상의 전문 세션 ▲산업 전문가들이 직접 전하는 실무 지식과 노하우 등 프로그램을 통해 참석자들에게 실질적 인사이트를 제공할 예정이다.     오전에 진행되는 제네럴 세션은 다쏘시스템코리아 정운성 대표이사의 환영사로 시작한다. 기조연설자로 초청된 LG전자 ES연구소의 황윤제 기술고문은 ‘모델 기반 가상화 R&D를 통한 디지털 혁신 : AI 시대의 도전과 미래’를 주제로, 디지털 전환(DX)을 이끄는 AI 기술과 버추얼 목업 제작을 더욱 용이하게 하는 모델 기반 시스템 엔지니어링의 중요성에 대해 발표한다. 황윤제 기술고문은 가상화 분야에서 현재 직면한 주요 도전 과제가 무엇인지 살펴보고, 이를 극복함으로써 열릴 미래의 가능성에 대한 인사이트를 제공할 예정이다. 오후에는 바이오비아(BIOVIA), 에노비아/넷바이브(ENOVIA/NETVIBES), 카티아/3D익사이트(CATIA/3DEXCITE), 델미아(DELMIA), 시뮬리아(SIMULIA)의 5개의 브랜드 트랙과 별도 마련된 SDV(Software-Defined Vehicle) 트랙이 진행된다. 각 트랙을 통해 다쏘시스템의 전문가와 브랜드별 고객사는 최신 기술 동향과 다양한 산업 적용 사례를 폭넓게 소개하며, 특히 3D익스피리언스 기반 통합 업무 환경을 심도 있게 다룰 예정이다. 특히 추가로 마련된 SDV 트랙은 총 3개의 발표로 구성되어, 다쏘시스템의 SDV 설루션 전략과 함께 모델 기반 시스템 엔지니어링(MBSE : Model-Based Systems Engineering), 하드웨어/소프트웨어 통합, 가상 검증 등 제품 전체 관점의 개발 방향을 소개한다. 아울러 미래 모빌리티 산업의 도전과제와 설루션 방안, 메카트로닉스(mechatronics) 및 소프트웨어 중심 경험(software-driven experiences)을 위한 엔드 투 엔드 통합 업무 환경 구축 전략을 다룬다.   다쏘시스템코리아 정운성 대표이사는 “3D익스피리언스 콘퍼런스 코리아 2025는 가상과 현실을 끊임없이 연결하는 기술로 산업 혁신의 방향을 제시하는 자리”라며, “모두를 위한 모든 것의 버추얼 트윈이라는 이름에 걸맞게, 다쏘시스템은 앞으로도 다양한 산업의 전문가들과 함께 버추얼 트윈으로 미래 산업을 혁신하고, 무한한 가능성을 만들어 나갈 것”이라고 밝혔다.
작성일 : 2025-05-08
어도비, 파이어플라이 서비스 및 커스텀 모델 신규 역량 발표
어도비가 소셜 미디어, 전자상거래, 모바일 등 다양한 채널에서 급증하는 개인화된 콘텐츠 수요에 맞춰 기업의 효과적인 콘텐츠 제작을 지원하는 어도비 파이어플라이 서비스(Adobe Firefly Services) 및 파이어플라이 커스텀 모델(Firefly Custom Models)의 새로운 역량을 발표했다. 이번 발표로 기업을 위한 크리에이티브 및 생성 API 콜렉션인 파이어플라이 서비스는 영상과 3D를 비롯한 더욱 다양한 콘텐츠 유형을 지원하며 기업의 멀티미디어 제작 확대를 돕는다. 파이어플라이 서비스로 구동되는 새로운 파이어플라이 크리에이티브 프로덕션(Firefly Creative Production)은 노 코드(no-code) 인터페이스에서 주요 미디어 유형에 걸쳐, 반복적인 콘텐츠 제작 작업을 처리할 수 있도록 지원한다. 또한 파이어플라이 커스텀 모델과 퍼포먼스 마케팅용 어도비 Gen스튜디오(Adobe GenStudio for Performance Marketing)의 통합으로 브랜드 가이드라인을 준수하는 광고 콘텐츠를 한층 쉽게 확대할 수 있게 됐다.  이 같은 어도비의 혁신은 어도비 AI 에이전트와 모델을 통합하는 어도비의 AI 플랫폼으로 구동된다. 해당 플랫폼은 어도비 애플리케이션 전반에서 자사 데이터 인사이트, 서드파티 생태계의 AI 에이전트,  상업적으로 안전한 어도비 파이어플라이 및 안전한 서드파티 모델 등을 포함한다. 이처럼 어도비는 AI 플랫폼을 통해 마케팅과 크리에이티브를 통합하며 대규모로 개인화된 경험을 제공한다. 액센츄어(Accenture), 덴츠(Dentsu), 헨켈(Henkel), IPG 헬스(IPG Health), 태피스트리(Tapestry), 몽크스(Monks), 펩시코/게토레이(PepsiCo/Gatorade), 퍼블리시스(Publicis), 스태크웰(Stagwell), 에스티 로더 컴퍼니(The Estée Lauder Companies) 등 주요 기업과 에이전시는 어도비 파이어플라이(Adobe Firefly), 파이어플라이 서비스 및 커스텀 모델을 활용해 캠페인을 론치하는 데 걸리는 시간을 단축하며, 새로운 고객과 소통하며, 생성형 AI로 워크플로우를 간소화하고 크리에이티브 결과물을 강화하고 있다. 포레스터(Forrester) 총 경제 영향 조사(Total Economic Impact Study)에 따르면 기업은 어도비 파이어플라이 제품군을 통해 에셋 변형 제작을 70%-80%까지 확대하는 한편, 에셋 검토 및 수정에 소요되는 시간을 75% 나 단축하며(3년 기준), 전환율 개선을 위한 개인화된 경험을 확장하고 수익 증대를 모색하고 있다. 바룬 파머(Varun Parmar) 어도비 Gen스튜디오 및 파이어플라이 엔터프라이즈 솔루션 부문 총괄은 “기업들은 어도비 파이어플라이 서비스와 커스텀 모델을 활용해 효율적인 콘텐츠 공급망을 구축하며 놀라운 성과를 내고 있다”며 “생성형 AI는 마케터와 크리에이티브 담당자의 역량을 강화하고 이들이 중요한 작업에 집중할 수 있도록 지원한다”고 말했다.
작성일 : 2025-05-08
팀뷰어, 한국어 사용자 커뮤니티 공식 론칭
팀뷰어가 한국 사용자를 위한 한국어 공식 커뮤니티를 공식 론칭했다고 밝혔다. 이번 커뮤니티 론칭은 빠르게 증가하는 한국 내 사용자 기반을 지원하고, 보다 긴밀한 소통과 지식 공유를 촉진하기 위한 사용자 중심 전략의 일환이라는 것이 팀뷰어의 설명이다. ‘팀뷰어 커뮤니티(TeamViewer Community)’는 기존의 글로벌 영어 포럼 외에도 한국어 전용 공간을 마련함으로써, 사용자들이 자국어로 보다 쉽게 질문을 올리고, 제품 활용 팁을 공유하며, 원하는 지식을 빠르게 얻을 수 있도록 구성됐다. 특히, 원격 액세스 및 지원 설루션 ‘팀뷰어 리모트(TeamViewer Remote)’, 기업용 원격 연결 설루션 ‘팀뷰어 텐서(TeamViewer Tensor)’, 산업용 증강현실(AR) 플랫폼 ‘팀뷰어 프론트라인(TeamViewer Frontline)’ 등 제품군별로 전문 게시판을 운영하여 전문성과 접근성을 강화했다.     팀뷰어 한국어 사용자 커뮤니티는 사용자 간 의견을 나눌 수 있는 ‘지원 포럼’과 최신 업데이트 정보를 확인할 수 있는 ‘변경 로그’ 메뉴로 구성된다. 즉, 제품군별 전문 토론 공간을 마련하여 질문과 답변을 통한 사용자 간 경험 공유 및 전문가와의 직접 소통으로 실시간 지원을 강화한다. 특히, 중요한 제품 변경 사항과 보안 이슈를 한국어로 신속하게 안내하는 최신 공지사항 및 보안 업데이트 제공 게시판, 다양한 성공 사례를 통한 사용자 업무 생산성 향상 활용 사례와 인사이트 게시판도 한국어로 제공된다. 팀뷰어는 원격제어, 원격지원, IT 모니터링, 산업용 AR 설루션 등 다양한 분야에서 혁신을 추진하고 있으며 제조, 금융, 의료 등 디지털 전환 수요가 높은 산업군이 다수 포진해 있는 한국에 대해 자사의 글로벌 전략에서 중요한 시장이라고 보고 있다. 팀뷰어코리아의 이혜영 대표이사는 “국내 사용자들은 기술 이해도가 높고, 디지털 전환에 대한 기대치 또한 매우 높다. 이번 한국어 커뮤니티 론칭을 통해 사용자와의 접점을 확대하고, 팀뷰어 사용자의 열정과 지식을 결합해 해결 방안을 도출하며, 아이디어를 실현해 사용자 모두가 성장할 수 있는 공간을 만들고자 한다”면서, “팀뷰어 한국어 사용자 커뮤니티를 통해 국내 고객과 사용자들에 대한 지원을 강화하고, 사용자 간 교류와 지식 공유를 활성화해 팀뷰어 설루션이 가진 놀라운 가능성을 함께 경험해 볼 수 있기를 바란다”고 전했다.
