• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "아키텍처"에 대한 통합 검색 내용이 1,312개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
엔비디아, 한국 AI 인프라·생태계 구축 협력… “GPU 26만 개 이상 추가 도입”
엔비디아가 대한민국 정부 및 기업들과 협력해 클라우드와 AI 팩토리를 중심으로 25만 개 이상의 GPU를 포함하는 전국 규모의 AI 인프라 확장 계획을 발표했다. 이번 인프라는 공공과 민간 부문이 함께 구축하며, 자동차, 제조, 통신 등 한국 주요 산업 전반의 AI 기반 혁신과 경제 성장을 견인할 핵심 토대가 될 예정이다. 이번 계획은 세계 각국 정상이 APEC 정상회의 참석을 위해 한국에 모인 가운데 발표됐다.  과학기술정보통신부는 기업과 산업 전반의 독자 AI 개발을 가속화하기 위해 최신 엔비디아 GPU 5만 개 도입을 추진 중이라고 밝혔다. AI 인프라 구축은 엔비디아 클라우드 파트너인 네이버 클라우드와 NHN클라우드, 카카오가 국가 독자 클라우드 내 컴퓨팅 인프라를 확장하기 위해 엔비디아 블랙웰(Blackwell) 등 GPU 1만 3000 개를 초기 도입하는 것을 시작으로, 향후 국가 AI컴퓨팅센터 구축 등을 통해 수년간 점진적으로 확대될 예정이다. 이 AI 인프라는 연구기관, 스타트업, AI 기업이 모델과 애플리케이션을 개발할 수 있도록 개방되며, 이는 대한민국의 AI 역량 강화와 인프라 확충을 위한 국가 전략을 뒷받침하게 된다. 또한, 엔비디아는 한국의 산업계, 학계, 연구기관과 AI-RAN과 6G 인프라 개발에도 함께하고 있다. 엔비디아는 최근 삼성(Samsung), SK텔레콤(SK Telecom), 한국전자통신연구원(ETRI), KT, LG유플러스(LG U+), 연세대학교와 협력해 지능형·저전력 AI-RAN 네트워크 기술을 공동 개발 중이다. 이 기술은 GPU 연산 작업을 디바이스에서 네트워크 기지국으로 오프로딩함으로써 컴퓨팅 비용을 절감하고 배터리 수명을 연장할 수 있도록 설계됐다.     한국의 자동차, 제조, 통신 분야 선도 기업들은 엔터프라이즈와 피지컬 AI 개발을 가속화하기 위해 대규모 AI 인프라 투자와 확장을 추진하고 있다. 삼성은 GPU 5만 개 이상을 탑재한 엔비디아 AI 팩토리를 구축해 지능형 제조를 발전시키고 제품과 서비스 전반에 AI를 적용한다. 삼성은 엔비디아 네모트론(Nemotron) 사후 훈련 데이터세트, 엔비디아 쿠다-X(CUDA-X), 엔비디아 cu리소(cuLitho) 라이브러리, 엔비디아 옴니버스(Omniverse) 등 엔비디아 기술을 활용해 정교한 반도체 제조 공정의 속도와 수율을 개선하는 디지털 트윈을 구축한다. 또한 엔비디아 코스모스(Cosmos), 엔비디아 아이작 심(Isaac Sim), 엔비디아 아이작 랩(Isaac Lab)을 활용해해 가정용 로봇 개발 포트폴리오를 강화하고 있다. SK그룹은 반도체 연구·개발·생산을 고도화하고, 디지털 트윈과 AI 에이전트 개발을 지원하는 클라우드 인프라 구축을 위해 5만 개 이상의 GPU를 탑재할 수 있는 AI 팩토리를 설계하고 있다. SK텔레콤은 엔비디아 RTX PRO 6000 블랙웰 서버 에디션 GPU를 기반으로 한 소버린 인프라를 제공해, 국내 제조 기업들이 엔비디아 옴니버스를 활용할 수 있도록 지원할 계획이다. SK 텔레콤은 스타트업, 기업, 정부 기관을 대상으로 디지털 트윈과 로보틱스 프로젝트 가속화를 위한 산업용 클라우드 인프라를 제공할 예정이다. 