• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "옴니버스"에 대한 통합 검색 내용이 138개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
엔비디아, "AI와 디지털 트윈으로 물리적 프로토타입 없는 제조 혁신 이끈다"
엔비디아는 글로벌 컴퓨터 그래픽 콘퍼런스인 ‘시그라프(SIGGRAPH) 2025’에서, 아마존 디바이스 앤 서비스(Amazon Devices & Services)가 엔비디아 디지털 트윈 기술을 활용해 제조 분야의 혁신을 이끌고 있다고 밝혔다. 아마존 디바이스 생산 시설에 이달 도입된 이 설루션은 시뮬레이션 우선 접근 방식을 적용한 ‘제로 터치(zero-touch)’ 제조 방식을 구현했다. 제로 터치의 핵심은 로봇 팔이 다양한 장비의 제품 품질을 자율적으로 검사하고, 새로운 제품을 생산 라인에 통합하도록 훈련하는 과정 전체를 하드웨어 변경 없이 합성 데이터를 기반으로 수행하는 것이다. 이를 위해 아마존 디바이스가 자체 개발한 조립 라인 공정 시뮬레이션 소프트웨어와 엔비디아 기술 기반의 디지털 트윈을 결합했다. 모듈형 AI 기반 워크플로를 통해 기존보다 더 빠르고 효율적인 검사를 진행하며, 제조업체의 워크플로를 간소화해 신제품을 소비자에게 전달하는 시간을 줄일 수 있다는 것이 엔비디아의 설명이다.     또한, 이 설루션은 공장 작업대와 장비의 사실적인 물리 기반 표현에 기반한 합성 데이터를 생성해 로봇 운영을 위한 ‘제로샷(zero-shot)’ 제조를 가능하게 한다. 공장에 특화된 데이터는 시뮬레이션과 실제 작업 환경에서 AI 모델의 성능을 높이는 데에 쓰이며, 시뮬레이션과 실제 작업 환경에서의 AI 모델 성능 격차를 최소화할 수 있다. 엔비디아는 “제로샷 제조를 통해 물리적 프로토타입 없이도 다양한 제품과 생산 공정을 유연하게 처리할 수 있는 범용 제조 시대를 향한 중요한 도약을 이뤄냈다”고 평가했다. 아마존 디바이스 앤 서비스는 디지털 트윈 환경에서 로봇을 훈련시켜 새로운 장비를 인식하고 다루도록 한다. 이를 통해 소프트웨어 변경만으로 한 제품의 감사 작업에서 다른 제품으로 손쉽게 전환할 수 있으며, 더 빠르고 제어가 용이한 모듈화 제조 파이프라인을 구축했다. 이를 위해 엔비디아의 아이작(Isaac) 기술 제품군을 활용한다. 아마존은 신규 장치가 도입되면 CAD 모델을 엔비디아 옴니버스(Omniverse) 플랫폼 기반의 오픈소스 로보틱스 시뮬레이션 애플리케이션인 엔비디아 아이작 심(Sim)에 적용한다. 아이작 심은 각 장치의 CAD 모델을 통해 물체 및 결함 탐지 모델 훈련에 필수인 5만 개 이상의 합성 이미지를 생성한다. 이후 엔비디아 아이작 ROS를 활용해 제품 취급을 위한 로봇 팔 궤적을 생성하고 조립부터 테스트, 포장, 검사까지 모든 과정을 구성한다. 로봇이 작업 환경을 이해하고 충돌 없는 궤적을 생성하는 데에는 엔비디아 젯슨 AGX 오린(Jetson AGX Orin) 모듈에서 실행되는 쿠다(CUDA) 가속 동작 계획 라이브러리 엔비디아 cu모션(cuMotion)이 사용된다. 또한, 500만 개의 합성 이미지로 훈련된 엔비디아의 파운데이션 모델 파운데이션포즈(FoundationPose)는 로봇이 장비의 정확한 위치와 방향을 파악하도록 돕는다. 파운데이션포즈는 사전 노출 없이도 새로운 물체에 맞춰 일반화할 수 있어, 모델 재훈련 없이 다양한 제품 간의 원활한 전환을 가능하게 한다. 한편, 이 기술을 더욱 빠르게 개발하기 위해 아마존 디바이스 앤 서비스는 AWS 배치(Batch)와 아마존 EC2 G6 인스턴스를 통해 분산 AI 모델 훈련을 수행했으며, 생성형 AI 서비스인 아마존 베드록(Bedrock)으로 제품 사양 문서를 분석해 공장 내 고수준 작업과 특정 검사 테스트 사례를 계획했다. 아마존 베드록 에이전트코어(Bedrock AgentCore)는 생산 라인 내 다중 공장 작업대를 위한 자율 워크플로 계획에 사용되며, 3D 설계와 표면 특성 등 멀티모달 제품 사양 입력을 처리할 수 있다.
작성일 : 2025-08-18
PTC와 엔비디아, CAD·PLM에 옴니버스 기술 통합…디지털 혁신 선도
PTC가 엔비디아와의 협력을 확대하며, 자사의 CAD 소프트웨어 '크레오(Creo)'와 PLM 솔루션 '윈칠(Windchill)'에 엔비디아 옴니버스(NVIDIA Omniverse) 기술을 통합한다고 발표했다. 이번 통합으로 제조 및 제품 기업들은 고성능 AI 인프라 하드웨어와 같은 복잡한 제품을 더욱 효율적으로 설계, 시뮬레이션하고 협업할 수 있게 될 전망이다. PTC는 또한 OpenUSD 얼라이언스(AOUSD)에 가입하며, AI 개발을 위한 개방형 표준과 데이터 상호운용성 강화에 대한 의지를 보였다.    PTC, 엔비디아 옴니버스와 손잡고 AI 인프라·차세대 제품 혁신 가속화 PTC 크레오·윈칠에 엔비디아 옴니버스 기술 통합 이번 협력의 핵심은 PTC의 솔루션과 엔비디아의 '실시간 시뮬레이션 플랫폼'을 연결하는 것이다. 윈칠은 옴니버스의 OpenUSD 및 RTX 라이브러리를 통해 고품질의 실시간 시뮬레이션 뷰포트를 구현한다. 이를 통해 사용자는 PLM 환경을 벗어나지 않고도 설계 데이터를 몰입형 3D 환경에서 시각화하고 실시간 협업을 할 수 있게 된다. 제품 개발 과정에서 엔지니어링, 마케팅 등 여러 부서는 버전 관리가 된 제품 정보를 실시간으로 공유하며 의사결정 속도를 높이고 개발 리스크를 줄일 수 있다. 특히, 설계 엔지니어는 복합 어셈블리를 실시간으로 분석하고 실제 작동 환경을 시뮬레이션하여 제품 품질을 향상시킬 수 있다. 이러한 디지털 트윈 워크플로우는 개발 프로세스를 가속화하고, 복잡한 3D 설계 콘텐츠에 대한 접근성을 높여 더 많은 사용자가 손쉽게 활용할 수 있도록 돕는다. 닐 바루아 PTC 사장 겸 CEO는 "AI 하드웨어처럼 복잡한 첨단 제품 개발에 있어 엔비디아와의 협력 강화는 매우 중요하다"며, "옴니버스 기술 통합을 통해 고객들이 실시간 시뮬레이션 환경에서 설계 데이터를 활용하고, 제품 수명주기 전반에 걸쳐 협업을 강화할 수 있을 것"이라고 말했다. 엔비디아 하드웨어 설계 파트너로서 협력 확대 이번 통합은 PTC가 엔비디아의 AI 하드웨어 개발을 지원해온 오랜 파트너 관계에서 비롯되었다. 엔비디아는 PTC의 크레오 및 윈칠 솔루션을 활용하여 제품 개발 프로세스를 정밀하고 효율적으로 진행해 왔다. 이제 PTC의 솔루션이 엔비디아 옴니버스 개발 플랫폼에 통합되고, 윈칠에 옴니버스 뷰포트가 내장되면서 실시간 시뮬레이션과 시각화가 개발 워크플로의 핵심 요소로 자리 잡게 되었다. 레브 레바레디안 엔비디아 옴니버스 및 시뮬레이션 기술 부문 부사장은 "PTC는 제조 설계 솔루션 분야의 글로벌 선도 기업으로, 옴니버스 기술을 통합함으로써 설계자와 제조 기업들이 개발 전 과정을 더욱 빠르고 정밀하게 수행할 수 있도록 지원할 것"이라며, "PTC의 OpenUSD 및 개방형 표준에 대한 노력은 글로벌 AI 인프라 산업의 연결과 통합을 가속화하는 데 기여할 것"이라고 강조했다.    