작성일 : 2025-05-07
스노우플레이크, “제조업체의 데이터 협업 플랫폼 도입 2년 간 4배 이상 증가”
스노우플레이크는 자사의 ‘제조 산업을 위한 AI 데이터 클라우드(AI Data Cloud for Manufacturing)’가 자동차 산업에 특화된 설루션을 중심으로 확장하며 높은 성장세를 보이고 있다고 발표했다. 스노우플레이크에 따르면, 2023년 4월을 기준으로 2년간 전 세계 제조 산업군에서 데이터 애플리케이션 및 협업을 위해 스노우플레이크의 플랫폼을 도입한 비율은 416% 증가했고, 데이터 분석을 위해서는 185%, 고급 예측 모델링 및 AI 앱과 같은 데이터 사이언스 목적으로는 188% 늘었다.  이와 같은 제조업체의 데이터 기반 비즈니스 인사이트 확보에 대한 높은 수요에 따라, 스노우플레이크는 AI 데이터 클라우드를 자동차 산업의 특수한 요구사항을 충족할 수 있도록 정밀하게 조정하며 글로벌 제조업체의 디지털 전환 및 AI 혁신을 뒷받침하고 있다고 전했다. 커넥티드 및 소프트웨어 정의 차량(Software Defined Vehicle : SDV), 자율주행, 전기차, 인더스트리 4.0 등 자동차 산업 트렌드에 맞춰 스노우플레이크는 데이터 공유 및 AI 지원 기능으로 완성차 제조업체(OEM), 부품업체, 유통 및 서비스업체 전반의 협업과 생산 공정을 최적화하고 있다.     특히 스노우플레이크를 활용하는 자동차 관련 기업은 차량 설계부터 생산, 서비스, 보증에 이르는 전체 라이프사이클 데이터를 통합하고 사일로를 제거할 수 있게 된다. 이를 통해 운영 효율을 높이고 고객 경험을 향상시킨다. 또한 스노우플레이크 아키텍처로 SDV와 자율주행차에서 생성되는 방대한 커넥티드 데이터를 안정적으로 활용하고 확장할 수도 있다. 누적된 데이터는 스노우플레이크 마켓플레이스에서 판매할 수 있어 신규 수익원이 되기도 한다. 스노우플레이크 데이터 플랫폼은 조직 전반에서 AI·ML 기능을 손쉽게 활용할 수 있도록 해, 예측 모델 개발시간을 단축하고 차량 설계 및 유지보수의 새로운 패러다임을 주도할 수 있다. 공급망 전반의 실시간 가시성도 제공한다. 수요 예측의 정확도를 높이고 재고 관리와 비용 효율성을 높여 데이터 기반의 의사결정을 현실화할 수 있다. 스노우플레이크의 팀 롱(Tim Long) 제조 산업 부문 글로벌 총괄은 “커넥티드 및 자율주행 등 최신 차량은 방대한 데이터를 생성하고 있으며, 자동차 업계는 이를 효과적으로 처리하면서도 신뢰할 수 있는 AI 설루션이 필요해졌다”면서, “스노우플레이크의 자동차 산업 설루션은 제조 전문성을 바탕으로 자동차 기업이 데이터를 통합하고 커넥티드 차량 개발 계획을 확장하며, 시장 변화에 빠르게 대응할 수 있도록 지원한다”고 말했다. 지멘스와 같은 글로벌 기술 및 제조 기업은 스노우플레이크를 활용해 AI와 고급 분석으로 전사적 운영을 혁신하는 동시에 엄격한 보안 및 거버넌스 기준을 유지하고 있다. 전 세계 주요 완성차 제조업체(OEM)의 약 80%가 스노우플레이크 플랫폼을 활용 중이며, 닛산, 카맥스(CarMax), 콕스 오토모티브(Cox Automotive), 펜스케 로지스틱스(Penske Logistics) 등은 실시간 커넥티드 차량의 인사이트와 안전한 데이터 협업으로 운영 효율을 높이고 있다. 스노우플레이크는 이외에도 액센츄어, 아마존웹서비스, 딜로이트, EY 등 글로벌 파트너와 함께 자동차 산업에 특화된 AI 및 데이터 설루션을 확장하고 있으며, 지멘스 디지털 인더스트리 소프트웨어, 블루욘더(Blue Yonder), 랜딩AI(LandingAI), 멘딕스(Mendix), 시그마(Sigma) 등 다양한 파트너사가 스노우플레이크 플랫폼에서 SDV 개발, AI 기반 품질 관리, 공급망 최적화 등 전문 설루션을 개발하며 생태계를 확장하고 있다고 밝혔다.
작성일 : 2025-05-07
IBM, 150개 이상의 사전 구축형 도구 포함하는 기업용 AI 에이전트 통합 설루션 출시
IBM이 연례 행사인 ‘씽크 2025(THINK 2025)’ 콘퍼런스에서 기업이 자체 데이터를 활용해 AI 에이전트를 구축·배포할 수 있도록 지원하는 새로운 하이브리드 기술을 공개했다. IBM에 따르면, AI 에이전트는 단순히 사용자와 대화하는 수준에서 벗어나 실질적으로 업무를 수행하는 시스템으로 진화하고 있다. 그러나 여전히 많은 기업은 다양한 환경, 애플리케이션, 데이터 전반에서 이들을 통합하는 데 어려움을 겪는다. IBM은 왓슨x 오케스트레이트(watsonx Orchestrate)에서 엔터프라이즈용으로 준비된 종합적인 에이전트 기능 제품군을 제공해 기업들이 이를 실무에 적용할 수 있도록 지원한다. 이 포트폴리오는 노코드(no-code)에서 프로코드(pro-code)까지 다양한 사용자 유형이 사용할 수 있는 툴을 제공해 손쉽게 에이전트를 통합·개인화·배포할 수 있다. 그리고 인사(HR), 영업, 구매 등의 특화 영역에서 즉시 사용 가능한 에이전트와, 웹 리서치·계산 같은 간단한 작업용 유틸리티 에이전트를 제공한다. 어도비, 아마존웹서비스(AWS), 마이크로소프트, 오라클, 세일즈포스 에이전트포스(Salesforce Agentforce), SAP, 서비스나우, 워크데이 등 80개 이상 주요 비즈니스 애플리케이션과 연계를 제공하며, 여러 에이전트와 도구를 조율해 업무 절차를 계획하고 적절한 AI 도구로 업무를 분배할 수 있도록 지원하는 것도 특징이다. 이외에도 성능 모니터링, 안전장치, 모델 최적화, 거버넌스 기능을 통해 에이전트 라이프사이클 전반을 관리한다. 또한, IBM은 왓슨x 오케스트레이트에 에이전트 카탈로그를 도입해 IBM과 파트너 생태계인 박스, 마스터카드, 오라클, 세일즈포스, 서비스나우, 심플리스틱.ai, 11x 등에서 제공하는 150개 이상 에이전트 및 사전 구축형 도구에 쉽게 접근할 수 있도록 했다. 예를 들어, 세일즈포스 에이전트포스에서 잠재 고객을 찾아 불러오는 영업용 에이전트나 슬랙에서 사용할 수 있는 HR 대화형 에이전트 등이 있다. IBM은 “이러한 혁신은 기업이 AI 에이전트를 통해 단순한 채팅 수준을 넘어 실질적인 업무 자동화와 복잡한 프로젝트 관리까지 확장할 수 있도록 돕는다”고 소개했다. IBM의 아빈드 크리슈나(Arvind Krishna) 회장 겸 CEO는 “AI 실험의 시대는 끝났다. 오늘날의 경쟁 우위는 측정 가능한 비즈니스 성과를 만드는 맞춤형 AI 통합에서 나온다. IBM은 복잡성을 해소하고 실전 배치가 가능한 AI 구현을 가속화할 수 있도록 하이브리드 기술로 기업을 지원하고 있다”고 말했다.
