• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "이슈"에 대한 통합 검색 내용이 2,242개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
[칼럼] 로봇 기반 제조 자동화와 디지털 트윈
디지털 트윈과 산업용 메타버스 트렌드   영화 매트릭스가 개봉된 지 20년이 더 지난 2020년대에 이러한 가상 세상은 영화가 아닌 실제 산업 현장에서 구현되어 산업 혁신을 주도하고 있다. 바로 ‘디지털 트윈 (Digital Twin)’이다 이 글에서는 디지털 트윈의 의미와 제조 산업 특히 로봇 기반 자동화에서 디지털 트윈이 어떻게 제조현장을 혁신하는지 실증 사례를 기반으로 소개한다.   장영재 교수 / 카이스트  “헬기를 몰 줄 알아요?” 남자 요원이 동행한 여자 요원에게 물었다. “아니요. 아직은요. 잠시만 기다리세요.” 그리고 즉시 여자 요원은 무전로 본부에 연락해, 헬기 시뮬레이션 교육프로그램을 업로드 해달라 본부에 요청했다. 본부에서는 즉시 시뮬레이션 교육프로그램을 가속으로 돌려 헬기 조정 능력을 여자 요원의 머리에 업로드하였다. 여자요원은 불과 몇 초 사이에 수백시간 걸릴 헬기훈련을 마친 베터랑 헬기 조정사 능력을 가지게 되었다. 그리고 여자 요원은 외쳤다. “빨리 헬기를 몰고 도망칩시다!” 그리고 여자 요원은 능숙한 솜씨로 헬기를 몰고 남자요원과 함께 탈출한다. 1999년 개봉된 영화 매트릭스의 한 장면이다. 가상의 세상과 실제 세상을 오가며 과연 무엇이 진실이며 실제 (real)이란 무엇일까란 질문을 던지는 매우 철학적인 영화다 .  영화 매트릭스가 개봉된 지 20년이 더 지난 2020년대에 이러한 가상 세상은 영화가 아닌 실제 산업 현장에서 구현되어 산업 혁신을 주도하고 있다. 바로 ‘디지털 트윈 (Digital Twin)’이다. 본 특집에서는 디지털 트윈의 의미와 제조 산업 특히 로봇 기반 자동화에서 디지털 트윈이 어떻게 제조현장을 혁신하는지 실증 사례를 기반으로 소개한다.   1. 시뮬레이션과 디지털 트윈의 차이 우리나라 과학기술정보 통신부에서는 디지털 트윈을 다음과 같이 정의하고 있다.  “가상세계에서 실제 사물의 물리적 특징을 동일하게 반영한 쌍둥이 (Twin)을 3D 모델로 구현하고 제 사물과 실시간으로 동기화 및 시뮬레이션을 통해 관제, 분석, 예측 등 현실의 의사결정에 활용하는 기술” 그러나 이러한 정의만으로는 구체적으로 디지털 트윈을 파악하기에 모호하다. 시뮬레이션과 디지털 트윈의 차이가 무엇인지, 실시간 동기화가 왜 필요한지, 관제, 분석, 예측은 이미 다양한 방식으로도 가능한데 디지털 트윈이 제공하는 또 다른 가치가 있는지 설명이 부족하다. 최근 디지털 트윈 관련 이슈가 많다 보니 기업들도 앞 다투어 디지털 트윈을 기술을 확보했다는 등의 보도자료를 통해 기술 홍보를 하기도 한다. 이런 대부분은 공장의 가공 로봇이 움직임을 실시간 3D 애니메이션으로 구현해서 실제 로봇의 움직임을 컴퓨터에 시연하는 정도다. 그러나 이러한 시연을 보면 대부분 사람들의 반응은 “이것으로 무엇을 하지요?” “굳이 거액을 들여 실물의 움직임을 컴퓨터 그래픽으로 그대로 보여줄 필요 있나요? 그저 CCTV 하나 설치하면 컴퓨터에서 영상으로 볼 수 있는 것을 굳이 컴퓨터 그래픽 3D영상으로 구현할 필요가 있나요?” 등의 반응이다. 그렇다면 우선 시뮬레이션과 디지털 트윈의 차이가 무엇일까? 2. 디지털 트윈이 과연 무엇인가?   시뮬레이션은 가상의 시나리오를 기반으로 그 결과를 재현해 보는 것을 의미한다. 내가 A란 결정을 했을 때 그 결과가 어떻게 나올지를 유추해 보는 것이 시뮬레이션이다. 우리가 일반적으로 잘 알고 있는 시뮬레이션이 컴퓨터 시뮬레이션이다. 즉 컴퓨터가 구현한 상황에서 특정 의사결정에 대해 그 결과를 컴퓨터를 통해 산출하는 것이다. 컴퓨터 시뮬레이션 활용의 대표적인 예가 워 게임 (War Game)이다. 군에서는 전략전술 교본이나 전술, 그리고 무기 체계 설계를 할 때 컴퓨터를 통한 시뮬레이션을 활용한다. 평가나 실험을 위해 실제 전투나 전쟁을 치를 수 없기에 컴퓨터를 통해 가상의 적군과 전투를 하며 훈련을 하거나 전술 평가에 활용한다. 실제 컴퓨터 시뮬레이션 활용에 대한 연구가 가장 활발히 이뤄지는 분야가 국방 시뮬레이션 분야인 이유다.  우리 일상 생활에서도 이러한 시뮬레이션이 실제 많이 활용된다. 대표적인 예가 바로 자동차 네비게이션이다. 10년전 네비게이션을 떠올리면 전형적인 시뮬레이션 장비라 할 수 있다. 목적지를 입력하면 내 위치에서 목적지까지 수많은 대안 경로 중 최적 경로를 제안해 준다 . 그러나 당시 네비게이션은 실시간 교통정보를 경로 탐색에 담지 않았다. 그러다 보니 출퇴근 교통혼잡이나 사고로 인한 교통 체증과 같은 상황에서도 일반 상황과 동일한 이동경로 시간 산출과 경로를 제시하는 한계가 있었다. 최근 자동차 네비게이션이나 스마트폰 차량 맵은 실시간 교통정보를 포함해 다양한 대안 경로를 제시한다. 즉 실시간 GPS 정보를 통해 내 차량의 위치는 클라우드의 컴퓨터로 전송이 되고 또한 다양한 교통정보를 기반으로 실시간으로 대안경로를 찾고 도착시간을 지속해서 업데이트 한다. 그리고 내차의 이동 경로와 교통 상황은 사용자가 직관적으로 파악할 수 있도록 컴퓨터 그래픽으로 전달된다. 즉 실시간 교통정보를 기반으로 지속적인 업데이트된 경로를 제공하는 스마트폰 네비 앱이 디지털 트윈의 가장 대표적인 사례다. 학문에서는 디지털 트윈의 조건을 아래로 정의한다. 1. 실물과 가상의 시스템이 거의 실시간 (near real-time)으로 연동되어야 한다. 2. 다양한 상황의 시나리오를 검토하고 대안을 제시할 수 있어야 한다. 3. 사용자의 의사결정을 지원하며 사용자가 쉽게 의사결정 상황을 직관적으로 파악할 수 있는 인터페이스를 제공해야 한다.   스마트폰 네비는 위 조건을 모두 만족한다. 실시간으로 차량의 위치가 GPS로 전송되고 교통정보도 활용한다는 점에서 1번 조건을 만족하며, 다양한 대안경로를 검토함으로 2번 조건을 만족하며, 사용자의 최적경로를 제안하며 이러한 경로를 그래픽으로 전달하는 방식으로 3번 조건을 만족한다. 즉 스마트폰 네비가 우리 생활의 디지털 트윈이라 할 수 있다. 이런 의미를 보면 굳이 디지털 트윈이 현실과 매우 흡사한 고퀄리티 네비를 제공해 줄 의무는 없고 3D그래픽을 제공하는 것도 조건은 아니다. 사람의 의사결정을 직관적으로 지원해 줄 수 있는 정도면 기능이 충분하다 할 수 있다. 3. 로봇 기반 제조 운영에서의 디지털 트윈   이러한 디지털 트윈 활용의 가장 대표적인 예가 제조 물류 자동화 시스템 설계 및 운영이다. 최근 제조 시스템의 가장 큰 변화 중의 하나는 컨베이어 벨트가 없는 자동화(Beltless Automation)로 표현되는 군집 로봇 기반 물류 자동화다. 1916년 포드 T모델이 컨베이어 방식으로 생산되며 제조 자동화 혁명을 가져왔다. 이후 컨베이어 벨트 기반 물류 자동화는 공장 자동화의 표준 생산이 되었다. 그러나 이러한 컨베이어 방식은 단일 품종 대량 생산에는 적합하지만 다품종 소량 생산과 같은 현대 소비 시장의 욕구를 충족하는 데는 한계가 있다. 차량 모델이 바뀔 때 마다 공장을 세우고 컨베이어 벨트와 설비 위치를 재 조정해야 하는 등 상당한 재투자가 필요하다. 카이스트 산업 및 시스템 공학과 졸업생들이 2020년에 창업하여 카이스트 및 네이버가 투자한 다임리서치는 디지털 트윈 기술을 기반으로 AGV나 ARM의 이동을 관제하고 제어하는 솔루션을 개발하여 LG전자뿐만 아닌 국내 반도체 및 2차전지 기업에 공급하고 있다.      상세 내용은 PDF로 제공됩니다.    
