• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "응력"에 대한 통합 검색 내용이 677개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
델, 뉴타닉스 클라우드 플랫폼 통합된 ‘델 파워플렉스’ 오퍼링 출시
델 테크놀로지스가 ‘뉴타닉스 클라우드 플랫폼’과 통합된 외장형 스토리지 오퍼링을 공식 출시했다. 델의 고성능 확장형 시스템과 뉴타닉스의 소프트웨어 정의 아키텍처가 결합된 이 오퍼링은 IT 현대화를 가속하고 운영 효율을 강화하는 동시에 스토리지 및 인프라 관리 간소화를 돕는다. ‘델 파워플렉스 위드 뉴타닉스 클라우드 플랫폼(Dell PowerFlex with Nutanix Cloud Platform)’은 회복탄력성, 보안, 확장성 및 고성능이 필수적인 대규모 미션 크리티컬 환경에 적합하도록 설계됐다. 소프트웨어 정의 설루션으로서 델 파워플렉스의 확장성 및 성능과 뉴타닉스의 하이퍼바이저, 통합형 재해 복구 기능 및 네트워크 보안을 결합했다. 이제 파워플렉스는 ‘뉴타닉스 AHV(Nutanix Acropolis Hypervisor)’에 대한 지원 확장으로 더욱 유연한 하이퍼바이저 옵션을 제공하게 됐다.      이번에 출시한 델 파워플렉스 위드 뉴타닉스 클라우드 플랫폼’은 가상화 및 베어메탈 미션 크리티컬 워크로드를 단일 플랫폼에 통합하여 사일로를 없애고 운영 비용을 절감한다. 컴퓨팅 및 스토리지를 독립적으로 확장하고 각각의 자원을 손쉽게 조정함으로써 운영 중단 없이 변화하는 요구사항에 대응하기 용이하다. 이 제품은 파워플렉스 매니저(PowerFlex Manager) 및 뉴타닉스 프리즘 센트럴(Nutanix Prism Central)과 같은 자동화 툴을 사용해 업데이트, 리소스 할당, 지속적인 관리와 같은 IT 프로세스를 간소화한다. 이를 통해 IT 팀은 비즈니스 성과에 직결되는 전략적 우선순위에 더 많은 시간을 할애할 수 있다. 또한, 최신 워크로드에 요구되는 고성능 및 엔터프라이즈급 보안을 제공한다. 이를 통해 워크로드를 통합하고, 동적으로 확장하며, 중요한 프로세스를 자동화하는 동시에 내장된 사이버 회복탄력성 및 재해 복구 기능을 통해 강력한 데이터 보호 기능을 활용할 수 있다. 중요한 애플리케이션의 보안과 고가용성, 변화하는 요구 사항에 대한 적응력을 유지하여 오늘날의 급변하는 디지털 환경에서 높은 안정성과 유연성을 확보할 수 있다.  델과 뉴타닉스는 전통적인 워크로드와 최신 워크로드를 모두 쉽게 관리할 수 있는 설루션을 제공하기 위해 지속적으로 협력하고 있다. 파워플렉스의 동급 최고 수준의 소프트웨어 정의 스토리지 및 컴퓨팅 기능과 뉴타닉스 클라우드 플랫폼의 가상화 및 관리 기능을 완벽하게 통합하여, 유연성, 성능, 효율성을 높인 유니파이드 설루션으로 제공한다. 한국 델 테크놀로지스의 김경진 총괄사장은 “급변하는 디지털 환경에 맞춰 성장을 촉진하기 위해서는 민첩성과 유연성은 물론 인프라 단에서의 강력한 보안 조치를 확보해야 한다. 뉴타닉스와의 협력은 혁신을 향한 델의 꾸준한 노력에 새로운 힘을 더한다”고 말했다. 
작성일 : 2025-05-07
수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석
최적화 문제를 통찰하기 위한 심센터 히즈 (3)   이번 호에서는 심센터 히즈(Simcenter HEEDS)를 사용하여 수집된 외부 데이터를 시각화하고 분석하는 데 초점을 맞추고, 데이터 시각화의 중요성과 분석 기법의 활용 방안을 살펴본다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 및 사례 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 및 사례 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 및 사례 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 및 사례 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화 및 사례   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   데이터 분석의 중요성 오늘날 데이터는 우리의 일상과 비즈니스 운영에서 점점 더 중요한 역할을 하고 있다. 수집되고 측정된 데이터의 양이 증가하면서 이를 효과적으로 처리하고 분석하는 방법은 더욱 필요해지고 있다. 이러한 변화 속에서, 지멘스의 심센터 히즈는 강력한 데이터 분석 및 시각화 기능을 제공하여 다양한 산업 분야에서 최적의 해결책을 찾는 데 기여하고 있다. 이번 호에서는 히즈의 기능을 효과적으로 활용하여 어떻게 복잡한 데이터를 이해하고 의미 있는 인사이트를 얻을 수 있는지 살펴볼 것이다.   히즈의 데이터 분석 기능 히즈의 Discover(디스커버) 탭은 사용자가 데이터 사이의 관계 및 최적화 가능성을 탐구할 수 있도록 다양한 도구를 제공한다. Discover 기능은 주요한 데이터 분석 및 이해를 도와주는 여러 방법을 포함하고 있다.    그림 1   다음은 각각의 기능에 대한 설명이다.  Closest : 특정 데이터 포인트에 가장 가까운 변화를 식별한다. 이를 통해 최적화 과정에서의 데이터 민감성을 이해하고 결정에 도움을 줄 수 있다.  Similar : 사용자가 선택한 기준에 따라 유사한 데이터 집합을 찾는 기능이다. 이는 집합의 규칙 또는 모델을 파악하는 데 유용하다. Clusters : 데이터 세트를 서로 연관된 그룹으로 분류한다. 군집화 기법을 통해 데이터의 패턴을 식별하고 알고리즘에 의한 데이터 이해를 개선할 수 있다.  Trade-offs : 다수의 설계 목표 간의 상충 관계를 분석한다. 이를 통해 각각의 설계 대안이 어떻게 특정 목표를 달성하는지에 대해 명확하게 이해할 수 있다.  Patterns : 데이터 내의 반복되는 경향이나 구조를 발견하여 예측 및 모델링에 도움을 주는 기능이다. 패턴 인식은 정보의 신뢰도를 높이는 데 중요하다.  Preview History : 사용자가 수행한 변경이나 실행의 기록을 미리 보면서 데이터 분석의 이력을 관리할 수 있다.  Design Set : 여러 디자인 시나리오를 만들고 비교하여 최적의 설계를 도출하는 데 도움을 준다.  Performance & Plot : 데이터의 성능을 평가하고 시각적으로 플롯하여 분석 결과를 명확하게 표현한다.  Discover 탭의 이러한 기능은 히즈 사용자가 데이터를 깊이 이해하고 시뮬레이션 최적화 과정에서 효과적인 의사 결정을 내리도록 돕는다. 이를 바탕으로 보다 정확하고 신뢰성 있는 설계와 분석 결과를 도출할 수 있다.   데이터 분석을 위한 예제   그림 2    목적함수 외팔보 H빔의 체적을 최소화 제약 조건 최대 굽힘 응력(σ) ≤ 200 MPa  최대 끝단 처짐(δ) ≤ 2 mm  설계 변수 Length : 5,000 mm  Load P : 6,500 N  E : 200 MPa  H : 50 mm ≤ H ≤ 100 mm  h1 : 5 mm ≤ h1 ≤ 30 mm  b1 : 50 mm ≤ b1 ≤ 100 mm  b2 : 5 mm ≤ b2 ≤ 50 mm 히즈의 Discovery Method를 사용하여 분석할 데이터는 우리가 지금까지 계속 예제로 사용한 외팔보의 처짐 문제를 기반으로 Adaptive Sampling Study(어댑티브 샘플링 스터디)에서 500개의 데이터를 생성하여 사용할 것이다. 아니면 독자들이 가지고 있는 데이터를 사용해도 괜찮다.   그림 3     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
터보 기계 시뮬레이션을 위한 엔지니어 가이드 Ⅳ