현대자동차그룹과 엔비디아는 한층 심화된 협력 단계로 나아가며, 모빌리티, 스마트 공장, 온디바이스 반도체 전반에 걸쳐 AI 역량을 공동 개발할 예정이다. 양사는 AI 모델 훈련과 배포를 위해 5만 개의 블랙웰 GPU를 기반으로 협력을 추진한다. 또한 한국 정부의 국가 피지컬 AI 클러스터 구축 이니셔티브를 지원하기 위해, 현대자동차그룹과 엔비디아는 정부 관계자들과 긴밀히 협력해 생태계 조성을 가속화할 계획이다. 이를 통해 약 30억 달러 규모의 투자가 이루어져 한국의 피지컬 AI 산업 발전을 한층 앞당길 전망이다. 주요 이니셔티브로는 엔비디아 AI 기술 센터, 현대자동차그룹 피지컬 AI 애플리케이션 센터, 지역 AI 데이터센터 설립 등이 포함된다. 네이버 클라우드는 소버린 AI와 피지컬 AI용 인프라를 구축하기 위해 엔비디아 AI 인프라를 확장하고 있다. 이에 따라 엔비디아 RTX PRO 6000 블랙웰과 기타 엔비디아 블랙웰 GPU를 포함해 최대 6만 개의 GPU를 도입할 예정이다. 네이버 클라우드는 엔비디아 AI 인프라에서 구동되는 엔비디아 네모트론 오픈 모델을 기반으로 차세대 소버린 AI 개발의 다음 단계를 준비 중이다. 또한 네이버 클라우드는 조선, 보안 등 산업 특화 AI 모델을 개발하고, 대한민국 국민 모두를 위한 포용적 AI 구현에 주력할 계획이다. 과학기술정보통신부는 엔비디아와의 협력을 기반으로 주권 언어 모델 개발을 위한 독자 AI 파운데이션 모델(Sovereign AI Foundation Models) 프로젝트를 추진한다. 본 프로젝트는 엔비디아 네모와 오픈 엔비디아 네모트론 데이터세트를 활용해 로컬 데이터를 기반으로 추론(reasoning) 모델을 개발하고 디스틸(distilling)할 예정이다. 또한 LG AI연구원, 네이버 클라우드, NC AI, SK텔레콤, 업스테이지가 독자 모델 개발을 지원하는 프로젝트에 협력한다. 기업, 연구진, 스타트업은 이 모델 개발에 기여하고 이를 활용해 음성, 추론 등 다양한 기능을 갖춘 AI 에이전트를 개발할 수 있다. LG는 피지컬 AI 기술 개발을 촉진하고, 피지컬 AI 생태계를 지원하기 위해 엔비디아와 협력하고 있다. 양사는 LG 엑사원(EXAONE) 모델을 활용해 스타트업과 학계를 지원한다. 일례로, 암 진단을 지원하는 모나이(MONAI) 프레임워크 기반의 엑사원 패스(EXAONE Path) 의료 모델이 있다. 한국과학기술정보연구원(KISTI)은 엔비디아와 협력해 한국의 슈퍼컴퓨터 6호기 ‘한강’을 활용한 연구 협력을 촉진하기 위한 공동연구센터 설립을 추진 중이다. KISTI는 또한 양자 프로세서와 GPU 슈퍼컴퓨팅을 연결하는 엔비디아의 새로운 개방형 아키텍처 NVQ링크(NVQLink) 지원을 발표했다. 엔비디아 쿠다-Q(CUDA-Q) 플랫폼과 연동되는 NVQ링크는 KISTI가 양자 오류 정정과 하이브리드 애플리케이션 개발 등 분야의 연구를 심화해 차세대 양자-GPU 슈퍼컴퓨터 개발을 가속화할 수 있도록 지원한다. KISTI는 또한 과학 연구 개발을 위한 파운데이션 모델을 구축하고, 오픈소스 엔비디아 피직스네모(PhysicsNeMo) 프레임워크를 활용한 물리 기반 AI 모델 개발을 연구자들에게 지원할 예정이다. 엔비디아와 파트너들은 한국의 경제 발전과 기회 창출을 위해 엔비디아 인셉션(NVIDIA Inception) 프로그램으로 스타트업을 육성하는 얼라이언스를 설립한다. 얼라이언스 회원사는 SK텔레콤을 포함한 엔비디아 클라우드 파트너가 제공하는 가속 컴퓨팅 인프라를 활용할 수 있다. 