작성일 : 2025-05-09
팀뷰어, 한국어 사용자 커뮤니티 공식 론칭
팀뷰어가 한국 사용자를 위한 한국어 공식 커뮤니티를 공식 론칭했다고 밝혔다. 이번 커뮤니티 론칭은 빠르게 증가하는 한국 내 사용자 기반을 지원하고, 보다 긴밀한 소통과 지식 공유를 촉진하기 위한 사용자 중심 전략의 일환이라는 것이 팀뷰어의 설명이다. ‘팀뷰어 커뮤니티(TeamViewer Community)’는 기존의 글로벌 영어 포럼 외에도 한국어 전용 공간을 마련함으로써, 사용자들이 자국어로 보다 쉽게 질문을 올리고, 제품 활용 팁을 공유하며, 원하는 지식을 빠르게 얻을 수 있도록 구성됐다. 특히, 원격 액세스 및 지원 설루션 ‘팀뷰어 리모트(TeamViewer Remote)’, 기업용 원격 연결 설루션 ‘팀뷰어 텐서(TeamViewer Tensor)’, 산업용 증강현실(AR) 플랫폼 ‘팀뷰어 프론트라인(TeamViewer Frontline)’ 등 제품군별로 전문 게시판을 운영하여 전문성과 접근성을 강화했다.     팀뷰어 한국어 사용자 커뮤니티는 사용자 간 의견을 나눌 수 있는 ‘지원 포럼’과 최신 업데이트 정보를 확인할 수 있는 ‘변경 로그’ 메뉴로 구성된다. 즉, 제품군별 전문 토론 공간을 마련하여 질문과 답변을 통한 사용자 간 경험 공유 및 전문가와의 직접 소통으로 실시간 지원을 강화한다. 특히, 중요한 제품 변경 사항과 보안 이슈를 한국어로 신속하게 안내하는 최신 공지사항 및 보안 업데이트 제공 게시판, 다양한 성공 사례를 통한 사용자 업무 생산성 향상 활용 사례와 인사이트 게시판도 한국어로 제공된다. 팀뷰어는 원격제어, 원격지원, IT 모니터링, 산업용 AR 설루션 등 다양한 분야에서 혁신을 추진하고 있으며 제조, 금융, 의료 등 디지털 전환 수요가 높은 산업군이 다수 포진해 있는 한국에 대해 자사의 글로벌 전략에서 중요한 시장이라고 보고 있다. 팀뷰어코리아의 이혜영 대표이사는 “국내 사용자들은 기술 이해도가 높고, 디지털 전환에 대한 기대치 또한 매우 높다. 이번 한국어 커뮤니티 론칭을 통해 사용자와의 접점을 확대하고, 팀뷰어 사용자의 열정과 지식을 결합해 해결 방안을 도출하며, 아이디어를 실현해 사용자 모두가 성장할 수 있는 공간을 만들고자 한다”면서, “팀뷰어 한국어 사용자 커뮤니티를 통해 국내 고객과 사용자들에 대한 지원을 강화하고, 사용자 간 교류와 지식 공유를 활성화해 팀뷰어 설루션이 가진 놀라운 가능성을 함께 경험해 볼 수 있기를 바란다”고 전했다.
작성일 : 2025-05-07
건축서비스산업 실태조사 결과: 건축 설계, 감리, 인테리어 디자인 시장 분석 리포트 & 영상보기
2023년 건축서비스산업 실태조사 결과 건축공간연구원에서 2023년 한 해 동안 건축서비스산업의 구조, 경영 활동, 시장 현황 등을 종합적으로 조사한 '2023년 건축서비스산업 실태조사 결과'를 발표했다. 본 실태조사는 「통계법」에 따라 국가 승인을 받은 주요 통계 정보이며, 「건축서비스산업 진흥법」에 근거하여 2022년부터 매년 시행되고 있다. 2024년 조사는 총 1,049개 사업체를 대상으로 46개 문항에 대한 온라인 조사 방식으로 진행되었다. 조사 대상은 한국표준산업분류(제11차) 중 건축서비스산업에 해당하는 사업체이며, 주요 조사 내용은 업무 분야 및 수주·생산성, 해외 사업 및 해외 업체 협업, 정보기술 활용, 교육 및 홍보, 인력 및 근로환경 등에 관한 현황이다. 2023년 건축서비스산업 실태조사의 주요 결과는 다음과 같다.   주요 업무 분야 건축 계획 및 설계: 59.7%로 가장 높은 비중을 차지 감리: 40.4% 건축구조 계획 및 설계: 17.6% 인테리어 디자인: 14.1%   사업체 수 전체 사업체 수: 약 3만 개 (31,476개) 건축 설계 및 관련 서비스업: 18,963개 (60.2%)로 가장 많음 건물 및 토목 엔지니어링 서비스업: 7,792개 (24.8%) 인테리어 디자인업: 4,721개 (15.0%) 종사자 규모별: 1~4명 소규모 사업체가 25,141개 (79.9%)로 대다수, 100명 이상 대규모 사업체는 196개 (0.6%)   종사자 수 전체 종사자 수: 약 27만 명 (274,351명) 건축 설계 및 관련 서비스업: 119,271명 (43.5%) 건물 및 토목 엔지니어링 서비스업: 126,436명 (46.1%) 인테리어 디자인업: 28,645명 (10.4%) 종사자 규모별: 1~4명 규모 사업체 종사자가 95,240명 (34.7%)으로 가장 높은 비중 매출액 전체 매출액: 약 43.5조 원 건축 설계 및 관련 서비스업: 약 19.0조 원 (43.6%) 건물 및 토목 엔지니어링 서비스업: 약 15.6조 원 (35.9%) 인테리어 디자인업: 약 8.9조 원 (20.5%) 종사자 규모별: 1~4명 규모 사업체가 총 매출액의 약 17.1조 원 (39.2%) 차지   ------------------------------------------------------------------- 목차 제1장 조사 개요 1. 조사목적 2 2. 조사연혁 2 3. 법적근거 3 4. 조사주기 및 시기 5 5. 조사기관 및 추진체계 5 6. 조사대상 6 7. 조사방법 6 8. 조사부문 6 9. 조사항목 7 10. 자료 처리 및 분석 8 11. 결과 공표 8 12. 주요 용어 8   제2장 표본 설계 1. 모집단 정의 14 2. 모집단 분포 14 3. 표본의 크기 결정 15 4. 표본 배분 방법 16 5. 표본의 추출 18 6. 가중치의 극단값 처리 18 7. 추정식 19 8. 통계자료 공표 21 9. 유효표본수 확보 방안 및 무응답 처리기준 21 10. 유효표본수 22   제3장 조사 결과분석 1. 업무 분야 및 수주, 생산성 24 2. 해외 업체와의 협업, 해외 프로젝트 49 3. 정보기술 활용 현황 59 4. 교육 및 홍보 67 5. 인력 및 근로환경 74 6. 사업체 일반현황 104   제4장 조사 결과표 1. 업무 분야 및 수주, 생산성 108 2. 해외 업체와의 협업, 해외 프로젝트 148 3. 정보기술 활용 현황 164 4. 교육 및 홍보 177 5. 인력 및 근로환경 185 6. 사업체 일반현황 233   부록 1. 주요변수 허용오차 및 상대표준오차 240 2. 조사표 242 관련 영상보기 • 행사명 : 건축서비스산업 실태조사 포럼 • 주  제 : 건축서비스산업 실태조사 속 현안과 이슈 • 일  시 : 2025.3.21.(금) 14:00 ~ 17:30 https://youtu.be/7Jkq-dLZux0   2023년 건축서비스산업 실태조사 결과 다운로드 하기 #건축서비스산업 #실태조사 #산업 통계