작성일 : 2025-05-07
AWS, ‘AWS 서밋 서울 2025’에서 생성형 AI·클라우드 혁신과 미래 전략 공개
아마존웹서비스(AWS)는 오는 5월 14일~15일 서울 코엑스에서 ‘AWS 서밋 서울 2025(AWS Summit Seoul 2025)’를 개최한다고 발표했다. 올해로 11주년을 맞이한 ‘AWS 서밋 서울’은 2015년부터 십만 여명 이상의 관람객이 참여해 온 클라우드 기술 컨퍼런스로, 올해는 역대 최대 규모인 2만 2000명 이상의 관람객이 현장을 찾을 것으로 보인다. 정부 부처 및 다양한 산업군의 리더와 IT전문가 및 일반 참가자들이 최신 클라우드 기술과 생성형 AI 혁신을 학습하고 경험할 수 있는 자리로, 산업별 혁신 사례와 실무 중심의 세션이 다채롭게 마련된다. 이번 서밋은 클라우드 및 생성형 AI의 최신 혁신을 집중적으로 다루며, 기조연설과 세션, 엑스포(EXPO)를 통해 참가자들에게 실질적인 인사이트를 제공한다. 특히, 클라우드 및 생성형 AI 혁신을 다루는 70개 이상의 고객사 세션을 포함한 110개 이상의 세션과 50개 이상의 파트너사가 참여할 예정이다. 올해는 생성형 AI 중심의 엑스포 부스를 통해 일상생활의 다양한 부분을 생성형 AI로 경험할 수 있는 최신 기술과 서비스를 직접 체험할 수 있다. 행사 첫날인 ‘인더스트리 데이’의 기조연설은 AWS 코리아의 함기호 대표가 AWS가 생성형 AI 시대에 맞춰 고객 혁신을 지원하는 전략과 사례에 대해 발표하고, 이어서 AWS 서밋 서울을 위해 방한한 AWS의 야세르 알사이에드(Yasser Alsaied) IoT 부문 부사장이 IoT 및 생성형 AI 기술을 활용한 비즈니스 혁신과 미래 전망을 공유한다. 또한, 현대카드의 배경화 디지털 부문 대표(부사장)와 트웰브랩스 이재성 CEO가 AWS 활용을 통해 이루어 낸 혁신 사례를 소개하며 실제 성과와 비즈니스 확장 계획에 대해 공유할 계획이다. 이어서 10개 트랙, 60여 개의 세부 세션이 진행되며, 각 산업별 AWS 고객 및 파트너사가 최신 AWS 활용 사례 및 성과를 공유한다. 둘째 날인 ‘코어 서비스 데이’는 AWS의 기술 리더들이 차세대 클라우드 및 AI 설루션을 조망한다. 아마존의 버너 보겔스(Werner Vogels) 부사장 겸 CTO, AWS의 디팍 싱(Deepak Singh) 차세대 개발자 경험 부문 부사장, 티맵모빌리티 김재순 플랫폼 담당, AWS코리아 윤석찬 수석 테크 에반젤리스트가 기조연설을 맡아 클라우드 기술의 진화와 비즈니스 기회에 대한 인사이트를 제공하며 50여개 이상의 기술 세션이 진행될 예정이다. 엑스포에서는 다양한 존을 통해 최신 기술 트렌드와 혁신적인 생성형 AI 기반 설루션을 직접 체험할 수 있다. 스케치 랩(Sketch Lab)에서는 참가자가 즉석에서 종이에 그린 그림이 생성형 AI 서비스 아마존 노바(Amazon Nova)를 통해 즉시 플레이 가능한 게임 캐릭터로 변환되며, 생성형 이미지와 영상, 대화형 인터페이스, IoT 연동 요소까지 포함한 몰입감 있는 체험을 제공한다. 코믹 AI(Comic AI) 스튜디오에서는 한국을 대표하는 유명 만화가의 스타일로 그려진 나만의 캐릭터를 생성하고 실시간 대화를 통해 스토리를 만들 수 있다. 인더스트리 엑스포(AWS for Industries)에서는 대한항공의 나만의 승무원(AI Crew), 골프존과 함께하는 나만의 골프코치(AI Golf Coach)는 아마존 세이지메이커(Amazon SageMaker) 기반 정밀 스윙 분석 및 생성형 AI를 활용한 맞춤 자세 교정을 슈퍼톤(Supertone)의 실시간 음성 기술과 결합하여 효과적인 코칭을 제공한다. 이외에도, 디지털 헬스케어 스타트업 아이픽셀과 함께 하는 AI 기반 맞춤형 피트니스, LG생활건강의 AI 피부 진단 설루션, 업스테이지(Upstage)와 함께하는 AI 발표자료 리뷰 플랫폼 등 산업 현장에서 활용되는 다양한 AI 설루션을 선보인다. 생성형 AI존 에서는 아마존 노바, 아마존 Q 디벨로퍼(Amazon Q Developer) 등 AWS의 최신 기술을 경험하고, 개발자를 위한 디벨로퍼 라운지 (Dev Lounge)에서는 클라우드 기반 AI 설루션의 실무 적용 사례를 확인할 수 있다. 특히, AI 뮤직 스타트업 포자랩스, AI 음성 기술 기업 수퍼톤과 협업하여 아마존 세이지메이커(Amazon SageMaker) 서비스로 구현한 ‘AWS 서밋 AI 음악 프로젝트’ 음원을 서밋 기조연설 무대에서 공개함으로써, AI기술의 대중화 가능성을 선보인다. AWS 코리아 함기호 대표는 “생성형 AI와 클라우드 혁신이 산업 전반의 패러다임을 변화시키고 있는 가운데, ‘AWS 서밋 서울’은 기업들이 가장 최신의, 새로운 기술을 통한 혁신의 가능성을 모색하고, 이를 실질적인 성과로 연결할 수 있도록 돕는 자리”라며, “이번 서밋을 통해 최신 기술을 통한 비즈니스 혁신 사례와 생성형 AI로 열어가는 무한한 가능성의 미래를 직접 경험하고, 디지털 전환을 가속화할 인사이트를 제공하고자 한다”고 말했다.
작성일 : 2025-05-02
수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석
최적화 문제를 통찰하기 위한 심센터 히즈 (3)   이번 호에서는 심센터 히즈(Simcenter HEEDS)를 사용하여 수집된 외부 데이터를 시각화하고 분석하는 데 초점을 맞추고, 데이터 시각화의 중요성과 분석 기법의 활용 방안을 살펴본다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 및 사례 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 및 사례 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 및 사례 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 및 사례 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화 및 사례   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   데이터 분석의 중요성 오늘날 데이터는 우리의 일상과 비즈니스 운영에서 점점 더 중요한 역할을 하고 있다. 수집되고 측정된 데이터의 양이 증가하면서 이를 효과적으로 처리하고 분석하는 방법은 더욱 필요해지고 있다. 이러한 변화 속에서, 지멘스의 심센터 히즈는 강력한 데이터 분석 및 시각화 기능을 제공하여 다양한 산업 분야에서 최적의 해결책을 찾는 데 기여하고 있다. 이번 호에서는 히즈의 기능을 효과적으로 활용하여 어떻게 복잡한 데이터를 이해하고 의미 있는 인사이트를 얻을 수 있는지 살펴볼 것이다.   히즈의 데이터 분석 기능 히즈의 Discover(디스커버) 탭은 사용자가 데이터 사이의 관계 및 최적화 가능성을 탐구할 수 있도록 다양한 도구를 제공한다. Discover 기능은 주요한 데이터 분석 및 이해를 도와주는 여러 방법을 포함하고 있다.    그림 1   다음은 각각의 기능에 대한 설명이다.  Closest : 특정 데이터 포인트에 가장 가까운 변화를 식별한다. 이를 통해 최적화 과정에서의 데이터 민감성을 이해하고 결정에 도움을 줄 수 있다.  Similar : 사용자가 선택한 기준에 따라 유사한 데이터 집합을 찾는 기능이다. 이는 집합의 규칙 또는 모델을 파악하는 데 유용하다. Clusters : 데이터 세트를 서로 연관된 그룹으로 분류한다. 군집화 기법을 통해 데이터의 패턴을 식별하고 알고리즘에 의한 데이터 이해를 개선할 수 있다.  Trade-offs : 다수의 설계 목표 간의 상충 관계를 분석한다. 