또한, IMM인베스트먼트, 한국투자파트너스, SBVA 등 벤처캐피털 얼라이언스와 엔비디아 인셉션의 지원을 받게 된다. 아울러 스타트업은 엔비디아의 소프트웨어와 전문 기술 역량도 활용할 수 있게 돼, 차세대 기업들의 성장을 더욱 신속하게 추진할 수 있게 된다. 엔비디아는 스타트업을 위한 엔비디아 인셉션 프로그램의 성과를 바탕으로, 차세대 기업 지원을 위해 한국 정부와도 협력할 계획이다. 또한 중소기업벤처부에서 운영하는 ‘엔업(N-Up)’ AI 스타트업 육성 프로그램에도 참여할 예정이다. 엔비디아의 젠슨 황 CEO는 “대한민국은 기술과 제조 분야에서 선도적 입지를 갖추고 있으며, 이는 대한민국이 AI 산업 혁명의 중심에 서 있음을 보여준다. 이 산업혁명에서 가속 컴퓨팅 인프라는 전력망과 광대역만큼 중요한 기반이 되고 있다. 한국의 물리적 공장이 정교한 선박, 자동차, 반도체, 전자제품으로 세계에 영감을 주었듯, 이제는 인텔리전스라는 새로운 수출품을 생산하며 글로벌 변화를 이끌 수 있다”고 말했다. 배경훈 부총리 겸 과학기술정보통신부 장관은 “AI가 단순히 혁신을 넘어 미래 산업의 기반이 된 지금, 대한민국은 변혁의 문턱에 서 있다. 엔비디아와 함께 국가 AI 인프라를 확충하고 기술을 개발하는 것은 제조업 역량 등 한국이 보유한 강점을 더욱 강화할 수 있는 투자이며, 이는 글로벌 AI 3대 강국을 향한 대한민국의 번영을 뒷받침할 것”이라고 말했다.
작성일 : 2025-10-31
에이수스, 엔비디아 GB10 기반 AI 슈퍼컴퓨터 ‘어센트 GX10’ 국내 출시
에이수스 코리아는 엔비디아 GB10 그레이스 블랙웰(Grace Blackwell) 기반의 개인용 AI 슈퍼컴퓨터 ‘Ascent GX10(어센트 GX10)’을 국내 공식 출시한다고 밝혔다. 에이수스 어센트 GX10은 높은 AI 성능과 공간 효율을 제공한다. 손바닥 정도의 사이즈임에도 최대 1000TOPs의 AI 성능을 구현하여 AI 연구원, 데이터 과학자뿐만 아니라 AI 기반 개발 및 연구를 필요로 하는 개인 및 기업 프로젝트에도 최적의 성능을 제공한다.     어센트 GX10은 내장된 GB10 그레이스 블랙웰 슈퍼칩을 통해 FP4 정밀도 기준 최대 1페타플롭의 AI 성능을 지원한다. 이를 위해 최신 세대 CUDA(쿠다) 코어와 5세대 텐서(Tensor) 코어를 탑재하였으며, NVLink C2C 인터커넥트를 통해 연결된 20개의 Arm 아키텍처 기반 고효율 코어를 포함하고 있다. 또한 128GB의 통합 시스템 메모리를 통해 최대 2000억개의 매개변수를 처리할 수 있으며, 엔비디아 커넥트X(NVIDIA ConnectX) 네트워크 인터페이스 카드를 활용해 GX10 시스템 두 대를 연결하여 라마 3.1(Llama 3.1)과 같이 더 많은 매개변수를 가진 대형 AI 모델도 효율적으로 학습하고 처리할 수 있다. 에이수스는 어센트 GX10이 가진 성능을 최대한 발휘할 수 있는 간편한 AI 모델 개발을 위한 쉬운 개발 환경을 제공한다. 개발자는 엔비디아 AI 소프트웨어 라이브러리를 사용할 수 있으며, 엔비디아 NGC 카탈로그와 엔비디아 개발자 포털에서 제공되는 소프트웨어 개발 키트(SDK), 오케스트레이션 도구, 프레임워크, 모델 등 다양한 리소스를 지원받을 수 있다. 여기에 더해 에이전트 AI 애플리케이션 구축을 위한 엔비디아 블루프린트(NVIDIA Blueprints)와 NIM 마이크로 서비스도 지원하여 다양한 연구 및 개발, 테스트가 가능하다. 에이수스는 국내 공식 대리점인 코잇, 크로스젠, 유니퀘스트, 대원CTS를 통해 어센트 GX10의 구매 및 상담이 가능하다고 전했다.