작성일 : 2025-05-06
카티아 VMU를 활용한 설계 검증 혁신
산업 디지털 전환을 가속화하는 버추얼 트윈 (2)   이번 호에서는 VMU(가상 목업)의 개념과 기술적 특성, 주요 산업 사례, 그리고 VMU의 혁신적 가치와 향후 확장 가능성에 대해 살펴본다.    ■ 최윤정 다쏘시스템의 기술 컨설턴트로 디자인&엔지니어링 팀에서 3DEXPERIENCE CATIA 제품을 담당하고 있다. 자동차 산업을 위한 고급 서피스 모델링 및 가상 검증 영역을 전문으로 하고 있으며, 제조업의 VMU 도입 효과성 관련 학술연구 또한 수행 중에 있다. 홈페이지 | www.3ds.com/ko   가상 시뮬레이션 기술이 점차 고도화됨에 따라, 제품 개발 전 과정에서 디지털 모델을 활용하여 제품 품질과 개발 효율성을 높이려는 시도가 활발하게 이루어지고 있다. VMU(Virtual Mock-Up, 가상 목업) 기술은 3D익스피리언스 카티아(3DEXPERIENCE CATIA)에 기반한 가상 검증 프로세스로, 설계 오류와 품질 상의 문제점을 조기에 식별·개선하고 개발 비용과 시간을 절감하는 혁신적 방식으로 주목받고 있다. 제품의 실물을 제작하지 않고도 고품질 렌더링을 통해 시각적·감성적 요소를 평가할 수 있기 때문에, 다양한 산업 분야에서 VMU의 필요성이 커지고 있다.   그림 1. 카티아 설계 데이터 화면   그림 2. 카티아에서 재질을 적용한 설계 데이터 화면   VMU의 개념과 기술적 특징 VMU는 고품질 렌더링 기술을 활용해 설계 데이터를 가상 환경에서 실물과 유사하게 재현하여, 설계 오류와 품질 상의 문제점을 조기에 식별·개선하는 기술이다. 이 프로세스는 실물 목업을 제작하지 않고도 제품 외관을 정확히 시뮬레이션함으로써 제품 개발 시간과 비용을 단축한다. 기존의 DMU(Digital Mock-up, 디지털 목업)는 주로 설계 과정에서 형상과 구조 검증에 초점을 둔다. 즉, 3D 설계 데이터 상에서 간섭 검사, 조립 순서·공정 시뮬레이션, 각 부품의 형상 적합성 등을 확인하는 용도로 사용된다. 한편, VMU는 DMU에서 한발 더 나아가, 광학 특성(반사·굴절), 질감, 점등 이미지 등 외관 품질을 실사 수준으로 구현하며, 인체공학 기반의 휴먼 모델(human model)을 연계해 실제 사용 환경에서의 조작성, 시야 확보성 등을 종합적으로 검토할 수 있다. XR(확장현실) 기술과의 융합을 통해 몰입형 품평 환경도 제공된다. 자동차 외장 램프처럼 미세한 빛의 반사·굴절을 예측 및 검증해야 하는 제품은 VMU를 활용할 경우 실물 목업 없이 외관 이미지를 높은 정확도로 검토함으로써 개발 리스크를 크게 줄일 수 있다. 기존에 카티아를 기반으로 제품 설계를 하고 있는 다양한 산업군에서 VMU는 이미 필수 프로세스로 자리매김하고 있다. 설계, 렌더링, 검증 및 품평을 하나의 일관된 프로세스로 결합함으로써 제품 개발 방식에 혁신적인 변화를 가져올 수 있다. 데이터 변환이나 별도 인터페이스가 필요 없이 동일 플랫폼에서 모든 단계가 이뤄지므로, 데이터 손실이나 형상 왜곡을 최소화하고 기존에 없던 빠르고 유연한 협업 환경을 구축할 수 있다. 이를 통해 제품의 완성도와 품질을 높이는 긍정적 효과가 입증되었다.    표 1. 실물 목업 및 기존 렌더링 툴과의 비교   3D익스피리언스 카티아 기반의 VMU 프로세스 적용 사례 자동차 외장 램프 품질 검증 사례 자동차 외장 램프는 외관과 점등 이미지가 모두 중요하여, 시각적 품질 검증이 설계 단계에서 핵심 과제로 부각된다. 기존에는 정확도를 높이기 위해 실물 금형과 목업을 제작했으나, 이 방식은 과도한 시간과 비용 투자를 요구했다. 대체 방법으로 3D 프린팅 등의 기술을 이용하기도 했지만, 정밀도가 부족하다는 한계가 있었다. 이 문제를 해결하기 위해 최근 카티아 기반 VMU 프로세스를 적용한 디지털 선행 검증이 주목을 받고 있다. 미세 광학 요소와 복잡한 반사·굴절 특성을 지닌 램프를 고정밀 시뮬레이션할 수 있어, 점등·비점등 시의 실제 이미지를 실물 목업 수준으로 재현한다. 특히 스캔을 통해 확보한 시편 데이터의 정확한 물성을 설계 데이터에 적용함으로써 곡률에 따른 왜곡이나 광원으로 인한 반사를 사실적으로 재현하고, 실차에 장착했을 때 예상되는 품질 이슈까지 가상 환경에서 검토할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
오픈마누스 AI 에이전트의 설치, 사용 및 구조 분석
BIM 칼럼니스트 강태욱의 이슈 & 토크   생성형 AI 에이전트는 목표 달성을 위해 세상을 관찰하고 스스로 행동하는 자율적인 애플리케이션으로, 행동과 의사결정을 위한 인지 아키텍처를 갖추고 있다. 이번 호에서는 오픈소스 AI 에이전트인 오픈마누스(OpenManus)를 통해 AI 에이전트의 동작 메커니즘이 어떻게 구현되는지 분석해 본다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   최근 AI 에이전트 기술이 크게 발전하고 있다. 구글의 에이전트 백서를 보면, 생성형 AI 에이전트는 목표 달성을 위해 세상을 관찰하고 스스로 행동하는 자율적인 애플리케이션으로 설명한다. 명시적인 지시가 없어도 스스로 판단하고 능동적으로 목표에 접근할 수 있다. 이러한 에이전트는 행동과 의사결정을 위한 인지 아키텍처를 갖추며, 핵심 구성 요소는 <그림 1>과 같이 사용자 입력에 대한 추론 역할을 하는 모델(보통은 GPT와 같은 LLM), 입력에 대해 필요한 기능을 제공하는 도구(tools), 그리고 어떤 도구를 호출할지 조율하는 오케스트레이션의 세 가지로 이루어진다.   그림 1. AI 에이전트의 구성 요소(Agents, Google, 2024)   이번 호에서는 AI 에이전트의 동작 메커니즘을 분석하기 위한 재료로, 딥시크(DeekSeek)와 더불어 관심이 높은 마누스(Manus.im)에서 영감을 받아 개발된 오픈마누스(OpenManus) 오픈소스 AI 에이전트를 활용하겠다. 