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (21)   이번 호에서는 다양한 유형의 난류 모델과 사용 시기, 그리고 복잡한 형상을 위한 고충실도 난류 모델링에 있어 케이던스 밀레니엄 M1(Cadence Millennium M1) CFD 슈퍼컴퓨터가 어떻게 혁신을 가져오는지에 대해 설명한다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   자동차 산업은 거의 매일 새로운 혁신과 개발이 등장하며 끊임없이 발전하고 있다. 자동차 업계는 전기 구동 차량과 대량 생산이 증가하는 추세에 발맞춰 보다 지속 가능한 미래를 만들기 위해 노력하고 있다. 자동차 생산량은 꾸준히 늘고 있지만, 업계는 여러 디자인 또는 새로운 헤드라이트, 스플리터, 사이드 스커트 추가와 같은 아주 작은 디자인 변경에 대해서도 풍동 테스트 또는 프로토타입 테스트를 수용하면서 연비 기준을 충족해야 하는 과제에 직면해 있다. 그 결과, 항력 계수 등 관심 있는 유동장 정보와 성능 관련 수치를 예측하여 필요한 실험 횟수를 크게 줄일 수 있는 시뮬레이션 기반 접근 방식이 점점 더 인기를 얻고 있다.   그림 1   유체 흐름의 난류를 이해하고 전산 유체 역학(CFD) 시뮬레이션을 통해 동일한 난류를 재현하려면 다양한 난류 모델을 사용해야 한다. 자동차 애플리케이션과 리소스 가용성에 따라 적합한 난류 모델을 선택하면 설계 주기를 단축하는 데 도움이 될 수 있다.    난류의 모델링 기법 ‘난류’는 압력과 속도의 혼란스러운 변화를 특징으로 하는 불규칙한 흐름을 일컫는 용어이다. 우리는 일상 생활에서 난류를 경험하며 공기 역학, 연소, 혼합, 열 전달 등과 같은 다양한 엔지니어링 응용 분야에서 중요한 역할을 한다. 하지만 유체 역학을 지배하는 나비에-스토크스 방정식은 매우 비선형적인 편미분 방정식이며 난류에 대한 이론적 해법은 존재하지 않는다. 난류는 광범위한 공간적, 시간적 규모를 포함하기 때문에 모델링과 시뮬레이션이 어려울 수 있다. 일반적으로 큰 와류는 난기류에 의해 생성된 에너지의 대부분을 전달하고 작은 와류는 이 에너지를 열로 발산한다. 이 현상을 ‘에너지 캐스케이드’라고 한다. 몇 년에 걸쳐 다양한 난기류 모델링 접근법이 개발되었으며, 가장 일반적인 세 가지 접근법을 간략히 설명한다. Direct Numerical Simulation(DNS) : DNS에서는 모델이나 근사치 없이 미세한 그리드와 매우 작은 시간 단계를 사용하여 모든 규모에서 난기류를 해결한다. DNS의 계산 비용은 엄청나게 높지만 결과는 가장 정확하다. DNS 시뮬레이션은 난류장에 대한 포괄적인 정보를 제공하기 위한 ‘수치 실험’으로 사용된다. Large-Eddy Simulation(LES) : 이름에서 알 수 있듯이 이 난류 모델링 기법은 큰 소용돌이를 해결하고 보편적인 특성을 가진 작은 소용돌이를 모델링한다. LES 시뮬레이션은 최소 길이 스케일을 건너뛰어 계산 비용을 줄이면서도 시간에 따라 변화하는 난기류의 변동 요소를 자세히 보여준다. Reynolds-Averaged Navier-Stokes Model(RANS) : RANS 방정식은 나비에-스토크스 방정식의 시간 평균을 취하여 도출되었다. 난기류 효과는 미지의 레이놀즈 응력 항을 추가로 모델링하여 시뮬레이션한다. RANS 시뮬레이션은 평균 흐름을 해결하고 난류 변동을 평균화하므로 다른 두 가지 접근 방식보다 훨씬 비용 효율적이다.   올바른 선택 : DNS, LES 또는 RANS 올바른 난류 모델을 선택하는 것은 모든 시뮬레이션의 중요한 측면이며, 이는 주로 시뮬레이션의 목적, 흐름의 레이놀즈 수, 기하학적 구조 및 사용 가능한 계산 리소스에 따라 달라진다. 학술 연구의 경우 DNS 시뮬레이션은 난류의 근본적인 메커니즘과 구조를 이해하는 데 가장 적합한 결과를 제공한다. DNS는 레이놀즈 수가 낮은 경우에 적합하지만, 막대한 시간과 리소스가 필요하기 때문에 대부분의 산업 분야에서는 실용적인 선택이 아니다. 반면에 LES는 일반적으로 레이놀즈 수가 높은 복잡한 형상을 포함하는 산업용 사례를 처리하는 데 적합한 옵션이다. LES가 생성하는 고충실도 결과물은 경쟁이 치열한 자동차 시장에서 중요한 한 차원 높은 성능 개선이 가능한 설계를 가능하게 한다.   그림 2    RANS 시뮬레이션은 LES에 비해 근사치의 범위가 넓기 때문에 정확도가 떨어진다. 그러나 정확도와 계산 비용 간의 균형으로 인해 RANS는 계산 리소스와 시뮬레이션 시간이 제한된 업계 사용자에게 일반적인 설루션이다. 이 방법은 또한 짧은 시간 내에 여러 사례를 분석해야 할 때 널리 사용된다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
앤시스 LS-DYNA의 리스타트 기능 및 활용 방법
앤시스 워크벤치를 활용한 해석 성공 사례   해석을 하다 보면 사용자의 실수나 다른 외부 문제로 진행 중이던 해석이 중단되는 경우가 발생한다. 이러한 경우, 앤시스 LS-DYNA(엘에스 다이나)의 ‘리스타트(Restart)’ 기능을 활용하면 해석 시뮬레이션을 처음부터 다시 수행하지 않고 해석이 중단된 특정 시점부터 재시작할 수 있다. 또한 이미 완료된 해석에 대해 조건을 변경하여 해석 시뮬레이션을 이어서 진행할 수도 있다. 이번 호에서는 LS-DYNA의 리스타트 기능에 대해 소개하고, 예제를 통해 LS-PrePost(엘에스 프리포스트)와 워크벤치(Workbench) 환경에서 활용하는 방법을 알아본다.   ■ 김혜영 태성에스엔이 MBU팀에서 수석매니저로 근무하고 있으며, LS-DYNA 해석 기술지원 및 교육, 용역 업무를 담당하고 있다. 홈페이지 | www.tsne.co.kr   리스타트 해석의 수행 조건 리스타트 해석을 사용하기 위해서는 다음과 같은 조건이 필요하다.  동일한 실행 솔버(Executable)를 사용하는가?(예 : lsdyna_sp.exe)  동일한 CPU 개수인가?  Dump 파일이 생성되었는가? 덤프(Dump) 파일은 리스타트를 위한 바이너리 아웃풋(Binary Output) 파일로 특정 시점의 응력, 변형률, 변형량 등 해석 결과를 완전히 기록한다. LS-DYNA에는 두 가지 유형의 덤프 파일이 있다. 그 중 한 유형인 D3DUMP 파일은 특별히 설정하지 않아도 해석이 정상 종료되면 d3dump01 파일이 생성된다. 이 파일에 대하여 *DATABASE_BINERY_ D3DUMP 키워드를 통해 사용자가 정의한 간격에 따라 D3DUMP 파일을 주기적으로 생성할 수 있고, 생성된 파일 뒤에 숫자가 붙어 주기마다 증가하고 해석 폴더 내에서 d3dump01, d3dump02 등으로 확인할 수 있다. 다른 유형의 덤프 파일은 RUNRSF로 *DATABASE_BINERY_RUNRSF 키워드를 통해 사용자가 정의한 간격에 따라 파일을 생성하지만, NR 매개변수가 사용되지 않는 한 동일한 파일에 덮어씌워져서 생성된다. 이 두 가지 덤프 파일은 함께 사용할 수 있다. <그림 1>은 D3DUMP 파일을 주기적으로 저장하기 위한 *DATABASE_BINARY_D3DUMP 키워드 예시이다.   그림 1. D3DUMP 저장 간격 키워드 예시   리스타트 타입 LS-DYNA의 리스타트 타입(Restart Type)은 이전 해석에 이어서 수행하는 기능으로, 크게 세 가지로 나눌 수 있다. 심플 리스타트(Simple Restart) 스몰 리스타트(Small Restart) 풀 리스타트(Full Restart) 그러면, 이전 해석에 이어서 진행해야 하는 몇 가지 상황에 따라 어떤 타입의 리스타트 기능을 사용하는지 알아보자.    실수로 해석창을 닫았어요! – 심플 리스타트 심플 리스타트는 종료시간(Termination Time) 이전에 해석이 중단된 경우에, 사용자가 설정한 주기마다 저장된 d3dump 파일을 사용하여 특정 시점부터 해석을 다시 시작하는 기능이다. 따라서 변경 사항이 없어 입력 파일(Keyword Input Deck)이 필요하지 않고 d3dump 파일만 활용한다.    그림 2. 일반적인 해석 실행 화면(LS-RUN)   그림 3. 일반적인 해석 실행 화면(CMD 창)   <그림 2>와 같이 LS-RUN을 사용하여 해석을 수행한 경우 <그림 3>과 같은 CMD 창이 팝업되고, 해석 진행에 따른 메시지를 바로 확인할 수 있다. <그림 1>의 키워드 예시처럼 사용자가 덤프 파일의 저장 주기를 미리 설정하였다면, CMD 창에 나타난 메시지처럼 지정된 주기인 5000 사이클마다 덤프 파일이 저장되고 있음을 알 수 있다.  만약 1만 사이클 이후 실수로 해석 CMD 창을 닫아 해석이 중단되었다면, d3dump02를 사용하여 리스타트 해석을 수행할 수 있다. <그림 4>처럼 LS-RUN의 Expression 설정에서 i=$INPUT 대신 r=d3dump02로 명령어를 수정하면 덤프 파일을 사용하여 해석을 이어갈 수 있다.   그림 4. 심플 리스타트 해석 실행 화면(LS-RUN)   그림 5. 심플 리스타트 해석 실행 화면(CMD창)     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[포커스] DN솔루션즈, 금속 3D 프린터 'DLX 시리즈'로 제조 혁신 선도한다