작성일 : 2025-08-12
PTC, 엔비디아 옴니버스로 AI 인프라 및 복합 제품의 설계와 시뮬레이션 가속화
PTC는 엔비디아 옴니버스(NVIDIA Omniverse) 기술을 자사의 크레오(Creo) CAD 및 윈칠(Windchill) PLM 설루션에 통합하면서, 엔비디아와의 협력을 확대한다고 밝혔다. PTC는 옴니버스를 활용해 고성능 PCB, 고급 냉각 시스템, 대규모 데이터센터 장비와 같은 AI 인프라의 기본 하드웨어를 포함한 복잡한 제품의 설계, 시뮬레이션, 협업 방식을 혁신한할 수 있을 것으로 기대하고 있다. 또한 PTC는 오픈USD 얼라이언스(Alliance for OpenUSD : AOUSD)에 합류해, 개방적이고 상호 운용 가능한 3D 데이터 표준인 오픈USD에 대한 노력을 강화할 계획이다. 윈칠을 옴니버스의 사실적인 실시간 시뮬레이션 개발 플랫폼과 연결하면, 공유된 몰입형 환경에서 크레오 설계 데이터를 시각화하고 상호 작용할 수 있게 된다. PTC는 옴니버스 오픈USD 및 RTX 라이브러리를 사용하여 윈칠에 대화형 실시간 뷰포트를 구현하고, 사용자가 PLM 환경을 벗어나지 않고도 고충실도 3D 시뮬레이션에 접근할 수 있도록 지원한다. 이런 통합은 엔지니어링부터 마케팅까지 모든 사용자에게 추적 가능하고 버전 관리를 포함하는 제품 정보에 대한 접근을 제공하여, 팀이 더 빠른 의사 결정을 내리고 개발 위험을 줄일 수 있도록 한다. 엔지니어는 윈칠에서 직접 가져온 실시간 데이터를 사용하여 여러 분야의 조립품을 탐색하고 실제 성능을 시뮬레이션하며 기능 전반에 걸쳐 협업할 수 있다. 이러한 디지털 트윈 워크플로는 기업이 개발 프로세스를 가속화하고, 제품 품질을 높이며, 복잡한 3D 설계 콘텐츠에 대한 접근을 대중화할 수 있도록 지원한다. 이번에 발표된 통합은 AI 혁신을 주도하는 고성능 PCB부터 차세대 데이터센터 시스템에 이르기까지, PTC가 엔비디아의 첨단 하드웨어 공급을 지원해 온 역사에서 비롯되었다. 엔비디아는 PTC의 크레오와 윈칠 설루션을 활용하여 정밀성, 속도, 확장성을 바탕으로 제품 개발 프로세스를 간소화해왔다. 이제 이들 도구를 엔비디아 옴니버스 개발 플랫폼에 통합하고 옴니버스 뷰포트를 윈칠에 내장함으로써, 실시간 시뮬레이션과 몰입형 시각화를 개발 워크플로의 중심에 직접 도입하게 되었다. PTC는 이런 통합으로 기업이 공동 혁신의 속도와 품질을 향상시킬 수 있도록 지원하며, 생태계 전반의 다른 AI 하드웨어 파트너에게 이러한 기능을 확장하는 청사진이 될 것으로 기대하고 있다.     PTC의 닐 바루아(Neil Barua) 사장 겸 CEO는 “AI 하드웨어부터 산업 기계에 이르기까지 오늘날 가장 진보한 제품들은 그 어느 때보다 복잡하고 통합적이며 엔지니어링 집약적”이라면서, “엔비디아와 협력을 강화하고 오픈USD 얼라이언스에 합류함으로써 고객에게 실시간 몰입형 시뮬레이션 환경에서 설계 및 구성 데이터를 통합할 수 있는 능력을 제공하게 되었다. 옴니버스 기술을 크레오와 윈칠에 통합함으로써 팀은 개발을 가속하고 제품 품질을 개선하며 전체 제품 수명 주기에 걸쳐 더 효과적으로 협업할 수 있을 것”이라고 전했다. 엔비디아의 레브 레바레디안(Rev Lebaredian) 옴니버스 및 시뮬레이션 기술 부문 부사장은 “PTC는 제조 설계 설루션 분야의 글로벌 리더이다. PTC는 옴니버스 기술을 크레오와 윈칠에 통합함으로써 설계자와 제조업체가 개념 구상부터 생산까지 더 빠르고 정밀하게 진행할 수 있도록 지원한다”면서, "오픈USD와 개방형 표준에 대한 PTC의 노력은 설계에서 제조에 이르기까지 글로벌 AI 인프라 산업을 연결하고 통합하는 우리의 능력을 가속화할 것”이라고 밝혔다.
작성일 : 2025-08-07
PINOKIO가 선보이는 스마트 공장 기술과 사례
생산 계획부터 운영까지 혁신하는 스마트 제조   제조 산업은 빠르게 변화하고 있으며, 이에 따라 생산성 향상과 유연한 운영을 위한 혁신이 요구되고 있다. 스마트 제조는 이러한 요구를 충족시키는 해답으로, 특히 생산 계획과 운영 단계의 최적화는 전체 공정 효율성에 큰 영향을 미친다. 이번 호에서는 스마트 제조 구현을 위한 핵심 전략으로서 생산 계획 및 운영을 혁신할 수 있는 ‘PINOKIO(피노키오)’ 설루션을 제시한다.   ■ 자료 제공 : 이노쏘비, www.pinodt.com   제조 산업 전반에서 디지털 트윈 기술이 핵심 전략으로 떠오르고 있다. 차세대 물류 디지털 트윈 설루션을 지향하는 PINOKIO는 최신 기술 흐름을 반영해 개발된 설루션으로, 기존 상용 시스템이 지닌 한계를 극복하고 스마트 제조 전환을 가속화하는 데 최적화된 기능을 제공한다. 기존의 디지털 전환(DX) 설루션이 주로 3D 모델링 및 시뮬레이션 등 기초 단계의 디지털 트윈 기술에서 출발한 반면, PINOKIO는 개발 목적을 현장의 대용량 데이터를 기반으로 실시간 물류 모니터링과 시뮬레이션 제공을 목표로 설계되었다. 이러한 기술적 차별성을 바탕으로 PINOKIO는 SK하이닉스, LG전자 등 대규모 혼류 생산 제조 현장에서 정합성과 예측 정확도 측면에서 검증을 완료했으며, 실제 도입을 통해 생산성과 운영 효율성 향상 등 실질적 성과를 입증했다. 최근에는 고성능 시뮬레이터까지 제품 라인업에 포함되면서, 기존 상용 설루션 대비 향상된 성능과 확장성을 갖춘 디지털 트윈 시스템으로 자리매김하고 있다. PINOKIO는 앞으로도 다양한 산업군의 요구에 대응하며, 제조업의 스마트화를 실현하는 핵심 플랫폼으로의 성장을 이어갈 계획이다.   제품 소개 AI 기반 제조 물류 혁신을 위한 디지털 트윈 플랫폼 PINOKIO는 전통적인 시뮬레이션을 넘어 시뮬레이터, 디지털 트윈, AI 에이전시를 통합한 차세대 DES(이산 이벤트 시뮬레이션) 기반 플랫폼으로, 제조 물류 전반에 걸친 통합 설루션을 제공한다.  PINOKIO는 세 가지의 핵심 모듈로 구성된다. 첫 번째, 물류 시뮬레이터 설루션 ‘Pino SIM(피노 SIM)’이다. 이는 공정 흐름 설계부터 시뮬레이션, 결과 분석까지 지원하는 시뮬레이터로, ‘Pino Editor(피노 에디터)’라는 내장 도면 편집기와 레이아웃 설계 도구를 포함한다. 단순한 시뮬레이션을 넘어 제조 기준정보 입력, 물류 시나리오 구성, 시뮬레이션 실행 및 시각화 분석까지 포괄적인 기능을 제공한다. 두 번째, 실시간 디지털 트윈 설루션 ‘Pino DT(피노 DT)’다. MES, IoT, PLC, 센서 등 다양한 제조 운영 시스템과 인터페이스하여 대용량 데이터를 실시간으로 수집·처리하며, 실시간 모니터링, 미래 예측, 예지 보전 시뮬레이션까지 가능하다. 이는 생산 현장의 가시성과 대응력을 높이고 의사결정에 도움을 준다. 세 번째는 인공지능 기반의 ‘Pino AI(피노 AI)’다. 대규모 언어 모델(LLM)과 전문 특화 언어 모델(sLLM)을 활용한 대화형 UI를 통해 사용자는 데이터를 직관적으로 분석하고 의사결정에 활용할 수 있다. 또한 강화학습, 파라미터 최적화 등 다양한 AI 기법이 적용 가능해, 생산성과 품질 향상을 동시에 실현할 수 있다. 확장성 면에서도 PINOKIO는 주목할 만하다. 최근에는 엔비디아 옴니버스(NVIDIA Omniverse)와 같은 고급 시각화 플랫폼과의 연동을 지원하며, 파이썬(Python) 기반 개발 환경 확장도 가능해 사용자 맞춤형 라이브러리 개발이 용이하다. PINOKIO 설루션을 통해 제조 기업은 공정 및 물류의 사전 최적화, 실시간 생산 모니터링, 미래 예측, AI 기반 고도화 등 다양한 지능형 서비스를 구현할 수 있다.   PINOKIO의 특징 Pino SIM은 디지털 트윈 구축 시 미래 예측 시뮬레이터 역할을 수행할 뿐만 아니라, 공장 신설이나 생산 라인 변경 등 제조 현장의 변화가 필요한 상황에서 사전 물류 계획 수립과 최적 레이아웃 구성을 지원한다. 이를 통해 공정의 효율성과 안정성 확보를 가능케 하며, 제조 현장의 디지털 전환을 실질적으로 이끄는 핵심 도구로 자리잡고 있다.   그림 1. Pino SIM 작업 과정   Pino DT는 자체 개발한 최적화 시뮬레이션 및 모니터링 엔진을 기반으로, 실시간 데이터에 기반한 정밀한 의사결정과 미래 예측을 가능하게 하는 디지털 트윈 설루션이다. 특히, 시뮬레이션 이벤트 처리 횟수를 최소화한 구조로 설계되어, 불필요한 연산을 줄이고 대용량 데이터를 빠르고 효율적으로 처리할 수 있다는 점이 강점이다. 이를 통해 공정 변화나 예기치 못한 상황에도 유연하게 대응할 수 있으며, 작업자 개입 등 현장의 변수까지 반영한 고도화된 시뮬레이션이 가능하다. Pino DT는 실시간 운영 최적화와 미래 예측을 동시에 수행함으로써, 제조 현장의 민첩성과 안정성을 획기적으로 향상시키는 차세대 디지털 트윈 기반 물류 설루션으로 주목받고 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-08-04
