• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "인문학"에 대한 통합 검색 내용이 90개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
작용, 반작용, 상호작용
시점 – 사물이나 현상을 바라보는 눈 (9)   지난 호에서는 ‘개별 관찰’, ‘집단 관찰’, ‘확률과 통계’에 관한 주제의 세 번째 이야기로 ‘확률과 통계’에 관해서 생각해 보았다. 통계는 단순한 숫자놀음이지만 그 숫자를 어떻게 얻었는지 어떻게 해석해야 하는지를 고민하지 않고 사용하게 되면 의도와는 다르게 엉뚱한 결론에 도달할 수 있다. 룰렛 돌림판과 주사위의 경우를 예로 들어 확률과 통계에 관해서 생각해 보았다.  이번 호에서는 ‘작용, 반작용, 상호작용’을 주제로 주변에서 일어나는 일들을 조금 특별한 시각으로 바라보고자 한다. 뉴턴의 운동법칙, 작용, 반작용, 상호작용의 사전적 의미, 다양한 물리 현상, 생태계의 상호작용, 사회적 상호작용, 관점의 차이, 상관관계를 통해서 세상을 알아가는 방법 등을 예로 들어가며 이야기를 전개한다.   ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com   그림 1. 분수대 위에서 작은 힘만 가해도 자유롭게 회전하는 돌로 만든 지구본   유체 베어링 오래전에 분수대 위에서 작은 힘만 가해도 자유롭게 회전하는 돌로 만든 지구본을 보고 신기해했던 기억이 있다.(그림 1) 마치 중력이 작동하지 않는 듯한 인상을 받았다. 지구본을 만든 돌의 무게를 상상하면 그런 느낌이 들 수밖에 없다. 기계적 베어링 대신에 물을 베어링으로 사용한 유체 베어링이 사용된 것이다. 유체 베어링(fluid bearing 또는 fluid dynamic bearing)은 베어링 표면 사이에서 빠르게 움직이는 가압 액체 또는 가스의 얇은 층에 의해 하중이 지지되는 베어링이다. 움직이는 부품 사이에 접촉이 없다. 부품 사이에 마찰이 없어 유체 베어링은 다른 많은 종류의 베어링보다 마찰, 마모 및 진동이 적은 것이 특징이다. 일부 유체 베어링은 올바르게 작동하는 조건에서는 부품의 마모가 거의 없다. <그림 1>의 경우에는 지구본이 완벽한 구의 형태가 되어야만 물이 베어링의 역할을 할 수 있다. 물이 지구본에 작용하는 중력을 거슬러 지구본을 들어올려야 하는데 지구본을 감싸고 있는 링(ring)과의 간격이 장소에 따라 차이가 있으면 압력이 고르게 걸리지 않게 된다. 따라서 무거운 지구본을 부양할 수 없게 되고 지구본을 자유롭게 회전시킬 수도 없다. 지구본이 떠 있는 상태에서 자유롭게 회전할 수 있다면 작은 힘으로 회전 방향과 속도를 바꿀 수 있다. 마찰력이 거의 없기 때문이다.   뉴턴의 운동법칙 고전역학에서 뉴턴의 운동법칙(Newton's laws of motion)은 물체의 운동을 세 가지의 원리로 설명한 물리 법칙이다.(그림 2) 영국의 수학자, 물리학자, 천문학자였던 아이작 뉴턴이 도입한 이 법칙은 고전역학의 기본 바탕을 이루고 있다. 라틴어로 1687년에 출판된 ‘자연철학의 수학적 원리(Philosophiæ Naturalis Principia Mathematica, Mathematical Principles of Natural Philosophy)’라는 책에서 뉴턴의 운동법칙 세 가지가 소개되었다. 제1법칙은 ‘관성의 법칙’ 또는 ‘갈릴레이의 법칙’으로 불린다. 물체의 질량 중심은 외부 힘이 작용하지 않는 한 일정한 속도로 움직인다. 마찰이나 에너지 손실이 없다면 관성으로 속도가 유지된다. 즉, 물체에 가해진 알짜 힘(net force)이 0일 때 물체의 속도가 변하지 않으므로 질량 중심의 가속도는 0(a = 0, V : Constant)이다. 제2법칙은 ‘가속도의 법칙’으로 불린다. 물체의 운동량의 시간에 따른 변화율(가속도, a)은 그 물체에 작용하는 힘(F, 크기와 방향에 있어서)과 같다. 물체에 더 큰 알짜 힘이 가해질 수록 물체의 운동량 변화는 더 커진다.(F = ma) 물체에 힘을 가하면 힘이 가해진 물체는 운동량이 바뀐다. 제3법칙은 ‘작용과 반작용의 법칙’으로 불리며, 물체 A가 다른 물체 B에 힘을 가하면 물체 B는 물체 A에 크기는 같고 방향은 반대인 힘을 동시에 가한다.(FAB = -FBA ). ‘모든 작용에 대해 크기는 같고 방향은 반대인 반작용이 존재한다’라고 설명하기도 한다. 당연한 이야기같기도 하고 알 듯 말 듯한 이야기같기도 하다. 필자도 글을 쓰면서 아무리 간단한 사실도 언어를 사용해서 표현한다는 것이 얼마나 어려운 일인지 생각하게 된다. 실제로 언어로 표현된 많은 사실, 느낌, 감정이 얼마나 정확하게 표현된 것이고 그 의미를 얼마나 정확하게 이해할 수 있는지 의문스러울 때가 많다.   그림 2. 뉴턴의 세 가지 운동법칙   작용, 반작용, 상호작용의 사전적 의미 때로는 이미 잘 알고 있고 자주 사용하는 용어나 단어도 어떤 의미로 사용되는지 살펴보면 의외로 새로운 발견을 하게 되는 경우가 있다. 이번 기회에 작용, 반작용, 상호작용이라는 단어의 뜻을 사전에서 찾아보자. 작용(action) 어떠한 현상을 일으키거나 영향을 미침 [물리] 어떠한 물리적 원인이나 대상이 다른 대상이나 원인에 기여함 또는 그런 현상. 역학에서 물체 사이의 힘도 이 결과로 생긴다.  [철학] 현상학에서, 표상·의식·체험 따위의 심리적 과정에 있어서 대상의 의미 내용을 지향하는 능동적인 계기를 이르는 말 반작용(reaction)  어떤 움직임에 대하여 그것을 거스르는 반대의 움직임이 생겨남 또는 그 움직임 [물리] 물체 A가 물체 B에 힘을 작용시킬 때, B가 똑같은 크기의 반대 방향의 힘을 A에 미치는 작용. 한쪽에 미치는 힘을 작용이라 할 때, 그 다른 쪽에 미치는 힘을 이른다.  상호작용(interaction)  [생명] 생물체 부분들의 기능 사이나, 생물체의 한 부분의 기능과 개체의 기능 사이에서 이루어지는 일정한 작용 [사회] 일반 사람이 주어진 환경에서 다른 사람이나 사물과 서로 관계를 맺는 모든 과정과 방식     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
확률과 통계