지난 4월 2일부터 5일까지 부산 벡스코와 경남 창원 DN솔루션즈 본사에서 열린 '제15회 DN솔루션즈 국제공작기계 전시회(DIMF 2025)'는 국내외 제조 업계의 이목을 집중시켰다. DN솔루션즈는 이번 전시회를 통해 첨단 공작기계와 자동화 설루션, 그리고 적층제조(Additive Manufacturing : AM)의 새로운 기술을 선보이며, 제조 혁신의 새로운 방향을 제시했다. ■ 박경수 기자   ▲ DIMF 2025가 열린 지난 4월 2일 부산 BEXCO 전시장   금속 적층제조의 미래, 새로운 DLX 시리즈 공개 DIMF는 DN솔루션즈가 1997년부터 격년으로 개최하는 자체 전시회로, 올해로 15회를 맞아 ‘공작기계 가공 공정 전반을 위한 오토메이션 플랫폼’을 주제로 열렸다. 총 50여 종의 첨단 공작기계와 자동화 설루션이 전시되어 관심을 모았는데, 국내외 고객 1000여 명을 포함한 5000여 명의 관람객이 다녀갔다. 이번 전시회의 하이라이트는 DN솔루션즈가 고성능 산업용 ‘금속 3D 프린터’로 알려진 LPBF(Laser Powder Bed Fusion) 방식의 금속 적층 장비 ‘DLX 시리즈(DLX 325, DLX 450)’를 최초로 공개한 것이다. 이 기술은 금속 적층제조 방식 중 발전된 기술이자 활용도가 높은 공법으로, 현재 금속 적층 시장의 약 80%를 차지하고 있다. DLX 450은 알루미늄 합금, 인코넬, 타이타늄 등 분말 소재를 활용해 최대 450×450×450mm 크기의 정밀 부품 제작이 가능하다. DLX 시리즈는 3D 프린팅 장비와 함께 적층제조 전반의 과정을 지원하는 맞춤형 소프트웨어를 함께 제공한다. DN솔루션즈 김원종 대표는 “DN솔루션즈는 지금까지 반세기 동안 전 세계에 총 29만대의 공작기계를 판매했다”며, “우리는 이 같은 고객의 신뢰를 바탕으로, 전통적인 공작기계를 넘어 오토메이션 플랫폼이나 금속 적층 장비처럼 수요 산업의 전반을 혁신할 수 있는 설루션을 제시하고자 한다”고 밝혔다.   ▲ DN솔루션즈 김원종 대표가 적층제조로 제작된 부품을 설명하고 있다.   글로벌 시장 공략을 위한 전략적 투자 이들 소프트웨어는 ▲적층제조를 적용할 수 있는 부품을 찾아내고 ▲부품당 비용을 계산하며 ▲적층 시 필요한 최적 서포트를 설계하고 ▲신규 소재 공정을 개발하는 등의 기능을 통해 고객의 생산성과 효율성을 극대화하는 데 초점을 맞췄다. 또한 DN솔루션즈는 적층제조 방식으로 제작된 복합가공기용 ‘밀링 스핀들 캡’ 부품도 전시해 관심을 모았다. 이 샘플은 적층제조 특화 설계를 통해 기존 방식 대비 약 20%의 성능 개선 효과를 보였다. 한편 DN솔루션즈는 금속 적층제조 분야의 글로벌 시장 공략을 위해 독일에 ‘적층제조 솔루션 센터(ASC)’를 새롭게 설립했다. 이 센터는 최적 부품 선정, 맞춤형 설계(DfAM), 공정 개발 및 생산·서비스까지 전 주기를 아우르는 시스템을 구축하여 유럽 시장을 적극 공략한다는 계획이다. 또한 인도의 금속 적층제조 장비·설루션 전문 기업인 인텍(INTECH Additive Solutions)과 전략적 투자 및 파트너십 계약을 체결하며, 아시아 시장에서도 입지 강화에 나섰다. DN솔루션즈 김원종 대표는 “인텍과의 투자 협력을 통해 금속 절삭뿐만 아니라 금속 적층제조까지 포함해 장비, 공정 기술, 소프트웨어 전반의 설루션을 제공할 수 있게 되었다”며, “자동차, 항공우주, 의료기술, 전기전자 등 시장에서 복잡한 형상과 내부 구조, 소재 효율성을 요구하는 분야나, 반도체 산업 공급 업체를 포함한 다양한 제조업 고객의 성공을 지원할 수 있을 것으로 기대한다”고 말했다.   ▲ 제15회 DN솔루션즈 국제 공작기계 전시회(DIMF 2025) 현장 모습   파트너십을 통한 성장과 전문성 강화 이번 파트너십으로 DN솔루션즈의 금속 절삭 가공 분야의 전문성과 인텍의 금속 적층제조를 위한 360도 종합 솔루션의 결합이 가능해졌다. 특히 DN솔루션즈는 금속 적층 분야에서 가장 활용도가 높고 발전된 기술인 레이저 파우더 베드 퓨전(LPBF) 기술을 추가하며 제품 포트폴리오를 확대할 수 있게 되었다. LPBF 기술은 금속 적층제조 시장의 약 80%를 차지하며, 금속 분말을 얇게 도포한 후 레이저를 이용하여 금속 분말을 선택적으로 응용 및 융합하여 적층하는 방식으로 작동한다. 적층을 위한 플랫폼이 아래로 이동하면서 추가 금속 분말이 도포되고 다시 용융(Melting) 및 융합(Fusion)하는 과정을 반복적으로 수행하여 점진적으로 최종 형상이 만들어지게 된다. DN솔루션즈 김원종 대표는 “금속 적층 방식은 가공 후 조립 과정을 단축하고, 절삭으로 구현이 불가능한 형상을 만들 수 있어 무한한 혁신 가능성이 있다”며, “2030년까지 금속 적층제조와 절삭 가공의 시너지를 극대화하겠다”고 밝혔다.   인터뷰 : DN솔루션즈 적층제조 부문 부사장 비노 순타라쿠마란 박사     이번에 발표한 내용을 조금 더 자세히 설명한다면 적층제조, 자동화, 소프트웨어 세 가지를 하드웨어적으로 통합하여 고객 산업 제조를 가능하게 한다. 소프트웨어는 이를 연결하고, 서비스는 고객 여정 전반을 지원하는 것이 우리의 미션이다. 단순한 장비 공급을 넘어 통합 제조 플랫폼으로 진화하며, 고객의 제조 프로세스를 처음부터 끝까지 지원한다는 전략이다.   적층제조 기술이 절삭가공과 어떻게 시너지를 내고 있는지 시장에서는 고품질과 표준화를 기대한다. 우리는 절삭가공과 적층제조를 연결하는 프로세스 체인을 가능하게 하는 장비를 개발하고 있다. 기존 강점인 절삭가공 기술과의 하이브리드 제조 체인 구축을 통해 생산성과 품질을 동시에 향상시키는 전략을 추진 중이다.   DLX 시리즈의 소프트웨어는 어떤 기능을 제공하는지 현재 알고리즘 기반 소프트웨어를 운영하고 있고, 향후 프린팅에 적합한 데이터 판단 기능이 포함된 AI 기반의 소프트웨어로 진화해 나갈 계획이다.   후처리 공정이 어렵다고 이야기했는데, 어떤 점이 특히 어려운지 후처리는 전문 지식이 없이는 어렵다. 그래서 우리는 이를 쉽게 알려주고, 자동화할 수 있는 소프트웨어를 함께 제공한다. 적층제조 확산의 걸림돌인 후공정 난이도를 극복하기 위한 소프트웨어 자동화 설루션 개발이 핵심 전략이다.   내부적으로 레퍼런스 사례가 있다면 NX2000 장비를 도입해 내부 설계자가 기존 부품을 통합해 효율성을 20% 이상 향상시켰다. 이처럼 적층제조 도입이 성능 향상과 부품 최적화로 이어지는 검증된 성과가 있으며, 실질적 레퍼런스를 통해 시장 신뢰도를 확보해 나가고 있다.   글로벌 시장 진출 전략은 무엇인지 우리는 유럽, 미국, 한국에 팀을 운영 중이며 글로벌 확장 준비를 마쳤다. 가격 경쟁력과 다양한 애플리케이션 적응력을 갖추고 있다.   한국 제조업이 적층제조 시장에서 어떤 가능성을 가지고 있는지 한국은 반도체, 자동차 등 제조 강국이다. 적층제조는 이노베이션을 위한 핵심 기술이기 때문에, 곧 시장이 열릴 것이라 확신한다. 제조 인프라가 강한 한국은 적층제조 확산의 최적지이며, DN솔루션즈는 국내 산업에 이를 선도하는 포지셔닝을 유지해 나갈 계획이다.   ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
[칼럼] 실용형 AI, 제조의 미래를 바꾸다