[포커스] AI와 클라우드로 뻗어나가는 NX, 제품 개발의 혁신을 뒷받침한다
지멘스 디지털 인더스트리 소프트웨어는 7월 9일 ‘NX 데이(NX Day)’ 행사를 진행했다. 이 자리에서는 지멘스의 제품 개발 설루션인 NX 및 NX X의 최신 업데이트가 소개됐다. 특히 AI 코파일럿, 소니와 협력을 통한 몰입형 엔지니어링, 제조를 위한 설계 기술, CAD와 통합된 시뮬레이션 등 지난 7월에 발표된 주요 기능에 초점을 맞춰 디지털 트윈 구현을 위한 NX의 발전된 내용을 소개했다. 지멘스는 향상된 NX가 클라우드 기반의 협업과 지속 가능한 설계까지 지원하면서 제품 개발 전반의 효율과 품질을 높일 수 있게 돕는다고 전했다. ■ 정수진 편집장   제품 개발의 포괄적인 가치 제공을 추구 지멘스 디지털 인더스트리 소프트웨어의 안지훈 본부장은 NX 데이의 환영사에서 “기술이 더욱 스마트해지고 연결성이 복잡해지는 시대적 변화에 발맞춰, 지멘스는 고객이 제품 개발 및 제조 전반에서 더 빠르고 효율적으로 혁신을 이룰 수 있도록 지원하는 방안을 끊임없이 고민하고 있다”고 전했다. 지멘스는 올해 설계 전문성을 강화하기 위해 NX와 솔리드 엣지(Solid Edge)를 ‘디자인센터(Designcenter)’라는 단일 브랜드 아래 묶었다. 디자인센터는 지멘스의 통합 제품 포트폴리오인 ‘엑셀러레이터(Siemens Xcelerator)’의 일부로서, 시뮬레이션 및 테스트 설루션인 심센터(Simcenter), 제품 수명주기 관리(PLM) 설루션인 팀센터(Teamcenter), 운영 관리 설루션인 옵센터(Opcenter)에 이어 제품 설계 관련 기술을 아우르는 브랜드가 될 전망이다. 안지훈 본부장은 디자인센터가 제공하는 핵심 가치로 ▲합리적인 가격과 폭넓은 라인업을 통한 확장성 ▲설계, 해석(CAE), 제조(CAM)를 아우르는 포괄적인 기능 ▲히스토리 기반 및 동기식 기술 등 다양한 모델링 방식을 목적에 맞춰 제공하는 유연성을 꼽았다. NX는 인공지능(AI), 클라우드, 디지털 트윈, 디지털 스레드라는 네 가지 핵심 기술을 녹여 낸 엑셀러레이터의 일부로서, 단순한 3D 모델링을 넘어 AI 기반 자동화 등 시장이 요구하는 복합적인 기능을 갖춘 3D CAD를 지향한다는 것이 지멘스의 설명이다.    ▲ NX의 AI 기능 개발은 제품 개발을 위한 실용성에 초점을 맞추고 있다.   AI·클라우드·VR과 결합한 제품 개발의 미래 제시 NX는 6개월 단위로 새로운 버전을 출시하는 ‘지속적 릴리스(Continuous Release)’ 전략을 채택하고 있다. 핵심은 고객의 요구 사항을 빠르게 반영하면서, 과거의 데이터도 최신 버전에서 호환되도록 하여 안정성을 보장하는 것이다. 또한, 정식 출시 3개월 전 새로운 기능을 미리 체험하고 피드백을 제공할 수 있는 EAP(Early Adopter Program)를 운영하며 고객과의 소통을 강화하고 있다. 지멘스 디지털 인더스트리 소프트웨어의 고창환 본부장은 “NX는 기구 설계의 효율이라는 기본에 충실한 MCAD 설루션”이라면서, 동시에 지멘스의 다양한 기술과 결합해 포괄적인 포트폴리오를 제공한다고 소개했다. 여기에는 팀센터 기반의 데이터 관리 및 협업, 멘토그래픽스(현 지멘스 EDA)의 기술을 반영한 MCADECAD 통합, AI 설계 자동화 및 클라우드 기반 설루션, 최근 지멘스가 인수한 알테어를 포함하는 심센터의 해석 기술 연동, 공장 자동화(PLC) 설루션과 연결한 가상 시운전 등이 포함된다. 또한, 고창환 본부장은 고객의 요구 사항을 반영해 NX에 탑재된 최신 기술을 다섯 가지로 나누어 소개했다. 협업 엔지니어링 : 클라우드 기반 설루션인 NX X는 사용자가 언제 어디서든 ID 로그인만으로 NX를 사용할 수 있는 환경을 제공한다. 특히 라이브 셰어(Live Share) 기능을 통해 여러 설계자가 하나의 부품에 대해 동시에 작업하면서 실시간으로 변경 사항을 공유하는 협업이 가능해졌다. 다분야 설계 : ‘시프트 레프트(Shift Left)’ 개념을 도입해 설계자가 해석 전문가의 도움 없이도 NX 내에서 직접 간단한 구조 및 유동 해석을 수행할 수 있다. 복셀(voxel) 방식을 이용해 메시가 필요 없는(meshless) 해석 기술로 설계 변경에 따른 영향을 즉시 평가하여 개발 초기에 완성도를 높일 수 있다. 몰입형 환경 : 지멘스와 소니가 협력해 개발한 VR 헤드셋과 NX를 연동하면, 복잡한 데이터 변환 없이 설계 데이터를 가상현실에서 체험할 수 있다. VR 환경에서 간섭 체크, 단면 보기, 마크업 등 설계 검토 작업을 수행할 수 있으며, 여러 사용자가 동시 접속하는 가상 회의도 지원한다. 나아가 엔비디아 옴니버스(NVIDIA Omniverse) 기반의 팀센터 XR (Teamcenter XR)을 통해 더욱 사실적인 메타버스 환경을 제공한다. 인공지능 : NX의 AI는 ▲사용자 패턴을 학습해 다음 명령을 추천하는 적응형 AI(adaptive AI) ▲유사 형상을 자동 검색하거나 최적 설계를 제안하는 보조 AI(assistive AI) ▲자연어 명령에 기반한 모델링 추천과 요구 사양에 맞는 형상의 직접 생성을 지향하는 생성형 AI(additive AI) 등 3단계로 발전하고 있다. 지멘스는 제품 개발에서 직접 효과를 구현할 수 있는 실용적인 AI를 추구한다. 친환경 : 설계자가 재료, 형상, 제조 공정을 선택하면 예상되는 이산화탄소 배출량과 에너지 소비량, 재활용 효과 등을 리포트로 바로 확인할 수 있어 지속 가능한 제품 개발을 지원한다.   ▲ SaaS 설루션으로 제품 개발부터 협업까지 속도와 효율을 높인다는 것이 지멘스의 전략이다.   클라우드 기반의 SaaS(서비스형 소프트웨어)는 빠르게 변하는 기술 환경에서 제품 개발의 속도와 효율을 높이기 위한 새로운 기술로 여겨진다. 안지훈 본부장은 NX를 구독 기반의 SaaS 모델로 전환한 NX X는 인터넷만 연결되면 언제 어디서든 사용할 수 있으며, IT 인프라 투자나 복잡한 설치 과정에 대한 고민을 덜 수 있다고 전했다. NX X는 클라우드에서 NX의 핵심 기능을 제공하는 ‘NX X 에센셜(NX X Essential)’과 클라우드 저장/협업 공간인 ‘팀센터 셰어(Teamcenter Share)’의 결합으로 이뤄진다. NX X 에센셜은 CAD/CAE/CAM의 핵심 기능을 추린 웹 브라우저 기반 설루션이다. 동기식 기술이 적용된 다이렉트 모델링을 지원해 웹 환경에서 직관적인 형상 편집과 간단한 어셈블리 작업이 가능하다. 2.5축 CAM 프로그래밍과 G-코드 자동 생성 기능으로 웹에서 간단한 가공 경로를 생성 및 검증할 수 있으며, 응력, 처짐, 고유 진동수 등 단품에 대한 간단한 구조 해석을 태블릿이나 웹 브라우저에서 수행할 수 있다. 팀센터 셰어는 팀을 생성하고 내외부 관계자를 초대해 데이터를 안전하게 공유할 수 있는 클라우드 기반의 협업 허브이다. 사용자당 200GB의 보안 클라우드 저장소를 무료로 제공하고, 웹 기반 뷰어를 통해 다양한 포맷의 3D 모델을 별도의 프로그램 설치 없이 직접 확인하거나 마크업과 의견 교환을 통해 신속한 의사결정을 지원한다. 데이터는 권한 기반의 링크로 공유해 보안을 유지하며, 로컬 폴더나 파일 서버와 데이터를 동기화하여 항상 최신 정보를 클라우드에 보관할 수 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-08-04
PINOKIO : 스마트 제조의 실현 위한 물류 디지털 트윈 설루션