시점 – 사물이나 현상을 바라보는 눈 (8)   지난 호에서는 개별 관찰, 집단 관찰, 확률과 통계에 관한 주제의 두 번째 이야기로 ‘집단 관찰’에 관한 이야기를 소개하였다. 압력, 온도, 비중, 밀도의 개념에 관한 이야기를 시작으로 기체, 액체, 고체의 성질과 온도에 따른 수축·팽창 현상에 이르기까지 집단 관찰이라는 시각에서 자연현상을 생각해 보았다. 이번 호에서는 개별 관찰, 집단 관찰, 확률과 통계에 관한 주제의 세 번째 이야기로 ‘확률과 통계’에 관해서 생각해 보기로 한다. 통계는 장단점을 숙지하고 활용하면 매우 유용하지만, 가정과 약점을 이해하지 못하고 사용하게 되면 의도와는 다르게 엉뚱한 결론에 도달할 수 있다. 몇 가지 구체적 사례를 바탕으로 확률과 통계에 얽힌 이야기를 소개하고자 한다.   ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com   그림 1. 확률은 때로는 호의적이고 때로는 적대적이다. 우연일까 필연일까?   확률 확률(probability)은 어떤 일이 일어날 가능성 또는 개연성으로, 일어날 가능성이 있는 비율이나 빈도로 표현한다.(그림 1) 확률은 수학적으로 계산된 확률과 실제로 일어난 일을 바탕으로 계산한 경험적 확률이 있다. 모든 경우의 수에 대해 그 일이 일어날 경우의 수를 수학적으로 계산한 것을 수학적 확률이라고 한다. 수학적 확률은 모든 경우의 수 중에서 어떤 일이 일어날 경우의 수를 비율로 나타낸다. 예를 들어 정육면체인 주사위는 6개의 동일한 크기와 각도를 가지고 있어 주사위를 던졌을 때 나타날 수 있는 눈의 모든 경우의 수는 6이다. 그중에 어떤 눈이 나올 확률은 1/6이다. 반대로 경험적 확률은 실제로 주사위 던지기를 무수히 반복했을 때 나타난 확률로 경험을 바탕으로 추측한 값이다. 수학적 확률은 물리학, 화학, 생물학 등의 과학 분야와 다양한 공학 분야를 비롯하여 스포츠, 도박, 복권 추첨과 같은 분야에서도 활용되고 있다. 다루는 대상이 무수히 많은 원자, 분자, 전자 등의 경우 통계 역학에서 이를 확률적으로 계산하고, 물질과 에너지의 상호 작용을 양자 역학에서는 확률로 계산한다. 확률은 비율로 표시하면 0에서 1 사이의 값을 갖는다. 확률 0은 그 일이 절대로 일어나지 않는다는 0%를 의미하고, 확률 1은 그 일이 100% 일어난다는 것을 의미한다.   수학적 확률   그림 2. 확률과 경우의 수   룰렛 돌림판과 정육면체 주사위를 사용하여 수학적 확률을 계산해 보자. 룰렛 돌림판은 6등분되어 있고 주사위도 6면이 있다.(그림 2) 따라서 룰렛의 화살이 어떤 영역에서 멈출 확률은 1/6이다. 주사위 또한 어느 눈이 나올 확률은 1/6이다. 물론 룰렛 돌림판의 축이 한 가운데 있어서 어느 특별한 곳이 멈추기 쉽게 되어 있지 않다는 것이 전제조건이다. 주사위 또한 마찬가지로 어느 특별한 눈이 나오기 쉽게 되어 있지 않다는 것이 전제된다. 확률 0은 정해진 경우의 수 가운데 어떤 일이 일어나지 않는다는 것을 의미하지만, 예상 외의 일이 일어날 가능성까지 없다고 할 수는 없다. 실제로 룰렛 돌림판의 점수는 가는 선으로 구획된 칸을 기준으로 계산되지만, 화살표가 칸 사이의 눈금에서 멈추는 일도 있다. 이런 일은 룰렛 돌림판의 점수 체계에서 계산된 수학적 확률은 0이지만, 실제 게임에선 종종 발생한다. 이것은 점수 체계가 각 칸의 점수로만 계산하고 화살표가 눈금 위에 멈추는 경우는 고려하지 않았기 때문이다. 눈금 선의 두께를 고려하여 화살이 선 위에 멈출 가능성까지 고려하여 확률을 계산할 수도 있다. 눈금의 두께는 다른 칸의 각도에 비해서 매우 작으므로 선위에 화살이 멈출 확률은 매우 작을 것이다. 비슷한 사례는 주사위의 한 면이 지면에 닿지 않고 기울어져 있는 경우를 들 수 있다. 윷놀이에서 경우의 수와 확률을 계산할 때도 윷가락이 완전하게 엎어지거나 젖혀지지 않아 판정이 애매한 일도 생긴다. 그런 애매한 조건까지 고려한 경우의 수를 정확하게 판단해서 확률을 계산하는 것은 쉽지 않다.   n 개의 주사위로 나올 수 있는 숫자 주사위 하나의 경우는 1부터 6까지 1/6의 확률로 나올 수 있으리라는 것은 쉽게 이해할 수 있다. 주사위 두 개를 던질 때의 경우의 수와 확률은 어떻게 될까? <그림 3>처럼 모든 숫자의 조합을 표로 정리해서 보면, 두 개의 주사위에서 나온 숫자의 합은 2부터 12까지의 숫자가 나올 수 있으며 숫자에 따라서 확률이 달라진다. 이것도 수학적 확률에 지나지 않는다. 실제로 두 개의 주사위를 던져 보면 왼쪽의 확률 분포가 되지는 않는다. 상당히 많은 실험을 해야 비슷한 분포가 될 것이다.   그림 3. 두 개의 주사위를 던져서 나오는 수의 합     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-08-04
집단 관찰
시점 – 사물이나 현상을 바라보는 눈 (7)   지난 호에서는 ‘개별 관찰’, ‘집단 관찰’, ‘확률과 통계’에 관한 주제의 첫 번째 이야기로 ‘개별 관찰’의 의미에 관해서 소개하면서, 어떤 경우에 개별 관찰이 가능하며 효과적인지에 관해서 생각해 보았다. 그리고 이후 소개할 집단 관찰의 의미와 효과를 생각하는 발판으로 삼고자 개별 관찰의 어려움과 한계를 강조하였다. 이번 호에서는 집단 관찰에 관한 이야기를 다루고자 한다. 압력, 온도, 비중, 밀도에 관한 이야기를 시작으로 기체, 액체, 고체의 성질과 온도에 따른 수축·팽창 현상을 살펴본다.   ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com   그림 1. 압력은 단위면적에 작용하는 힘을 관찰하는 것   집단 관찰공기를 구성하는 질소(N₂)나 산소(O₂) 분자, 물을 구성하는 물 분자(H₂O), 분자를 구성하는 원자, 원자를 구성하는 양성자, 중성자, 전자 등을 하나씩 구별해서 관찰할 수 있을까? 그런 것이 가능하다면 ‘개별 관찰’이라고 할 수 있을 것이다. 그러나 여러 가지 원소나 물질이 합쳐져 이루어진 집단(예를 들면 사람, 동물, 물건, 집, 책 등)에 인격을 부여해서 관찰한다면 그것은 엄밀하게는 ‘집단’의 특성을 관찰하는 것이므로 ‘집단 관찰’이라고 해야 할 것이다. 일반적으로는 ‘여러 개체가 모인 집단’의 특성을 관찰하는 것도 집단 관찰로 보아야 할 것이다. 지난 호에서도 소개했지만, 대기압 15℃에서 1㎣(1μL)에 들어 있는 공기 분자의 수가 2.69경(京, 1016) 개에 달한다. 심지어 눈에는 보이지도 않는다. 어떻게 개별 관찰을 할 수 있을까? 바람이 부는 것도 장소 간의 압력 차에 의해서 생기는 것이다. 그 바람 속에도 1㎣(1μL)에 2.69경 개의 공기 분자가 들어 있을 것이며 흐름을 따라서 이동한다. 우리는 하루에 약 1만 1000L의 공기를 호흡한다. 1만 1000L는 491mole(몰)에 해당하며 2.96× 1026개의 공기 분자를 호흡작용으로 우리 몸에 빨아들이고 있다. 우리 몸이 대용량 기체 펌프를 보유하고 있는 셈이다. 압력에 관해서 생각해 보자. 압력은 단위 면적 당 수직으로 가해지는 힘이다.