• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "이화학연구소"에 대한 통합 검색 내용이 4개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
IBM, 일본 이화학연구소에 양자 컴퓨터 ‘IBM 퀀텀 시스템 투’ 가동
IBM은 일본의 국립 연구기관인 이화학연구소(RIKEN)와 함께 미국 외 지역에서는 첫 번째로 IBM 퀀텀 시스템 투(IBM Quantum System Two)를 설치, 가동했다고 밝혔다. 이 시스템은 일본의 슈퍼컴퓨터인 후가쿠(Fugaku)와 함께 배치된 첫 양자컴퓨터이다. 이번 프로젝트는 일본 경제산업성 산하의 신에너지·산업기술종합개발기구(NEDO)가 추진하는 ‘양자 및 슈퍼컴퓨터 통합 활용 기술 개발’의 일환으로 진행된다. IBM 퀀텀 시스템 투는 IBM의 156 큐비트 양자 프로세서인 IBM 퀀텀 헤론(IBM Quantum Heron)을 탑재하고 있다. 헤론은 이전 세대의 127 큐비트 IBM 퀀텀 이글(Eagle)보다 성능이 향상됐다. 2 큐비트 에러율로 측정되는 성능은 3×10⁻³(최저 오류율 1×10⁻³)로 이글에 비해 10배 개선되었으며, 회로 레이어 작업 속도(CLOPS)는 초당 25만 회를 기록하며 이 역시 10배 향상됐다. 156 큐비트 규모의 헤론은 기존 고전 컴퓨터로는 불가능했던 양자 회로 실행이 가능하며, 후가쿠와 연결해 양자 중심 슈퍼컴퓨팅 연구를 더욱 진전시킬 수 있다. IBM은 특히 화학 분야의 근본적인 문제를 해결하기 위한 첨단 알고리즘 개발에 있어 중요한 역할을 할 것으로 기대하고 있다.     IBM 퀀텀 시스템 투는 일본의 고성능 컴퓨팅(HPC) 센터인 RIKEN 계산과학연구센터(R-CCS) 내에서 후가쿠 슈퍼컴퓨터와 함께 구축됐다. 두 시스템은 명령어 수준에서 고속 네트워크로 긴밀히 연결되어, 양자 중심 슈퍼컴퓨팅을 위한 실험 환경을 조성하고 있다. 이러한 통합을 통해 RIKEN과 IBM의 엔지니어들은 병렬화된 작업 부하, 지연 시간이 적은 고전-양자 통신 프로토콜, 고급 컴파일 기술 및 라이브러리 개발 등을 함께 진행하고 있다. 양자 컴퓨팅과 고전 컴퓨팅이 서로 다른 계산적 강점을 지니고 있기 때문에, 이와 같은 연계는 각 시스템이 가장 적합한 연산을 자연스럽게 분담하여 처리할 수 있게 한다. RIKEN과 IBM은 RIKEN의 이번 IBM 퀀텀 시스템 투 도입이 양자 우위를 제공하는 알고리즘을 개발하는 데 있어 기존 성과를 한 단계 더 발전시키는 계기가 될 것으로 기대하고 있다. 양자 우위란 양자 컴퓨터가 기존의 고전적 방법보다 더 빠르고, 비용 효율적이며, 정확하게 문제를 해결할 수 있는 지점을 뜻한다. 이는 최근 ‘사이언스 어드밴시스(Science Advances)’ 표지에 실린 샘플 기반 양자 대각화(SQD) 기술을 통해 철황화물과 같은 복잡한 화합물의 전자 구조를 정확히 모델링하는 데 성공한 연구도 포함한다. 철황화물은 자연과 생명체에서 흔히 발견되는 화합물로, 이를 현실적으로 모델링하는 능력은 화학 연구에서 매우 중요하다. 과거에는 이러한 작업이 오류 내성이 있는 양자 컴퓨터가 필요하다고 여겨졌으나, SQD 워크플로는 오늘날의 양자 컴퓨터와 강력한 고전적 인프라를 결합해 과학적 가치를 창출할 수 있음을 보여주는 사례로 평가받는다.