개발 및 공급 : 이노쏘비 주요 특징 : 제조 물류 전반에 걸친 시뮬레이터/디지털 트윈/AI 에이전시의 통합 플랫폼, 설계~운영 과정의 최적화 지원, 다양한 제조 운영 시스템과 실시간 연동으로 대용량 데이터를 수집 및 처리, LLM/sLLM을 활용해 직관적인 데이터 분석 및 의사결정 지원 등 사용 환경(OS) : 윈도우 10/11(64비트) 시스템 권장 사양 : 인텔 i5 10세대 이상 또는 AMD 라이젠 5 이상 CPU, 최소 16GB RAM(32GB 권장), 엔비디아 RTX 4060 이상 GPU(AI 기능 사용 시 필요), 30GB 이상 여유 저장공간   최근 제조 기업들은 디지털 트윈 기반의 스마트 공장 도입과 더불어 급속한 디지털 전환(DX)을 위해 노력하고 있다. 불과 몇 해전만 하더라도 그 실체와 사례에 대해 의문이 있었지만, 다양한 도입 사례와 성과가 공개되면서 이제는 DX에서 나아가 AI 기술 도입과 AI로의 전환(AX : AI Transformation)을 활발히 검토하고 있고, 적극적인 도입 의사를 밝히고 있다. ‘PINOKIO(피노키오)’는 최신 기술 흐름을 반영해 탄생한 차세대 물류 디지털 트윈 설루션으로, 기존 상용 시스템의 한계를 극복하고 제조 산업의 스마트화를 가속화하는데 최적화된 해답을 제시한다. 기술 대전환의 시대를 맞아 기존의 전통적인 DX 설루션 기업들은 3D 모델링 및 시뮬레이션 등 낮은 단계의 디지털 트윈 기술을 기반으로 DX 설루션으로 개선 및 확장하고 있다. 이와 달리, PINOKIO는 초기부터 현장의 대용량 데이터 기반 실시간 물류 모니터링 및 실시간 시뮬레이션을 제공하는 디지털 트윈 기반의 운영 시스템을 목적으로 출발하였다. 그 결과 SK 하이닉스, LG전자 등 대량의 혼류 생산 제조 현장에서 디지털 트윈의 정합성과 예측의 정확도 등을 검증받았고 도입 효과를 증명했다. 이를 바탕으로 최근에는 기존 상용 설루션보다 높은 성능의 시뮬레이터까지 라인업하여 다양한 요구를 충족시킬 수 있게 되었다. 기존 상용 물류 시뮬레이션 설루션은 대부분 20~30년 전 개발된 구조를 가지고 있어, 최신 IT/OT 시스템과의 연동과 AI 기술을 적용하기 어렵다. 이로 인해 대용량 데이터 처리에 한계가 있으며, 사용자 API(애플리케이션 프로그래밍 인터페이스) 미제공으로 커스터마이징과 타 시스템 연계, 현장 실시간 운영에 필요한 유연성과 확장성에서도 제약이 있다. PINOKIO는 이러한 기존 설루션의 문제점을 개선해 제조 물류 관련 다양한 AI 모델을 지원하며, 기존 설루션 대비 높은 모델링 속도를 구현할 수 있다. 그리고 멀티 스레드, GPU 기반의 고속 시뮬레이션 연산 기능과 2차전지, AMR(자율이동로봇), OHT(오버헤드 트랜스퍼), 자동창고 등 다양한 제조 환경에 맞는 특화 라이브러리를 제공한다. 특히, 생산 현장에서 발생하는 실시간 빅데이터를 효과적으로 처리하고, 대화형 어시스턴트(assistant) 방식의 직관적인 사용자 인터페이스(UI)를 통해 사용자 편의성을 높였다. 또한, 사용자 API를 통한 고도화된 커스터마이징이 가능하며, MES(제조 실행 시스템), 센서, PLC(프로그래머블 로직 컨트롤러), IoT(사물인터넷) 등 다양한 운영 시스템과의 실시간 연동 기능도 갖췄다. 나아가, 전력 사용량 분석과 탄소세 예측 기능까지 탑재돼 지속 가능한 제조 환경 구축을 위한 의사결정도 지원한다. PINOKIO는 AI 기반 제조 혁신의 길을 여는 실질적인 도구로, 앞으로 제조업계의 디지털 전환을 선도할 핵심 설루션으로 자리매김할 전망이다.   주요 기능 소개 PINOKIO는 시뮬레이터, 디지털 트윈, AI 에이전시(agancy)를 통합한 차세대 DES(이산 이벤트 시뮬레이션) 기반 플랫폼으로, 제조 물류 전반에 걸친 통합 설루션을 제공한다. PINOKIO는 세 가지 핵심 모듈로 구성된다. 첫 번째는 ‘Pino SIM’으로, 공정 흐름 설계부터 시뮬레이션, 분석까지 수행하는 시뮬레이터다. Pino SIM은 도면 편집과 레이아웃 설계를 위한 Pino Editor를 내장하고 있어, 단순한 시뮬레이션을 넘어 제조 기준정보 입력, 물류 시나리오 구성, 시뮬레이션 실행 및 시각화 분석까지 다양한 기능을 제공한다. 이를 통해 설계 초기 단계부터 실제 운영에 이르기까지 전 과정의 최적화를 효과적으로 지원한다. 두 번째는 실시간 디지털 트윈 모듈인 ‘Pino DT’다. MES, IoT, PLC, 센서 등 다양한 제조 운영 시스템과의 실시간 연동을 통해 대용량 데이터를 실시간으로 수집하고 처리하며, 이를 바탕으로 실시간 모니터링은 물론 미래 상황 예측, 예지 보전 기반의 시뮬레이션이 가능하다. 이는 생산 현장의 가시성과 민첩성을 높이는 데 기여한다. 세 번째는 인공지능 기반의 ‘Pino AI’다. LLM(대규모 언어 모델)과 sLLM(전문 도메인 특화 언어 모델)을 활용한 대화형 UI를 통해 사용자가 직관적으로 데이터를 분석하고 의사결정에 활용할 수 있다. 또한 목적에 따라 강화학습, 파라미터 최적화 등 다양한 AI 기법을 적용할 수 있어 생산성과 품질 향상을 동시에 도모할 수 있다. PINOKIO는 엔비디아 옴니버스(NVIDIA Omniverse)와 같은 고급 시각화 플랫폼과 연동 가능하며, 파이썬(Python) 개발 환경 확장도 지원함으로써 사용자 맞춤형 라이브러리 개발이 가능하다. 이를 통해 제조 기업은 사전 공정 및 물류 최적화는 물론 실시간 생산 모니터링, 미래 예측, AI 기반 정확도 향상 등 다양한 지능형 서비스를 구현할 수 있다. 제조업의 디지털 전환이 본격화되는 시대에 PINOKIO는 스마트 공장을 넘어 AI 전환을 실현하는 핵심 파트너로 부상하고 있다.   PINOKIO의 특징 PINOKIO는 고도화된 시뮬레이션 엔진과 AI 통합 기능을 바탕으로 대규모 데이터 처리 및 실시간 예측 분석을 지원하며 스마트 제조 시대의 경쟁력을 강화하고 있다. PINOKIO는 이벤트 처리 기법 최적화 및 단순화된 시뮬레이션 엔진 설계로 빠른 연산 속도를 제공한다. 특히, 초당 60프레임(FPS) 기준으로 500만 개 수준의 대규모 3D 데이터를 안정적으로 처리할 수 있으며, 선택적 컴파일 방식(C# 기반 네이티브 코드)을 활용한 별도 계산 도구를 통해 집약적인 연산 작업도 고속으로 수행할 수 있다. 디지털 트윈 구축에서도 PINOKIO는 강력한 성능을 발휘한다. MES, ACS, MCS 등 다양한 제조 운영 시스템과 연동과 IoT, 센서, PLC 등 생산 현장에서 수집되는 대용량 데이터를 실시간으로 처리한다. 이를 통해 실시간 모니터링과 동시에 백그라운드 시뮬레이션을 수행하고, 타임 호라이즌(Time Horizon) 방식의 미래 예측 기술을 통해 병목, 이상 징후 탐지 및 알람 기능도 제공된다. 또한, AI를 활용하기 위한 정상/이상 데이터 제공과 파라미터 최적화 및 시나리오별 분석 기능이 포함되어 있으며, LLM과 sLLM, 챗GPT(ChatGPT), 메타 라마(Meta LLaMA) 등 다양한 AI 모델을 통합한 AI 에이전시 기능을 통해 대화형 데이터 분석, 자동 의사결정 지원, 데이터 해석 및 운영 최적화를 구현한다. 시뮬레이션 설계 및 모델링 측면에서도 사용자 편의성이 강화됐다. Pino Editor를 활용해 레이아웃 도면을 직관적으로 확인 및 편집할 수 있으며, 제조 기준 정보 입력 및 템플릿 매칭 기능을 통해 모델링 작업 시간을 획기적으로 단축시킨다. 또한, 2차전지 및 반도체 공정에 특화된 전용 라이브러리도 제공되며, 고객 맞춤형 커스터마이징 시뮬레이터를 통해 사용자의 목적에 따라 분석 및 최적화가 가능한 유연한 개발 환경을 지원한다. 이처럼 PINOKIO는 고속 시뮬레이션, 실시간 예측, AI 기반 의사결정, 그리고 유연한 모델링 기능을 종합적으로 제공하며, 제조업의 지능화·자동화를 실현하는 설루션이다.   그림 1. PINOKIO UI 화면 – 반도체 FAB   사전 레이아웃 및 물류 검토를 위한 설루션 : Pino SIM 디지털 트윈 구축 시 미래 예측을 위한 시뮬레이터 역할과 기존 상용 설루션과 같이 공장 신축 또는 생산 라인 변경 등 제조 현장의 변화가 요구된다. 