(그림 1) 이상기체 법칙은 이상적인 기체를 가정해서 기체 분자의 운동과 온도, 부피, 압력, 분자량과의 관계를 나타낸다. <그림 1>의 왼쪽 아래를 보면 고온 고압의 수증기가 계속 나오는데, 시간이 조금 지나면 눈에 보이지 않게 되고 공기 속으로 사라져 버린다. 원자 또는 분자 하나하나의 특성과 행동을 파악하는 것은 기초과학의 분야에서는 매우 흥미로운 주제이지만 실용적이지는 못하다. 적어도 물을 끓여서 고압의 수증기를 만들어 증기기관의 동력으로 사용하여 산업혁명을 가능하게 했던 것은 집단 관찰 덕분이라고 할 수 있을 것이다.   파스칼의 법칙 - 주사기의 법칙 파스칼의 원리, 파스칼의 법칙 또는 유체압력 전달 원리는 유체역학에서 폐관 속의 비압축성 유체 집단의 어느 한 부분에 가해진 압력의 변화가 유체 집단의 다른 부분에 그대로 전달된다는 내용이다. 이 원리는 프랑스 수학자 블레즈 파스칼(Blaise Pascal)이 정립했다. 그는 과학자나 수학자로 알려졌지만 물리학자, 통계학자, 발명가, 심리학자, 철학자, 신학자, 작가로도 활동했으며, 철학과 신학에 더 많은 시간을 사용했다고 한다. 예전에는 자동차 정비소에 가면 압축공기를 사용해서 자동차를 들어올리는 기구를 많이 볼 수 있었으나, 요즈음에는 대부분 전기로 구동하는 리프트(lift)가 사용되어 이런 원리를 체감하기 어렵다.(그림 2) 자동차 핸들, 유압식 자동차 리프트, 포크레인 등 유압을 사용한 많은 설비에 이러한 원리가 사용되고 있다. 간단하게 이야기하면 넓은 면적에 압력을 가해서 좁은 면적으로 멀리 보내는 주사기의 원리와 같다. 간단한 주사기의 법칙에 여러 가지 가정을 하고 경계조건을 정하고 공식으로 만들어서 논리적으로 소개하니, 그럴 듯한 물리학의 중요한 법칙으로 탈바꿈한 셈이다.  사실 모든 것은 알고 나면 간단한 것인데 알아가는 과정이 쉽지만은 않은 것이 현실이다.   그림 2. 파스칼의 법칙 또는 유체압력 전달의 원리를 설명한 모식도     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-07-01
개별 관찰
시점 – 사물이나 현상을 바라보는 눈 (6)   지난 호에서는 변화와 흐름의 본질부터 응용에 이르기까지 구체적인 사례를 소개하였다. ‘변화와 흐름의 관찰’ 방법과 관찰된 결과를 어떻게 가시화 또는 시각화하는지 구체적인 사례를 함께 생각해 보았다. 동영상의 활용, 열전달 경로, 소리(음파), 유체의 시각화 사례를 살펴보았다. 이번 호에서는 ‘개별 관찰’, ‘집단 관찰’, ‘확률과 통계’에 관한 이야기를 시작하면서, 첫 번째로 ‘개별 관찰’에 관해서 소개하고자 한다. ‘개별 관찰’은 어떤 경우에 가능하며 효과적인지에 관해서 생각해 보고, 다음 호에 소개할 ‘집단 관찰’의 의미를 생각하는 발판으로 삼고자 한다.   ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com   그림 1. 개별 관찰의 목적은 무엇이며 어디까지 가능할까?   개별 관찰 개별 관찰은 개인이나 사물의 따로 구별해서 관찰하고 기록하는 작업이다. 사회과학, 교육, 의료 등 맞춤형 서비스가 필요한 다양한 분야에서 활용된다. 공장에서도 제품 검사와 공정 관리에서 개별 관찰은 필수이다. 개별 관찰이 적용되는 분야와 사례를 몇 가지 들어보면 다음과 같다. 유아 교육 : 아동의 발달, 관심 및 학습 스타일 조사 건강 관리 : 환자가 겪고 있는 문제나 어려움의 확인 사회과학 : 그룹의 문화, 신념 및 관행의 이해 제품 검사 : 공장에서 생산된 제품의 품질 검사 공정 관리 : 생산 공정 각 단계에서의 기준 관리 개별 관찰은 자신의 감정에 기반하기보다는 객관적이고 설명적이어야 하며, 주관적인 가치 판단은 피해야 한다. 관찰 내용을 구체적으로 설명하고 정량화할 수 있어야 하며, 반복적인 관찰로 재현성을 확인해야 한다. 이처럼 개별 관찰은 목적부터가 개체 간의 차이를 인정하는 것부터 출발한다.(그림 1) 모든 개체는 물질(substance)로 이루어져 있다. 모든 물질은 그것을 구성하는 원소(element) 또는 원자(atom)의 집합체이다. 물질을 이루는 기본적인 성분을 나타내는 원소는 추상적인 의미이고, 물질을 이루는 가장 작은 입자라는 구체적인 개념이면서 양을 셀 수 있는 것은 원자이다. 원소는 화학적 방법으로는 더 간단한 순물질로 분리할 수 없는, 모든 물질을 구성하는 기본적 요소라고 정의된다. 원자핵 내의 양성자 수로 원자 번호를 정하여 사용하고 있다. 원자핵 내의 양성자의 수와 원자 번호는 같다. 양자의 수는 같지만, 중성자의 수가 다른 동위 원소도 원자 번호는 같다. 중성 원자는 양성자의 개수와 전자의 개수가 같다. 현재까지는 원자 번호 1번인 가장 가볍고 작은 기체인 수소(H, Hydrogen)부터 준금속(semi-metal) 고체인 오가네손(Og, Oganesson)까지 118종이 알려져 있다. 원자 번호와 이름은 정해놓았지만, 아직 발견되지 않은 원소도 두 종류가 있다. 미발견 원소는 119번 우누넨늄(Uue, Ununennium)과 120번 운비닐륨(Ubn, Unbinillium)이다.   아보가드로의 법칙 아보가드로의 법칙으로 유명한 아메데오 아보가드로(Amedeo Avogadro)는 이탈리아의 물리학자이자 화학자이다. 아보가드로 법칙은 ‘온도와 압력이 같다면 일정 부피 안에 들어 있는 입자 수는 기체의 종류와 무관하다’는 법칙이다. 실제로는 이상 기체에서만 성립한다. 아보가드로 수(Avogadro constant)는 입자 수를 물질량과 관계짓는 비례상수로 6.02214076×10²³mol−¹이다. 1기압, 0℃ 조건에서 22.4L의 이상 기체의 원자의 수에 해당한다.(그림 2) 고체와 액체의 경우에는 원자량에 해당하는 무게가 되면 해당 원자가 아보가드로 수만큼 있다는 의미가 되고, 밀도에 따라서 체적이 정해진다. 아보가드로 수는 1865년 오스트리아의 과학자 요한 요제프 로슈미트(Johann Josef Loschmidt)가 이상 기체 법칙을 이용해 1㎤ 내에 들어있는 입자 개수를 계산한 값을 사용해서 구한 것이다. 이런 역사적 배경 때문에 아보가드로 수를 독일어권에서는 ‘로슈미트 수(Loschmidt constant)’라고 부르기도 한다.  아보가드로 수 : 1 mole(22.4L)의 기체 입자 수, 6.02×1023 개 로슈미트 수 1㎤(1mL)의 기체 입자 수, 2.69×1019 개 1㎣(1μL)의 기체 입자 수, 2.69×1016 개 비록 눈에는 보이지도 않는 공기이지만 1㎣(1μL)에 2.69경(京, 1016)개, 1㎤(1mL)에 2690경 개, 1 mole(22.4L)에 6020해(垓, 1020)개의 입자가 움직이고 있다. 평소에는 써 본 적도 없는 수를 동원해야 겨우 표현할 수 있는 어마어마한 개수의 입자가 있는 셈이다. 이렇게 많은 입자를 하나씩 구별해서 ‘개별 관찰’이 가능할까? 가능하다고 하더라도 얼마나 쓸모가 있을까?   그림 2. 아보가드로의 가설과 아보가드로 수     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-06-04