이를 통해 각각의 설계 대안이 어떻게 특정 목표를 달성하는지에 대해 명확하게 이해할 수 있다.  Patterns : 데이터 내의 반복되는 경향이나 구조를 발견하여 예측 및 모델링에 도움을 주는 기능이다. 패턴 인식은 정보의 신뢰도를 높이는 데 중요하다.  Preview History : 사용자가 수행한 변경이나 실행의 기록을 미리 보면서 데이터 분석의 이력을 관리할 수 있다.  Design Set : 여러 디자인 시나리오를 만들고 비교하여 최적의 설계를 도출하는 데 도움을 준다.  Performance & Plot : 데이터의 성능을 평가하고 시각적으로 플롯하여 분석 결과를 명확하게 표현한다.  Discover 탭의 이러한 기능은 히즈 사용자가 데이터를 깊이 이해하고 시뮬레이션 최적화 과정에서 효과적인 의사 결정을 내리도록 돕는다. 이를 바탕으로 보다 정확하고 신뢰성 있는 설계와 분석 결과를 도출할 수 있다.   데이터 분석을 위한 예제   그림 2    목적함수 외팔보 H빔의 체적을 최소화 제약 조건 최대 굽힘 응력(σ) ≤ 200 MPa  최대 끝단 처짐(δ) ≤ 2 mm  설계 변수 Length : 5,000 mm  Load P : 6,500 N  E : 200 MPa  H : 50 mm ≤ H ≤ 100 mm  h1 : 5 mm ≤ h1 ≤ 30 mm  b1 : 50 mm ≤ b1 ≤ 100 mm  b2 : 5 mm ≤ b2 ≤ 50 mm 히즈의 Discovery Method를 사용하여 분석할 데이터는 우리가 지금까지 계속 예제로 사용한 외팔보의 처짐 문제를 기반으로 Adaptive Sampling Study(어댑티브 샘플링 스터디)에서 500개의 데이터를 생성하여 사용할 것이다. 아니면 독자들이 가지고 있는 데이터를 사용해도 괜찮다.   그림 3     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[핫윈도] 디지털 트윈 기대 속에 실질적 도입과 확산 위한 노력 필요
캐드앤그래픽스 디지털 트윈 설문조사 분석   디지털 트윈 기술에 대한 관심이 국내 제조 및 엔지니어링 업계를 중심으로 높아지고 있지만, 실제 산업 현장에서는 여전히 다양한 현실적 제약에 직면해 있는 것으로 나타났다. 캐드앤그래픽스는 국내 디지털 트윈 현황을 집대성한 ‘디지털 트윈 가이드’를 발간하고, 국내 제조 및 엔지니어링 업계 관계자를 대상으로 3월 13일부터 4월 14일까지 ‘국내 디지털 트윈 현황 설문조사’를 실시했다. 총 1212명이 참여한 이번 설문조사에서는 디지털 트윈의 이해도, 적용 분야, 도입 단계, 구축 시 어려움 등 다양한 관점에서 기술의 현주소를 조망했다. 특히 디지털 트윈을 실제로 사용 중인 기업과 종사자를 대상으로 진행한 심층 조사에서는 기술 도입 과정에서의 구체적인 어려움과 향후 투자 계획 등 실질적인 인사이트가 도출됐다. ■ 최경화 국장   설문조사 개요 및 참가자 현황 이번 설문조사는 국내 제조 엔지니어링 업계 관계자 1212명을 대상으로 진행되었다. 설문 참가자들의 배경은 다양한 산업 분야에 걸쳐 있었으며, 이는 디지털 트윈 기술이 단일 산업에 국한되지 않고 여러 분야에서 관심을 받고 있음을 시사한다. 참가자들의 직무 또한 연구개발, 설계, 생산, 관리 등 다양한 영역에 분포하고 있어, 디지털 트윈 기술이 기업 내 여러 부서와 직무에 걸쳐 중요성을 인정받고 있음을 알 수 있었다. 디지털 트윈 관련 업무 분야에서도 다양한 응답이 나타나, 이 기술의 응용 범위가 넓어지고 있음을 확인할 수 있다.   주력 산업 분야 설문 응답자들의 주력 산업 분야는 ‘건축/건설/토목’(22.7%)과 ‘전기전자/하이테크/반도체’(17.9%), ‘시각화/그래픽/디자인’(14.2%) 등이 높은 비중을 차지했으며, 자동차, 플랜트 등 다양한 산업 분야가 분포되어 있음을 알 수 있다.   그림 1. 설문 응답자 현황 - 주력 산업 분야   직무 분야 설문 응답자들의 직무 분포는 ‘엔지니어’(41.2%)가 압도적으로 높은 비율을 보였고, ‘경영진/임원’(15.9%), ‘SW 개발’(14.3%) 순으로 나타나, 기술 및 관리 직무 종사자들의 높은 관심을 반영했다.   그림 2. 설문 응답자 현황 – 직무   디지털 트윈 관련 업무 분야 설문 응답자들의 디지털 트윈 관련 업무 분야에 대해서는 CAD/3D 모델링이 가장 높게 나타났고, AI/머신러닝, CAE/시뮬레이션 순으로 나타났다.    그림 3. 설문 참가자 현황 - 디지털 트윈 관련 업무 분야   국내 디지털 트윈 도입 현황 - 뜨거운 기대감과 더딘 현실 디지털 트윈 이해 수준 기술에 대한 이해 수준은 아직 부족한 것으로 나타났다. 디지털 트윈 이해 수준에 대해서는 ‘대체로 알고 있다’(36.8%)와 ‘조금 알고 있다’(37.2%)가 비슷한 비율을 보였으며, ‘매우 잘 알고 있다’ (10.4%)는 소수에 불과했다. ‘잘 모른다’(15.6%)는 응답도 상당수를 차지했다. 이는 기술에 대한 인지도는 높지만, 깊이 있는 이해와 활용 능력은 아직 부족하다는 점을 시사한다.   그림 4. 디지털 트윈에 대한 이해 수준   디지털 트윈 발전 전망 반면, 디지털 트윈의 미래에 대한 업계의 기대는 매우 컸다. 향후 디지털 트윈 발전 전망에 대한 응답에 따르면 ‘매우 중요하게 성장할 것’(66%)과 ‘다소 성장할 것’(30.5%)이라는 답변이 전체의 압도적인 대다수를 차지했다. 또한 전체 응답자의 96.5%가 기술의 중요성과 잠재력에 대해 폭넓은 공감대를 형성하고 있음을 확인시켜 주었다.   그림 5. 디지털 트윈 향후 발전 전망   디지털 트윈 사용 기업 및 도입 현황 디지털 트윈을 실제로 사용하고 있는 기업 및 유저를 대상으로 한 심층 조사에는 총 385명이 참여했다. 이들 기업의 규모는 매출액과 직원 수를 기준으로 다양하게 분포하고 있어, 디지털 트윈 기술이 대기업뿐 아니라 중소기업에서도 점차 도입되고 있음을 알 수 있다.   디지털 트윈 사용 기업 규모 디지털 트윈 사용 기업의 매출액은 5000억원 이상이 48.8%를 차지해 가장 높은 분포를 보였으며, 1000억원 이상~500억원 미만이 13.2%로 큰 기업들이 주로 관심을 가지고 있었음을 알 수 있었다. 직원 수도 5000명 이상이 32.2%로 가장 높은 수치를 차지했으며, 1000명~5000명 미만이 17.9%, 100명~500명 미만이 11.7% 순으로 나타났다.    그림 6. 디지털 트윈 사용 기업 매출액   디지털 트윈 사용 기업 적용 분야 디지털 트윈 적용 분야는 ‘제품 설계 및 시뮬레이션’(66.8%), ‘생산/제조 운영’(43.9%), 설비 모니터링 및 유지보수(39.2%) 순으로, 제품 개발과 생산 영역에 활용이 집중되는 경향을 보였다. 제조 분야에 비해서는 사용이 적지만 도시, 에너지, 교통, 물류, 의료 등 다양한 영역에서 활용되고 있음을 확인할 수 있다. 특히 제조업 분야에서는 생산 공정 최적화, 품질 관리, 설비 예지 보전 등의 목적으로 활용되고 있을 것으로 추정된다.   그림 7. 디지털 트윈 적용 분야   디지털 트윈 적용 목적 디지털 트윈을 적용하는 주요 목적은 ‘설계 최적화’(61.0%), ‘생산성 향상’(54.5%), ‘운영 효율화’(46.2%) 등 효율성 증대 관련 항목들이 우위를 점했다.   그림 8. 디지털 트윈 적용 목적   디지털 트윈 도입 단계 아직까지 디지털 트윈에 대한 관심은 높지만 실제 사용 보다는 검토 중인 기업이 많은 것으로 나타났다. 디지털 트윈 사용 기업의 도입 단계 관련 답변을 보면, ‘도입 검토 중’(43.6%)이 가장 큰 비중을 차지했다. 