오픈마누스는 메타GPT(MetaGPT)라는 이름으로 활동 중인 중국인 개발자가 공개한 AI 에이전트이다. 개발자는 오픈마누스가 연결된 다양한 도구를 LLM으로 조율하고 실행할 수 있다고 주장하고 있다. 깃허브(GitHub) 등에 설명된 오픈마누스는 다음과 같은 기능을 지원한다. 로컬에서 AI 에이전트 실행 여러 도구 및 API 통합 : 외부 API, 로컬 모델 및 자동화 도구를 연결, 호출 워크플로 사용자 지정 : AI가 복잡한 다단계 상호 작용을 효율적으로 처리 여러 LLM 지원 : 라마(LLaMA), 미스트랄(Mistral) 및 믹스트랄(Mixtral)과 같은 인기 있는 개방형 모델과 호환 자동화 향상 : 내장 메모리 및 계획 기능을 통해 코딩, 문서 처리, 연구 등을 지원   <그림 2>는 이 에이전트가 지원하는 기능 중 일부이다. 프롬프트 : “Create a basic Three.js endless runner game with a cube as the player and procedurally generated obstacles. Make sure to run it only in browser. If possible also launch it in the browser automatically after creating the game.”   그림 2   오픈마누스는 이전에 중국에서 개발된 마누스에 대한 관심을 오픈소소로 옮기는 데 성공했다. 오픈마누스는 현재 깃허브에서 4만 2000여 개의 별을 받을 정도로 관심을 받고 있다.    그림 3. 오픈마누스(2025년 4월 기준 42.8k stars)   필자는 오픈마누스에 대한 관심이 높았던 것은 구현된 기술보다는 에이전트 분야에서 크게 알려진 마누스에 대한 관심, 오픈소스 버전의 AI 에이전트 코드 공개가 더 크게 작용했다고 생각한다. 이제 설치 및 사용해 보고, 성능 품질을 확인해 보자. 그리고 코드 실행 메커니즘을 분석해 본다.    오픈마누스 설치 개발 환경은 이미 컴퓨터에 엔비디아 쿠다(NVIDIA CUDA), 파이토치(PyTorch) 등이 설치되어 있다고 가정한다. 이제, 다음 명령을 터미널에서 실행해 설치한다.   conda create -n open_manus python=3.12 conda activate open_manus git clone https://github.com/mannaandpoem/OpenManus.git cd OpenManus pip install -r requirements.txt playwright install   오픈마누스가 설치하는 패키지를 보면, 많은 경우, 기존에 잘 만들어진 LLM, AI Agent 라이브러리를 사용하는 것을 알 수 있다. 여기서 사용하는 주요 라이브러리는 다음과 같다.  pydantic, openai, fastapi, tiktoken, html2text, unicorn, googlesearch-python, playwright, docker     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[칼럼] 실용형 AI, 제조의 미래를 바꾸다
트렌드에서 얻은 것 No. 23   “AI는 모든 산업에 새로운 가능성을 열어 준다. 중요한 것은 기술이 아니라, 그것을 어떻게 활용하느냐이다.” – 사티아 나델라(Satya Nadella), 마이크로소프트 CEO 마이크로소프트는 생성형 AI를 다양한 산업에 통합하며, 기술의 활용 방식에 중점을 두고 있고,  나델라의 말은 기술 도입보다 전략적 활용이 중요하다는 점을 강조한다.   생성형 AI와 함께 설계하고, 시뮬레이션하고, 개선하라 지금 이 이야기를 한국의 제조기업에 가서 한다면, 이상한 사람 취급을 받을 수 있다. 당장, 어떻게 할 수 있는지 이야기할 수 있느냐? 우리도 그렇게 하고 싶은데, 어떻게 할 수 있는지 제대로 나온 것도 없고, 사례가 있는지 등의 얘기가 자연스럽게 나온다. 맞는 말이다. 하지만, 지금은 레이스의 출발선에서 모두 같은 상황일 것이다. 다만, 전체를 제어하고 미래를 설계하는 혜안이 있는 사람이나 조직 유무에 따라 회사들의 달리기 속도는 분명 차이가 날 것이다.  우리는 그런 시대를 살아가고 또 지나가고 있다. 뉴스에서 다른 회사의 소식을 들으면서 탄식을 하고 있을 것인가, 아니면 고통스럽더라도 뭔가 해 보는 것이 낫지 않느냐의 갈림길에 있다. “그럼에도 불구하고, 우리는 설계할 수 있다.” 그렇다. ‘생성형 AI로 설계하고, 시뮬레이션하고, 개선하라’는 말은 지금의 제조 현장에선 거대한 간극처럼 느껴진다. 공장의 열기와 노하우 속에서 살아온 실무자에게는 뜬구름 잡는 이야기처럼 들릴 수 있다. “AI가 좋다는데, 어디까지 해봤나?”, “누가 이걸 설계에 실제로 썼대?” 이런 질문은 당연한 것이고, 오히려 현실을 잘 아는 사람일 수록 더 조심스러운 반응을 보인다. 그러나 지금, 우리는 모두 레이스의 출발선에 서 있다. 완성된 길도, 검증된 답도 아직 없다. 그러니 이 때 필요한 건 기술보다 먼저 혜안을 가진 사람, 구조를 설계할 수 있는 리더다. 단 한 줄의 프로토타입이라도 그려보려는 엔지니어, 익숙한 보고서보다 새로운 질문을 고민하는 팀장, 시행착오를 감수하고 방향을 잡으려는 임원이 지금 이 시대의 속도를 결정짓는다. 그리고 그 ‘혜안’은 거창한 청사진이 아닐 수도 있다. 단 하나의 설계 데이터를 기반으로 AI에게 첫 도면을 그리게 해보는 실험, 실시간 현장 일지에서 이상 징후를 요약하게 해 보는 시도, 현장의 사진 데이터로 품질 검사 자동화를 위한 검출 모델을 훈련해 보는 도전 등이 현 시점에서 예상해 볼 수 있는 가까운 미래 모습일 것 같다. “우리는 예상치 못한 상황을 목격하고, 예상된 상황을 보고하며, 결국 승리할 것입니다.” – 알렉스 카프, 팔란티어 CEO 카프는 AI를 활용한 제조업의 혁신이 불확실성을 극복하고 성공으로 이끄는 열쇠라고 보고 있으며, 이는 생성형 AI를 통한 제조업의 미래를 긍정적으로 전망한다.    그림 1. 실용형 AI 맵 ‘제조 미래를 바꾸다’(Map by 류용효) (클릭하면 큰 이미지로 볼 수 있습니다.)   제조, AI를 다시 만나다 “설계는 끝났지만, 고객은 원하지 않는다.”  “시뮬레이션은 끝났지만, 현장은 여전히 오류를 반복한다.”  “보고서는 쌓이지만, 문제는 여전히 현재진행형이다.” 