변화와 흐름의 관찰
시점 – 사물이나 현상을 바라보는 눈 (5)   지난 호에서는 ‘정적 이미지’와 ‘동적 이미지’에 관하여 정의하고 두 이미지의 차이를 살펴보았다. 이미지 센서의 입장에서 바라본 ‘관찰의 시점과 관점’에 관한 몇 가지 사례를 들어가며 구체적으로 생각해 보았다. 또한 정적 이미지에 시간 요소를 비롯한 새로운 차원의 요소를 추가하는 방법의 고안과 활용의 필요성을 강조하였다. 이번 호에서는 정적 이미지와 동적 이미지의 활용이라는 측면에서 ‘변화와 흐름의 관찰’ 방법과 관찰된 결과를 가시화 및 시각화하는 구체적인 사례를 함께 생각해 보기로 한다. 변화와 흐름의 본질부터 응용에 이르기까지 구체적인 사례를 소개한다.   ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com    그림 1. 당구공 움직임 궤적의 가시화   변화와 흐름의 본질‘변화’는 사물의 성질, 모양, 상태 따위가 바뀌어 달라지는 것을 의미하고, ‘흐름’은 흐르는 것, 또는 한 줄기로 잇따라 진행되는 현상을 비유적으로 이르는 말로 일상적으로 사용된다. 두 가지 개념 모두 시간과 관계가 있다. 시간 역시 흐름의 하나이다. 다만 시간은 불가역적으로 과거로 돌아갈 수 없다. 시간이 실재하는 것인가 하는 것은 철학적인 이야기에 가깝다. 다만 시간의 특성을 이해하고 여러 가지 현상을 관찰하면 변화와 흐름을 발견하게 된다. 우리도 시간의 흐름과 더불어 나이를 먹고 늙어 간다. 모든 생명체에게 공통된 현상이다. 눈으로 확인하기도 어려운 현상이나 추상적인 주제에 관해서 설명하기보다는 눈으로 확인할 수 있는 것이 이해하기 쉽다.  당구는 경도가 높은 압축 플라스틱 재질로 만든 공을 사용하는 경기이다. 당구공은 충돌 시의 반발계수가 1에 가까운 완전 탄성체이다. 따라서 당구공끼리 충돌하는 것은 두 물체가 부딪친 후에도 운동 에너지의 합이 변하지 않는 ‘완전 탄성충돌’에 가깝다. 정면에서 충돌할 경우 운동량 보전 법칙이 성립하여 공이 서로의 속도를 교환한다. 물리법칙을 이해하고 공을 치는 방향과 힘을 조절해서 다른 공을 맞히는 게임이다. 공을 치게 되면 공이 움직이게 되니 시시각각으로 위치와 속도가 달라진다. 즉 시간에 따른 위치 변화와 흐름이 발생한다.  <그림 1>은 당구대의 위쪽에 고정된 카메라로 노란 당구공을 쳐서 초록색 당구공을 오른쪽 위 귀퉁이에 넣는 장면을 촬영한 동영상에서 적당한 시간 간격으로 프레임을 발췌하여 합성한 이미지를 소개하였다. 하나의 이미지에서는 같은 시간 간격으로 프레임을 발췌하여 합성한 것이므로, 여러 개의 노란색 공의 위치는 같은 시간 간격으로 촬영된 것이다. 녹색 공 또한 마찬가지이다. 같은 색 공 사이의 간격이 넓은 것은 공의 이동 속도가 빨랐다는 것을 의미하고, 간격이 좁은 것은 그 공의 이동 속도가 빠르지 않았음을 의미한다. 공과 공 사이의 거리를 측정해서 프레임 간의 시차로 나누면 해당 구간의 속도를 구할 수도 있다. 고속으로 촬영해서 이미지를 합성하면 공이 전부 연결되어 공이 지나간 궤적을 그려낼 수 있을 것이다. 이러한 이미지를 합성해서 변화와 흐름을 시각화하는 방법을 포함해서 다양한 방법이 활용되고 있으며, 앞으로도 새로운 개념의 방법도 나타날 것으로 기대한다. 어떤 방법들이 고안되었으며 활용되고 있는지 살펴보도록 한다.   일상적으로 사용되는 흐름을 측정하는 기기 흐름에는 무엇이 있을까? 바람이 불면 공기의 흐름이 있고 강에는 물이 흐른다. 보도에는 사람들의 흐름이 있고 도로에는 차량의 흐름이 있다. 비가 오거나 눈이 내리는 것도 자연스러운 물의 순환(흐름)이다. 일상생활에서도 흐름을 측정하는 기기들이 셀 수 없이 많이 있다. 전류계, 전력량계(적산전력계), 수도 계량기, 도시가스 계량기, 온수 미터 등이다.(그림 2) 실험용 전류계는 실시간으로 흐르는 전하량을 전류로 표시하고 있다. 전체적으로 얼마나 사용했는지는 알 수 없다. 전류가 흐르지 않으면 그 순간 0을 표시하기 때문이다. 전체적인 흐름의 양을 알려고 하면 시시각각의 흐름을 적산해서 표시해야 한다. 전력량계(적산전력계), 수도 계량기, 도시가스 계량기, 온수 미터는 사용량을 적산하는 방식을 채용하여 사용량에 맞춰 요금을 부과하는 방식이다.  흥미롭게도 여기에서 소개한 흐름을 측정하는 모든 기기는 전선이나 배관을 통해서 흐르는 것이다. 전기는 누전되지 않는 한 전선을 벗어나서 흐르는 일이 없다. 물과 가스 또한 누수 또는 가스의 누출이 없는 상태에서 사용한다. 즉 모든 흐름의 측정은 폐쇄회로에서 이루어진다. 그런 의미에서 <그림 1>의 당구대 평면 상의 당구공 위치 변화를 동영상 정보를 바탕으로 추적한 사례는 특이한 경우로 볼 수 있다.    그림 2. 주변에서 흔히 볼 수 있는 흐름을 측정하는 기기     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[무료강좌] 정적 이미지와 동적 이미지
시점 – 사물이나 현상을 바라보는 눈 (4)   지난 호에서는 ‘관찰의 시점과 관점’이라는 주제로 사물을 바라볼 때 바라보는 위치, 방향, 각도에 따라서 우리 눈에 비치는 사물의 모습이 어떻게 달라지는지를 시점(視點)과 시각(視角)의 차이로 설명해 보았다. 보이는 것 자체는 아무런 의미나 의도가 없지만 보는 이의 관점(觀點)의 차이에서 다양한 해석이 나타날 뿐임을 이야기하였다. 이번 호에서는 ‘정적 이미지와 동적 이미지’의 차이를 살펴볼 예정이다. 정적 이미지와 동적 이미지에서 이미지 센서의 입장에서 바라본 ‘관찰의 시점과 관점’에 관한 몇 가지 사례를 들어가며 구체적으로 생각해 보도록 한다.   ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com   정적 이미지와 동적 이미지 시간이 지나더라도 변화하지 않는다면 정물이다. 시간의 흐름에 따라서 모양이 변화하는 것은 정물이 아니다. 촬영된 이미지는 모두 촬영된 순간의 촬영 조건에서 기록된 정적 이미지이다. 시간에 따라서 변화하는 어떤 사물의 이미지를 촬영하면 언제 어떤 모습을 하고 있을 때 촬영했는지가 중요하다. 빠르게 변화하는 사물을 변화에 비해서 느린 속도로 촬영하게 되면 변화 전과 변화 후의 모습이 중첩되어 보인다. 