이어 ‘일부 시스템 도입 완료’(18.4%), ‘PoC(파일럿) 진행 중’(12.2%), ‘전사 확산 및 활용 중’은 4.2% 순으로, 본격적인 활용 단계에 진입한 기업은 소수임을 알 수 있었다. ‘도입 계획 없음’(17.9%)이라는 응답도 적지 않았다.    그림 9. 디지털 트윈 도입 단계   다양한 상용 디지털 트윈 툴 사용… 자체 개발·검토도 다수 디지털 트윈 기술의 확산과 함께, 국내 기업들이 활용 중인 디지털 트윈 소프트웨어 및 플랫폼은 매우 다양하며, 기업별로 도입 단계나 활용 수준에서도 큰 차이를 보이는 것으로 나타났다. ‘현재 사용 중인 디지털 트윈 툴’에 대한 주관식 응답 결과를 분석해 보면, 국내 산업계는 BIM 기반 플랫폼, CAE 시뮬레이션 도구, PLM 및 협업 플랫폼, 그리고 게임 엔진 기반 시각화 도구를 중심으로 디지털 트윈 기술을 도입하고 있는 것으로 나타났다. 아래 내용은 답변 내용을 중심으로 정리한 것이다.   BIM 및 설계 중심 소프트웨어의 강세 디지털 트윈 구축의 초기 단계에서 가장 두드러지는 분야는 설계 기반 모델링(BIM) 도구다. 응답자 중 상당수가 오토데스크의 레빗(Revit), 오토캐드, 시빌 3D(Civil 3D), 나비스웍스(Navisworks) 등을 사용하고 있다고 응답했다. 벤틀리 시스템즈의 아이트윈(iTwin), 트림블의 테클라(Tekla) 및 트림블 커넥트(Trimble Connect), 아비바의 아비바 E3D(AVEVA E3D) 등도 건설·플랜트 산업에서 활용하고 있다고 답변했다.   정밀 해석 기반의 시뮬레이션 툴 확산 앤시스(Ansys), 아바쿠스(Abaqus), 하이퍼웍스(HyperWorks), LS-DYNA, 시뮬링크(Simulink), 아담스(Adams), GT-스위트(GT-Suite), 플렉스심(FlexSim) 등 해석 전문 툴의 사용도 두드러졌다. 특히 제품 설계나 공정 시뮬레이션에서 정밀한 모델링이 필요한 제조업, 자동차, 중공업 분야에서는 다물리 해석 툴 기반의 디지털 트윈 구현이 주를 이뤘다.   PLM 기반 통합 디지털 플랫폼도 주목 설계-생산-운영 전 주기를 통합 관리하기 위한 PLM 기반 플랫폼도 활발히 사용되고 있다. 다쏘시스템즈의 3D익스피리언스(3DEXPERIENCE), 카티아(CATIA), 에노비아(ENOVIA), 지멘스의 NX, 팀센터(Teamcenter), 플랜트 시뮬레이션(Plant Simulation), PTC의 크레오(Creo), 윈칠(Windchill), 씽웍스(ThingWorx) 외에도 전문 툴인 비주얼컴포넌트 등은 스마트 공정 및 운영 관리까지 연계된 디지털 트윈 구현에 활용되고 있는 것으로 보인다.   게임엔진 기반 실시간 시각화 기술 부상 유니티(Unity), 언리얼 엔진(Unreal Engine), 트윈모션(Twinmotion), 엔비디아 옴니버스(Omniverse) 등 게임엔진 기반 시각화 도구는 실시간 협업과 현장 시뮬레이션에서 각광받고 있다. 특히 언리얼엔진, 유니티와 옴니버스 등은 다른 플랫폼과의 연동성을 강화해 디자인 협업 및 공정 검증에 널리 활용되고 있다.   자체 설루션 및 커스터마이징 비율도 높아 이밖에도 국산 설루션인 이에이트, 소프트힐스, 버넥트, 한국디지털트윈연구소 설루션을 이용하고 있다는 응답도 있었다. 흥미로운 점은 응답자의 상당수가 ‘인하우스 개발’ 또는 ‘자체 플랫폼’, ‘프로젝트마다 요구사항 수렴 방식’ 등의 형태로 독자적인 디지털 트윈 시스템을 운영하고 있다는 것이다. 이는 특정 상용 설루션만으로는 각기 다른 업무 흐름이나 도메인 지식을 완벽히 반영하기 어렵기 때문으로 분석된다. 또한 ‘아직 도입 예정’ 또는 ‘검토 단계’라는 응답도 적지 않아, 디지털 트윈 도입의 확산은 진행 중인 흐름임을 알 수 있다.   넘어야 할 장벽 : 현장의 목소리로 본 핵심 과제 디지털 트윈의 확산이 더딘 배경에는 공통적으로 지적된 여러 장애물이 존재했다. 특히 높은 비용과 불확실한 ROI는 가장 큰 걸림돌로 지목됐다.   디지털 트윈 시스템 구축의 어려움 디지털 트윈 사용 기업이 꼽은 구축 시 가장 큰 어려움으로 ‘초기 투자 비용’(24.4%)과 ‘전문 인력 부족’(20.5%)이 가장 높은 비율을 차지했다. 그 뒤를 이어 ‘ROI 분석의 어려움’(16.6%), ‘경영진의 이해 부족’(15.1%) 순으로 나타났다. 주관식 답변에서는 고비용의 소프트웨어, 외산 설루션 및 3D 프로그램의 높은 라이선스 비용, 디지털 전환(DX) 도입 및 유지보수 비용 과다 등 경제적 부담에 대한 토로가 많았다. 특히 기대효과가 명확해야 한다, 비용 대비 효율이 확보되지 않으면 불가능하다, 실질적인 경영 효과로 어떻게 연결되는지 의문이라며, 투자를 정당화할 명확한 성과 측정과 검증된 성공 사례 부족을 지적했다. 전문 인력 부족 문제는 교육 시스템의 부재와 연계돼 있으며, 현장에서는 관련 교육 기회가 부족하다는 지적이 많았다. 경영진의 이해 부족도 중요한 문제로 나타났다.   그림 10. 디지털 트윈 구축 시 어려움   디지털 트윈 시스템 구축 관련 투자 계획 이러한 어려움에도 불구하고, 향후 디지털 트윈에 대한 투자 의향은 비교적 긍정적이었다. 사용 기업의 향후 투자 계획을 보여주는 그래프를 보면, ‘2년 이내’(31.4%), ‘1년 이내’(19.0%), ‘6개월 이내’(11.4%) 등 2년 내 투자 계획이 있다는 응답이 전체의 61.8%를 차지했다. 반면에 ‘도입 계획 없음’(26.2%)도 상당수 있었다.   그림 11. 향후 투자 계획   미래 투자 방향과 나아갈 길 전체 응답자가 디지털 트윈 확산을 위해 가장 필요하다고 꼽은 요소를 가중치 순으로 나타낸 그래프를 보면, ‘경영진의 의지와 디지털 트윈에 대한 이해’가 다른 항목을 큰 차이로 앞서며 압도적인 1위를 차지하고 있음을 확인할 수 있다. 또한 실제 사용 기업이 겪는 어려움에서도 ‘경영진의 이해 부족’이 중요한 요인으로 드러났다. 주관식 답변에서는 ROI 증명의 어려움과 맞물려 경영진 설득의 어려움을 토로하거나, 심지어 “실제 시험을 안 해도 된다고 생각하는 경영진이 많다”는 언급까지 나와, 리더십의 인식 개선이 시급함을 알 수 있었다. 표준화의 부재 역시 반복적으로 지적되었다. 응답자들은 데이터 표준화, 3D CAD 포맷 변환, 시스템 간 호환성 부족 등을 구체적인 문제로 언급했다.   그림 12. 디지털 트윈 시스템 구축과 확대를 위해 가장 필요한 것   구체적 정보와 성공 사례의 부족 또한 큰 장벽이다. 응답자들은 산업별 사례, 성공 및 실패 경험 등을 통한 실질적 정보 공유를 절실히 요구하고 있다. 이 밖에도 데이터 확보의 어려움, 외산 소프트웨어 의존도, 기술 복잡성, 국산 소프트웨어 개발의 필요성 등이 복합적으로 언급되며, 생태계 전반에 대한 개선이 필요함을 시사했다. 따라서 성공적인 디지털 트윈 도입과 확산을 위해서는 산적한 과제를 해결하기 위한 다각적인 노력이 필요하다. 현장의 목소리와 설문 데이터는 다음과 같은 방향을 제시하고 있다. 정부의 적극적인 역할 : 중소기업 지원 확대 , R&D 지원 및 국산 소프트웨어 육성, 산업 표준화 주도, 선도적인 인프라 투자 및 정책 지원 등 정부의 체계적이고 일관성 있는 지원 정책이 요구된다. 실질적 가치 증명 및 정보 공유 : 명확한 ROI 산정 모델 개발, 산업별 성공/실패 사례 발굴 및 투명한 공유, 기술 효용성에 대한 적극적인 홍보와 교육 강화가 필요하다. 표준화 및 기술 개발 : 데이터 형식 통일, 호환성 확보 등 산업 표준을 조속히 마련하고, 사용자 편의성을 높인 기술 및 플랫폼 개발 노력이 필요하다. 인력 양성 및 생태계 조성 : 실무 중심의 교육 프로그램 개발발 및 전문가 양성 시스템 구축, 산학연관 협력 시스템 강화가 필요하다.   맺음말 : 잠재력 현실화 위한 협력과 실질적 노력 시급 이번 설문조사는 디지털 트윈에 대한 국내 산업계의 높은 관심과 함께, 도입을 가로막는 다양한 현실적 장애 요인을 통계와 목소리로 생생하게 보여준 것이라고 할 수 있다. 이 같은 결과는 국내 산업계에서 디지털 트윈 도입이 활발히 이루어지고 있으나, 여전히 도입 도구의 표준화, 조직 내 전사적 활용, 실제 업무 흐름과의 통합 등에서 과제가 많다는 점을 보여준다. 향후에는 상용 툴과 자체 개발 플랫폼 간의 융합 전략, 그리고 데이터 연동성과 유지관리 측면에서의 체계적인 접근이 더욱 중요해질 것으로 보인다. 또한 디지털 트윈이 제조업 혁신의 핵심 동력으로 자리매김하기 위해서는 산업계, 정부, 학계가 함께 협력해 실질적인 해결책을 모색하고, 지속 가능한 생태계를 조성하려는 노력이 절실하다고 할 것이다.     ■ 기사 상세 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[칼럼] 실용형 AI, 제조의 미래를 바꾸다