트렌드에서 얻은 것 No. 23   “AI는 모든 산업에 새로운 가능성을 열어 준다. 중요한 것은 기술이 아니라, 그것을 어떻게 활용하느냐이다.” – 사티아 나델라(Satya Nadella), 마이크로소프트 CEO 마이크로소프트는 생성형 AI를 다양한 산업에 통합하며, 기술의 활용 방식에 중점을 두고 있고,  나델라의 말은 기술 도입보다 전략적 활용이 중요하다는 점을 강조한다.   생성형 AI와 함께 설계하고, 시뮬레이션하고, 개선하라 지금 이 이야기를 한국의 제조기업에 가서 한다면, 이상한 사람 취급을 받을 수 있다. 당장, 어떻게 할 수 있는지 이야기할 수 있느냐? 우리도 그렇게 하고 싶은데, 어떻게 할 수 있는지 제대로 나온 것도 없고, 사례가 있는지 등의 얘기가 자연스럽게 나온다. 맞는 말이다. 하지만, 지금은 레이스의 출발선에서 모두 같은 상황일 것이다. 다만, 전체를 제어하고 미래를 설계하는 혜안이 있는 사람이나 조직 유무에 따라 회사들의 달리기 속도는 분명 차이가 날 것이다.  우리는 그런 시대를 살아가고 또 지나가고 있다. 뉴스에서 다른 회사의 소식을 들으면서 탄식을 하고 있을 것인가, 아니면 고통스럽더라도 뭔가 해 보는 것이 낫지 않느냐의 갈림길에 있다. “그럼에도 불구하고, 우리는 설계할 수 있다.” 그렇다. ‘생성형 AI로 설계하고, 시뮬레이션하고, 개선하라’는 말은 지금의 제조 현장에선 거대한 간극처럼 느껴진다. 공장의 열기와 노하우 속에서 살아온 실무자에게는 뜬구름 잡는 이야기처럼 들릴 수 있다. “AI가 좋다는데, 어디까지 해봤나?”, “누가 이걸 설계에 실제로 썼대?” 이런 질문은 당연한 것이고, 오히려 현실을 잘 아는 사람일 수록 더 조심스러운 반응을 보인다. 그러나 지금, 우리는 모두 레이스의 출발선에 서 있다. 완성된 길도, 검증된 답도 아직 없다. 그러니 이 때 필요한 건 기술보다 먼저 혜안을 가진 사람, 구조를 설계할 수 있는 리더다. 단 한 줄의 프로토타입이라도 그려보려는 엔지니어, 익숙한 보고서보다 새로운 질문을 고민하는 팀장, 시행착오를 감수하고 방향을 잡으려는 임원이 지금 이 시대의 속도를 결정짓는다. 그리고 그 ‘혜안’은 거창한 청사진이 아닐 수도 있다. 단 하나의 설계 데이터를 기반으로 AI에게 첫 도면을 그리게 해보는 실험, 실시간 현장 일지에서 이상 징후를 요약하게 해 보는 시도, 현장의 사진 데이터로 품질 검사 자동화를 위한 검출 모델을 훈련해 보는 도전 등이 현 시점에서 예상해 볼 수 있는 가까운 미래 모습일 것 같다. “우리는 예상치 못한 상황을 목격하고, 예상된 상황을 보고하며, 결국 승리할 것입니다.” – 알렉스 카프, 팔란티어 CEO 카프는 AI를 활용한 제조업의 혁신이 불확실성을 극복하고 성공으로 이끄는 열쇠라고 보고 있으며, 이는 생성형 AI를 통한 제조업의 미래를 긍정적으로 전망한다.    그림 1. 실용형 AI 맵 ‘제조 미래를 바꾸다’(Map by 류용효) (클릭하면 큰 이미지로 볼 수 있습니다.)   제조, AI를 다시 만나다 “설계는 끝났지만, 고객은 원하지 않는다.”  “시뮬레이션은 끝났지만, 현장은 여전히 오류를 반복한다.”  “보고서는 쌓이지만, 문제는 여전히 현재진행형이다.” 이 문장들은 지금도 수많은 제조 현장에서 반복되고 있다. 전통적인 제조 프로세스는 분업과 효율을 중심으로 설계되었지만, 급변하는 고객의 요구와 복잡해진 제품 환경은 기존 체계의 민첩성과 창의성에 한계를 드러낸다. 이제 제조기업은 하나의 질문 앞에 서 있다. “우리는 더 빠르고 똑똑한 공장을 가질 준비가 되었는가?” 생성형 AI는 단순한 자동화 기술이 아니다. 설계자의 의도를 읽고 CAD 모델을 생성하며, 수십 개의 시뮬레이션으로 프로세스 병목을 알려주고, 품질 이상을 예측할 뿐 아니라 원인을 유추해주는 ‘설계적 사고를 하는 AI’가 등장하고 있다. 이는 기술의 도입이 아니라 제조기업의 ‘운영 철학’ 자체가 전환되는 순간이다. 제조기업이 생성형 AI와 함께 앞으로 어떻게 설계하고, 시뮬레이션하고, 개선할 수 있을지를 구체적으로 조망한다. “AI는 인류가 만든 가장 중요한 기술이다. 우리는 그것을 책임감 있게 개발하고 활용해야 한다.” – 순다르 피차이(Sundar Pichai), 구글 CEO 구글은 AI 개발에 있어 윤리적 책임과 사회적 영향을 고려하고 있으며, 피차이의 말은 기술 발전과 함께 그에 따른 책임도 중요하다는 점을 상기시켜 준다.   디자인의 재정의 - AI는 창의적인 엔지니어인가? 전통적인 제조 설계 과정은 복잡한 조건 설정, 반복적인 수정, 협업 간의 커뮤니케이션 비용 등으로 인해 수많은 시간과 리소스를 요구해왔다. 하지만 이제, 생성형 AI는 텍스트 한 줄로 설계를 시작하게 한다. “3개의 모듈로 구성된 소형 드론 프레임을 설계해 줘. 탄소 섬유 기반으로 무게는 150g 이하로.” 이 한 문장으로 AI는 초기 설계안을 생성하고, 다양한 대안 모델을 제공하며, 사용자 요구조건에 따라 자동 최적화를 제안한다. AI는 도면을 '그리는 도구'가 아니라, '제안하고 비교하는 동료 엔지니어'로 진화하고 있다. 예를 들어, 오토데스크의 퓨전 360(Fusion 360), 엔톱(nTop), 다쏘시스템의 3D익스피리언스 웍스(3DEXPERIENCE Works)는 이미 생성형 디자인 기능을 내장하고 있다.  디자이너는 아이디어를 제공하고, AI는 그에 기반한 설계 패턴을 도출한다. 이는 ‘무에서 유를 만드는’ 것이 아니라, 수많은 설계 데이터를 학습한 AI가 새로운 패턴과 조합을 도출해내는 방식이다. 결과적으로 설계자는 더 이상 반복적인 CAD 작업자가 아니다. 이제 디자이너는 ‘기획자’이자 ‘비평가’, 그리고 ‘AI와 협력하는 설계 전략가’가 된다. 또한, 이러한 생성형 설계는 대량 맞춤형 생산(mass customization)과의 결합으로 그 진가를 발휘한다. 기존에는 옵션이 제한된 범용 제품만이 경제성이 있었지만, 생성형 AI는 고객의 요구사항을 빠르게 읽고 즉시 설계에 반영할 수 있다. 이는 ‘고객이 참여하는 설계’, 즉 코디자인(co-design) 시대의 도래를 가능하게 한다. 기업은 더 빠르게 시장에 대응하고, 고객은 더 높은 만족도를 경험한다. 이처럼 생성형 AI는 설계를 단순히 ‘빠르게’ 만드는 기술이 아니라, 설계의 개념 자체를 ‘재정의’하는 도구이자 기업의 창의성과 기민함을 확장하는 전략 자산이 되고 있다. “퍼플렉시티(Perplexity)는 단순한 답변 엔진에서 행동 엔진으로 전환하고 있다. 이제는 단순히 질문에 답하는 것을 넘어, 사용자에게 행동을 제안하고 실행하는 단계로 나아가고 있다.” – 아라빈드 스리니바스(Aravind Srinivas), 퍼플렉시티 AI CEO 아라빈드의 말은 AI 기술이 단순한 정보 제공을 넘어, 사용자와의 상호작용을 통해 실제 행동을 유도하고 실행하는 방향으로 발전하고 있음을 의미한다.   시뮬레이션의 혁신 - 빠른 판단과 적은 비용 과거의 시뮬레이션은 전문 소프트웨어와 고성능 컴퓨팅 자원, 그리고 숙련된 엔지니어의 직관과 경험에 크게 의존해 왔다. CAE는 분명 설계 검증과 최적화의 핵심이었지만, 조건 설정 → 모델링 → 결과 해석 → 반복이라는 고비용 순환은 여전히 제품 개발의 병목으로 작용해왔다. 그러나 생성형 AI는 이 병목을 타파하는 새로운 접근을 제시한다. 자연어로 “강풍 조건에서 뒤틀림이 가장 적은 하우징 구조를 찾아줘”라고 지시하면, AI는 자동으로 물리 조건을 추론하고, 유사 데이터 기반의 시뮬레이션 템플릿을 구성하며, 수십 개의 대안 시나리오를 병렬 생성해 ‘예측 – 설명 – 추천’이라는 삼중 루프를 빠르게 수행한다. 이러한 기술은 시뮬레이션의 대중화(simulation democratization)를 이끈다. 기술 전공자가 아니어도, 제품 매니저나 품질 담당자가 AI의 도움으로 설계안의 응력 분포나 유동 조건에 대해 인사이트를 얻을 수 있다. 이는 실무자가 더 빠르게 결정을 내릴 수 있도록 돕고, 의사결정의 지연 대신, 다중 시나리오 기반의 ‘실험적 사고’를 가능하게 만든다. 대표적인 사례로는 알테어의 AI 기반 인스파이어 플랫폼(AI-driven Inspire Platform), 앤시스의 AI 기반 시뮬레이션 자동화, 그리고 다쏘시스템의 솔리드웍스 생성형 시뮬레이션(Generative Simulation for SOLIDWORKS)이 있다. 이들은 기존 FEM/CFD 분석의 시간과 비용을 줄이는 동시에, 경험 기반 의사결정에서 데이터 기반 최적화로의 전환을 이끌고 있다. 궁극적으로 생성형 AI는 단순히 ‘더 빠른 계산’을 넘어서, “어떤 시나리오를 먼저 고려해야 하는가?”, “이 조건에서 실패할 가능성은 무엇인가?”라는 전략적 질문에 답하는 보조 엔진이 되어 준다. 이는 시뮬레이션을 단지 제품 검증의 도구가 아니라, 경영 의사결정과 R&D 전략 수립의 인공지능 파트너로 진화시키는 변화의 시작점이다.  “AI는 우리가 상상하는 것보다 훨씬 더 빠르게 발전하고 있다. 자율주행차는 그저 시작일 뿐이다.” – 일론 머스크(Elon Musk), 테슬라 CEO 테슬라는 자율주행 기술 개발에 AGI 수준의 AI를 활용하고 있으며, 이는 단순한 기능 향상을 넘어 차량 설계와 운행 방식 전반을 재정의하는 접근이다.   업무 분석과 프로세스 개선 - 데이터는 말하고 AI는 듣는다 제조 현장의 데이터는 언제나 풍부했다. 작업자 일지, 설비 로그, 유지보수 메모, 품질검사 리포트, 현장 사진과 동영상, 고객 클레임 이메일… 하지만 이들 대부분은 정형화되지 않은 ‘텍스트’와 ‘문서’ 형태로 존재하며, 기존 시스템은 이를 ‘기록’하는 데에만 집중했고, 의미를 해석하고 연결하는 능력은 인간의 몫이었다. 