사물이 변화하더라도 그 변화 속도가 촬영 시간 내에서 거의 변화가 없다면 정물처럼 촬영될 것이다. 촬영 대상의 성질을 고려해서 촬영 조건을 선택해야 한다. 여기에서 말하는 변화는 사물 자체의 변화에 한정되지 않는다. 사물과 촬영 기기의 상대적인 위치, 각도, 조명 조건, 촬영 조건의 변화를 포함한다.   그림 1. 고드름이 생기는 속도는 늦고 녹는 속도는 빠르게 느껴진다.   변화의 속도가 느린 것 지난 겨울은 유난히 눈도 많이 내렸고 강추위도 여러 번 찾아왔다. 눈 내린 지붕에서 햇볕으로 녹은 눈이 물방울이 되어 처마로 떨어지며 차가운 공기로 얼음이 되어 고드름이 형성된다. 고드름 또한 기온이 올라가면 조금씩 녹으면서 고드름 끝에서 물방울이 떨어진다.(그림 1) 고드름의 형성과 소멸 과정은 비교적 천천히 진행된다. 물론 기온이 많이 올라가면 눈이 녹더라도 고드름은 형성되지 않는다. 이미 고드름이 만들어진 경우에도 기온이 올라가면 고드름이 녹는 속도도 빨라져, 고드름 끝에서 떨어지는 물방울의 숫자도 속도도 늘어난다. 그 결과 눈과 고드름은 사라진다. 물이 고체–액체–기체로 변화하면서 물의 순환이 이루어지는 것이다. 고드름은 겨울철에나 볼 수 있는 현상이지만 불과 몇 달 만에 반복되는 과정이다. 이것에 비해서 석회암 동굴에서 볼 수 있는 종유석, 석순, 석주는 석회암이 지하수에 녹아 조금씩 동굴에 스며들어 동굴 천장에서 떨어지면서 생겨나는 매우 속도가 느린 반응이다. 종유석은 동굴의 천장부터 아래 방향으로 자라는 것이고, 석순은 위에서 떨어지는 물방울에 포함된 석회 성분이 석출되어 동굴 바닥에서 위로 자라는 것이다. 종유석과 석순은 서로 마주 보고 자란다. 종유석과 석순이 서로 닿게 되면 석주가 만들어진다.(그림 2)   그림 2. 석회암 동굴에서 오랜 시간에 걸쳐 생성되는 종유석, 석순, 석주   종유석, 석순, 석주는 지하수에 녹아있던 석회 성분이 고체 상태로 석출되면서 수백 년, 수천 년 이상의 오랜 기간에 걸쳐 형성되는 것이다. 이렇게 서서히 일어나는 변화라면 거의 정적 이미지라고 보아도 무방하다. 오늘 촬영하거나 내일 촬영하거나 그 모양이 크게 변화하지 않기 때문이다. 다만 고드름 끝에 달린 물방울처럼 종유석 끝에 달린 석회 성분을 포함한 당장이라도 떨어질 듯한 지하수 방울을 촬영하는 경우라면 다른 이야기가 될 수도 있다.   변화의 속도가 빠른 것 이번에는 변화의 속도가 고드름이나 종유석보다 조금 빠른 것을 살펴보자. 잔잔한 수면에 작은 물방울이 떨어지는 경우를 관찰해보자. 물방울이 떨어지는 속도는 눈 깜짝할 사이에 일어나는 일이어서, 어떤 현상이 생기는지 육안으로는 자세하게 관찰할 수 없다. 고속으로 사진을 촬영할 수 있는 장비의 힘을 빌어야 비로소 어떤 현상이 일어났는지를 알 수 있다. 작은 물방울이 잔잔한 수면에 떨어진 후에 나타나는 물방울과 수면의 변화를 시계열로 정리하면 <그림 3>과 같다.    그림 3. 고속 촬영으로 포착한 ‘물방울과 수면의 힘겨루기’     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-04-02
[무료강좌] 관찰의 시점과 관점
시점 – 사물이나 현상을 바라보는 눈 (3)   지난 호에서는 우리가 암흑세계와 같은 바깥세상에 대한 정보를 어떠한 방식으로 얻고 어떻게 이해의 폭을 넓혀가고 그렇게 얻은 정보를 어떻게 활용하는지를 ‘암중모색’이라는 단어를 통해서 살펴보았다. 이번 호에서는 ‘관찰의 시점과 관점’에 관해서 살펴보고자 한다. 사물을 바라볼 때 바라보는 위치, 방향, 각도에 따라서 사물 자체에 변함은 없지만 우리 눈에 비치는 사물의 모습은 달라진다. 시점(視點)과 시각(視角)의 차이에서 오는 현상이다. 같은 사물이나 현상을 보면서 보는 이의 입장에 따라서 해석이 달라지는 일도 많다. 보는 이의 생각이 의미를 부여하게 되고 그 의미의 해석에 따라서 옳고 그름, 좋고 나쁨, 유리 또는 불리로 구별하면서 생기는 것이다. 보는 이의 관점(觀點)의 차이에서 비롯되는 것이다. 구체적인 사례를 통해서 살펴보자.    ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com    그림 1. 광화문 앞 세종대왕 동상을 다양한 위치와 각도에서 촬영한 이미지 모음(촬영자의 시각과 의도가 담겨있다.)    광화문 앞 세종대왕 동상 광화문 앞 광장에는 충무공 이순신 장군의 동상에 뒤이어 조선시대 과학기술을 보여주는 밤하늘을 관측하는 혼천의, 강우량을 측정하는 측우기, 그림자를 통해서 시간을 알 수 있는 해시계인 앙부일구가 전시되어 있다. 그 뒤를 이어 높이 6.2m, 폭 5m 크기의 세종대왕 대형 동상이 지상으로부터 3m의 기단 위에 조성되어 있다.(그림 1) 그 뒤로 광화문, 경복궁, 북악산이 일렬로 늘어서 있다. 같은 세종대왕 동상이지만 보는 이의 위치, 거리, 방향, 각도에 따라서 다양한 모습으로 비친다. 사진을 촬영하면서도 동상만을 촬영하기도 하고, 주변 경관까지 함께 촬영하기도 하며, 주변의 사람을 피해서 촬영하기도 한다. 사진을 촬영하는 사람의 의도와 시시각각으로 변화하는 관람객의 동선과 상황에 맞춰 자신만의 추억을 담게 된다. 같은 동상을 보고 있는 듯하지만 모두 관심을 두는 대상이 같다는 보장은 없다. 동상은 불투명하므로 자신의 위치에서 보이는 겉모습만을 보게 된다. 만약 동상이 투명하다면 동상의 존재 자체를 인식할 수 없을 것이다. 이순신 장군 동상 뒤에 있는 세종대왕 동상의 시각에서 바라본 광화문 광장은 어떤 모습일까? 뒤편의 광화문, 경복궁, 북악산의 모습은 보이지 않고 앞에 서 있는 이순신 장군 동상의 뒷모습과 세종대로 양옆의 건물이 보일 것이다.(그림 2) 같은 위치에 있더라도 바라보는 방향과 각도, 즉 ‘시점’ 또는 ‘시각’에 따라서 보이는 것도 달라진다. 같은 것을 보더라도 그에 대한 의미는 각자의 ‘관점’에 따라서 다르게 해석하기 마련이다.    그림 2. 광화문 앞 이순신 장군 동상의 앞모습과 (세종대왕 동상의 시선에서 바라본) 뒷모습    시점에 따른 대상의 외관 변화 풍경이나 인물을 화폭에 담으려면, 시각에 따라서 대상이 어떻게 변형되어 보이는지를 이해하고 작업을 시작해야 실물과 비슷한 느낌의 위화감 없는 그림을 완성할 수 있다. 이것은 새로운 건물을 짓기 전인 설계 단계에서 건물이 완성된 후의 외관과 주변의 환경을 보여주기 위한 조감도를 그리는 데에도 필요하다. 미술과 건축 분야에서는 기초 단계에서부터 이런 훈련 과정을 거치게 된다.  <그림 3>에 한 변의 길이가 a인 정육면체를 모서리의 약간 오른쪽에서 보았을 때, 보는 이의 눈높이에 따라서 어떻게 달라지는지를 두 개의 소실점(VP : vanishing point)을 사용하여 투영한 것을 정리하였다. 