이 문장들은 지금도 수많은 제조 현장에서 반복되고 있다. 전통적인 제조 프로세스는 분업과 효율을 중심으로 설계되었지만, 급변하는 고객의 요구와 복잡해진 제품 환경은 기존 체계의 민첩성과 창의성에 한계를 드러낸다. 이제 제조기업은 하나의 질문 앞에 서 있다. “우리는 더 빠르고 똑똑한 공장을 가질 준비가 되었는가?” 생성형 AI는 단순한 자동화 기술이 아니다. 설계자의 의도를 읽고 CAD 모델을 생성하며, 수십 개의 시뮬레이션으로 프로세스 병목을 알려주고, 품질 이상을 예측할 뿐 아니라 원인을 유추해주는 ‘설계적 사고를 하는 AI’가 등장하고 있다. 이는 기술의 도입이 아니라 제조기업의 ‘운영 철학’ 자체가 전환되는 순간이다. 제조기업이 생성형 AI와 함께 앞으로 어떻게 설계하고, 시뮬레이션하고, 개선할 수 있을지를 구체적으로 조망한다. “AI는 인류가 만든 가장 중요한 기술이다. 우리는 그것을 책임감 있게 개발하고 활용해야 한다.” – 순다르 피차이(Sundar Pichai), 구글 CEO 구글은 AI 개발에 있어 윤리적 책임과 사회적 영향을 고려하고 있으며, 피차이의 말은 기술 발전과 함께 그에 따른 책임도 중요하다는 점을 상기시켜 준다.   디자인의 재정의 - AI는 창의적인 엔지니어인가? 전통적인 제조 설계 과정은 복잡한 조건 설정, 반복적인 수정, 협업 간의 커뮤니케이션 비용 등으로 인해 수많은 시간과 리소스를 요구해왔다. 하지만 이제, 생성형 AI는 텍스트 한 줄로 설계를 시작하게 한다. “3개의 모듈로 구성된 소형 드론 프레임을 설계해 줘. 탄소 섬유 기반으로 무게는 150g 이하로.” 이 한 문장으로 AI는 초기 설계안을 생성하고, 다양한 대안 모델을 제공하며, 사용자 요구조건에 따라 자동 최적화를 제안한다. AI는 도면을 '그리는 도구'가 아니라, '제안하고 비교하는 동료 엔지니어'로 진화하고 있다. 예를 들어, 오토데스크의 퓨전 360(Fusion 360), 엔톱(nTop), 다쏘시스템의 3D익스피리언스 웍스(3DEXPERIENCE Works)는 이미 생성형 디자인 기능을 내장하고 있다.  디자이너는 아이디어를 제공하고, AI는 그에 기반한 설계 패턴을 도출한다. 이는 ‘무에서 유를 만드는’ 것이 아니라, 수많은 설계 데이터를 학습한 AI가 새로운 패턴과 조합을 도출해내는 방식이다. 결과적으로 설계자는 더 이상 반복적인 CAD 작업자가 아니다. 이제 디자이너는 ‘기획자’이자 ‘비평가’, 그리고 ‘AI와 협력하는 설계 전략가’가 된다. 또한, 이러한 생성형 설계는 대량 맞춤형 생산(mass customization)과의 결합으로 그 진가를 발휘한다. 기존에는 옵션이 제한된 범용 제품만이 경제성이 있었지만, 생성형 AI는 고객의 요구사항을 빠르게 읽고 즉시 설계에 반영할 수 있다. 이는 ‘고객이 참여하는 설계’, 즉 코디자인(co-design) 시대의 도래를 가능하게 한다. 기업은 더 빠르게 시장에 대응하고, 고객은 더 높은 만족도를 경험한다. 이처럼 생성형 AI는 설계를 단순히 ‘빠르게’ 만드는 기술이 아니라, 설계의 개념 자체를 ‘재정의’하는 도구이자 기업의 창의성과 기민함을 확장하는 전략 자산이 되고 있다. “퍼플렉시티(Perplexity)는 단순한 답변 엔진에서 행동 엔진으로 전환하고 있다. 이제는 단순히 질문에 답하는 것을 넘어, 사용자에게 행동을 제안하고 실행하는 단계로 나아가고 있다.” – 아라빈드 스리니바스(Aravind Srinivas), 퍼플렉시티 AI CEO 아라빈드의 말은 AI 기술이 단순한 정보 제공을 넘어, 사용자와의 상호작용을 통해 실제 행동을 유도하고 실행하는 방향으로 발전하고 있음을 의미한다.   시뮬레이션의 혁신 - 빠른 판단과 적은 비용 과거의 시뮬레이션은 전문 소프트웨어와 고성능 컴퓨팅 자원, 그리고 숙련된 엔지니어의 직관과 경험에 크게 의존해 왔다. CAE는 분명 설계 검증과 최적화의 핵심이었지만, 조건 설정 → 모델링 → 결과 해석 → 반복이라는 고비용 순환은 여전히 제품 개발의 병목으로 작용해왔다. 그러나 생성형 AI는 이 병목을 타파하는 새로운 접근을 제시한다. 자연어로 “강풍 조건에서 뒤틀림이 가장 적은 하우징 구조를 찾아줘”라고 지시하면, AI는 자동으로 물리 조건을 추론하고, 유사 데이터 기반의 시뮬레이션 템플릿을 구성하며, 수십 개의 대안 시나리오를 병렬 생성해 ‘예측 – 설명 – 추천’이라는 삼중 루프를 빠르게 수행한다. 이러한 기술은 시뮬레이션의 대중화(simulation democratization)를 이끈다. 기술 전공자가 아니어도, 제품 매니저나 품질 담당자가 AI의 도움으로 설계안의 응력 분포나 유동 조건에 대해 인사이트를 얻을 수 있다. 이는 실무자가 더 빠르게 결정을 내릴 수 있도록 돕고, 의사결정의 지연 대신, 다중 시나리오 기반의 ‘실험적 사고’를 가능하게 만든다. 대표적인 사례로는 알테어의 AI 기반 인스파이어 플랫폼(AI-driven Inspire Platform), 앤시스의 AI 기반 시뮬레이션 자동화, 그리고 다쏘시스템의 솔리드웍스 생성형 시뮬레이션(Generative Simulation for SOLIDWORKS)이 있다. 이들은 기존 FEM/CFD 분석의 시간과 비용을 줄이는 동시에, 경험 기반 의사결정에서 데이터 기반 최적화로의 전환을 이끌고 있다. 궁극적으로 생성형 AI는 단순히 ‘더 빠른 계산’을 넘어서, “어떤 시나리오를 먼저 고려해야 하는가?”, “이 조건에서 실패할 가능성은 무엇인가?”라는 전략적 질문에 답하는 보조 엔진이 되어 준다. 이는 시뮬레이션을 단지 제품 검증의 도구가 아니라, 경영 의사결정과 R&D 전략 수립의 인공지능 파트너로 진화시키는 변화의 시작점이다.  “AI는 우리가 상상하는 것보다 훨씬 더 빠르게 발전하고 있다. 자율주행차는 그저 시작일 뿐이다.” – 일론 머스크(Elon Musk), 테슬라 CEO 테슬라는 자율주행 기술 개발에 AGI 수준의 AI를 활용하고 있으며, 이는 단순한 기능 향상을 넘어 차량 설계와 운행 방식 전반을 재정의하는 접근이다.   업무 분석과 프로세스 개선 - 데이터는 말하고 AI는 듣는다 제조 현장의 데이터는 언제나 풍부했다. 작업자 일지, 설비 로그, 유지보수 메모, 품질검사 리포트, 현장 사진과 동영상, 고객 클레임 이메일… 하지만 이들 대부분은 정형화되지 않은 ‘텍스트’와 ‘문서’ 형태로 존재하며, 기존 시스템은 이를 ‘기록’하는 데에만 집중했고, 의미를 해석하고 연결하는 능력은 인간의 몫이었다. 