이제 생성형 AI는 이 방대한 비정형 데이터의 숲에서 맥락을 이해하는 나무를 찾는다. 작업자가 남긴 “라인 3에서 어제도 제품 정렬이 안 맞았고, 자동 이젝터가 두 번 멈췄다”는 기록은, AI에겐 단순한 텍스트가 아니라 ‘패턴’과 ‘이상’의 시그널이다. LLM은 이런 문장을 분석해 작업 단계별 이벤트를 분해하고, 관련된 설비 로그와 품질 데이터를 연결하여 문제 지점을 도출한다. 이제 업무는 ‘기록하고 보고하는 일’이 아니라, ‘데이터가 스스로 분석하고 말하는 환경’으로 바뀌고 있다. 대표적인 활용 사례는 다음과 같다. 업무 요약 자동화 : 업무 일지를 요약해 경영진에게 핵심 이슈를 전달 프로세스 병목 식별 : 여러 부서의 텍스트 기반 보고서에서 공통 키워드와 불만 분석 문서 자동 생성 : SOP(표준작업지침서), 회의록, 개선안 보고서 등의 자동 초안 작성 협업 인텔리전스 : 여러 팀 간의 커뮤니케이션 데이터를 분석해 협업 지연 포인트 도출 실제로 지멘스는 AI 기반 자연어 처리 기술(Natural Language Processing : NLP)을 통해 디지털 작업지시서와 실시간 현장 대응 리포트를 자동 생성하는 기능을 도입했고, 보쉬는 AI를 통해 품질 클레임 문서에서 반복 출현하는 원인 유형을 추출하여 품질 개선의 단초로 활용하고 있다. 핵심은 이것이다. 현장의 수많은 대화와 기록이 AI에게 ‘말을 거는 데이터’가 되었고, AI는 그 말을 듣고, 요약하고, 통찰을 제시하며, 업무 개선을 스스로 제안하는 존재가 되었다는 점이다. 이제 우리는 묻지 않을 수 없다. 우리는 AI에게 말 걸 준비가 되어 있는가? 그리고 그 대답을 조직이 들을 준비는 되었는가? “가장 큰 위험은 아무런 위험도 감수하지 않는 것이다. 모든 것이 급변하는 시대에서 위험을 회피하는 전략은 반드시 실패로 이어진다.” — 마크 저커버그, 메타 CEO 저커버그는 변화와 혁신의 시대에 기존의 방식을 고수하며 위험을 회피하려는 태도가 오히려 더 큰 실패를 초래할 수 있음을 경고한다.   품질 관리의 진화 - AI는 예지적 감각을 가질 수 있는가 품질 관리는 제조업의 마지막 방어선이자, 가장 정교한 신경망이다. 그러나 지금까지의 품질 관리는 주로 사후 대응(postdefect 대응)에 집중되어 있었다. 불량이 발생한 후 원인을 찾고, 재발 방지책을 수립하고, 문서를 정리하는 ‘후행적 품질 관리’가 일반적이었다. 이제 생성형 AI는 이 전통적 프레임을 근본부터 흔들고 있다. AI는 ‘불량을 감지’하는 것이 아니라, ‘불량을 설명하고 예측’하려 한다. 예를 들어, 제품 표면의 이미지를 기반으로 한 비전 검사 시스템은 단순히 OK/NG를 판단하는 데서 그치지 않고, “이 영역의 텍스처 패턴은 온도 편차에 의한 수축 변형일 가능성이 높습니다”라고 말할 수 있는 설명형 모델로 진화하고 있다. 나아가, 생성형 AI는 텍스트, 이미지, 센서 데이터를 통합적으로 분석해 복합적인 이상 징후를 감지하고, 불량의 '가능성'과 '잠재 원인'을 추론해낸다. 예를 들어 다음과 같은 조합이 가능해진다. 작업자 일지 : “이틀 전부터 용접기압이 다소 약한 것 같다.” 센서 로그 : 오전 9~11시에 기압 편차 발생 불량 이미지 : 비드 형성 불균형 AI는 이를 연결해 “용접 조건의 경미한 변화가 반복 불량의 근본 원인일 수 있다”고 보고한다. 이는 단순한 예측모델이 아니다. ‘설명 가능한 품질 관리(Explainable Quality)’, 즉 AI가 품질 이슈에 대해 왜 그런 판단을 했는지를 근거와 함께 제시함으로써, 품질팀은 더 이상 직감이나 경험에만 의존하지 않고 데이터 기반의 합리적 개선 프로세스를 수립할 수 있다. 이미 보쉬, 토요타, GE 항공 등은 ▲AI 기반 비전 검사 시스템에서 ‘불량 예측 + 원인 설명’을 제공하는 모델을 구축 중이고 ▲ISO 9001과 연동되는 AI 품질 리포트 자동화 시스템을 테스트하고 있다. 이는 곧 ‘AI가 품질 시스템의 일원으로 공식 포함되는 시대’가 오고 있음을 뜻한다. 품질의 정의는 바뀌고 있다. 과거의 품질은 발견과 수정의 문제였지만, 앞으로의 품질은 예지와 설득의 문제다. AI는 이제 불량을 찾아내는 것이 아니라, 불량이 만들어지지 않도록 ‘생산 과정 그 자체를 개선하자’고 제안하는 동료가 되어가고 있다. “AI는 전기를 발견한 것과 같은 혁신이다. 모든 산업에 스며들 것이며, 그 영향을 무시할 수 없다.” – 앤드류 응(Andrew Ng), AI 전문가 앤드류 응은 AI의 보편성과 산업 전반에 미치는 영향을 강조하고 있다. 그의 말은 제조업에서도 AI의 통합이 필수임을 시사한다.   경고와 제언 - 생성형 AI는 도입이 아니라 전환이다 많은 제조기업이 생성형 AI에 주목하고 있다. 설계 자동화, 시뮬레이션 최적화, 업무 요약, 품질 예측… 도입 사례는 늘고 있지만, 도입이 곧 성공을 의미하진 않는다. 생성형 AI는 단순한 툴이 아니라, 운영 철학의 변화를 요구한다. 기존의 프로세스는 ‘정해진 절차와 역할’ 속에서 최적화를 추구해왔지만, 생성형 AI는 ‘질문을 던지고 시나리오를 비교하며 판단을 내리는 유연한 사고방식’을 요구한다. 즉, 기술만 바꾸는 것이 아니라 조직의 사고 체계와 역할 구조 자체를 재설계해야 하는 것이다. 예를 들어 <표 1>과 같은 전환이 필요하다.   표 1   하지만 문제는 기술이 아니다. 가장 큰 장벽은 조직이 AI를 받아들일 준비가 되어 있느냐는 것이다. 임원은 AI를 단순히 ‘자동화 툴’로 간주하는 경향이 많고, 현장은 여전히 ‘내 일을 뺏는 존재’로 AI를 경계한다. 이 간극을 메우지 않으면, AI는 시연 단계에서 멈추고, 조직은 변화의 본질을 놓친다. 따라서 다음과 같은 전환 전략이 필요하다. 파일럿이 아닌 전환 설계 특정 부서에서 테스트하는 것이 아니라, 조직 전체의 프로세스 전환 시나리오를 기획해야 한다. ‘도입 교육’이 아닌 ‘공감 설계’ 기술 사용법이 아니라, 왜 이 기술이 필요한지에 대한 비즈니스 관점에서의 스토리텔링이 필요하다. AI Co-Worker 관점 전환 AI는 도구가 아니라, 함께 판단하고 실험하는 동료로 봐야 한다. 이를 위해 직무 정의서(JD)도 다시 써야 한다. 성과 기준의 재정립 AI 도입 이후에는 ‘정확도’보다 ‘학습 속도’와 ‘적응력’이 핵심 성과 지표가 된다. 결국, 생성형 AI는 ‘도입해야 할 기술’이 아니라 ‘다르게 일하고, 다르게 생각하고, 다르게 운영하는 기업’으로 전환하기 위한 촉매제다. 이제 경영진에게 남은 질문은 단 하나다. “우리는 기술을 도입할 준비가 되었는가?”가 아니라, “우리는 조직을 전환할 용기를 가졌는가?”이다. “지금은 스타트업의 시대… 세상은 여전히 변화의 가능성에 잠들어 있다.” – 샘 올트먼, 오픈에이아이 CEO 올트먼은 기술 혁신의 시기에 기존 기업들이 변화에 둔감해질 수 있음을 경고하며, 새로운 도전과 변화를 추구하는 조직만이 미래를 선도할 수 있다는 메시지를 담고 있다.   맺음말 : 생성형 AI 시대의 제조 기업, 당신은 어떤 그림을 그리고 있는가 미래의 공장은 단지 더 정교하고, 더 빠르며, 더 자동화된 곳이 아니다. 그곳은 데이터를 읽고, 상황을 이해하고, 사람과 함께 결정하는 공장이다. 문제를 발견하기 전에 감지하고, 작업자를 지원하며, 스스로 최적의 방식을 제안하는 공장이다. 그리고 그 공장의 핵심 파트너는 인간의 상상력을 확장하는 생성형 AI다. 이제 중요한 질문은 이것이다. “우리는 어떤 그림을 그리고 있는가?” 기술은 빠르게 진화한다. 생성형 AI는 설계와 시뮬레이션, 업무 분석과 품질 관리까지 제조의 전 과정을 유기적으로 연결하며 ‘스마트’를 넘어 ‘지능적’으로 만들고 있다. 하지만 진정한 경쟁력은 기술의 채택이 아닌, 기술과 함께 일하는 방식의 변화에서 비롯된다. 아직 많은 제조기업은 ‘가능성 탐색’ 단계에 머물러 있다. 하지만 머뭇거릴 시간이 없다. AI는 이미 조직 구조, 업무 정의, 리더십의 방식까지 영향을 미치기 시작했다. 이제는 기술을 배우는 것이 아니라, 기술과 함께 일할 조직을 설계해야 할 때다. 생성형 AI 시대의 제조 기업은 세 가지 질문에 답할 수 있어야 한다. 우리는 상상할 수 있는가? 생성형 AI는 ‘주어진 문제를 해결’하는 것이 아니라 ‘가능성을 확장’한다. 제조기업의 조직은 아직도 문제만 찾고 있는가, 아니면 새로운 기회를 그리고 있는가? 우리는 받아들일 수 있는가? AI는 사람의 영역을 침범하지 않는다. 다만 그 옆에 선다. 우리는 전환할 수 있는가? 우리는 그것을 파트너로 받아들일 준비가 되어 있는가? AI 도입은 기술의 문제가 아니라, 사고방식과 리더십의 전환이다. 과연 지금의 조직은 그 전환을 감당할 수 있는가? 미래의 공장은 말하고 있다. “나는 설계하고, 시뮬레이션하고, 개선할 준비가 되어 있다. 너는 나와 함께 걸을 준비가 되어 있는가?”   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다.(블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