작성일 : 2025-06-24
지멘스, RIKEN의 차세대 AI 기기 연구 위해 에뮬레이션 및 HLS 플랫폼 공급
지멘스 디지털 인더스트리 소프트웨어, 지멘스 EDA 사업부는 일본의 국가 연구 개발 기관인 이화학연구소(RIKEN)이 차세대 AI 디바이스 연구를 강화하기 위해 지멘스의 반도체 설계 검증 설루션인 벨로체 스트라토 CS 에뮬레이션(Veloce Strato CS emulation) 및 캐터펄트(Catapult) 상위 수준 합성(HLS) 플랫폼을 채택하여 AI 가속기(AI accelerator) 디바이스의 아키텍처 및 설계 공간 탐색을 수행한다고 발표했다. 지멘스의 하드웨어 기반 설루션인 벨로체 스트라토 CS 에뮬레이션 및 캐터펄트 HLS 플랫폼의 결합은 대규모 주문형 집적 회로(ASICs)의 빠른 합성 및 에뮬레이션을 가능하게 하는 기술을 RIKEN에 제공한다. 이러한 지멘스의 설루션은 RIKEN이 최적화된 AI 컴퓨팅 회로 및 이를 포함하는 시스템온칩(SoCs)의 성능을 평가하는 데 중요한 역할을 담당하고 있다. 지멘스는 이러한 검증 작업을 거쳐 개발된 AI 가속기가 2030년까지 운영될 예정인 후가쿠(Fugaku) 이후 차세대 슈퍼컴퓨터에 도입될 가능성이 있는 후보 중 하나가 될 것으로 보고 있다.     RIKEN 계산과학센터 프로세서 연구팀의 팀장인 사노 겐타로(Kentaro Sano) 박사는 “RIKEN이 지멘스의 에뮬레이션 및 HLS 기능을 도입함으로써 ‘과학을 위한 AI(AI for Science)’ 연구를 위한 차세대 AI 디바이스 탐색을 수행할 수 있게 되었다. 이를 통해 세계에서 가장 강력한 슈퍼컴퓨터를 개발하고 있는 자사의 입지를 강화할 수 있다”라고 말하며, “자사의 목표는 과학적 발견을 위한 생성형 AI 모델을 구축하는 데 필수인 컴퓨팅 인프라를 구축, 관리 및 지속적으로 강화하는 것이다. 지멘스의 설루션은 이러한 연구에서 중요한 역할을 한다”라고 말했다. RIKEN 계산과학센터는 일본에서 가장 큰 계산과학 연구 기관이자 다양한 과학 분야에서 세계적인 리더로 자리 잡고 있으며, K 컴퓨터(K computer) 및 후가쿠(Fugaku)와 같은 슈퍼컴퓨터를 개발한 것으로 알려져 있다. RIKEN은 일본 사이타마현 와코시에 본부를 둔 자연과학종합연구소로 일본 문부과학성 산하의 연구 기관이며, 일본 내에선 최고로 평가되고 있는 것은 물론 그리고 세계적으로도 상당한 연구 실적을 남긴 곳이다. 지멘스 디지털 인더스트리 소프트웨어의 장 마리 브루네(Jean Marie Brunet) 하드웨어 지원 검증 부문 부사장은 “RIKEN의 혁신적인 AI 디바이스 연구를 지원할 수 있어 기쁘다. 최신 벨로체 스트라토 CS 에뮬레이션 및 캐터펄트 HLS 플랫폼은 RIKEN이 연구 목표를 달성하고 AI 분야에서 혁신을 주도할 수 있도록 포괄적인 설루션을 제공한다”고 말했다. 지멘스 디지털 인더스트리 소프트웨어의 쓰치다 유키오(Yukio Tsuchida) 일본 전자설계자동화(Electronic Design Automation) 부문 부사장은 “지멘스는 RIKEN에서 진행되는 최첨단 연구 개발을 지원하게 되어 매우 자랑스럽게 생각한다. 우리는 AI의 강력한 성능을 대규모 과학 연구에 적용하는 가능성을 탐색하는 RIKEN의 목표 달성을 지속적으로 지원할 것”이라고 말했다.