이런 상황에서 Pino SIM은 사전에 최적의 물류 계획과 레이아웃 구성을 지원하고 공정의 효율성과 안정성을 미리 확보할 수 있는 디지털 전환 핵심 도구이자 가상 공장 구현 설루션이다. Pino SIM은 제조 기준 정보(제품, 공정, 레이아웃, 물류 흐름, 작업 순서, 스케줄링 등)를 기반으로 공정을 시뮬레이션하며, 그 결과를 차트, 그래프 등 다양한 시각화 도구를 통해 분석할 수 있다. 이를 통해 레이아웃 검증 및 최적화, 생산성 향상 등 공장 운용 전반의 효율화를 실현할 수 있다. 특히, OHT, AMR 등 신 산업군을 위한 특화 라이브러리를 제공하며, 이송 설비 구현을 위한 이동, 충돌 방지, 회피 제어를 위한 OCS, ACS 기능도 탑재되어 있다. 이를 통해 코드 작성 오류를 줄이고 디버깅 시간을 줄일 수 있으며, 보다 쉽고 효율적으로 시뮬레이션 모델을 구축할 수 있다. 또한, 자동창고 모델링에 필요한 Stocker(Crane, Rack, Rail)를 그룹화 형태로 제공하여 빠른 모델링이 가능하다. 환경과 에너지 측면에서도 전력 사용량 및 탄소 배출량(탄소세) 분석 기능을 통해 지속 가능한 생산 전략 수립에 도움을 주며, 제조업의 친환경화와 ESG 경영 대응에도 기여할 수 있다. 이처럼 Pino SIM은 공장 설계 단계에서의 의사결정 품질을 높이고, 새로운 제조 환경에 유연하게 대응할 수 있는 설루션이다.   그림 2. 라이브러리 제공 – Stocker   그림 3. 개발(코딩) 없이 기능 구현   그림 4. 시뮬레이션 결과 리포트 예제   디지털 트윈 설루션 : Pino DT 제조 현장에서 물류는 제품의 사이클 타임을 결정하는 요소 중에 하나이다. 물류 정체가 발생할 경우 제품의 사이클 타임이 길어지거나 라인이 정지되는 등 심각한 손실이 발생할 수 있다. 이러한 문제를 해결하기 위해 시뮬레이션을 통한 최적화된 운영 방식을 시스템에 적용하려는 노력이 이어져왔다. 기존의 물류 설루션은 현장에서 발생하는 대용량의 데이터를 시뮬레이션에 반영하여 실시간으로 의사결정하는 과정에서 다양한 제약으로 인해 어려움이 있었다. 또한, 현장 작업자의 개입과 같은 인간적 오류는 시스템이 예측할 수 없는 데이터를 발생시키기 때문에 생산 계획 단계에서의 사전 분석 및 검증만으로는 시뮬레이션 정합성을 높이는데 한계가 있다. Pino DT는 최적화된 자체 개발 시뮬레이션과 모니터링 엔진을 탑재하여 이를 해결하였다. 시뮬레이션의 이벤트 횟수를 최적화하여 최소한의 이벤트로 시뮬레이션이 가능하도록 설계했다. 또한 계산 속도에 이점이 있는 C, C++ 언어로 물류 경로를 최적화하는 알고리즘을 구현하여 기존 설루션 대비 약 2만평 규모의 공장에서 약 70배의 향상된 성능을 검증하였다.   그림 5. Pino DT의 UI 화면   대용량 데이터 처리 및 실시간 모니터링 Pino DT는 시뮬레이션에 최적화된 알고리즘을 사용함으로써 대용량 데이터 처리가 가능하고, 현장 데이터를 실시간으로 시뮬레이션에 반영할 수 있다. 기존 물류 시뮬레이션 설루션에 비해 60~700배 뛰어난 가속 성능을 제공하는 시뮬레이션 도구이다. 제조 현장과 동일한 상황을 시뮬레이션하기 위해 현장과 연동 후 데이터를 가공하여 디지털 트윈 모델로 표현하여 가시화하고, 사용자가 설정한 시간 주기마다 미래를 예측하는 시뮬레이션(proactive simulation)을 백그라운드로 수행한다. 이는 제품의 공정 시간보다 짧은 시간 안에 결과를 확인할 수 있고, AI를 통해 보다 정확한 의사결정을 내릴 수 있도록 지원한다.   그림 6. Pino DT의 모니터링 화면   디지털 트윈 실시간 시뮬레이션 : 미래 예측 실시간 현장 상황을 반영하여 미래를 예측하는 시뮬레이션(proactive simulation)은 제품의 택트 타임(tact time)보다 짧은 시간 내에 결과를 도출해내지 못하면 현장에서 선제 대응하지 못하는 결과를 초래할 수 있다. 모니터링 엔진으로부터 라인 상황에 대한 데이터를 수집하고, 현재로부터 예측하고자 하는 시간 동안 발생하는 이상상황에 대해 피드백을 준다. 예를 들어 조립 라인의 경우에는 부품이 5분 뒤에 부족하다는 알람을 작업자에게 즉시 전달하여 선제적 대응을 가능케 함으로써, 라인 정지 등 비상 상황을 사전에 방지할 수 있다. PINOKIO 디지털 트윈 시뮬레이션은 이러한 역할이 가능하도록 가속화한 고속 시뮬레이션 엔진을 보유하고 있다.   그림 7. 현장 FAB(왼쪽)과 PINOKIO에서 생성된 디지털 트윈(오른쪽)   제조 물류 현장에 특화된 AI 플랫폼 : Pino AI AI를 이용한 설루션을 만들기 위해서는 다양한 상황에 대한 데이터가 필요하다. 하지만 제조 현장의 특성 상 여러 상황에 대한 데이터를 획득하기 어렵다. PINOKIO에서는 현장에서 획득하기 어려운 데이터를 시뮬레이션을 통해 데이터를 확보할 수 있다. 즉, Pino DT 모델이 AI를 위한 데이터를 생성하고, 이를 AI가 최적 값을 도출하여 시뮬레이션에 반영한다. Pino DT에서 획득한 데이터를 파이썬, C, 자바(JAVA) 등 다양한 언어로 구현한 로직을 적용할 수 있도록 개발 환경을 제공하고 있다. 이를 통해 예측 정확도 향상, 데이터 기반 의사 결정, Scheduling, Routing, Dispatching 등 목적에 따라 AI 활용이 가능하다. 또한 LLM, sLLM, 챗GPT(ChatGPT), 메타 라마(Meta Llama) 등과 결합한 대화형 UI를 통해 사용자가 직관적으로 데이터를 분석하고 의사결정에 활용할 수 있다.   그림 8. 대화형 UI 및 결과 리포트   그림 9. Pino DT와 AI 모델 활용 원리   Pino DT와 현장 데이터 인터페이스 디지털 트윈에 가장 중요한 요소는 현장과의 연결이다. 대부분의 물류 전문 설루션이 현장과의 연결을 위한 인터페이스를 지원하지만, 많은 양의 데이터를 처리하면서 실시간으로 시뮬레이션하는데 어려움이 있다. Pino DT는 대용량 데이터 처리와 시뮬레이션 가속 성능이 뛰어나 실시간 모니터링 시스템까지 가능하다. <그림 10>은 현장에 있는 MES와 Pino DT가 인터페이스되는 과정이다. 현장에 있는 PLC가 MES에 데이터를 전달하고, MES는 그 데이터를 데이터베이스에 저장한다. 이를 Pino DT에서 외부 통신(IP)을 통해 데이터베이스에 접근하여 데이터를 시뮬레이션에 반영한다. 이 과정에서 현장 데이터의 상태가 중요하다. 불필요한 데이터가 있거나 로스 또는 시간 순서가 맞지 않은 경우가 대부분이다. Pino DT에서는 현장 데이터를 올바르게 정제하는 작업을 거쳐 현장과 동일한 디지털 트윈 모델을 만든다.   그림 10. 현장 데이터 인터페이스 과정   PINOKIO의 기대 효과 PINOKIO는 현장 운영 데이터를 실시간으로 디지털 트윈과 연동함으로써 모니터링이 가능하며, 전체 공장을 PC, 웹, 모바일 등 다양한 형태로 여러 사용자와 함께 직관적으로 확인하면서 공유하고 협업할 수 있다. 또한 현장과 연결된 디지털 트윈 모델을 이용하여, 미래에 발생 가능한 문제점을 예지(predictive)하고, 이러한 문제점을 사전에 해결하기 위한 선제대응(proactive) 의사결정을 가능하게 한다. 이 때 디지털 트윈을 이용한 사전예지는 온라인 시뮬레이션 기술에 기반하고, 선제대응은 AI 기술에 기반한다고 볼 수 있다. 디지털 트윈 기반 사전예지의 시간적 범위(time horizon)는 현장의 특성에 따라서 0.1시간~10시간으로 달라질 수 있으며, 문제점의 종류는 주로 생산 손실(loss), 부품의 혼류 비율 불균형, 설비 고장예지 및 물류 정체 등을 포함한다. 문제점이 예지되면 이를 해결하기 위한 즉각적인 의사결정 AI 기술을 활용하여 최적 운영을 달성함으로써 생산성, 경제성, 안정성 및 경쟁력 향상 효과가 있다.   맺음말 생산 계획 단계에서 Pino SIM을 통해 레이아웃 검증과 물류를 최적화하고, Pino SIM 모델 데이터를 생산 운영 단계에서 PINOKIO와 연계하여 현장 데이터 기반 실시간 모니터링과 미래 상황 예측 및 선제 대응함으로써 현실적이고 실제 활용 가능한 스마트한 디지털 트윈을 구축할 수 있다. 다음 호부터는 Pino SIM, Pino DT, Pino AI 등 각 제품별 소개 및 적용 사례를 소개하고자 한다.   그림 11. 디지털 트윈을 위한 플랜트 시뮬레이션과 PINOKIO     ■ 기사 내용은 PDF로도 제공됩니다. 