작성일 : 2025-10-31
AMD, AI용 오픈 랙 플랫폼 기반 ‘헬리오스’ 랙 스케일 플랫폼 공개
AMD는 미국 산호세에서 열린 오픈 컴퓨트 프로젝트(OCP) 글로벌 서밋에서 자사의 ‘헬리오스(Helios)’ 랙 스케일 플랫폼을 첫 공개했다. 메타가 도입한 ‘오픈 랙 와이드(Open Rack Wide : ORW) 스펙을 기반으로 개발된 헬리오스에 대해 AMD는 “개방형 하드웨어 철학을 반도체에서 시스템, 그리고 랙 수준으로 확장하여, 개방적이고 상호운용 가능한 AI 인프라 구축의 중요한 진전을 보여준다”고 소개했다. 헬리오스 플랫폼은 세계적으로 증가하는 AI 컴퓨팅 수요를 뒷받침할 개방적이고 확장 가능한 인프라를 제공하는 기반을 마련한다. 기가와트 규모 데이터센터의 요구 사항을 충족하도록 설계된 새 ORW 스펙은 차세대 AI 시스템의 전력과 냉각 및 손쉬운 유지 보수에 대한 요구에 최적화된 개방형 더블 와이드 랙을 특징으로 한다. 헬리오스는 ORW 및 OCP 표준을 채택함으로써 업계에 고성능 및 고효율의 AI 인프라를 대규모로 개발하고 배포할 수 있는 통합 표준 기술의 기반을 제공한다.     헬리오스 랙 스케일 플랫폼은 OCP DC-MHS, UALink, UEC(Ultra Ethernet Consortium) 아키텍처 등 오픈 컴퓨트 표준을 통합해 개방형 스케일업(scale-up) 및 스케일아웃(scale-out) 패브릭을 모두 지원한다. 이 랙은 지속적인 열 성능을 위한 퀵 디스커넥트(quick-disconnect) 액체 냉각, 유지 보수 편의성을 향상시키는 더블 와이드 구조, 다중 경로 복원력을 위한 표준 기반 이더넷을 특징으로 한다. 헬리오스는 레퍼런스 디자인의 역할을 통해 OEM, ODM 및 하이퍼스케일러가 개방형 AI 시스템을 빠르게 도입하고 확장, 최적화할 수 있도록 지원한다. 이를 통해 AI 인프라의 배포 시간을 단축하고, 상호 운용성을 높여 AI 및 HPC 워크로드의 효율적인 확장이 가능하다. 헬리오스 플랫폼은 전 세계 AI 배포를 위한 개방적이고 확장 가능한 인프라를 구현하기 위해 AMD가 OCP 커뮤니티와 지속적으로 협력한 결과물이다. AMD의 포레스트 노로드(Forrest Norrod) 데이터센터 설루션 그룹 총괄 부사장은 “개방형 플랫폼을 통한 협업은 AI의 효율적인 확장의 핵심”이라며, “‘헬리오스를 통해 우리는 개방형 표준을 실제 배포 가능한 시스템으로 전환해 나가고 있다. AMD 인스팅트(Instinct) GPU, 에픽(EPYC) CPU 및 개방형 패브릭의 결합은 유연하고 고성능의 플랫폼을 통해 차세대 AI 워크로드를 위한 기반을 마련할 것”이라고 말했다.