새가 보는 듯한 조감도부터 서서 보았을 때, 앉아서 보았을 때, 지면에서 보았을 때, 지하에서 바라보았을 때를 가정하여 그린 도면이다.    그림 3. 같은 사물을 바라보는 위치에 따른 외관 변화    같은 원리를 외형이 복잡한 세종대왕의 동상에 적용한다면, 시점에 따른 관찰 대상의 외관 변화를 정확하게 표현하기는 쉽지 않다. 외형의 돌출 부위나 굴곡에 따라서 가려져서 시야에서 사라지는 부분도 있기 때문이다. 보이는 것을 보이는 대로 그리는 것도 쉽지 않은 일이지만, 본 적도 없고 아직 만들어지지도 않은 것을 머릿속으로 시뮬레이션해서 마치 실물을 보고 그린 것처럼 위화감 없이 그려낸다는 것은 대단한 능력이다. 바라보는 사물과의 거리와 각도, 광선에 따라서 우리 눈에 어떻게 비치는지, 우리가 사물을 어떻게 인식하는지를 잘 이해해야만 감각적으로 자연스럽게 표현할 수 있기 때문이다.      ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-03-06
암중모색
시점 - 사물이나 현상을 바라보는 눈 (2)   지난 호에서는 ‘시점 - 사물이나 현상을 바라보는 눈’이라는 제목의 연재 첫 번째 주제로 모든 행동의 원동력이 되기도 하는 ‘호기심’에 관해서 소개하였다. 우리가 세상을 어떻게 바라보고 어떻게 이해하는지에 관해서 생각해 보았다. 이번 호에서는 우리가 바깥세상에 대한 정보를 어떠한 방식으로 얻고 어떻게 이해의 폭을 넓혀가고 그렇게 얻은 정보를 어떻게 활용하는지를 ‘암중모색’이라는 단어를 통해서 살펴보도록 한다. 이러한 행동은 한시도 쉴 새 없이 일어나는 일이지만 순간적으로 일어나는 일이기도 하고, 너무나 익숙한 나머지 의문을 품는 일이 드물다. 매우 당연한 현상으로 받아들이는 것이 자연스러울 수도 있지만 한 번쯤은 유체 이탈해서 자연과 반응하는 자기 모습을 관찰하는 것도 ‘시점 - 사물이나 현상을 바라보는 눈’을 이해하는 데 도움이 될 듯하다.    ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com   그림 1. 바깥세상의 정보는 마치 어둠 속에서 암중모색하듯 감각기관을 통해서 얻은 정보를 바탕으로 대상을 알아가는 과정과 같다.    암중모색 앞이 전혀 보이지 않는 칠흑 같아 어두운 전혀 가본 적도 없는 미지의 공간에 들어가게 된다면 어떤 일이 일어날까? 우선 두려움이 엄습해 올 것이다. 자신이 어디에 있는지, 앞으로 무슨 일이 일어날지 알지 못하기 때문에 마음이 몹시 불안해질 것이다. 시간이 조금 지나면서 신체에 위험이 없다고 판단되면 자기가 있는 곳에 관한 정보를 얻고 싶은 ‘호기심’이 생길 것이다. 그러나 앞이 전혀 보이지 않으므로 눈이 있어도 무용지물이다. 그 상황에서 벗어나려고 해도 주변의 상태를 알지 못하면 대책을 세울 수도 없다. 어둠 속에서 시각을 제외한 여러 가지 감각기관을 사용하여 상황 파악에 도움이 될만한 정보를 수집하여 그동안의 경험으로 축적해 온 자신만의 데이터베이스를 활용하여 어떤 결론을 얻게 될 것이다. 그야말로 ‘암중모색(暗中摸索)’ 상태가 된다.(그림 1)  우리가 바깥세상의 정보를 수집하는 안테나의 역할을 하는 다섯 가지 감각을 오감이라고 부른다.(그림 2) 시각, 청각, 후각, 미각, 촉각을 통하여 정보를 수집하여 데이터베이스화하여 의식작용을 거쳐서 각종 판단을 하게 되는데, 시각이 약하면 약한 대로 없으면 없는 대로 자신만의 데이터베이스를 만들어 활용하게 되는 것이다. ‘암중모색’이라고 하면 단어의 의미에 집착하게 되어 시각에만 국한되는 느낌을 지울 수 없지만, 모든 미지의 세계를 탐색하는 과정이 이와 같다. 우리 주변에는 앞을 전혀 보지 못하는 시각 장애인도 있고 전혀 듣지 못하는 청각 장애인도 있다. 몇 년 전에 전 세계적으로 유행했던 코로나바이러스 감염 후유증으로 후각 또는 미각을 잃었던 환자분들도 계셨다. 환경의 정보를 받아들이는 여러 종류의 안테나(감각 기능) 중에서 일부가 고장 나거나 성능이 약화하였던 것이라고 할 수 있다.   그림 2. 바깥세상의 정보를 얻는 안테나 역할을 하는 다섯 가지 감각(오감)과 의식의 관계   이 세상은 나의 사정과 무관하게 아무 일도 없던 것처럼 돌아간다. 우리가 얻을 수 있는 정보의 질과 양이 다를 뿐이며, 개인적으로 축적해 온 데이터베이스의 내용과 활용 방법과 효율이 다를 뿐이다. 때로는 초음파, 엑스선, 적외선, 자외선 등을 이용하여 다양한 정보를 우리가 인지할 수 있는 시각 정보로 변환하여 활용할 수 있는 기기를 ‘암중모색’ 프로젝트의 보조수단으로 활용한다.   둥근 지구를 본 사람들 오늘날 ‘지구가 둥글다’라는 것은 초등학생도 아는 상식 중의 상식이다. 옛날에는 어땠을까? 해가 동쪽에서 뜨고 서쪽으로 지면 보이지 않으므로, 대부분의 사람은 땅은 평평하고 땅의 가장자리로 가면 낭떠러지가 있을 것이라고 믿었다. 그것이 그 당시의 상식이었다. 우리와 같은 오감으로 ‘암중모색’하여 내린 당시의 결론이다. 고대 그리스의 철학자 탈레스(Thales)는 지중해를 항해하면서 관찰한 땅의 모양을 근거로 땅은 원형 방패처럼 가운데가 부풀어 오른 원반형이라고 주장하였다. 그리고 이를 근거로 피타고라스(Pythagoras)는 지구가 둥글며, 완전한 구형이라고 주장했다. 그러나 중세 유럽에서는 종교적인 이유로 지구가 둥글다는 것을 부정하고 지구가 평평하다고 생각했다고 잘못 알려져 있다. 중세에도 관련 분야의 지식에 접근이 가능한 학자는 고대의 연구를 받아들여 지구가 둥글다고 생각했다. 이 시대에는 지동설과 천동설이 논쟁의 중심이었다. 기원전 4세기경 그리스의 알렉산드로스 대왕(Alexander the Great)이 활약하던 헬레니즘(Helenism) 시대에 이미 완성된 천동설은 지구가 둥글다는 지구 구형설을 전제로 성립된 것이었다. 그러나 그들은 여러 가지 현상을 통해서 지구가 둥글 것이라는 ‘암중모색’의 결과를 도출했을 뿐이다. 아무도 실제의 지구 전체의 모습을 보지 못했다.   그림 3. 지구의 전체 모양과 크기는 어떻게 확인할 수 있었을까?    적도 지름 1만 7756km의 지구의 전체 모습은 고궤도 인공위성의 비행 고도인 3만6000km 이상, 지구 적도 지름의 2배 이상 떨어진 거리에서 관측해야 가능하다.(그림 3) 따라서 지금까지 육안으로 지구가 둥글다는 것을 확인한 사람은 거의 없다. 지상으로부터 고도 400km의 궤도를 비행하는 국제우주정거장(ISS)에서조차 지구 전체의 모습을 한눈에 관찰할 수 없다. 국제우주정거장은 지구를 약 90분 만에 한 바퀴 돌 수 있는 속도로 이동하면서 다양한 실험, 연구, 지구 및 천체 관측을 수행하고 있다. 지구와 달의 평균 거리가 38만 4400km이므로 지구 전체의 모습을 볼 수 있는 고도인 3만 6000km는 지구와 달의 거리의 약 1/10에 해당한다. 기원 전 4세기의 ‘암중모색’의 결과가 현대 과학기술로 확인된 셈이다. 지구의 직경은 어떻게 측정했을까? 측정된 값은 얼마나 정확할까? 어디를 기준으로 측정했을까? 바닷물은 왜 지구의 표면에서 지구 중심을 향해서 낮은 곳을 채우며 구면을 형성하고 있을까? 해수면의 높이는 지구 어디에서나 같을까? 지금도 지구에 대해서 아는 것보다 모르는 것이 더 많다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-02-04