이제 생성형 AI는 이 방대한 비정형 데이터의 숲에서 맥락을 이해하는 나무를 찾는다. 작업자가 남긴 “라인 3에서 어제도 제품 정렬이 안 맞았고, 자동 이젝터가 두 번 멈췄다”는 기록은, AI에겐 단순한 텍스트가 아니라 ‘패턴’과 ‘이상’의 시그널이다. LLM은 이런 문장을 분석해 작업 단계별 이벤트를 분해하고, 관련된 설비 로그와 품질 데이터를 연결하여 문제 지점을 도출한다. 이제 업무는 ‘기록하고 보고하는 일’이 아니라, ‘데이터가 스스로 분석하고 말하는 환경’으로 바뀌고 있다. 대표적인 활용 사례는 다음과 같다. 업무 요약 자동화 : 업무 일지를 요약해 경영진에게 핵심 이슈를 전달 프로세스 병목 식별 : 여러 부서의 텍스트 기반 보고서에서 공통 키워드와 불만 분석 문서 자동 생성 : SOP(표준작업지침서), 회의록, 개선안 보고서 등의 자동 초안 작성 협업 인텔리전스 : 여러 팀 간의 커뮤니케이션 데이터를 분석해 협업 지연 포인트 도출 실제로 지멘스는 AI 기반 자연어 처리 기술(Natural Language Processing : NLP)을 통해 디지털 작업지시서와 실시간 현장 대응 리포트를 자동 생성하는 기능을 도입했고, 보쉬는 AI를 통해 품질 클레임 문서에서 반복 출현하는 원인 유형을 추출하여 품질 개선의 단초로 활용하고 있다. 핵심은 이것이다. 현장의 수많은 대화와 기록이 AI에게 ‘말을 거는 데이터’가 되었고, AI는 그 말을 듣고, 요약하고, 통찰을 제시하며, 업무 개선을 스스로 제안하는 존재가 되었다는 점이다. 이제 우리는 묻지 않을 수 없다. 우리는 AI에게 말 걸 준비가 되어 있는가? 그리고 그 대답을 조직이 들을 준비는 되었는가? “가장 큰 위험은 아무런 위험도 감수하지 않는 것이다. 모든 것이 급변하는 시대에서 위험을 회피하는 전략은 반드시 실패로 이어진다.” — 마크 저커버그, 메타 CEO 저커버그는 변화와 혁신의 시대에 기존의 방식을 고수하며 위험을 회피하려는 태도가 오히려 더 큰 실패를 초래할 수 있음을 경고한다.   품질 관리의 진화 - AI는 예지적 감각을 가질 수 있는가 품질 관리는 제조업의 마지막 방어선이자, 가장 정교한 신경망이다. 그러나 지금까지의 품질 관리는 주로 사후 대응(postdefect 대응)에 집중되어 있었다. 불량이 발생한 후 원인을 찾고, 재발 방지책을 수립하고, 문서를 정리하는 ‘후행적 품질 관리’가 일반적이었다. 이제 생성형 AI는 이 전통적 프레임을 근본부터 흔들고 있다. AI는 ‘불량을 감지’하는 것이 아니라, ‘불량을 설명하고 예측’하려 한다. 예를 들어, 제품 표면의 이미지를 기반으로 한 비전 검사 시스템은 단순히 OK/NG를 판단하는 데서 그치지 않고, “이 영역의 텍스처 패턴은 온도 편차에 의한 수축 변형일 가능성이 높습니다”라고 말할 수 있는 설명형 모델로 진화하고 있다. 나아가, 생성형 AI는 텍스트, 이미지, 센서 데이터를 통합적으로 분석해 복합적인 이상 징후를 감지하고, 불량의 '가능성'과 '잠재 원인'을 추론해낸다. 예를 들어 다음과 같은 조합이 가능해진다. 작업자 일지 : “이틀 전부터 용접기압이 다소 약한 것 같다.” 센서 로그 : 오전 9~11시에 기압 편차 발생 불량 이미지 : 비드 형성 불균형 AI는 이를 연결해 “용접 조건의 경미한 변화가 반복 불량의 근본 원인일 수 있다”고 보고한다. 이는 단순한 예측모델이 아니다. ‘설명 가능한 품질 관리(Explainable Quality)’, 즉 AI가 품질 이슈에 대해 왜 그런 판단을 했는지를 근거와 함께 제시함으로써, 품질팀은 더 이상 직감이나 경험에만 의존하지 않고 데이터 기반의 합리적 개선 프로세스를 수립할 수 있다. 이미 보쉬, 토요타, GE 항공 등은 ▲AI 기반 비전 검사 시스템에서 ‘불량 예측 + 원인 설명’을 제공하는 모델을 구축 중이고 ▲ISO 9001과 연동되는 AI 품질 리포트 자동화 시스템을 테스트하고 있다. 이는 곧 ‘AI가 품질 시스템의 일원으로 공식 포함되는 시대’가 오고 있음을 뜻한다. 품질의 정의는 바뀌고 있다. 과거의 품질은 발견과 수정의 문제였지만, 앞으로의 품질은 예지와 설득의 문제다. AI는 이제 불량을 찾아내는 것이 아니라, 불량이 만들어지지 않도록 ‘생산 과정 그 자체를 개선하자’고 제안하는 동료가 되어가고 있다. “AI는 전기를 발견한 것과 같은 혁신이다. 모든 산업에 스며들 것이며, 그 영향을 무시할 수 없다.” – 앤드류 응(Andrew Ng), AI 전문가 앤드류 응은 AI의 보편성과 산업 전반에 미치는 영향을 강조하고 있다. 그의 말은 제조업에서도 AI의 통합이 필수임을 시사한다.   경고와 제언 - 생성형 AI는 도입이 아니라 전환이다 많은 제조기업이 생성형 AI에 주목하고 있다. 설계 자동화, 시뮬레이션 최적화, 업무 요약, 품질 예측… 도입 사례는 늘고 있지만, 도입이 곧 성공을 의미하진 않는다. 생성형 AI는 단순한 툴이 아니라, 운영 철학의 변화를 요구한다. 기존의 프로세스는 ‘정해진 절차와 역할’ 속에서 최적화를 추구해왔지만, 생성형 AI는 ‘질문을 던지고 시나리오를 비교하며 판단을 내리는 유연한 사고방식’을 요구한다. 즉, 기술만 바꾸는 것이 아니라 조직의 사고 체계와 역할 구조 자체를 재설계해야 하는 것이다. 예를 들어 <표 1>과 같은 전환이 필요하다.   표 1   하지만 문제는 기술이 아니다. 가장 큰 장벽은 조직이 AI를 받아들일 준비가 되어 있느냐는 것이다. 임원은 AI를 단순히 ‘자동화 툴’로 간주하는 경향이 많고, 현장은 여전히 ‘내 일을 뺏는 존재’로 AI를 경계한다. 이 간극을 메우지 않으면, AI는 시연 단계에서 멈추고, 조직은 변화의 본질을 놓친다. 따라서 다음과 같은 전환 전략이 필요하다. 파일럿이 아닌 전환 설계 특정 부서에서 테스트하는 것이 아니라, 조직 전체의 프로세스 전환 시나리오를 기획해야 한다. ‘도입 교육’이 아닌 ‘공감 설계’ 기술 사용법이 아니라, 왜 이 기술이 필요한지에 대한 비즈니스 관점에서의 스토리텔링이 필요하다. AI Co-Worker 관점 전환 AI는 도구가 아니라, 함께 판단하고 실험하는 동료로 봐야 한다. 이를 위해 직무 정의서(JD)도 다시 써야 한다. 