트렌드에서 얻은 것 No. 23   “AI는 모든 산업에 새로운 가능성을 열어 준다. 중요한 것은 기술이 아니라, 그것을 어떻게 활용하느냐이다.” – 사티아 나델라(Satya Nadella), 마이크로소프트 CEO 마이크로소프트는 생성형 AI를 다양한 산업에 통합하며, 기술의 활용 방식에 중점을 두고 있고,  나델라의 말은 기술 도입보다 전략적 활용이 중요하다는 점을 강조한다.   생성형 AI와 함께 설계하고, 시뮬레이션하고, 개선하라 지금 이 이야기를 한국의 제조기업에 가서 한다면, 이상한 사람 취급을 받을 수 있다. 당장, 어떻게 할 수 있는지 이야기할 수 있느냐? 우리도 그렇게 하고 싶은데, 어떻게 할 수 있는지 제대로 나온 것도 없고, 사례가 있는지 등의 얘기가 자연스럽게 나온다. 맞는 말이다. 하지만, 지금은 레이스의 출발선에서 모두 같은 상황일 것이다. 다만, 전체를 제어하고 미래를 설계하는 혜안이 있는 사람이나 조직 유무에 따라 회사들의 달리기 속도는 분명 차이가 날 것이다.  우리는 그런 시대를 살아가고 또 지나가고 있다. 뉴스에서 다른 회사의 소식을 들으면서 탄식을 하고 있을 것인가, 아니면 고통스럽더라도 뭔가 해 보는 것이 낫지 않느냐의 갈림길에 있다. “그럼에도 불구하고, 우리는 설계할 수 있다.” 그렇다. ‘생성형 AI로 설계하고, 시뮬레이션하고, 개선하라’는 말은 지금의 제조 현장에선 거대한 간극처럼 느껴진다. 공장의 열기와 노하우 속에서 살아온 실무자에게는 뜬구름 잡는 이야기처럼 들릴 수 있다. “AI가 좋다는데, 어디까지 해봤나?”, “누가 이걸 설계에 실제로 썼대?” 이런 질문은 당연한 것이고, 오히려 현실을 잘 아는 사람일 수록 더 조심스러운 반응을 보인다. 그러나 지금, 우리는 모두 레이스의 출발선에 서 있다. 완성된 길도, 검증된 답도 아직 없다. 그러니 이 때 필요한 건 기술보다 먼저 혜안을 가진 사람, 구조를 설계할 수 있는 리더다. 단 한 줄의 프로토타입이라도 그려보려는 엔지니어, 익숙한 보고서보다 새로운 질문을 고민하는 팀장, 시행착오를 감수하고 방향을 잡으려는 임원이 지금 이 시대의 속도를 결정짓는다. 그리고 그 ‘혜안’은 거창한 청사진이 아닐 수도 있다. 단 하나의 설계 데이터를 기반으로 AI에게 첫 도면을 그리게 해보는 실험, 실시간 현장 일지에서 이상 징후를 요약하게 해 보는 시도, 현장의 사진 데이터로 품질 검사 자동화를 위한 검출 모델을 훈련해 보는 도전 등이 현 시점에서 예상해 볼 수 있는 가까운 미래 모습일 것 같다. “우리는 예상치 못한 상황을 목격하고, 예상된 상황을 보고하며, 결국 승리할 것입니다.” – 알렉스 카프, 팔란티어 CEO 카프는 AI를 활용한 제조업의 혁신이 불확실성을 극복하고 성공으로 이끄는 열쇠라고 보고 있으며, 이는 생성형 AI를 통한 제조업의 미래를 긍정적으로 전망한다.    그림 1. 실용형 AI 맵 ‘제조 미래를 바꾸다’(Map by 류용효) (클릭하면 큰 이미지로 볼 수 있습니다.)   제조, AI를 다시 만나다 “설계는 끝났지만, 고객은 원하지 않는다.”  “시뮬레이션은 끝났지만, 현장은 여전히 오류를 반복한다.”  “보고서는 쌓이지만, 문제는 여전히 현재진행형이다.” 이 문장들은 지금도 수많은 제조 현장에서 반복되고 있다. 전통적인 제조 프로세스는 분업과 효율을 중심으로 설계되었지만, 급변하는 고객의 요구와 복잡해진 제품 환경은 기존 체계의 민첩성과 창의성에 한계를 드러낸다. 이제 제조기업은 하나의 질문 앞에 서 있다. “우리는 더 빠르고 똑똑한 공장을 가질 준비가 되었는가?” 생성형 AI는 단순한 자동화 기술이 아니다. 설계자의 의도를 읽고 CAD 모델을 생성하며, 수십 개의 시뮬레이션으로 프로세스 병목을 알려주고, 품질 이상을 예측할 뿐 아니라 원인을 유추해주는 ‘설계적 사고를 하는 AI’가 등장하고 있다. 이는 기술의 도입이 아니라 제조기업의 ‘운영 철학’ 자체가 전환되는 순간이다. 제조기업이 생성형 AI와 함께 앞으로 어떻게 설계하고, 시뮬레이션하고, 개선할 수 있을지를 구체적으로 조망한다. “AI는 인류가 만든 가장 중요한 기술이다. 우리는 그것을 책임감 있게 개발하고 활용해야 한다.” – 순다르 피차이(Sundar Pichai), 구글 CEO 구글은 AI 개발에 있어 윤리적 책임과 사회적 영향을 고려하고 있으며, 피차이의 말은 기술 발전과 함께 그에 따른 책임도 중요하다는 점을 상기시켜 준다.   디자인의 재정의 - AI는 창의적인 엔지니어인가? 전통적인 제조 설계 과정은 복잡한 조건 설정, 반복적인 수정, 협업 간의 커뮤니케이션 비용 등으로 인해 수많은 시간과 리소스를 요구해왔다. 하지만 이제, 생성형 AI는 텍스트 한 줄로 설계를 시작하게 한다. “3개의 모듈로 구성된 소형 드론 프레임을 설계해 줘. 탄소 섬유 기반으로 무게는 150g 이하로.” 이 한 문장으로 AI는 초기 설계안을 생성하고, 다양한 대안 모델을 제공하며, 사용자 요구조건에 따라 자동 최적화를 제안한다. AI는 도면을 '그리는 도구'가 아니라, '제안하고 비교하는 동료 엔지니어'로 진화하고 있다. 예를 들어, 오토데스크의 퓨전 360(Fusion 360), 엔톱(nTop), 다쏘시스템의 3D익스피리언스 웍스(3DEXPERIENCE Works)는 이미 생성형 디자인 기능을 내장하고 있다.  디자이너는 아이디어를 제공하고, AI는 그에 기반한 설계 패턴을 도출한다. 이는 ‘무에서 유를 만드는’ 것이 아니라, 수많은 설계 데이터를 학습한 AI가 새로운 패턴과 조합을 도출해내는 방식이다. 결과적으로 설계자는 더 이상 반복적인 CAD 작업자가 아니다. 이제 디자이너는 ‘기획자’이자 ‘비평가’, 그리고 ‘AI와 협력하는 설계 전략가’가 된다. 또한, 이러한 생성형 설계는 대량 맞춤형 생산(mass customization)과의 결합으로 그 진가를 발휘한다. 기존에는 옵션이 제한된 범용 제품만이 경제성이 있었지만, 생성형 AI는 고객의 요구사항을 빠르게 읽고 즉시 설계에 반영할 수 있다. 이는 ‘고객이 참여하는 설계’, 즉 코디자인(co-design) 시대의 도래를 가능하게 한다. 기업은 더 빠르게 시장에 대응하고, 고객은 더 높은 만족도를 경험한다. 이처럼 생성형 AI는 설계를 단순히 ‘빠르게’ 만드는 기술이 아니라, 설계의 개념 자체를 ‘재정의’하는 도구이자 기업의 창의성과 기민함을 확장하는 전략 자산이 되고 있다. “퍼플렉시티(Perplexity)는 단순한 답변 엔진에서 행동 엔진으로 전환하고 있다. 