작성일 : 2025-07-01
[포커스] 기술 트렌드부터 사례까지, PLM·DX의 현재와 미래 짚다
‘PLM/DX 베스트 프랙티스 컨퍼런스 2025’가 지난 6월 20일 서울 코엑스에서 열렸다. ‘제조의 미래를 위한 PLM 혁신과 AX 전략’을 주제로 한 이번 행사에서는 제조산업에서 불확실한 외부 환경에 대응하고 기술 및 비용 경쟁력을 확보하기 위한 통합 PLM(제품 수명주기 관리) 설루션과 인공지능 전환(AX)의 중요성을 강조했다. ■ 정수진 편집장     ‘PLM/DX 베스트 프랙티스 컨퍼런스 2025’의 오전 시간에는 세 편의 기조연설이 진행됐다. 기조연설에서는 제조 산업의 미래를 위한 PLM 기반의 통합적 디지털/ AI 전환 전략을 통해 경쟁력을 강화하고 새로운 가치를 창출해야 한다는 메시지와 함께, 단순한 기술 도입을 넘어 데이터 통합과 표준화 그리고 궁극적으로 일하는 방식과 조직 문화의 근본적인 변화가 필요하다는 지적이 있었다.   ■ 같이 보기 : [포커스] PLM/DX 베스트 프랙티스 컨퍼런스 2025, 제조 혁신을 위한 PLM과 AI 전략을 짚다   기조연설에 이어 오후 시간에는 ▲베스트 프랙티스 ▲트렌드/신기술/설루션 ▲ SDM(MES/MOM) 등 세 개의 트랙에서 18편의 발표가 진행됐다. 발표자들은 불확실성의 시대에 제조 경쟁력을 확보하기 위해 PLM을 중심으로 한 전사적인 디지털 전환 및 AI 전환을 추진하고, 이를 위해 데이터 통합, 표준화, 그리고 업무 방식 및 조직 문화의 변화가 필수임을 강조했다.   PLM 기반의 디지털 전환 및 AI 활용 사례 소개 베스트 프랙티스 트랙에서 GM 테크니컬 센터 코리아(GM TCK) 김성진 부장은 ‘PLM 기반 싱글 BOM 구현을 통한 자동차 산업의 디지털 전환 가속화’를 주제로, PLM에 기반한 통합 엔지니어링 변경 관리를 통해 디지털 전환을 가속화하기 위한 GM TCK의 전략, 비전 및 베스트 프랙티스를 소개했다.   ▲ GM TCK 김성진 부장   아비바코리아 조영찬 프로는 ‘디지털 자산 수명주기의 혁신 : AVEVA와 Aras 기반의 통합 ALM 전략’ 발표에서 PLM 설루션인 아라스 이노베이터(Aras Innovator) 플랫폼과 협력해 자산 수명주기 관리(Asset Lifecycle Management : ALM)를 구현한 아비바의 설루션 기술에 대해 소개했다.   ▲ 아비바코리아 조영찬 프로   지멘스 디지털 인더스트리 소프트웨어 노은희 이사는 ‘PLM의 미래 - 디지털 스레드 기반의 지멘스 AI 전략’ 발표를 통해 AI, 디지털 트윈, 디지털 스레드를 기반으로 사람과 프로세스를 유기적으로 연결하는 지멘스의 PLM 미래 전략을 제시했고, 이를 통해 현재 직면한 복잡성을 혁신의 기회로 바꾸는 방안을 설명했다.   ▲ 지멘스 디지털 인더스트리 소프트웨어 노은희 이사   퍼시스홀딩스 정연석 팀장은 ‘퍼시스그룹의 DX 전략 : 설계 데이터 기반 디지털 트윈 자동 생성 및 전사 활용’ 발표에서 퍼시스가 고민한 디지털 전환 전략과 함께 주문품의 Configure to Order를 위해 설계 및 BOM(Bill-of-Materials) 데이터를 기반으로 디지털 트윈을 자동으로 생성하고 전사적으로 활용한 사례에 대해 소개했다.   ▲ 퍼시스홀딩스 정연석 팀장   PTC코리아 이봉기 상무는 ‘AI 기반 차세대 인텔리전트 PLM 전략’ 발표를 통해 AI 기술 발전과 PLM의 접목을 통해 제조 기업이 제품 개발 속도 향상, 품질 개선, 데이터 기반 의사 결정 등 실질적인 비즈니스 성과를 도출할 수 있다고 강조했다. 또한 제품 개발의 전체 과정에서 에이전트 AI 기술을 활용하여 혁신을 이루기 위한 PTC의 전략을 소개했다.   ▲ PTC코리아 이봉기 상무   KAIST 윤희택 교수는 ‘AI 자율 제조를 위한 로봇 기술 동향과 사이버물리 시스템 적용 사례’ 발표를 통해 제조산업의 위기 상황에서 주목을 받고 있는 자율 제조를 위한 로봇, 인공지능, 디지털 트윈을 융합한 사이버 물리 동향과 함께 현재 진행 중인 연구 내용을 소개했다.   ▲ KAIST 윤희택 교수   AI, 디지털 트윈, 로코드를 활용한 제조 혁신 전략 트렌드/신기술/설루션 트랙에서 다쏘시스템코리아의 김병균 파트너는 ’생성형 경험과 AI 기반 PLM 혁신 : 제품 개발과 제조의 새로운 미래’ 발표를 통해 PLM에 생성형 경험(generative experience) 및 AI 기술을 적용하여 제품 개발, 설계, 생산 전 과정에서 업무 효율을 높이고, 데이터 분석을 통해 예측 및 최적화를 실현하는 방안을 소개했다.   ▲ 다쏘시스템코리아 김병균 파트너   씨이랩 김건우 매니저는 ‘엔비디아 옴니버스만 가능한 디지털 트윈의 비즈니스 실현’ 발표에서, 인공지능과 XR(확장현실) 기술의 발전에 따라 다양한 영역에서 적용되는 디지털 트윈 가운데 엔비디아 옴니버스(NVIDIA Omniverse)가 구현할 수 있는 비즈니스 혁신 방안을 소개했다.   ▲ 씨이랩 김건우 매니저   아이지피넷 윤정두 차장은 ‘성공적인 PDM 라인 구축의 열쇠 3D-SUITE’ 발표에서 고도의 PDM(제품 데이터 관리)을 실현하기 위해 회사, 부서, 프로세스 간 원활한 정보 전달 및 여러 시스템 연동 환경이 필수라고 강조했다. 또한 3차원 데이터의 변환, 검증, 수정, 비교, 단순화 등 디지털 엔지니어링에 필요한 데이터 최적화를 지원하는 3D-스위트(3D-SUITE) 설루션을 소개했다.   ▲ 아이지피넷 윤정두 차장   세원에스텍 윤중근 이사는 ‘Fast Forward : 디지털 전환과 제품 개발’ 발표를 통해 불확실하고 혼란스러운 시대에 기업의 경쟁력과 회복탄력성 유지를 위한 디지털화의 중요성을 강조했다. 그리고, CONTACT Elements 기반 설루션과 엔지니어링 분야의 AI 활용을 통해 디지털 전환과 제품 개발을 가속화하는 방안을 소개했다.   ▲ 세원에스텍 윤중근 이사   팀솔루션 송희삼 상무는 ‘현장이 원하는 디지털 트윈 : 최소 인프라, 최대 효과를 위한 접근법’ 발표에서 3D CAD 데이터를 기반으로 한 3D 산업 콘텐츠를 제작하여 실제 제조 현장의 작업 매뉴얼 및 교육 콘텐츠로 적용한 사례를 공유하면서, 최소 인프라로 최대 효과를 얻기 위한 디지털 트윈 전략과 그 성과를 소개했다.   ▲ 팀솔루션 송희삼 상무   한화시스템 박성수 팀장은 ‘제조 영역에서의 로코드 및 AI 기반 개발 방식의 변화’ 발표를 통해 AI 기반의 로코드(low-code) 개발 방식이 제조 현장에 가져 올 수 있는 혁신을 소개했다. 그리고 OutSystems의 Mentor 기능을 활용하여 MVP(최소 기능 제품) 시스템을 단기간 내 구현하는 실질적인 접근 방법을 공유했다.   ▲ 한화시스템 박성수 팀장   소프트웨어 기반의 미래 제조와 스마트 공장 SDM(MES/MOM) 트랙에서는 인더스트리4.0협회 명예회장인 박한구 스마트엠앤에프그룹 대표가 ‘미래 제조 패러다임 전환, SDM 기반 자율제조 생산 체계 도입’ 발표에서 미래의 제조는 SDM(소프트웨어 정의 제조) 기반의 자율성 및 유연성을 핵심으로 하며, 데이터 중심의 통합·지능형 생산 체계로 전환될 것이라고 소개했다.   ▲ 스마트엠앤에프그룹 박한구 대표(인더스트리4.0협회 명예 회장)   다쏘시스템코리아 장희준 파트너는 ‘MES 도입과 진화 : 글로벌 트렌드와 국내 적용 전략’ 발표를 통해 글로벌 MES(제조 실행 시스템) 트렌드와 국내 활용 사례를 통해 성공적인 MES 구축을 위한 핵심 고려사항을 제시했다.   ▲ 다쏘시스템코리아 장희준 파트너   에스에이치아이엔티 이종수 부장은 ‘자동차 부품 산업의 디지털 혁신을 위한 AI 기반 DX 플랫폼 개발 사례’ 발표에서 디지털 트윈, AI, 머신러닝 기반의 지능형 생산이 적용되는 중소기업 스마트 공장의 연구 및 실제 적용 사례가 부족한 현실을 언급하면서, 자동차 부품 중소기업의 디지털 전환을 위한 사전 준비, 연구 개발 및 공정 적용 사례를 AI 및 지능형 생산 시스템 기술 개발 산학연 과제와 함께 설명했다.   ▲ 에스에이치아이엔티 이종수 부장   슈나이더일렉트릭코리아 김건 매니저는 ‘Software-Defined Automation(소프트웨어 정의 자동화)’ 발표를 통해 산업 자동화 분산 제어를 위한 국제 표준인 IEC61499를 기반으로 하며, 자동화의 모듈화 및 애플리케이션 중심 설계를 가능케 하는 슈나이더 일렉트릭의 SDA(Software-Defined Automation)를 소개했다.   ▲ 슈나이더일렉트릭코리아 김건 매니저   호서대학교 산학협력단 디지털팩토리연구센터장인 김수영 교수는 ‘AI-DX-FOMs 기반 현장/실무 중심의 스마트팩토리 전략 : MES 연동부터 AI 챗봇, 자율 제조까지’ 발표에서 제조 기업이 보유한 레거시 시스템과 연계한 KPI(핵심 성과 지표) 다차원 분석 및 MES 연동부터 AI 챗봇, 자율 제조에 이르는 제조 현장 맞춤형 스마트 공장 구축 전략에 대해 소개했다.   ▲ 호서대학교 김수영 교수   첨단제조표준화포럼 차석근 운영위원장은 ‘AX, DX와 관련 제조 데이터 표준화 구현과 도전 분야’ 발표를 통해 최근 산업용 AI를 활용한 자율 제조 및 SDM 관련 요구사항이 늘어나고 있다고 지적했다. 또한, 생산 자원(4M2E) 제조 데이터의 표준화 없이는 이러한 혁신이 불가능하다고 강조하면서 표준화 구현 방안 및 도전 분야에 대해 설명했다.   ▲ 첨단제조표준화포럼 차석근 운영위원장
작성일 : 2025-07-01
디지털 트윈 소프트웨어, Emulate3D
주요 디지털 트윈 소프트웨어   디지털 트윈 소프트웨어, Emulate3D ■ 개발 및 자료 제공 : 로크웰 오토메이션, 02-2188-4400, www.rockwellautomation.com/ko-kr.html   Emulate3D(에뮬레이트3D)는 2005년 영국 리딩에서 설립 후 2019년 로크웰 오토메이션이 인수하여 전 세계 다양한 산업 분야의 고객을 지원하고 있다. 이 소프트웨어는 실제 장비를 가상에서 검증할 수 있는 동적 3D 기반 디지털 트윈 기술로 제조 생산 라인, 창고 자동화, 자재 취급 및 유통, 수하물 처리, 기계 장비 구축분야 등 다양한 산업에서 활용된다.   1. 주요 특징   Emulate3D는 사용자의 편의를 고려해 직관적인 인터페이스를 제공하며, 사전 프로그래밍된 카탈로그 사용으로 비전문가도 쉽게 사용할 수 있도록 설계되었다. 다양한 PLC(Programmable Logic Controller) 브랜드와의 전용 프로토콜 및 OPC(Open Platform Communications)로 연결이 가능하고 클라우드 기반 배포 옵션을 통해 버전 제어, 협업 등의 유연성을 극대화한다. 이러한 특성은 교육 및 훈련에 효과적일 뿐만 아니라, 다양한 운영 환경에서 활용할 수 있는 확장성을 제공한다. 최근 엔비디아 옴니버스 API(NVIDIA Omniverse API)와의 통합으로 실사 수준의 그래픽 질감과 공장 규모의 동적 디지털 트윈 생성이 가능해져 여러 기계와 시스템 간의 상호작용을 실시간으로 분석하고 최적화할 수 있게 됐다.   2. 주요 기능   Emulate3D는 현실감 있는 시뮬레이션과 에뮬레이션을 통해 물리적 충돌, 중력 가속도, 마찰 계수 등의 물리 엔진을 반영한 정밀한 테스트 환경을 제공한다. 가상 시운전을 통해 실제 시스템 구현 전 동일한 조건에서 제어 로직을 사전에 검증할 수 있으며, 설계 단계에서부터 문제를 식별하고 해결할 수 있다. 이를 통해 프로젝트 일정이 단축되고 불필요한 재설계 및 재작업 등의 시간과 비용이 절감된다. 제조라인의 처리량 실험 기능으로 물류 차량, 설비 배치를 검토하는 시뮬레이션 환경을 제공하며 PLC 및 상위 시스템을 연결하여 생산 라인 또는 장비의 가상 시운전을 유연하게 테스트할 수 있는 에뮬레이션 기능을 제공하여 엔지니어는 현장에서 소프트웨어를 재테스트하는 시간을 줄이고 프로젝트 일정을 단축할 수 있다.   3. 도입 효과   작업자 교육에서도 Emulate3D는 물리적으로 위험하거나 재현하기 어려운 상황을 가상 환경에서 안전하게 시뮬레이션하여 작업자의 숙련도를 높이고 사고 위험을 줄이는데 기여한다. Emulate3D는 단순히 자동화를 지원하는 도구를 넘어 디지털 트윈 기술로 혁신을 주도하는 플랫폼으로 기업은 더 나은 결정을 내리고 경쟁력을 강화할 수 있도록 돕는다.   4. 주요 고객 사이트   로크웰 오토메이션의 Emulate3D는 자동차, 생명 과학, 소비재, 식음료, 반도체 제조, 자재 취급, 자동창고 및 물류시스템 등 다양한 산업 분야의 광범위한 고객들이 사용하고 있다. 또한 공항 수하물 처리 시스템, 우편 물류시스템과 같은 복잡한 자동화 환경에서도 성공적으로 활용되고 있다.  주요 고객사로는 쿠카(Kuka), 히라타(Hirata), 에이티씨 오토메이션(ATC Automation), 바스티안 솔루션(Bastian Solutions), 인트라록스(Intralox) 등이 있다.     상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기
작성일 : 2025-07-01
3D 애플리케이션 개발 플랫폼, 엔비디아 옴니버스(NVIDIA Omniverse)
 주요 디지털 트윈 소프트웨어   3D 애플리케이션 개발 플랫폼, 엔비디아 옴니버스(NVIDIA Omniverse) 개발 및 공급 : 엔비디아, www.nvidia.com   엔비디아 옴니버스(NVIDIA Omniverse)는 산업 디지털화와 물리 AI 시뮬레이션을 위한 3D 애플리케이션 개발 플랫폼이다. 오픈USD(OpenUSD)와 RTX 렌더링 기술을 3D 산업 디지털화 애플리케이션에 쉽게 통합할 수 있도록 서비스, API, SDK 등을 제공한다.  1. 제품 종류 (1) 옴니버스 엔터프라이즈(Omniverse Enterprise)  기업을 위한 협업과 시뮬레이션 플랫폼으로, 사용하기 쉬운 도구를 통해 고급 실시간 3D 애플리케이션을 구축하고 제품, 에셋, 시설을 고충실도로 시각화하고 시뮬레이션한다. (2) 엔비디아 아이작 심(NVIDIA Issac Sim) 로봇 개발과 시뮬레이션을 위한 플랫폼으로, 물리 기반 환경에서 로봇과 자율 머신을 테스트하고 검증하며 훈련할 수 있다.  이 외에도 산업, 엔터프라이즈, 크리에이터, 개발자들을 돕는 여러 옴니버스 솔루션들이 있다. 2. 주요 기능 (1) 옴니버스 엔터프라이즈 비파괴적 상호 운용성으로 데이터 전송 필요성을 줄인다. 