성과 기준의 재정립 AI 도입 이후에는 ‘정확도’보다 ‘학습 속도’와 ‘적응력’이 핵심 성과 지표가 된다. 결국, 생성형 AI는 ‘도입해야 할 기술’이 아니라 ‘다르게 일하고, 다르게 생각하고, 다르게 운영하는 기업’으로 전환하기 위한 촉매제다. 이제 경영진에게 남은 질문은 단 하나다. “우리는 기술을 도입할 준비가 되었는가?”가 아니라, “우리는 조직을 전환할 용기를 가졌는가?”이다. “지금은 스타트업의 시대… 세상은 여전히 변화의 가능성에 잠들어 있다.” – 샘 올트먼, 오픈에이아이 CEO 올트먼은 기술 혁신의 시기에 기존 기업들이 변화에 둔감해질 수 있음을 경고하며, 새로운 도전과 변화를 추구하는 조직만이 미래를 선도할 수 있다는 메시지를 담고 있다.   맺음말 : 생성형 AI 시대의 제조 기업, 당신은 어떤 그림을 그리고 있는가 미래의 공장은 단지 더 정교하고, 더 빠르며, 더 자동화된 곳이 아니다. 그곳은 데이터를 읽고, 상황을 이해하고, 사람과 함께 결정하는 공장이다. 문제를 발견하기 전에 감지하고, 작업자를 지원하며, 스스로 최적의 방식을 제안하는 공장이다. 그리고 그 공장의 핵심 파트너는 인간의 상상력을 확장하는 생성형 AI다. 이제 중요한 질문은 이것이다. “우리는 어떤 그림을 그리고 있는가?” 기술은 빠르게 진화한다. 생성형 AI는 설계와 시뮬레이션, 업무 분석과 품질 관리까지 제조의 전 과정을 유기적으로 연결하며 ‘스마트’를 넘어 ‘지능적’으로 만들고 있다. 하지만 진정한 경쟁력은 기술의 채택이 아닌, 기술과 함께 일하는 방식의 변화에서 비롯된다. 아직 많은 제조기업은 ‘가능성 탐색’ 단계에 머물러 있다. 하지만 머뭇거릴 시간이 없다. AI는 이미 조직 구조, 업무 정의, 리더십의 방식까지 영향을 미치기 시작했다. 이제는 기술을 배우는 것이 아니라, 기술과 함께 일할 조직을 설계해야 할 때다. 생성형 AI 시대의 제조 기업은 세 가지 질문에 답할 수 있어야 한다. 우리는 상상할 수 있는가? 생성형 AI는 ‘주어진 문제를 해결’하는 것이 아니라 ‘가능성을 확장’한다. 제조기업의 조직은 아직도 문제만 찾고 있는가, 아니면 새로운 기회를 그리고 있는가? 우리는 받아들일 수 있는가? AI는 사람의 영역을 침범하지 않는다. 다만 그 옆에 선다. 우리는 전환할 수 있는가? 우리는 그것을 파트너로 받아들일 준비가 되어 있는가? AI 도입은 기술의 문제가 아니라, 사고방식과 리더십의 전환이다. 과연 지금의 조직은 그 전환을 감당할 수 있는가? 미래의 공장은 말하고 있다. “나는 설계하고, 시뮬레이션하고, 개선할 준비가 되어 있다. 너는 나와 함께 걸을 준비가 되어 있는가?”   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다.(블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
AWS 파트너 클라우드 솔루션 컨퍼런스, 클라우드와 AI 기반 제조 혁신의 현재와 미래 조망
클라우드와 AI가 이끄는 제조 혁신의 현장, AWS 파트너 클라우드 솔루션 컨퍼런스 개최   ‘2025 제조 고객을 위한 AWS 파트너 클라우드 솔루션 컨퍼런스’가 3월 25일, 서울 잠실 롯데호텔월드에서 성황리에 개최됐다. 이번 행사는 통합 IT 솔루션 기업 에티버스(ETEVERS)와 AWS(아마존웹서비스)가 공동 주최한 행사로, 제조 산업의 디지털 전환과 클라우드 기반 혁신 전략을 공유하는 뜻깊은 자리였다. 올해로 두 번째를 맞은 이번 컨퍼런스에는 SK C&C, 메가존클라우드, LG CNS 등 디지털 트랜스포메이션을 이끄는 주요 기업들이 대거 참여해 클라우드와 AI 기반 제조 혁신의 현재와 미래를 조망했다.   ■ 최경화 캐드앤그래픽스 국장 kwchoi@cadgraphics.co.kr 제조 산업, 클라우드로 날개를 달다 이번 컨퍼런스는 ‘AI 기반 스마트팩토리 혁신’, ‘데이터 기반 제조업 혁신’, ‘생성형 AI가 이끄는 제조 혁신’ 등 세 가지 주요 트랙으로 구성되어 참가자들이 각자의 관심사에 맞춰 깊이 있는 세션을 선택할 수 있도록 기획됐다. 오프닝을 맡은 AWS 김윤식 한국 엔터프라이즈 총괄은 디지털 전환이 더 이상 선택이 아닌, 생존을 위한 전략이라고 강조했다.  첫 번째 키노트를 진행한 AWS 정승희 제조 부문 총괄은 클라우드 기반 제조 기술이 어떻게 제품 설계, 수요 예측, 공급망 최적화 등 제조 전반의 효율성과 유연성을 높이고 있는지를 소개했다. 실제 사례를 통해 빅데이터, AI, IoT, 생성형 AI의 적용 효과가 증명되고 있음을 제시했다. 제조 현장에 스며든 생성형 AI와 실용적 혁신 전략 LG CNS 박재원 화학사업담당은 생성형 AI를 중심으로 한 AX(AI Transformation)를 통해 제조기업이 경쟁력을 확보해 나가는 전략을 설명했다. 그는 데이터 기반 의사결정, 품질 예측, 설비 진단 등에서 이미 다양한 실증 사례가 존재하며, 향후 이러한 AI 도입이 더욱 가속화될 것이라고 내다봤다. 에티버스 김준성 전무는 "클라우드와 AI, 그리고 파트너의 역할"이라는 주제로 강연을 펼치며, 제조 기업들이 클라우드로 진입할 수 있도록 파트너가 제공할 수 있는 지원 방안과 생태계 확장의 중요성을 역설했다. 에티버스는 2021년 AWS와 국내 최초 총판 계약을 체결한 이후 300개 이상의 파트너를 보유하며 국내 AWS 클라우드 확산에 핵심 역할을 하고 있다. SK C&C 허민회 본부장은 AI Cloud Infra Provider로서 SK C&C의 전략과 서비스를 소개했다. GPUaaS, AI 관리 플랫폼 등 실제 적용 가능한 인프라 기반 서비스를 통해 제조업의 AI 도입을 현실화하고 있다는 점에서 많은 관심을 끌었다.  이어 메가존클라우드 공혁 그룹장은 ‘2025 제조업 혁신 전략’을 발표하며 생성형 AI 기반의 비용 절감 및 생산성 향상 사례를 공개했다. 이날 행사장에는 기술 전시 부스도 함께 마련되어 각 파트너사들이 자사의 첨단 솔루션을 직접 소개하고, 방문자들과 1:1 컨설팅을 진행하는 시간도 있었다. 플래티넘 스폰서로 참가한 에티버스는 고객 맞춤형 파트너 매칭 및 솔루션 추천 이벤트를 통해 현장 분위기를 한층 뜨겁게 만들었다. 디지털 전환, 제조업의 새로운 기회 이번 컨퍼런스는 디지털 전환이 단순한 IT 이슈가 아닌 제조업 경쟁력의 핵심 전략임을 다시 한번 확인시켜주는 자리였다. 클라우드와 AI, 그리고 이를 연결하는 파트너들의 생태계가 더욱 조밀해질수록, 제조업의 혁신 속도도 함께 가속화될 것으로 기대된다. 에티버스 김준성 전무는 “제조 기업들이 지속적으로 성장할 수 있도록 혁신적인 솔루션을 제안하고, 다양한 지원 프로그램을 통해 성공적인 디지털 전환을 돕겠다”고 밝혔다.     2025 제조 고객을 위한 AWS 파트너 클라우드 솔루션 컨퍼런스(파트너 부스 - 에티버스)  / 사진 제공 : 에티버스 2025 제조 고객을 위한 AWS 파트너 클라우드 솔루션 컨퍼런스(파트너 부스 : 씨이랩)   / 사진제공 : 씨이랩   2025 제조 고객을 위한 AWS 파트너 클라우드 솔루션 컨퍼런스(파트너 부스 : 지멘스)    