이제는 단순히 질문에 답하는 것을 넘어, 사용자에게 행동을 제안하고 실행하는 단계로 나아가고 있다.” – 아라빈드 스리니바스(Aravind Srinivas), 퍼플렉시티 AI CEO 아라빈드의 말은 AI 기술이 단순한 정보 제공을 넘어, 사용자와의 상호작용을 통해 실제 행동을 유도하고 실행하는 방향으로 발전하고 있음을 의미한다.   시뮬레이션의 혁신 - 빠른 판단과 적은 비용 과거의 시뮬레이션은 전문 소프트웨어와 고성능 컴퓨팅 자원, 그리고 숙련된 엔지니어의 직관과 경험에 크게 의존해 왔다. CAE는 분명 설계 검증과 최적화의 핵심이었지만, 조건 설정 → 모델링 → 결과 해석 → 반복이라는 고비용 순환은 여전히 제품 개발의 병목으로 작용해왔다. 그러나 생성형 AI는 이 병목을 타파하는 새로운 접근을 제시한다. 자연어로 “강풍 조건에서 뒤틀림이 가장 적은 하우징 구조를 찾아줘”라고 지시하면, AI는 자동으로 물리 조건을 추론하고, 유사 데이터 기반의 시뮬레이션 템플릿을 구성하며, 수십 개의 대안 시나리오를 병렬 생성해 ‘예측 – 설명 – 추천’이라는 삼중 루프를 빠르게 수행한다. 이러한 기술은 시뮬레이션의 대중화(simulation democratization)를 이끈다. 기술 전공자가 아니어도, 제품 매니저나 품질 담당자가 AI의 도움으로 설계안의 응력 분포나 유동 조건에 대해 인사이트를 얻을 수 있다. 이는 실무자가 더 빠르게 결정을 내릴 수 있도록 돕고, 의사결정의 지연 대신, 다중 시나리오 기반의 ‘실험적 사고’를 가능하게 만든다. 대표적인 사례로는 알테어의 AI 기반 인스파이어 플랫폼(AI-driven Inspire Platform), 앤시스의 AI 기반 시뮬레이션 자동화, 그리고 다쏘시스템의 솔리드웍스 생성형 시뮬레이션(Generative Simulation for SOLIDWORKS)이 있다. 이들은 기존 FEM/CFD 분석의 시간과 비용을 줄이는 동시에, 경험 기반 의사결정에서 데이터 기반 최적화로의 전환을 이끌고 있다. 궁극적으로 생성형 AI는 단순히 ‘더 빠른 계산’을 넘어서, “어떤 시나리오를 먼저 고려해야 하는가?”, “이 조건에서 실패할 가능성은 무엇인가?”라는 전략적 질문에 답하는 보조 엔진이 되어 준다. 이는 시뮬레이션을 단지 제품 검증의 도구가 아니라, 경영 의사결정과 R&D 전략 수립의 인공지능 파트너로 진화시키는 변화의 시작점이다.  “AI는 우리가 상상하는 것보다 훨씬 더 빠르게 발전하고 있다. 자율주행차는 그저 시작일 뿐이다.” – 일론 머스크(Elon Musk), 테슬라 CEO 테슬라는 자율주행 기술 개발에 AGI 수준의 AI를 활용하고 있으며, 이는 단순한 기능 향상을 넘어 차량 설계와 운행 방식 전반을 재정의하는 접근이다.   업무 분석과 프로세스 개선 - 데이터는 말하고 AI는 듣는다 제조 현장의 데이터는 언제나 풍부했다. 작업자 일지, 설비 로그, 유지보수 메모, 품질검사 리포트, 현장 사진과 동영상, 고객 클레임 이메일… 하지만 이들 대부분은 정형화되지 않은 ‘텍스트’와 ‘문서’ 형태로 존재하며, 기존 시스템은 이를 ‘기록’하는 데에만 집중했고, 의미를 해석하고 연결하는 능력은 인간의 몫이었다. 이제 생성형 AI는 이 방대한 비정형 데이터의 숲에서 맥락을 이해하는 나무를 찾는다. 작업자가 남긴 “라인 3에서 어제도 제품 정렬이 안 맞았고, 자동 이젝터가 두 번 멈췄다”는 기록은, AI에겐 단순한 텍스트가 아니라 ‘패턴’과 ‘이상’의 시그널이다. LLM은 이런 문장을 분석해 작업 단계별 이벤트를 분해하고, 관련된 설비 로그와 품질 데이터를 연결하여 문제 지점을 도출한다. 이제 업무는 ‘기록하고 보고하는 일’이 아니라, ‘데이터가 스스로 분석하고 말하는 환경’으로 바뀌고 있다. 대표적인 활용 사례는 다음과 같다. 업무 요약 자동화 : 업무 일지를 요약해 경영진에게 핵심 이슈를 전달 프로세스 병목 식별 : 여러 부서의 텍스트 기반 보고서에서 공통 키워드와 불만 분석 문서 자동 생성 : SOP(표준작업지침서), 회의록, 개선안 보고서 등의 자동 초안 작성 협업 인텔리전스 : 여러 팀 간의 커뮤니케이션 데이터를 분석해 협업 지연 포인트 도출 실제로 지멘스는 AI 기반 자연어 처리 기술(Natural Language Processing : NLP)을 통해 디지털 작업지시서와 실시간 현장 대응 리포트를 자동 생성하는 기능을 도입했고, 보쉬는 AI를 통해 품질 클레임 문서에서 반복 출현하는 원인 유형을 추출하여 품질 개선의 단초로 활용하고 있다. 핵심은 이것이다. 현장의 수많은 대화와 기록이 AI에게 ‘말을 거는 데이터’가 되었고, AI는 그 말을 듣고, 요약하고, 통찰을 제시하며, 업무 개선을 스스로 제안하는 존재가 되었다는 점이다. 이제 우리는 묻지 않을 수 없다. 우리는 AI에게 말 걸 준비가 되어 있는가? 그리고 그 대답을 조직이 들을 준비는 되었는가? “가장 큰 위험은 아무런 위험도 감수하지 않는 것이다. 모든 것이 급변하는 시대에서 위험을 회피하는 전략은 반드시 실패로 이어진다.” — 마크 저커버그, 메타 CEO 저커버그는 변화와 혁신의 시대에 기존의 방식을 고수하며 위험을 회피하려는 태도가 오히려 더 큰 실패를 초래할 수 있음을 경고한다.   품질 관리의 진화 - AI는 예지적 감각을 가질 수 있는가 품질 관리는 제조업의 마지막 방어선이자, 가장 정교한 신경망이다. 그러나 지금까지의 품질 관리는 주로 사후 대응(postdefect 대응)에 집중되어 있었다. 불량이 발생한 후 원인을 찾고, 재발 방지책을 수립하고, 문서를 정리하는 ‘후행적 품질 관리’가 일반적이었다. 이제 생성형 AI는 이 전통적 프레임을 근본부터 흔들고 있다. AI는 ‘불량을 감지’하는 것이 아니라, ‘불량을 설명하고 예측’하려 한다. 예를 들어, 제품 표면의 이미지를 기반으로 한 비전 검사 시스템은 단순히 OK/NG를 판단하는 데서 그치지 않고, “이 영역의 텍스처 패턴은 온도 편차에 의한 수축 변형일 가능성이 높습니다”라고 말할 수 있는 설명형 모델로 진화하고 있다. 나아가, 생성형 AI는 텍스트, 이미지, 센서 데이터를 통합적으로 분석해 복합적인 이상 징후를 감지하고, 불량의 '가능성'과 '잠재 원인'을 추론해낸다. 예를 들어 다음과 같은 조합이 가능해진다. 작업자 일지 : “이틀 전부터 용접기압이 다소 약한 것 같다.” 센서 로그 : 오전 9~11시에 기압 편차 발생 불량 이미지 : 비드 형성 불균형 AI는 이를 연결해 “용접 조건의 경미한 변화가 반복 불량의 근본 원인일 수 있다”고 보고한다. 이는 단순한 예측모델이 아니다. ‘설명 가능한 품질 관리(Explainable Quality)’, 즉 AI가 품질 이슈에 대해 왜 그런 판단을 했는지를 근거와 함께 제시함으로써, 품질팀은 더 이상 직감이나 경험에만 의존하지 않고 데이터 기반의 합리적 개선 프로세스를 수립할 수 있다. 이미 보쉬, 토요타, GE 항공 등은 ▲AI 기반 비전 검사 시스템에서 ‘불량 예측 + 원인 설명’을 제공하는 모델을 구축 중이고 ▲ISO 9001과 연동되는 AI 품질 리포트 자동화 시스템을 테스트하고 있다. 이는 곧 ‘AI가 품질 시스템의 일원으로 공식 포함되는 시대’가 오고 있음을 뜻한다. 품질의 정의는 바뀌고 있다. 과거의 품질은 발견과 수정의 문제였지만, 앞으로의 품질은 예지와 설득의 문제다. AI는 이제 불량을 찾아내는 것이 아니라, 불량이 만들어지지 않도록 ‘생산 과정 그 자체를 개선하자’고 제안하는 동료가 되어가고 있다. “AI는 전기를 발견한 것과 같은 혁신이다. 모든 산업에 스며들 것이며, 그 영향을 무시할 수 없다.” – 앤드류 응(Andrew Ng), AI 전문가 앤드류 응은 AI의 보편성과 산업 전반에 미치는 영향을 강조하고 있다. 