작성일 : 2025-02-17
IBM, 복잡한 알고리즘 연산 속도 높인 양자 컴퓨터 소개
IBM은 ‘제 1회 IBM 퀀텀 개발자 콘퍼런스(IBM Quantum Developer Conference)’를 개최하고, IBM 양자컴퓨터에서 복잡한 알고리즘을 실행할 때 높은 수준의 규모, 속도, 정확성을 제공하는 새로운 양자 하드웨어 및 소프트웨어 기술을 소개했다. ‘IBM 퀀텀 헤론(IBM Quantum Heron)’은 IBM의 고성능 양자 프로세서로, IBM의 글로벌 양자 데이터 센터를 통해 사용할 수 있다. IBM 퀀텀 헤론은 퀴스킷(Qiskit)을 활용해 특정 클래스의 양자 회로를 최대 5000개의 2큐비트 게이트 연산까지 정확하게 실행할 수 있다. 사용자는 이러한 IBM 퀀텀 헤론의 성능을 활용해 재료, 화학, 생명과학, 고에너지 물리학 등 다양한 분야의 과학적 문제를 양자 컴퓨터로 해결하는 방법을 탐구할 수 있다. IBM은 “이는 IBM 양자 개발 로드맵의 또 하나의 주요 목표를 달성한 것이며, IBM과 비즈니스 파트너가 양자 우위와 2029년으로 예정된 IBM의 오류 수정 첨단 시스템을 향해 나아감에 따라 양자 유용성 시대를 더욱 앞당기는 것”이라고 설명했다.     IBM 헤론과 퀴스킷의 성능 향상으로 사용자는 최대 5000개의 게이트로 구성된 양자 회로를 실행할 수 있는데, 이는 2023년 IBM의 양자 유용성 시연에서 정확하게 실행된 게이트 수의 약 2배에 달하는 수치이다. 이를 통해 IBM 퀀텀의 컴퓨터 성능은 무차별 대입 방식의 기존 시뮬레이션 방식보다 더욱 향상됐다. 네이처지(Nature)에 게재된 2023년 유용성 실험에서는 데이터 당 처리 시간이 총 112시간 소요됐으나, 동일한 데이터를 사용한 같은 실험을 최신 IBM 헤론 프로세서에서 실행한 결과 50배 빠른 2.2시간 만에 완료할 수 있었다. IBM은 개발자가 안정성과 정확성, 속도를 갖춘 복잡한 양자 회로를 보다 쉽게 구축할 수 있도록 고성능의 양자 소프트웨어로 퀴스킷을 발전시켜 왔다. IBM은 제3자 기관의 1 000여 개의 테스트를 통해 퀴스킷이 다른 플랫폼 대비 높은 성능과 안정성을 갖춘 양자 소프트웨어 개발 키트라는 것을 확인했다고 밝혔다. IBM 퀀텀 플랫폼은 생성형 AI 기반 기능 및 IBM 파트너의 새로운 소프트웨어와 같은 신규 퀴스킷 서비스로 선택지를 더욱 확장하고 있으며, 산업 전반의 전문가 네트워크가 과학 연구를 위한 차세대 알고리즘을 구축할 수 있도록 지원한다. 여기에는 AI로 양자 하드웨어를 위한 양자 회로의 효율적인 최적화를 지원하는 퀴스킷 트랜스파일러 서비스(Qiskit Transpiler Service), 개발자가 IBM 그래니트 기반 생성 AI 모델로 양자 코드를 생성하는 데 도움을 주는 퀴스킷 코드 어시스턴트(Qiskit Code Assistant), 양자 및 기존 시스템에서 초기 양자 중심 슈퍼컴퓨팅 접근법을 실행하는 퀴스킷 서버리스(Qiskit Serverless) 같은 도구가 포함된다. 양자 노이즈의 성능 관리를 줄이고 양자 회로의 복잡성을 추상화해 양자 알고리즘 개발을 간소화하는 등의 기능을 위해 IBM, 알고리즘믹(Algorithmiq), 케드마(Qedma), 큐나시스(QunaSys), Q-CTRL 및 멀티버스 컴퓨팅의 서비스를 이용할 수 있는 IBM 퀴스킷 함수 카탈로그(IBM Qiskit Functions Catalog)가 있다. 고성능 컴퓨팅의 차세대 진화 단계인 양자 중심 슈퍼컴퓨팅에 대한 IBM의 비전은 병렬화된 워크로드를 실행하는 최첨단 양자 컴퓨터와 기존 컴퓨터를 통합해 복잡한 문제를 고성능 소프트웨어로 쉽게 분리하고, 가장 적합한 아키텍처로 알고리즘의 각 부분을 나누어 해결한 후, 문제를 부드럽고 빠르게 다시 서로 결합하는 방법으로 각각의 컴퓨팅 방식으로는 접근이 불가능하거나 어려운 알고리즘을 실행할 수 있도록 설계되고 있다. 대표적으로, 일본의 국립 과학 연구 기관인 이화학연구소(RIKEN)와 학술 의료 센터이자 생의학 연구 기관인 클리블랜드 클리닉(Cleveland Clinic)은 유용성 단계의 IBM 퀀텀 시스템 원을 통해 화학의 기본이 되는 전자 구조 문제에 대한 알고리즘을 연구하고 있다. 이 프로젝트는 복잡한 화학 및 생물학적 시스템을 현실적으로 모델링하기 위한 양자 중심 슈퍼컴퓨팅 접근 방식의 첫 단계로, 과거에는 무결함 양자 컴퓨터가 필요할 것이라고 여겨졌던 작업이다. 제이 감베타(Jay Gambetta) IBM 퀀텀 부사장은, “IBM 퀀텀 하드웨어와 퀴스킷의 발전으로 사용자들은 첨단 양자 및 기존 슈퍼컴퓨팅 자원을 결합해 각자의 강점을 결합한 새로운 알고리즘을 구축할 수 있게 됐다”며, “오류 수정 양자 시스템을 향한 로드맵을 향해 나아가는 가운데, 현재 산업 전반에서 발견되는 알고리즘은 QPU, CPU, GPU의 융합으로 만들어지는 미개척 컴퓨팅 분야의 잠재력을 실현하는 데 핵심이 될 것”이라고 말했다.