작성일 : 2025-04-25
CAD&Graphics 2025년 5월호 목차
  INFOWORLD   Editorial  17 로봇이 달리는 시대, 인간은 어디로 달려가는가?   Hot Window  18  캐드앤그래픽스 디지털 트윈 설문조사 분석 : 디지털 트윈에 대한 기대 속에 실질적 도입과 확산 위한 노력 필요   Case Study  24 노트르담 대성당의 영광스러운 복원을 선보인 언리얼 엔진 라이팅 리얼타임 3D 기술을 도입하여 한층 발전된 프로젝션 매핑 구현 27 미래 모빌리티를 위한 자율주행 시뮬레이터, 모라이 심 실시간 3D 엔진을 활용해 더욱 현실적인 시뮬레이션 구축   People & Company  30 AWS 황민선 파트너 세일즈 매니저, 에티버스 김준성 전무 AI와 산업 전문성 결합해 클라우드 기반 제조 혁신 도울 것   Focus  34 DN솔루션즈, 금속 3D 프린터 'DLX 시리즈'로 제조 혁신 선도한다 37 유니티, “게임을 넘어 다양한 산업으로, 3D 시각화와 AI 통해 혁신 지원” 40 델, ‘AI PC 시대’ 주도 선언… 통합 브랜드 제품 대거 출시   New Products  43 이달의 신제품   On Air 44 캐드앤그래픽스 CNG TV 지식방송 지상중계 공기업 BIM 적용 지침에 따른 설계·시공 프로세스 변화와 대응 전략 46 캐드앤그래픽스 CNG TV 지식방송 지상중계 디지털 공급망 관리로 산업 건설 프로젝트의 비효율 해소 47 캐드앤그래픽스 CNG TV 지식방송 지상중계 의료 AI를 활용한 가상현실 기반 임상 실습 교육 소개   Column 48 트렌드에서 얻은 것 No. 23 / 류용효 실용형 AI, 제조의 미래를 바꾸다   54 New Books    Directory  131 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA    Visualization  84 AI 크리에이터 시대 : 영상 제작의 새로운 패러다임 (2) / 최석영 AI 기반 크리에이티브 워크플로 혁신   AEC 56 새로워진 캐디안 2025 살펴보기 (6) / 최영석 유틸리티 기능 소개 Ⅳ 60 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 오픈마누스 AI 에이전트의 설치, 사용 및 구조 분석 68 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2026 (2) / 천벼리 오토캐드 전환 지원과 AI 기반 생산성   범용 CAD  71 오토캐드 2026의 새로운 기능과 개선사항 / 양승규 AI 기반 기능 및 성능이 향상된 오토캐드 2026   Reverse Engineering  78 시점 - 사물이나 현상을 바라보는 눈 (5) / 유우식 변화와 흐름의 관찰   Mechanical  91 산업 디지털 전환을 가속화하는 버추얼 트윈 (2) / 최윤정 카티아 VMU를 활용한 설계 검증 혁신 94 제품 개발 혁신을 가속화하는 크레오 파라메트릭 11.0 (12) / 박수민 도면 기호 생성하기   Analysis  100 앤시스 워크벤치를 활용한 해석 성공 사례 / 김혜영 앤시스 LS-DYNA의 리스타트 기능 및 활용 방법 104 최적화 문제를 통찰하기 위한 심센터 히즈 (3) / 이종학 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 110 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (21) / 나인플러스IT 차세대 자동차 설계를 위한 DNS, LES, RANS 시뮬레이션 115 MBSE를 위한 아키텍처–1D 모델 연계의 중요성 및 적용 전략 (1) / 오재응 아키텍처 모델과 1D 모델의 전략적 연계   PLM  126 BPMN을 활용하여 제품 개발의 소통과 협업 극대화하기 (3) / 윤경렬, 가브리엘 데그라시 비즈니스 프로세스 모델링을 배워보자       캐드앤그래픽스 당월호 책자 구입하기   캐드앤그래픽스 당월호 PDF 구입하기
작성일 : 2025-04-24
[신간] AI는 회사에서 어떻게 쓰이는가
케이트리 지음 / 1만 9,000원 / 생능북스   디지털 전환이 가속화되며 인공지능(AI)은 더 이상 기술 부서의 전유물이 아닌 시대에 살고 있다. 기업의 생존과 성장을 좌우하는 핵심 전략으로 부상한 지금, <AI를 회사에서 어떻게 쓰이는가>는 AI를 비즈니스에 접목하려는 모든 이들에게 실질적인 가이드를 제공한다. 이 책은 AI에 대한 기술적 지식이 부족한 경영진을 비롯해 사업 전략가, 비즈니스 전문가들을 대상으로, AI의 기본 개념을 간략히 소개한 후, AI가 기업의 성과와 경쟁력을 어떻게 강화할 수 있는지에 초점을 맞추었다. 특히 이 책은 AI를 활용한 비즈니스 모델과 프로세스 개선, 산업 구조의 변화에 대한 구체적인 사례와 인사이트를 제공함으로써 다양한 비즈니스 전문가들이 AI를 전략적으로 활용할 수 있는 방법을 이해할 수 있도록 돕고 있다.  <AI를 회사에서 어떻게 쓰이는가>는 기술과 비즈니스의 경계를 넘나들며, AI 시대의 생존과 성장을 위한 로드맵을 제시하는 한편, AI 트랜스포메이션 시대를 준비하는 모든 이들이 필요로 하는 AI 비즈니스 혁신을 위한 다양한 이슈들을 짚어주었다. 따라서 이 책은 AI를 비즈니스에 효과적으로 통합하려는 모든 이들에게 실질적인 통찰과 전략을 제공한다. 비즈니스 혁신을 원하는 CEO를 AI 전략을 세우는 직장인, AI를 도입하고자 하는 실무자, 그리고 일반인들에게도 좋은 AI 가이드가 되어줄 것이다.
작성일 : 2025-04-12