작성일 : 2025-10-15
인텔, 추론 최적화 데이터센터용 GPU 신제품 발표
인텔은 2025 OCP 글로벌 서밋에서, 자사 AI 가속기 포트폴리오에 추가되는 주요 제품인 인텔 데이터센터용 GPU 신제품 코드명 ‘크레센트 아일랜드(Crescent Island)’를 발표했다. 이 GPU는 증가하는 AI 추론 워크로드 수요를 충족하도록 설계되었으며, 고용량 메모리·에너지 효율적인 성능을 제공한다. 추론이 주요한 AI(인공지능) 워크로드로 자리잡으며, 강력한 칩 이상의 요소, 즉 시스템 차원의 혁신이 성공을 가늠하는 주요 요소가 되었다. 하드웨어부터 오케스트레이션까지, 추론은 다양한 컴퓨팅 유형을 개발자 중심의 개방형 소프트웨어 스택과 통합하는 워크로드 중심의 개방형 접근 방식을 필요로 하며, 이러한 접근 방식은 배포 및 확장이 용이한 시스템으로 제공된다. 인텔은 “인텔 제온 6 프로세서, 인텔 GPU를 기반으로 구축한 설루션을 통해 AI PC부터 데이터 센터, 산업용 에지까지 엔드 투 엔드 설루션을 제공할 수 있는 입지를 갖추고 있다”면서, “성능, 에너지 효율성, 개발자 연속성을 위한 시스템 공동 설계 및 OCP(Open Compute Project)와 같은 커뮤니티와의 협력을 통해 AI 추론이 가장 필요한 모든 곳에서 실행될 수 있도록 지원하고 있다”고 전했다. 코드명 크레센트 아일랜드로 명명된 새로운 데이터센터 GPU는 공랭식 엔터프라이즈 서버에 맞춰 전력 및 비용 최적화를 이루었으며, 추론용 워크플로에 최적화된 대용량 메모리 및 대역폭을 제공하도록 설계되었다. 와트당 성능(PPW)이 최적화된 Xe3P 마이크로아키텍처에 기반을 둔 크레센트 아일랜드 GPU는 160GB의 LPDDR5X 메모리를 탑재했다. 또한 ‘서비스형 토큰(Token-as-a-Service)’ 공급업체 및 추론 사용 사례에 적합한 광범위한 데이터 유형을 지원한다. 인텔의 이기종 AI 시스템을 위한 개방형 통합 소프트웨어 스택은 조기 최적화 및 이터레이션(iteration) 작업이 가능하도록 현재 아크 프로 B(Arc Pro B) 시리즈 GPU에서 개발 및 테스트 중이다. 새로운 데이터센터용 GPU의 고객 샘플링은 2026년 하반기에 제공될 예정이다. 인텔의 사친 카티(Sachin Katti) 최고기술책임자(CTO)는 “인공지능은 정적 학습에서 에이전트형 AI가 주도하는 실시간·전역 추론으로 전환되고 있다”면서, “이러한 복잡한 워크로드를 확장하려면 적절한 실리콘을 적절한 작업에 매칭하는 이종 시스템이 필요하다. 인텔의 Xe 아키텍처 데이터센터 GPU는 토큰 처리량이 급증함에 따라 고객이 필요로 하는 효율적인 헤드룸 성능과 더 큰 가치를 제공할 것”이라고 밝혔다. 