마이크로소프트, ‘2025 업무동향지표’ 통해 AI-인간 협업 시대 예고
마이크로소프트가 연례 보고서인 ‘2025 Work Trend Index(업무동향지표)’를 발표하면서, AI가 재편하는 업무 환경과 프론티어 기업의 등장을 조명하는 한편 AI 시대의 변화에 대응할 로드맵을 제시했다. AI는 단순한 기술을 넘어 사고하고 추론하며 복잡한 문제를 해결하는 동반자로 진화하고 있다. 이에 마이크로소프트는 ‘2025 업무동향지표’를 통해 AI가 조직 경영과 비즈니스에 미치는 영향에 대한 주요 트렌드를 공개했다. 이번 보고서는 한국을 포함한 31개국 3만 1000 명의 근로자 대상 설문조사 결과와 함께, 마이크로소프트 365에서 수집된 수 조 건의 생산성 신호, 링크드인의 노동·채용 트렌드, 그리고 AI 스타트업, 학계 전문가, 경제학자 등과의 협업을 통해 도출됐다.     이번 보고서는 ‘프론티어 기업(Frontier Firm)’이라는 새로운 기업 유형이 등장하고 있으며, 향후 2-5년 안에 대부분의 조직이 이 방향으로 전환을 시작할 것으로 전망했다. 프론티어 기업은 인간과 AI 에이전트가 함께 일하는 하이브리드 팀을 중심으로 유연하게 운영되며, 빠르게 성장하고 성과를 만들어내는 것이 특징이다. 기업 리더의 81%는 향후 12~18개월 내 자사 AI 전략에 AI 에이전트가 광범위하게 통합될 것으로 기대하고 있으며, 실제로 AI 도입 속도도 빠르게 가속화되고 있다. 전체 리더 중 24%는 자사에 이미 전사 차원의 AI 도입이 이뤄졌다고 응답했으며, 시험 운영(pilot) 단계에 머무르고 있다고 답한 리더는 12%에 불과했다. 프론티어 기업은 인간과 AI의 협업 수준에 따라 세 단계로 진화한다. 1단계에서는 AI가 반복적인 업무를 보조해 인간의 효율을 높인다. 2단계에서는 에이전트가 팀의 디지털 동료로 합류해, 사람의 지시에 따라 구체적인 업무를 수행한다. 마지막 3단계에서는 인간이 방향을 제시하면, 에이전트가 전체 업무 흐름을 주도해 업무를 실행하고 인간은 필요할 때만 개입한다. 또한, 보고서는 AI의 급속한 발전으로, 인간의 시간·에너지·비용에 의존하던 지능이 이제는 언제든지 사용할 수 있는 ‘언제든지 사용할 수 있는 지능(Intelligence on tap)’으로 변화하고 있다고 분석했다. 합리적 사고, 계획, 행동이 가능한 AI와 에이전트의 등장으로 인해 이제 기업은 필요에 따라 팀과 개인의 역량을 확장할 수 있다. 실제로 글로벌 리더의 82%(한국 77%)는 2025년을 전략과 운영상의 주요 사항들을 재고해야 할 전환점으로 보고 있으며, 82%의 리더(한국 77%)는 향후 12~18개월 내에 디지털 노동력을 활용해 인력의 역량을 확대할 수 있을 것으로 기대하고 있다. 이 같은 변화의 배경에는 비즈니스 수요와 인간의 역량 간의 간극, 즉 역량 격차(Capacity Gap)가 있다. 리더의 53%(한국 65%)는 지금보다 더 높은 생산성이 필요하다고 답했지만, 리더를 포함한 근로자 80%(한국 81%)는 업무에 집중할 시간이나 에너지가 부족하다고 느꼈다. 마이크로소프트 365 사용자 행동 데이터에 따르면, 직원들은 회의, 이메일, 알림 등으로 하루 평균 275번 업무 방해를 받고 있으며, 10건의 회의 중 6건은 별다른 예고 없이 갑작스럽게 열리는 것으로 나타났다. 이 가운데, 일부 기업은 AI를 기반으로 조직 경영 전략을 새롭게 설계하고 있으며, 마이크로소프트는 이들을 ‘프론티어 기업’으로 정의했다. 31개국 3만 1000명 가운데 프론티어 기업에 근무하는 844명의 직원 71%는 자사가 빠르게 성장하고 있다고 답했으며, 이는 글로벌 평균(37%)의 약 두 배에 해당한다. 또 이들 중 55%(글로벌 20%)는 더 많은 업무를 감당할 여력이 있다고 응답했으며, 93%(글로벌 77%)는 향후 커리어 전망에 자신감을 보였다.     산업과 직무의 진화에 따른 다면적인 변화도 예고됐다. 리더의 45%(한국 44%)는 향후 12~18개월 안에 디지털 노동력을 통해 팀 역량을 확대하는 것을 최우선 과제로 꼽았다. 한편 링크드인에 따르면 유망 스타트업의 고용 증가율은 전년 대비 20.6%로, 빅테크(10.6%)의 약 두 배에 육박했다. 이어서, 보고서는 전통적인 조직 구조를 보완할 새로운 모델로 워크 차트(Work Chart)를 제시했다. 기존 조직이 재무, 마케팅, 엔지니어링 등 기능 중심으로 팀을 구성해왔다면, 워크 차트는 부서가 아닌 달성해야 할 목표를 기준으로 팀을 유연하게 구성하는 방식이다. 이 과정에서 AI 에이전트는 팀원으로서 분석, 지원, 제안 등 다양한 역할을 수행하며 인간의 역량을 확장한다. AI 에이전트의 역할이 모든 업무 영역에서 동일한 속도로 발전하지는 않을 것으로 예상됐다. 향후 일부 업무는 에이전트가 대부분을 수행하고, 인간은 고위험·고정밀 업무를 감독하는 방식으로 역할이 조정될 것으로 내다봤다. 판단, 공감, 사고력이 요구되는 업무는 인간의 개입이 필요하다는 분석이다. 인간과 에이전트 간 역할 분담을 측정할 수 있는 운영 지표인 인간-에이전트 비율(Human-agent ratio)의 필요성도 제시했다. 하이브리드 팀의 생산성을 극대화하기 위해서는 에이전트의 수뿐만 아니라, 이들을 효과적으로 조율하고 관리할 수 있는 인간의 수 역시 함께 고려해야 한다는 설명이다.  실제로 리더의 46%(한국 48%)는 자사에서 에이전트를 활용해 업무 절차나 프로세스를 완전히 자동화하고 있다고 답했다. AI 투자와 관련해서는, 향후 12~18개월 내 고객 서비스, 마케팅, 제품 개발 분야에서 확대가 빠르게 이뤄질 것으로 예상하는 리더가 많았다. AI에 대한 인식 차이도 주목된다. 직원의 52%(한국 52%)는 AI를 명령형 도구로 여기고 단순 지시 수행에 활용하고 있었고, 46%(한국 45%)는 조력자로 받아들여 아이디어를 구상하거나 창의적 사고를 확장하는 데 사용하는 것으로 나타났다. 이에 따라, 마이크로소프트는 조직이 향후 디지털 노동력 관리를 전담하는 지능 자원(intelligence resources) 부서나, 인간과 디지털 노동력의 균형을 조율하는 자원 최고 책임자(Chief Resources Officer)와 같은 새로운 리더십 역할 도입도 검토할 수 있다고 제언했다. 이러한 흐름 속에서, AI는 인간을 대체하기보다 협업을 통해 가치를 높이는 도구로 인식되고 있다. AI를 활용한 개인의 성과는 AI 없이 팀을 구성한 경우보다 높게 나타났으며, 직원들이 AI를 선호하는 이유로 ▲24시간 이용 가능성(42%)(한국 27%) ▲일정한 속도와 품질(30%)(한국 33%) ▲무제한 아이디어 제공(28%)(한국 25%)이 꼽혔다. 보고서는 AI 에이전트의 활용이 본격화되며, 에이전트 보스(Agent Boss) 시대가 도래할 것으로 전망했다. 이는 모든 근로자가 에이전트를 만들고 위임하고 관리하며, 에이전트 기반 스타트업의 CEO와 같은 사고방식을 갖춰야 한다는 의미다. 28%의 관리자는 인간과 AI로 구성된 하이브리드 팀을 이끌 담당자를 채용할 계획이며, 32%는 에이전트 설계·개발·최적화를 위해 12~18개월 내 AI 에이전트 전문가를 채용할 의향이 있다고 밝혔다. AI 전략 수립과 실행에서 리더의 역할도 더욱 강조되고 있다. 에이전트에 대한 친숙도, 사용 빈도, 신뢰 수준, 시간 절감 효과, 관리 역할, 사고 파트너로서 활용, 경력 기여 가능성 등 7가지 항목으로 에이전트 보스 마인드셋을 조사한 결과, 모든 지표에서 리더가 직원보다 높은 수치를 기록했다. 특히 리더들은 향후 5년 이내에 팀의 업무 범위에 ▲ AI를 활용한 비즈니스 프로세스 재설계(38%)(한국 35%) ▲복잡한 업무 자동화를 위한 멀티 에이전트 시스템 구축(42%)(한국 39%) ▲에이전트 훈련(41%)(한국 34%) ▲에이전트 관리(36%)(한국 38%) 등이 포함될 것으로 내다봤다. 