맞춤형 워크플로우와 앱을 빠르게 개발하며, AI를 활용해 반복 작업을 자동화한다. (2) 엔비디아 아이작 심 AI 기반 로봇을 개발을 위한 가상 환경을 제공하며, 센서 시뮬레이션, 탐색, 조작, 딥 러닝 애플리케이션을 지원한다. 합성 데이터 생성, 도메인 무작위화, 강화 학습 기능도 포함된다. 3. 주요 이점 (1) 쉬운 맞춤화와 확장 옴니버스 SDK는 다양한 3D 개발에 활용되며, 로우코드나 노코드 샘플 앱, 수정이 용이한 확장 프로그램을 통해 새로운 도구와 워크플로우를 기초 단계부터 개발할 수 있다. (2) 3D 애플리케이션 확장 옴니버스 클라우드 API를 통해 오픈USD, RTX, 가속 컴퓨팅, 생성형 AI 기술로 기존 소프트웨어 도구와 애플리케이션을 강화할 수 있다. (3) 어디에나 배포 가능 RTX 지원 워크스테이션 또는 가상 워크스테이션에서 맞춤형 애플리케이션을 개발하고 배포하거나 옴니버스 클라우드에서 애플리케이션을 호스팅하고 스트리밍할 수 있다. 4. 도입 효과 (1) 산업 영상 제작사는 옴니버스로 사실적인 디지털 세트와 가상 환경을 구현해 몰입감 있는 영상 효과를 만들어낸다.  (2) 엔터프라이즈 다양한 지역과 소프트웨어 도구에서 협업해 실시간 공장 설계와 계획을 진행한다. 직원 능률과 공정 효율성을 높이는 새로운 워크플로우로 생산 속도와 고객 경험을 향상한다. (3) 크리에이터 옴니버스 머시니마(Machinima) 애플리케이션으로 캐릭터와 소품 등에 애니메이션 클립을 적용한다. AI 기능을 기반으로 표정과 움직임을 더욱 생동감 있게 구현한다. (4) 개발자 옴니버스 클라우드 API와 SDK를 통해 고급 3D 애플리케이션 개발을 지원하며, 오픈USD 네이티브 앱과 확장 프로그램을 제작할 수 있다. 5. 주요 고객 (1) 지멘스(Siemens) 클라우드 기반 제품 수명주기 관리 소프트웨어인 팀센터 X(Teamcenter X)와 지멘스 엑셀러레이터(Xcelerator) 플랫폼에 옴니버스 클라우드 API를 채택했다. 옴니버스 API에 연결된 팀센터 X 소프트웨어는 설계 데이터를 엔비디아 생성형 AI API에 연결한 다음, 옴니버스 RTX 렌더링을 애플리케이션 내에서 직접 사용할 수 있다. (2) 폭스콘(Foxconn) 생산설비와 장비 레이아웃을 가상으로 통합하는 데 옴니버스를 채택했다. 이러한 가상 통합은 실제 운영에서 비용이 많이 드는 변경 사항을 크게 줄인다. 폭스콘은 내년 초 가동 예정인 멕시코 공장 구축에도 옴니버스를 채택했으며, 연간 30% 이상의 전략 사용량 감소를 기대하고 있다.   상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기
작성일 : 2025-06-29
엔비디아, 도시 인프라에 물리 AI 도입하는 옴니버스 블루프린트 공개
엔비디아가 ‘스마트 시티 AI용 엔비디아 옴니버스 블루프린트(NVIDIA Omniverse Blueprint for smart city AI)’를 발표했다. 엔비디아는 이 블루프린트를 옴니버스, 코스모스(Cosmos), 네모(NeMo), 메트로폴리스(Metropolis)와 통합해 유럽의 도시에서 삶의 질을 개선시킬 것으로 기대하고 있다. 2050년까지 도시 인구는 두 배 증가할 것으로 예상된다. 이는 21세기 중반까지 도시 지역에 약 25억 명의 인구가 더해질 수 있음을 의미한다. 따라서 보다 지속 가능한 도시 계획과 공공 서비스의 필요성이 높아지고 있다. 전 세계 도시들은 도시 계획 시나리오 분석과 데이터 기반 운영 결정을 위해 디지털 트윈과 AI 에이전트를 활용하고 있다. 그러나 도시의 디지털 트윈을 구축하고 그 안에서 스마트 시티 AI 에이전트를 테스트하는 것은 복잡하며, 자원 집약적인 작업이다. 여기에는 기술적, 운영적 문제도 수반된다. 엔비디아가 공개한 스마트 시티 AI용 엔비디아 옴니버스 블루프린트는 이러한 문제를 해결하기 위한 것이다. 이 참조 프레임워크는 엔비디아 옴니버스, 코스모스, 네모, 메트로폴리스 플랫폼과 결합해 도시 전체와 주요 인프라에 물리 AI의 이점을 제공한다. 개발자는 이 블루프린트를 사용해 심레디(SimReady)와 같이 시뮬레이션이 가능한 사실적 도시 디지털 트윈을 구축할 수 있다. 이를 통해 도시 운영을 모니터링하고 최적화하는 AI 에이전트를 개발, 테스트할 수 있다. 스마트 시티 AI용 엔비디아 옴니버스 블루프린트는 완전한 소프트웨어 스택을 제공해, 물리적으로 정밀한 도시의 디지털 트윈에서 AI 에이전트의 개발, 테스트를 가속화한다.      엔비디아 옴니버스는 물리적으로 정확한 디지털 트윈을 구축해 도시 규모에서 시뮬레이션을 실행한다. 엔비디아 코스모스는 사후 훈련 AI 모델을 위한 대규모 합성 데이터를 생성한다. 엔비디아 네모는 고품질 데이터를 큐레이션하며, 해당 데이터를 사용해 비전 언어 모델(vision language model, VLM)과 대규모 언어 모델(large language model, LLM)을 훈련하고 미세 조정한다. 엔비디아 메트로폴리스는 영상 검색과 요약(video search and summarization, VSS)용 엔비디아 AI 블루프린트를 기반으로 영상 분석 AI 에이전트를 구축, 배포한다. 이를 통해 방대한 양의 영상 데이터를 처리하고, 비즈니스 프로세스를 최적화하는 데 중요한 인사이트를 제공한다.   이 블루프린트 워크플로는 세 개의 주요 단계로 구성된다. 먼저 개발자는 옴니버스와 코스모스를 통해 특정 위치와 시설의 심레디 디지털 트윈을 구축한다. 여기에는 항공, 위성, 지도 데이터가 활용된다. 이어서 엔비디아 타오(TAO)와 네모 큐레이터(Curator)를 사용해 컴퓨터 비전 모델, VLM 등 AI 모델을 훈련하고 미세 조정한다. 이로써 비전 AI 사용 사례에서 정확도를 높인다​. 마지막으로 이러한 맞춤형 모델에 기반한 실시간 AI 에이전트의 배포로 메트로폴리스 VSS 블루프린트를 사용해 카메라와 센서 데이터를 알림, 요약, 쿼리한다.  엔비디아는 스마트 시티 AI용 블루프린트를 통해 다양한 파트너가 엔비디아의 기술과 자사의 기술을 결합하고, 통합된 워크플로를 기반으로 스마트 시티 사용 사례를 위한 디지털 트윈을 구축, 활성화할 수 있도록 지원한다는 계획이다. 이 새로운 블루프린트를 최초로 활용하게 될 주요 기업에는 XXII, AVES 리얼리티, 아킬라, 블링시, 벤틀리, 세슘, K2K, 링커 비전, 마일스톤 시스템즈, 네비우스, 프랑스 국영철도회사, 트림블, 유나이트 AI 등이 있다. 벤틀리 시스템즈는 엔비디아 블루프린트와 함께 물리 AI를 도시에 도입하는 데 동참하고 있다. 개방형 3D 지리 공간 플랫폼인 세슘은 인프라 프로젝트와 항만의 디지털 트윈을 옴니버스에서 시각화, 분석, 관리하는 기반을 제공한다. 벤틀리 시스템즈의 AI 플랫폼인 블린시는 합성 데이터 생성과 메트로폴리스를 사용해 도로 조건을 분석하고 유지보수를 개선한다. 트림블은 건설, 지리 공간, 운송 등 필수 산업을 지원하는 글로벌 기술 회사이다. 이들은 스마트 시티의 측량, 지도 제작 애플리케이션을 위한 현실 캡처 워크플로와 트림블 커넥트(Connect) 디지털 트윈 플랫폼에 옴니버스 블루프린트의 구성 요소를 통합하는 방법을 모색하고 있다.
작성일 : 2025-06-16