작성일 : 2024-11-14
2020년 6월 슈퍼컴 톱500 리스트 발표, Arm 아키텍처가 1위 차지
세계 500대 슈퍼컴퓨터 순위를 발표하는 톱500의 2020년 6월 리스트에서 일본의 후가쿠(Fugaku) 슈퍼컴퓨터가 1위에 올랐다. 후가쿠는 일본 이화학연구소(RIKEN)와 후지쯔가 공동 개발한 시스템으로, Arm 마이크로 아키텍처에 기반한 후지쯔의 A64FX 48C 프로세서를 탑재했다. 이번 톱500에서는 실제로 사용되는 애플리케이션의 벤치마크를 평가하는 HPCG(High-Performance Conjugate Gradient)와 AI 애플리케이션의 작업 처리 성능을 측정하는 HPL-AI(High-Performance Linpack-Artificial Intelligence)의 두 부문에서 후가쿠를 첫 번째로 선정했다. 리켄연구소에 있는 후가쿠 슈퍼컴퓨터는 일본이 '소사이어티 5.0(Society 5.0)'을 달성하기 위해 사회 및 과학적 문제를 해결하고자 여러 애플리케이션을 지원하도록 설계한 플래그십 시스템이다. 후가쿠는 약물 개발에서부터 날씨 및 기후 예측, 새로운 생산 공정에 이르는 광범위한 연구를 가속화할 것으로 기대되며, COVID-19(코로나19)에 대응하기 위한 연구에 이미 사용되고 있다. 톱500 리스트는 매년 6월과 11월에 발표된다. 2020년 6월 톱500 리스트에서는 후가쿠에 이어 IBM 파워시스템 기반의 서밋(Summit)과 시에라(Sierra), 중국의 선웨이 타이후라이트(Sunway TaihuLight), 톈허-2A(Tianhe-2A) 등이 상위권에 이름을 올렸다. 서밋은 2018년 이후 1위를 기록해 왔는데, 이번에 첫 등장한 후가쿠에 1위를 내주었다. 10위권에서 이번에 새롭게 톱500에 오른 슈퍼컴퓨터는 이탈리아의 HPC5, 미국의 셀레네(Selene), 이탈리아의 마르코니-100(Marconi-100)이 있다. HPC5는 인텔 제온 골드 프로세서와 엔비디아 테슬라 V100 GPU를 탑재했다. 셀레네는 AMD 에픽 프로세서를 탑재한 엔비디아 DGX A100 SuperPOD 기반의 슈퍼컴이다. 마르코니-100은 IBM의 파워9 프로세서와 엔비디아 볼타 V100 GPU를 탑재했다. 한편, 국내 슈퍼컴퓨터 가운데에는 2018년 개통된 KISTI의 누리온(18위)과 기상청의 누리(139위), 미리(140위) 등 3대가 톱500 리스트에 올랐다. Arm의 IP 그룹 대표인 르네 하스(Rene Haas)는 "이렇게 큰 규모의 Arm 기반 슈퍼컴퓨터가 실제로 활용되고 있는 것이 매우 자랑스럽다. 세계에서 가장 빠른 슈퍼컴퓨터를 구동하는데 성공한 것은 Arm 에코시스템 전체가 축하해야 할 성과이며, 이는 Arm 플랫폼 이면의 혁신과 모멘텀이 인프라 전반과 고성능 컴퓨터(HPC)에 의미 있는 영향을 미치는 것을 보여주는 중요한 증표"라고 강조했다.
작성일 : 2020-06-23