에이전트에 익숙하다고 답한 리더는 67%(한국 70%)였지만 직원은 40%(한국 32%)에 그쳤고, 리더의 약 3분의 1이 AI를 통해 하루 1시간 이상을 절약한다고 응답했으나, 직원은 이보다 낮았다. AI가 커리어에 도움이 될 것이라고 본 비율도 리더는 79%, 직원은 67%로 조사됐다. 또한 51%의 관리자(한국 39%)는 향후 5년 안에, 직원의 AI 교육과 역량 강화가 자신의 업무 범위에 포함될 것으로 내다봤다. AI의 확산과 함께 조직 전반의 직무 변화가 가속화될 것으로도 전망했다. 실제로 현재 링크드인을 통해 채용된 직원 중 10% 이상은 2000년에는 존재하지 않았던 직무를 맡고 있으며, 링크드인은 2030년까지 대부분의 직무에서 요구되는 기술의 70%가 바뀔 것으로 예상했다. 한편, 83%의 리더는 AI가 신입 직원들이 더 빠르게 전략적이고 복잡한 업무에 적응하도록 도와줄 것이라고 내다봤다. 보고서는 직원들이 AI 기술을 학습하고 실무 경험을 쌓을 기회를 확보해야 하며, 기업은 이를 위한 교육과 도구를 적극 제공해야 한다고 제언했다. 직원의 52%, 리더의 57%는 자신이 속한 산업의 직업 안정성이 보장되지 않는다고 여기고 있으며, 81%의 직원이 지난 1년간 이직하지 않은 것으로 나타났다. 링크드인은 2025년 가장 주목받는 역량으로 AI 리터러시를 꼽았으며, AI 역량과 더불어 갈등 해결, 적응력, 프로세스 자동화, 혁신적 사고 등 기계가 대체할 수 없는 인간의 강점 또한 더욱 중요해질 것으로 전망했다. 마이크로소프트는 AI 시대에 유연하게 대응하기 위해 지금이 기업의 결정적 행동 시점이라고 강조하며 세 가지 실행 로드맵을 제시했다. 마이크로소프트는 ▲AI 에이전트를 디지털 직원으로 채용해 명확한 역할을 정의하고, 온보딩·책임 배분·성과 측정 등 실제 팀원처럼 관리할 것을 권고했으며 ▲고객 응대나 고위험 판단 등 인간의 개입이 필요한 영역과 자동화가 가능한 업무를 구분해, 인간과 AI의 협업 구조를 정립해야 한다고 제안하면서 ▲AI 도입을 기술 과제가 아닌 조직 혁신 과제로 보고, 시범 운영에 그치지 않고 전사적으로 빠르게 확산할 필요가 있다고 강조했다. 마이크로소프트의 자레드 스파타로(Jared Spataro) AI 기업 부문 부사장은 “AI는 조직의 경영 전략은 물론, 우리가 인식하는 지식 노동의 개념을 바꾸고 있다”며, “2025년은 프론티어 기업이 탄생한 해로, 앞으로 몇 년 안에는 AI를 통해 대부분의 산업과 조직에서 직원의 역할 경계가 새롭게 정의될 것”이라고 말했다.
작성일 : 2025-04-28
델, 현대적인 AI 레디 데이터센터를 위한 인프라 설루션 신제품 공개
델 테크놀로지스가 서버, 스토리지, 데이터 보호 등 데이터센터 인프라 전반에 걸쳐 기업 및 기관들의 데이터센터 현대화를 가속할 수 있는 신제품 및 신기능을 선보였다. AI의 부상, 전통적인 워크로드와 최신 워크로드를 모두 지원해야 하는 필요성, 사이버 위협의 증가에 대응하기 위해 IT 전략의 재편이 요구되고 있다. IT 조직은 확장성, 효율성을 높이고 적응력을 확보하기 위해 컴퓨팅, 스토리지 및 네트워킹을 공유형 리소스 풀로 추상화하는 분리형 인프라스트럭처로 전환하는 추세이다. 델 테크놀로지스는 고객들이 IT 인프라에 대한 접근 방식을 재고하고, 최신 및 전통적인 워크로드 요구사항에 좀 더 효과적으로 대응할 수 있도록 서버, 스토리지 및 데이터 보호 설루션에 걸쳐서 다양한 혁신을 추진한다고 전했다.  P 코어의 인텔 제온 6 프로세서가 탑재된 델 파워엣지(Dell PowerEdge) R470, R570, R670 및 R770 서버는 1U 및 2U 폼 팩터의 싱글 및 더블 소켓 서버로, HPC, 가상화, 분석 및 AI 추론과 같은 까다로운 기존 워크로드와 새로운 워크로드에 모두 효과적인 제품이다. 델 파워엣지 R770으로 레거시 플랫폼을 통합하면 42U 랙당 전력과 최대 80%의 공간을 확보할 수 있다. 이를 통해 에너지 비용과 온실가스 배출량을 최대 절반까지 절감하고 프로세서당 최대 50% 더 많은 코어와1) 67% 향상된 성능을 지원한다. 데이터 센터 상면 공간을 줄여 지속 가능성 목표를 달성하고 성능 저하 없이 전체 총 소유 비용을 절감할 수 있다. 델 파워엣지 R570은 와트당 인텔 성능에서 높은 수준을 달성한 모델이다. 고성능 워크로드를 유지하면서 에너지 비용을 절감할 수 있도록 지원한다. 델 파워엣지 신제품은 OCP(오픈 컴퓨트 프로젝트)의 일부인 ‘데이터 센터 - 모듈형 하드웨어 시스템(DC-MHS)’ 아키텍처로 운영을 간소화했다. DC-MHS는 서버 설계를 표준화하여 기존 인프라에 쉽게 통합할 수 있도록 지원하므로, 폭넓은 선택권을 제공한다. 또한, 파워엣지 서버는 실시간 모니터링을 비롯한 델 오픈매니지(Dell OpenManage) 개선 사항 및 IDRAC 10(Integrated Dell Remote Access Controller) 업데이트를 통해 관리가 간소화되고 강력한 보호 기능을 제공한다.    ▲ 델 타워엣지 R470/R570/R670/R770 서버   델 파워스토어(Dell PowerStore)는 데이터 관리를 간소화하고 성능과 보안을 강화한다. 델 파워스토어의 지능형 소프트웨어는 고도로 프로그래밍 가능한 자동화 플랫폼을 기반으로, 첨단 데이터 절감 기능과 독립적으로 확장 가능한 스토리지 서비스를 제공하여 현대적인 분산 아키텍처에 요구되는 요구사항에 적합하다. 파워스토어의 최신 소프트웨어는 ▲델 AI옵스(Dell AIOps, 이전의 CloudIQ)를 통한 AI 기반 분석 ▲제로 트러스트 보안 강화 ▲고급 파일 시스템 지원 등의 기능을 포함한다. 또한, 델은 고성능의 오브젝트 플랫폼으로서 AI 워크로드를 위한 대규모 확장성, 성능 및 효율성을 제공하는 차세대 ‘델 오브젝트스케일(Dell ObjectScale)’을 공개했다. 델은 오브젝트스케일의 엔터프라이즈급 아키텍처를 현대화하고 새로운 노드 모델을 추가했다. 오브젝트스케일 XF960은 경쟁 제품 대비 노드당 최대 2배 더 높은 처리량(throughput)과 이전 세대의 올플래시 제품 대비 최대 8배 우수한 집적도를 제공한다. HDD 기반의 델 오브젝트스케일 X560은 읽기 처리량이 83% 향상되어 미디어 수집, 백업 및 AI 모델 학습과 같은 주요 워크로드를 가속화한다. 델은 클라우드 스토리지 제공업체 ‘와사비(Wasabi)’와 협력해 개발한 오브젝트스케일 기반 하이브리드 클라우드 설루션 신제품을 통해 높은 효율성 및 회복탄력성을 제공한다고 소개했다. 델 파워스케일(Dell PowerScale)의 스케일 아웃 아키텍처는 현대적인 AI 중심 운영을 위한 백본으로 사용하기에 적합한 제품이다.122TB의 고밀도 올플래시 스토리지는 단일 2U 노드 구성에서 최대 6PB의 고속 데이터 액세스로 GPU 활용도를 높이고, 대규모 AI 처리량 요건을 충족하는 성능 밀도를 제공한다. 델은 파워스케일 H710, H7100, A310, 그리고 A3100 등 HDD 기반 다양한 모델에 걸쳐 새로운 컴퓨팅 모듈로 선보이면서 향상된 성능과 낮아진 레이턴시(지연시간)를 선보였다.   델은 고객이 사이버 회복탄력성을 강화하는 동시에 향상된 성능, 보안 및 효율성을 통해 비용을 효과적으로 통제할 수 있도록 데이터 보호 설루션인 델 파워프로텍트(Dell PowerProtect)를 업데이트 했다. 델 파워프로텍트 DD6410은 12TB부터 256TB까지의 용량을 지원해 일반적인 규모의 기업에서부터 소기업, 원격 사무소 등 다양한 환경에 활용이 가능하다. 전통적인 워크로드 및 최신 워크로드에 대해 최대 91% 빠른 복구 및 확장성을 제공하며, 최대 65배 중복 제거 기능으로 효율적인 운영을 지원한다. 델의 올플래시 데이터 보호 여정의 첫 번째 단계인 ‘델 파워프로텍트 올플래시 레디 노드(Dell PowerProtect All-Flash Ready Node)’는 61% 이상 빠른 복원 속도, 최대 36% 적은 전력 사용, 5배 더 작은 설치 공간을 제공하는 220TB 용량 시스템으로 보다 안전하고 효율적인 데이터 보호 기능을 제공한다.  한국 델 테크놀로지스의 김경진 총괄사장은 “현대적인 애플리케이션은 끊임없이 변화하는 데이터 센터 요구 사항에 발맞출 수 있는 새로운 형태의 인프라를 필요로 한다”면서, “델 테크놀로지스는 복잡성을 줄이고, IT 민첩성을 높이며, 데이터 센터 현대화를 가속할 수 있는 엔드 투 엔드 분산형 인프라 포트폴리오를 제공한다”고 전했다.