[칼럼] AI에 대한 NI(자연지능)의 첫인상
엔지니어링 분야의 AI 활용을 위한 제언   요즘 AI(인공지능)에 대한 관심과 활용법에 대한 세간의 논의가 다양하고 사용자의 수도 증가하고 있음은 확실한 대세이다. 그러나 현재 실용화되고 있는 AI에 대한 첫인상과 과거 컴퓨터 & 커뮤니케이션(computer & communication) 기술이 보편화되면서 세간에 도입되는 시점과 유사하지만 매우 다른 현상이 나고 있다는 인식을 받는데, 초기의 사이버 스페이스(cyber space)를 소개할 때가 좀 더 유사한 기억으로 필자에게 다가온다. 하지만 AI 역시 하나의 도구(tool)에 해당하고, 누군가가 자본을 투자해서 만들어진 인간의 작품이며 동시에 경제활동에 거래하는 상품이라는 것에서 복합적인 인상을 주고 있다. 이러한 복합적인 인상을 AI라는 용어에 대비되는 필자 자신의 신조어인 NI(Natural Intelligence, 자연지능)라는 용어로 비교해서 의견을 제시해 보고자 한다.   현재 시중에 소개된 AI의 종류로 드러난 AI 상품의 특징 AI 상품명과 기능을 일일이 소개하지는 않겠다. 그러나 이들의 공통점은 결국 동일한 과정을 거쳐서 상품으로서 완성도를 구현했다는 것이다. 즉 머신러닝 기법에 의해서 구현한 상품들이다. 여기서 정확하게 이해해야 하는 것은 세 가지다. 머신러닝을 수행할 수 있는 High Quality Low Data Base가 존재하는 경우 인문학을 통해서 품질(quality) 판정 기준이 명확하게 정의된 분야인 경우 이상의 두 가지가 기준 언어(영어)로 작성된 충분한 양의 텍스트 자료가 구비되어 있어서 머신러닝이 가능한 준비가 되어 있다. 현재 AI 기능을 사용한 경험이 있는 경우 이 세 가지 제시사항을 이해할 것이다. 그러면 왜 이러한 세 가지를 제시하는가? 지금 세간의 AI에 대한 평가는 수 년 내로 AI 사용자가 폭발적으로 증가하고, 현재보다 제공되는 기능도 매우 확장될 것으로 예상하고 있다. 필자는 이런 예상에 대해서 반대 의견을 갖지는 않지만, 앞에서 제시한 세 가지 의견을 기준으로 판단할 때 결국 웹 브라우저, 포털 서비스, 검색 서비스 내지 각종 SNS와 같이 유사한 기능의 AI 상품들이 시장에서 경쟁할 것이라는 예상을 지울 수 없다. 동시에 지금도 사회적으로 고급 인적자원의 공급이 이루어지지 않아서 사회 활동에 차질이 있는 부분의 경우는, 획기적인 투자가 없다면 지금 현실화되어 있는 경우와 같은 수준의 AI 기능을 사회적으로 제공될 수 없다는 것을 예상할 수 있다. 그 대표적인 예가 고도로 훈련된 전문 기술 인력이 있어야 사용과 운영 성과를 얻을 수 있는 CAD/CAM/CAE/CAT 시스템이다. 많은 사람이 CAD 시스템이다 또는 CAM 시스템이다라고 언어적인 표현을 하면 아직도 단일 기능·단일 목적의 수단으로 이해한다. 아주 쉽게 말해서, 구인·구직 사이트를 보면 경력자에 대한 구인·구직 내용에 ‘오토캐드 사용 가능자’, ‘카티아 사용 가능자’ 식으로 표현되고 있다. 구직자든 구인자든 이렇게 조금은 부정확한 측면이 있는 표현을 사용하는 것이 현재 우리의 여건인데, 정확한 표현은 ‘오토캐드 사용 XXX 설계 및 YYY 개발 프로세스 숙련자’가 될 것이다. 그래서 통상 ‘오토캐드 사용 가능 XXX 설계 유경험자’, ‘YYY 개발 유경험자’ 식으로 표현하고 있다. 그러나 실제로 구인자의 입장에서 필요한 인력은 정확히 표현해서, ‘오토캐드는 능숙하게 사용하고 필요 시 최적의 업무 환경에 부합하는 오토캐드 사용자 환경을 스스로 구성해 낼 수 있으면서 동시에 설계 업무 프로세스와 여기서 사용하는 모든 전문 용어와 특별한 문서양식 및 의사결정 기준을 정확히 이해하고 활용할 수 있는 훈련된 인력’이라는 것을 의미한다. 다시 말해서 이렇게 훈련된 전문 인력이 사실 우리 산업계에는 분야별로 매우 부족한 것이 현실이며, 동시에 이러한 부족 인력의 대안으로 손쉽게 AI를 사용하는 것을 생각하기 쉽고 나름 유의미한 AI의 확대 적용이라고 판단이 가능하다. 그러나 이렇게 유의미한 AI의 사용 확대 영역이 CAD/CAM/ CAE/CAT 시스템 사용 영역인데, 아쉽게도 AI를 적용하기 위한 개발 단계의 전제조건인 앞서 제시한 세 가지 사항에 있어서 어느 한 가지도 현실적으로 각각의 분야별로 준비되어 있는 것이 없다고 봐야 하는 것이 현실이다. 그러면 어떻게 해야 현실적으로 준비되어 있지 않은 세 가지 제시를 극복할 수 있는가 하는 몹시 어려운 과제를 제시해야 한다. 이에 대한 대답으로 필자는, 많은 평가자에게 현실적이지 않다고 평가될 수 있지만, 다음과 같이 제시하고자 한다.   1단계 정의 전문가 업무를 실행에 활용되는 AI는 요즘 유행어로 표현해 한 가지의 디지털 트윈(digital twin)이다.   2단계 정의 전문가용 디지털 트윈인 AI가 존재하고 작동한다고 할 때 반드시 그 원본이 반드시 있어야 하고, 동시에 그 원본은 현실 세계에 존재해야 한다. 따라서 그 원본을 인공지능(artificial intelligence)에 대응하는 표현인 자연지능(natural intelligence, NI)으로 표현하는 전문가 1명 내지 2명 이상으로 구성되는 위원회로 설정된다.   3단계 정의 NI의 AI화는 NI의 실제 활동과 지식 축적 방식 및 축적된 지식 자체를 모두 컴퓨터 시스템으로 이동 복제해야 하는 것이며, 지금까지의 상용화된 AI 제품의 개발 및 구현과는 다른 형태의 AI 개발 방법을 필요로 한다. 이를 실현하는 것은 AI 개발 전문가와 NI의 협동 작업으로만 가능하다. 그 이유는 앞서 제시한 세 가지 전제조건의 특징이 AI 개발에 필요한 기본 정보가 이미 개방된 자료에 해당하는 것을 사용한다는 것이기 때문이다. 하지만, 여기서 거론하고 있는 사례의 경우는 그렇지 못한 경우이고 기초 자료 축적부터 시작이 필요하기에 협업은 필수 조건인 것이다.   