그의 말은 제조업에서도 AI의 통합이 필수임을 시사한다.   경고와 제언 - 생성형 AI는 도입이 아니라 전환이다 많은 제조기업이 생성형 AI에 주목하고 있다. 설계 자동화, 시뮬레이션 최적화, 업무 요약, 품질 예측… 도입 사례는 늘고 있지만, 도입이 곧 성공을 의미하진 않는다. 생성형 AI는 단순한 툴이 아니라, 운영 철학의 변화를 요구한다. 기존의 프로세스는 ‘정해진 절차와 역할’ 속에서 최적화를 추구해왔지만, 생성형 AI는 ‘질문을 던지고 시나리오를 비교하며 판단을 내리는 유연한 사고방식’을 요구한다. 즉, 기술만 바꾸는 것이 아니라 조직의 사고 체계와 역할 구조 자체를 재설계해야 하는 것이다. 예를 들어 <표 1>과 같은 전환이 필요하다.   표 1   하지만 문제는 기술이 아니다. 가장 큰 장벽은 조직이 AI를 받아들일 준비가 되어 있느냐는 것이다. 임원은 AI를 단순히 ‘자동화 툴’로 간주하는 경향이 많고, 현장은 여전히 ‘내 일을 뺏는 존재’로 AI를 경계한다. 이 간극을 메우지 않으면, AI는 시연 단계에서 멈추고, 조직은 변화의 본질을 놓친다. 따라서 다음과 같은 전환 전략이 필요하다. 파일럿이 아닌 전환 설계 특정 부서에서 테스트하는 것이 아니라, 조직 전체의 프로세스 전환 시나리오를 기획해야 한다. ‘도입 교육’이 아닌 ‘공감 설계’ 기술 사용법이 아니라, 왜 이 기술이 필요한지에 대한 비즈니스 관점에서의 스토리텔링이 필요하다. AI Co-Worker 관점 전환 AI는 도구가 아니라, 함께 판단하고 실험하는 동료로 봐야 한다. 이를 위해 직무 정의서(JD)도 다시 써야 한다. 성과 기준의 재정립 AI 도입 이후에는 ‘정확도’보다 ‘학습 속도’와 ‘적응력’이 핵심 성과 지표가 된다. 결국, 생성형 AI는 ‘도입해야 할 기술’이 아니라 ‘다르게 일하고, 다르게 생각하고, 다르게 운영하는 기업’으로 전환하기 위한 촉매제다. 이제 경영진에게 남은 질문은 단 하나다. “우리는 기술을 도입할 준비가 되었는가?”가 아니라, “우리는 조직을 전환할 용기를 가졌는가?”이다. “지금은 스타트업의 시대… 세상은 여전히 변화의 가능성에 잠들어 있다.” – 샘 올트먼, 오픈에이아이 CEO 올트먼은 기술 혁신의 시기에 기존 기업들이 변화에 둔감해질 수 있음을 경고하며, 새로운 도전과 변화를 추구하는 조직만이 미래를 선도할 수 있다는 메시지를 담고 있다.   맺음말 : 생성형 AI 시대의 제조 기업, 당신은 어떤 그림을 그리고 있는가 미래의 공장은 단지 더 정교하고, 더 빠르며, 더 자동화된 곳이 아니다. 그곳은 데이터를 읽고, 상황을 이해하고, 사람과 함께 결정하는 공장이다. 문제를 발견하기 전에 감지하고, 작업자를 지원하며, 스스로 최적의 방식을 제안하는 공장이다. 그리고 그 공장의 핵심 파트너는 인간의 상상력을 확장하는 생성형 AI다. 이제 중요한 질문은 이것이다. “우리는 어떤 그림을 그리고 있는가?” 기술은 빠르게 진화한다. 생성형 AI는 설계와 시뮬레이션, 업무 분석과 품질 관리까지 제조의 전 과정을 유기적으로 연결하며 ‘스마트’를 넘어 ‘지능적’으로 만들고 있다. 하지만 진정한 경쟁력은 기술의 채택이 아닌, 기술과 함께 일하는 방식의 변화에서 비롯된다. 아직 많은 제조기업은 ‘가능성 탐색’ 단계에 머물러 있다. 하지만 머뭇거릴 시간이 없다. AI는 이미 조직 구조, 업무 정의, 리더십의 방식까지 영향을 미치기 시작했다. 이제는 기술을 배우는 것이 아니라, 기술과 함께 일할 조직을 설계해야 할 때다. 생성형 AI 시대의 제조 기업은 세 가지 질문에 답할 수 있어야 한다. 우리는 상상할 수 있는가? 생성형 AI는 ‘주어진 문제를 해결’하는 것이 아니라 ‘가능성을 확장’한다. 제조기업의 조직은 아직도 문제만 찾고 있는가, 아니면 새로운 기회를 그리고 있는가? 우리는 받아들일 수 있는가? AI는 사람의 영역을 침범하지 않는다. 다만 그 옆에 선다. 우리는 전환할 수 있는가? 우리는 그것을 파트너로 받아들일 준비가 되어 있는가? AI 도입은 기술의 문제가 아니라, 사고방식과 리더십의 전환이다. 과연 지금의 조직은 그 전환을 감당할 수 있는가? 미래의 공장은 말하고 있다. “나는 설계하고, 시뮬레이션하고, 개선할 준비가 되어 있다. 너는 나와 함께 걸을 준비가 되어 있는가?”   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다.(블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
로크웰 오토메이션, OT 사이버 위협 대응 위한 신규 보안 모니터링 서비스 출시
로크웰 오토메이션이 운영 기술(OT) 환경을 위한 신규 보안 모니터링 및 대응(Security Monitoring & Response) 서비스를 출시했다고 밝혔다. 이 서비스는 산업 조직이 점점 정교해지는 사이버 위협에 효과적으로 대응하고, 복원력 있는 운영 체계를 구축할 수 있도록 설계됐다. 이번 신규 서비스는 로크웰 오토메이션의 OT 보안 운영 센터(Security Operations Center : SOC)와 경험이 풍부한 사이버 보안 분석가로 구성된 전담팀이 실시간으로 위협을 탐지하고 대응함으로써, OT 보안의 복잡성을 해소하고 기술 격차 및 운영 비효율성을 최소화할 수 있도록 지원한다. 산업 사이버 보안 사고, 시스템 취약성, 그리고 숙련된 보안 인력의 부족으로 인해 OT 환경의 보안은 점점 복잡해지고 있다. 실제로 최근 발표된 스마트 제조 현황 보고서에 따르면, 사이버 보안 위협과 인력 부족은 모두 제조 산업에 영향을 미치는 중요 상위 5대 외부 장애 요인으로 지목되었다. 이번 설루션의 주요 기능으로는 ▲지속적인 보안 모니터링 및 대응 서비스 ▲신속한 사고 대응 및 문제 해결 ▲포괄적인 보고 체계 및 유연한 확장성이 있다.     보안 모니터링 및 대응 서비스는 OT 환경에 대한 연중무휴 24시간 실시간 모니터링 기능을 통해 잠재적 위협을 신속하게 탐지하고, 고급 분석 기법을 통해 원시 데이터를 실행 가능한 인사이트로 전환함으로써 대응의 정확성과 속도를 높인다. 또한, 사고 발생 시 축적된 노하우와 검증된 절차를 기반으로 한 단계별 대응 가이드를 통해 사고를 효율적으로 관리하고, 운영 중단을 최소화한다. 로크웰 오토메이션의 SOC 분석가는 고객의 보안팀을 보완하며 신속한 대응을 제공한다. 보고 체계와 확장성 측면에서도 강점을 갖추고 있다. 로크웰 오토메이션은 고객이 조직 차원에서 보안 상태를 체계적으로 점검하고 개선할 수 있도록 월간 경영진 요약 보고서와 분기별 비즈니스 리뷰를 제공하며, 주요 이해관계자들의 전략적 참여를 유도한다. 또한 모듈형 구조로 설계된 본 서비스는 각 고객의 고유한 요건에 맞춰 유연하게 확장 및 맞춤화가 가능하다. 이번 서비스를 통해 고객은 위협을 조기에 탐지하고 신속히 완화하여 운영 중단 및 재정적 손실을 줄일 수 있으며, 반복적인 보안 작업을 자동화함으로써 전반적인 운영 효율성을 높일 수 있다. 로크웰 오토메이션은 특히 실시간 보안 가시성을 기반으로 데이터 기반의 의사결정이 가능하며, 전문 인력이 부족한 환경에서도 효과적인 보안 체계를 유지할 수 있는 대안으로 작용할 것으로 기대하고 있다. 로크웰 오토메이션의 닉 크리스(Nick Creath) 사이버 보안 서비스 수석 제품 관리자는 “사이버 위협이 갈수록 정교해지는 상황에서 제조업체는 상시적인 경계와 전문 대응 역량이 필요하지만, 이를 위한 내부 리소스가 부족한 경우가 많다”며, “자사의 보안 모니터링 및 대응 서비스는 연중무휴 실시간 위협 감지와 전문가 주도 대응을 통해 고객의 보안 태세를 강화하고 기술 격차를 해소할 수 있도록 돕는다”고 밝혔다.
작성일 : 2025-04-29