작성일 : 2025-04-09
근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화
최적화 문제를 통찰하기 위한 심센터 히즈 (2)   연재를 통해 제품 설계 과정에서 발생하는 다양한 문제에 대해서 최적화 방법론을 적용하고 올바른 결과를 도출하는 과정에서 심센터 히즈(Simcenter HEEDS)를 활용하는 방법에 대해 살펴보고자 한다. 이번 호에서는 최적화 기법 중에서 근사모델 기반 최적화와 직접 검색 기반 최적화에 대해 짚어보고, 심센터 히즈를 사용하여 근사 및 직접 최적화를 진행하는 과정을 소개한다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 및 사례 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 및 사례 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 및 사례 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 및 사례 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화 및 사례   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   최적화 기법의 중요성 최적화는 다양한 산업 분야에서 설계의 성능을 개선하고 자원을 효율적으로 활용하는 데 있어 필수 과정이다. 특히, 복잡한 공학 문제나 다목적 설계에서 최적화는 품질 향상과 비용 절감을 동시에 달성하는 핵심 도구로 활용된다. 현대 산업에서는 제품 개발 주기의 단축과 고성능 요구가 증가함에 따라, 신뢰성 있는 최적화 기법의 선택이 더욱 중요해지고 있다. 근사모델 기반 최적화와 직접 검색 기반 최적화는 이러한 요구를 충족하기 위해 자주 사용되며, 각 접근법은 문제의 특성과 목표에 따라 상이한 성능을 보인다.   근사모델 기반 최적화와 직접 검색 기반 최적화의 개요 근사모델 기반 최적화는 복잡한 시뮬레이션이나 계산 비용이 큰 문제에서 실험 데이터를 바탕으로 근사함수를 생성한 후, 해당 함수를 활용해 최적해를 탐색하는 방법이다. 근사함수를 생성하기 위해서는 주로 반응표면법(RSM), 머신러닝 모델 등이 사용되며, 계산 자원을 절감하고 빠른 최적해 도출이 가능하다는 장점이 있다. 반면, 모델 정확도에 따라 해의 품질이 좌우되고, 고차원 문제에서 모델링이 어려울 수 있다. 직접 검색 기반 최적화는 목적 함수의 수학적 형태를 몰라도 입력과 출력 간 관계를 직접 탐색하며 최적해를 구하는 방법이다. 비선형성이나 불연속성이 있는 문제에도 적용할 수 있는 장점이 있지만, 계산 비용이 크고 수렴 속도가 느릴 수 있어서 고비용 시뮬레이션 환경에서는 활용에 한계가 있을 수 있다.   최적화를 위한 예제 지난 호에서 사용한 외팔보의 처짐 문제를 사용하겠다. 외팔보의 체적을 최소화하는 최적화 문제를 다음과 같이 정의하였다. 빠른 계산을 위해 파이썬(Python)으로 계산한다.   그림 1   목적함수 외팔보 H빔의 체적을 최소화 제약 조건 최대 굽힘 응력(σ) ≤ 200 Mpa 최대 끝단 처짐(δ) ≤ 2 mm 설계 변수 Length : 5,000 mm Load P : 6,500 N E : 200 Mpa H : 50 mm ≤ H ≤ 100 mm h1 : 5 mm ≤ h1 ≤ 30 mm b1 : 50 mm ≤ b1 ≤ 100 mm b2 : 5 mm ≤ b2 ≤ 50 mm 외팔보의 체적, 응력, 처짐량은 다음의 관계식으로 계산한다. Volume = [2*h1*b1 + (H – 2*h1)*b2]*L Stress = P*L*H/(2*I) Deflection = P*L3/(3*E*I) where : I = 1/12*b2*(H-2*h1)^3 + 2*[1/12*b1*h13 + b1*h1*(H-h1) 2/4]   히즈 기본 설정 파이썬 포털(Python portal)을 사용하여 예제의 Input/Output file을 등록하였다.    그림 3     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-04-02
앤시스 플루언트를 이용한 혈류 해석 워크플로
앤시스 워크벤치를 활용한 해석 성공 사례   다양한 산업에서 제품 설계 및 안정성 평가를 위한 실험에 많은 비용과 노력이 소요됨에 따라, 가상의 공간에서 사용자가 원하는 실험 환경을 구성하여 결과를 도출하는 방식이 증가하고 있다. 또한, 해석을 많이 활용하지 않던 산업군에서도 시뮬레이션을 도입하는 단계에 있다. 그 중 바이오 산업에서는 환자의 CT 정보를 기반으로 한 혈류 해석과 임플란트 해석에 대한 수요가 증가하고 있다. 해석 결과를 바탕으로 안정성과 구조적 성능을 평가하고, 이를 임상 결과 데이터로 보완하는 과정이 이루어지고 있다. 이번 호에서는 3D 슬라이서(3D Slicer)와 앤시스 플루언트(Ansys Fluent)를 활용하여 혈관 모델링부터 혈류 해석까지의 워크플로를 소개하고자 한다.   ■ 김지원 태성에스엔이 FBU-F1팀의 매니저로, 열 유동 해석 기술 지원 및 교육, 용역 업무를 담당하고 있다. 홈페이지 | www.tsne.co.kr   현재 대부분의 기업이 시뮬레이션을 적극 적용하고 있으며, 특히 바이오 산업에서는 환자의 CT 정보를 기반으로 한 혈류 분석에 대한 수요가 증가하고 있다. 이러한 분석은 혈관 협착증 및 인조혈관의 안정성과 구조적 성능을 평가하는 새로운 방법으로 중요한 역할을 한다. CT와 MRI 기술의 발달로 체내 모습을 3D 영상으로 시각화할 수 있게 되면서, 유체역학과 의학 간 융합 연구의 발전이 기대되고 있다. 특히 혈관 질환의 발생 원인을 규명하기 위해 혈류 해석을 기반으로 혈류 역학적 특성을 분석하는 추세다. 또한, 비침습적 방법을 활용하여 환자의 혈관을 진단하고 평가하는 기술이 주목받고 있다. 이번 호에서는 혈류 해석을 수행하기 위해 주요 혈관 모델링 툴을 활용한 혈관 추출 방법, 혈액의 물성치 설정, 그리고 경계 조건 설정 과정에 대해 다루고자 한다.   전처리(Pre-Processing) 대동맥 혈관의 3차원 영상 및 모델링 앤시스의 모델링 툴에는 환자의 3D CT 영상을 STL 파일로 직접 추출하는 기능이 존재하지 않는다. 따라서 이번 호에서는 상용 프로그램인 3D 슬라이서를 사용한다. 3D 슬라이서는 의료 이미징 데이터를 시각화하고 분석하는 오픈소스 소프트웨어 플랫폼으로 영상 분석, 3D 모델링, 디자인 등을 통해 종합적인 의료 영상 처리를 수행하는 전문 소프트웨어다. 이를 통해 DICOM 파일을 기반으로 3D 형상을 추출할 수 있다.    그림 1. 3D 슬라이서에서 혈관 추출   <그림 1>은 3D 슬라이서를 이용하여 혈관을 추출한 과정이다. CT 촬영 시 혈관 조직을 명확하게 구분하기 위해 조영제를 주입하면, HU(Hounsfield Units) 수치로 표현되어 특정 HU 값 범위에서 혈관을 쉽게 추출할 수 있도록 구성된다. 또한, 유동 해석을 위해 격자를 생성하는 과정에서 모델링 단계에서 패싯(facet)을 스무딩(smoothing)하는 옵션을 적용하여 형상을 정리한다. 혈관 모델링이 완료된 후, DICOM 파일을 STL 파일로 변환한다.    대동맥 혈관의 3차원 영상 및 모델링 앤시스 스페이스클레임(Ansys SpaceClaim)에서 변환한 STL 파일을 가져오면 패싯을 확인할 수 있으며, 이를 볼륨(volume) 형태로 변환하는 과정을 진행한다. 볼륨 형태로 변환하기 위해 모델을 확인하면, <그림 2>와 같이 돌출되거나 뚫린 패싯 등 변환이 어려운 영역이 존재한다.   그림 2. Faulty facet areas   그림 3. Converting from facet to volume   솔브(Solve) 혈액 물성치 이번 호에서는 혈류 해석을 수행하기 위해 플루언트를 사용하며, 혈액의 거동을 수치적으로 해석하기 위해 혈액의 밀도와 점성 계수를 입력한다. 혈액은 전단 응력에 따라 점도가 변하는 비뉴턴 유체이며, 이러한 특성을 반영하기 위해 Carreau 모델을 적용한다. Carreau 모델은 비뉴턴 유체의 점성 거동을 정의하는 구성 방정식이며, 이는 <그림 4>의 수식과 같이 계산된다.   그림 4. Carreau 모델 수식     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-04-02