이렇게 3단계의 정의를 통해서 CAD/CAM/CAE/CAT 분야에 있어서 AI의 형태와 구현하는 방식을 간단하게 정의해 보았다. 이는 물론 지금도 그리고 앞으로도 현실성이 크게 없을 것이다. 그 이유는 AI도 상품인 이상 개발비를 회수해 상업적인 이익이 발생해야 하는데, 이를 현실화하는 것은 그 시장성에 있어서 충분한 개발비를 회수할 수 있는지 불투명한 경우에 해당하기 때문이다. 따라서 이 분야가 지속적으로 사회적으로 존속해야만 한다고 보면 반드시 성공해야 하는 경우이고, 동시에 이제는 국제적으로 모든 것이 경쟁해야 하는 것이 산업계의 현실인 이상 성공해서 그 유형 효과를 얻을 경우 지금 우리나라가 겪고 있는 중국으로 대표되는 추격을 뿌리칠 수 있는 한 차원 높은 수단으로 작용할 것이다.   맺음말 2025년이면 필자의 기술자 생활이 40년차에 들어간다. 그리고 본격적으로 CAD/CAM 시스템을 업무에 적용해 사용한 것도 1989년부터이니 36년차에 들어간다. 그 동안에 기술자 본연의 업무 영역에서 전문성도 갖추고자 노력했고, 컴퓨터 시스템 전문가로서의 영역도 상당한 깊이의 전문 기술을 습득하고자 노력했다. 그 결과 한때는 유닉스(UNIX) 시스템 및 MS-DOS 환경에서의 시스템 매니저 업무도 했다. 하지만 기술자 전문 영역의 활동이 주인 관계로 윈텔(WINTEL) 기반의 환경으로 단일화된 이후로는 전문적인 컴퓨터 시스템 매니저는 손을 놓았지만 파워 유저인 것은 변함이 없기에 이러한 의견을 문장으로 제시한다. 얼마나 유용한 의견 제시일지는 모르겠지만, 나름 수 십 년간 전문가로서 능력을 계발한 NI의 조언이라고 봐 주길 바란다.   ■ 김충섭 마스터엔지니어의 대표이며 금형기술사로, CAE 기술 지도와 활용 지원 활동을 하고 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-02-04
호기심
시점 - 사물이나 현상을 바라보는 눈 (1)   이번 호부터는 우리가 세상을 어떻게 바라보고 어떻게 이해하는지에 관해서 생각해 보고자 한다. 어느 날 세상에 던져진 하나의 생명체로 태어나 살아가는 과정을 통해서, 세상을 관찰하고 세상을 대상으로 실험하면서 세상을 이해해 가는 과정을 제삼자의 관점에서 살펴보고자 한다. 모든 행동은 생명 유지를 위한 욕구로부터 시작되지만, 그 욕구를 어느 정도 만족하면 세상에 대한 호기심이 새로운 형태의 행동으로 나타나게 된다. 호기심으로부터 시작된 행동, 그 행동으로부터 전개되는 다양한 행위를 통한 학습 과정과 학습된 내용을 응용하는 과정을 1년간의 연재를 통해서 다양한 각도에서 살펴보도록 한다. 일상에서 무의식적으로 일어나는 일이지만 한 번쯤은 그러한 무의식적 행동을 제삼자의 관점에서 관찰하는 것도 의미가 있을 듯하여 이번 연재를 기획하게 되었다. 그 첫 번째 이야기는 ‘호기심’에 관한 이야기이다. 가벼운 마음으로 읽어주시길 바란다.   ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com   그림 1. 호기심은 여러 가지 감각기관으로부터의 신호를 바탕으로 자신의 바깥 세계를 이해하기 위한 원동력이자 수단이다.   호기심 새롭고 신기한 것을 좋아하거나 모르는 것을 알고 싶어 하는 마음이 ‘호기심’이다. 모든 생명체는 세상에 태어나면서 바깥세상에 대한 정보를 탐색하고 적응해 가면서 생명 활동을 이어간다. 미생물, 식물, 동물, 인간에 이르기까지 공통적으로 적용되는 것이다. 모든 생명체에 해당하는 원초적인 욕망이다. 갓난아기, 어린이, 강아지, 새끼 고양이, 갓 부화한 애벌레까지도 주변 환경의 정보를 감지하고 그 정보를 바탕으로 위험한지, 안전한지, 이로운지, 해로운지를 순간적으로 파악할 수 있도록 경험이라는 데이터베이스를 축적해가면서 생명 활동을 이어간다.(그림 1) 호기심은 상상력을 풍부하게 하기도 하며, 새로운 목표를 정하고 그 목표를 향하여 도전하게 하는 원동력이 되기도 한다. <그림 2>는 실제로 일어날 수는 없지만 갖가지 상상의 조합으로 만들어진 이미지이다. 대기권 밖을 비행하는 우주선에서나 볼 수 있는 둥근 모양의 푸른색 지구와 크기의 비율로도 전혀 사리에 맞지 않는 반쯤 가려진 붉은 색 화성, 고양이 모양을 한 별자리까지 상상력을 자극한다, 나무 담장 위를 기어가는 거대한 애벌레까지…. 현실과 동떨어진 합성된 이미지이지만 자신의 경험과 지식을 바탕으로 이 모순된 이미지에서 각자의 방식대로 작자의 의도를 파악하려고 노력하는 자신을 발견하게 된다. 심지어는 자신만의 이미지를 합성해 보고 싶은 충동을 느낄 만큼 중독성까지 있다. 인간은 지적 호기심이 충만한 생명체이기 때문이다. 호기심은 가슴을 설레게 하며, 현상에 대한 이해와 상상력을 유발하기도 하고, 미지의 세계에 대한 도전의 동기를 부여하기도 한다.   그림 2. 호기심은 가슴을 설레게 하며 현상에 대한 이해와 상상력을 유발하고 도전의 동기를 부여한다.   상상을 현실로 만든 사례 필자를 비롯한 지구상의 모든 생명체는 지구에 살면서도 지구가 둥글다는 것을 육안으로 확인하지 못한다. 대기권 아래에서 평생을 살면서도 대기의 존재를 느끼는 일도 거의 없고, 중력의 영향으로 지구 중심으로 당겨져 지표면에 붙어 살면서도 중력을 체감하는 일이 거의 없다. 대기나 중력의 존재는 학습을 통해서 머릿속으로 개념을 이해할 뿐이다. 생명이 위협을 받을 때에서야 비로소 대기의 필요성과 중력의 위력을 체험하게 된다. 그러나 그러한 위험한 상황이 해소되면 또다시 망각하게 된다. 하늘을 보면 낮에는 해가 보이고 밤에는 달과 별이 보이지만, 그것이 얼마나 떨어져 있고 얼마나 큰 것인지 알 수 없다. 대낮에는 햇빛이 너무나도 강렬해서 해를 똑바로 바라보지도 못한다. 그믐날 밤에는 달빛도 거의 없어 별빛에만 의존해서 보아야 해서, 어둠 속에서 주변 물체의 존재를 확인하기도 어렵다. 도시의 경우 밤에도 각종 조명에 의한 빛 공해 때문에라도 밤하늘을 보는 일 자체가 많지 않다. 또한 지구와 다른 천체의 사이에는 무엇이 있는지 알지 못한다. 학교에서 교과서와 선생님의 설명을 통해서 그러려니 하는 경우가 대부분이다. 교과서를 집필한 사람이나 그 교과서를 사용해서 수업을 진행하던 선생님도 자신이 확인한 내용은 거의 없다. 그렇지만 시험 문제로 출제되고 모두가 그렇게 믿으니 그런가 보다 할 뿐이다. 상식은 이렇게 만들어지고 힘을 얻게 된다. 그 상식을 경계로 비상식 또는 몰상식한 사람이 가려진다. 때로는 사회성이 부족한 사람 또는 이단자로 비치기도 한다. 과연 그런 구별은 가능한 것일까? 역사 속의 몇 가지 사례로 살펴보자.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-01-06