작성일 : 2025-10-15
인텔, 팬서 레이크 아키텍처 공개하면서 18A 공정 기반의 AI PC 플랫폼 제시
인텔은 차세대 클라이언트 프로세서인 인텔 코어 울트라 시리즈 3(코드명 팬서 레이크)의 아키텍처 세부 사항을 공개했다. 2025년 말 출시 예정인 팬서 레이크는 미국에서 개발 및 제조되며, 진보된 반도체 공정인 인텔 18A로 제작된 인텔의 첫 번째 제품이 될 것으로 보인다. 인텔 코어 울트라 시리즈 3 프로세서는 인텔 18A 기반으로 제조된 클라이언트 시스템 온 칩(SoC)으로, 다양한 소비자 및 상업용 AI PC, 게이밍 기기, 에지 설루션을 구동할 예정이다. 팬서 레이크는 확장 가능한 멀티 칩렛 아키텍처를 도입하여 파트너사들에게 폼 팩터, 세그먼트, 가격대 전반에 걸쳐 향상된 유연성을 제공한다. 인텔이 소개한 팬서 레이크의 주요 특징은 ▲루나 레이크 수준의 전력 효율과 애로우 레이크 급 성능 ▲최대 16개의 새로운 P-코어 및 E-코어로 이전 세대 대비 50% 이상 향상된 CPU 성능 제공 ▲최대 12개의 Xe 코어를 탑재한 새로운 인텔 아크 GPU로, 이전 세대 대비 50% 이상 향상된 그래픽 성능 제공 ▲최대 180 플랫폼 TOPS(초당 수 조의 연산)를 지원하는 차세대 AI 가속화를 위한 균형 잡힌 XPU 설계 등이다.     인텔은 팬서 레이크를 PC뿐 아니라 로봇 공학을 포함한 에지 애플리케이션으로 확장할 계획이다. 새로운 인텔 로봇 공학 AI 소프트웨어 제품군과 레퍼런스 보드는 정교한 AI 기능을 갖춘 고객이 팬서 레이크를 제어 및 AI /인식 모두에 활용하여 비용 효율적인 로봇을 신속하게 혁신하고 개발할 수 있도록 지원한다.  팬서 레이크는 2025년 대량 생산을 시작하며, 첫 번째 SKU는 연말 이전에 출하될 예정이다. 또한 2026년 1월부터 폭넓게 시장에 공급될 예정이다.  한편, 인텔은 또한 2026년 상반기에 출시될 예정인 인텔 18A 기반 서버 프로세서인 제온 6+(코드명 클리어워터 포레스트)를 미리 공개했다. 팬서 레이크와 클리어워터 포레스트는 물론 인텔 18A 공정으로 제조된 여러 세대의 제품들은 모두 애리조나주 챈들러에 위치한 인텔의 공장인 팹 52에서 생산된다. 인텔의 차세대 E-코어 프로세서인 인텔 제온 6+는 인텔이 지금까지 개발한 가장 효율적인 서버 프로세서로, 인텔 18A 공정으로 제작된다. 인텔은 2026년 상반기에 제온 6+를 출시할 계획이다.  제온 6+의 주요 특징은 ▲최대 288개의 E-코어 지원 ▲전 세대 대비 사이클당 명령어 처리량(IPC) 17% 향상 ▲밀도, 처리량 및 전력 효율의 개선 등이다. 클리어워터 포레스트는 하이퍼스케일 데이터센터, 클라우드 제공업체 및 통신사를 위해 설계되어 조직이 워크로드를 확장하고 에너지 비용을 절감하며 더 지능적인 서비스를 제공할 수 있도록 지원한다.  인텔 18A는 미국에서 개발 및 제조된 최초의 2나노미터급 노드로, 인텔 3 대비 와트당 성능이 최대 15% 향상되고 칩 밀도가 30% 개선되었다. 이 공정은 미국 오리건 주 공장에서 개발 및 제조 검증 과정을 거쳐 초기 생산을 시작했으며, 현재 애리조나 주에서 대량 생산을 향해 가속화되고 있다. 인텔은 향후 출시될 자사의 클라이언트 및 서버 제품에서 최소 3세대에 인텔 18A 공정을 활용할 계획이다. 인텔 18A는 10년 만에 선보이는 인텔의 새로운 트랜지스터 아키텍처 리본FET(RibbonFET)를 적용해, 더 큰 확장성과 효율적인 스위칭을 통해 성능과 에너지 효율을 높인다. 그리고 새로운 백사이드 전원 공급 시스템인 파워비아(PowerVia)를 통해 전력 흐름과 신호 전달을 개선한다. 인텔의 첨단 패키징 및 3D 칩 적층 기술인 포베로스(Foveros)는 여러 칩렛을 적층 및 통합하여 고급 시스템 온 칩(SoC) 설계로 구현함으로써 시스템 수준에서 유연성, 확장성 및 성능을 제공한다.  인텔의 립부 탄(Lip-Bu Tan) CEO는 “우리는 향후 수십 년간 미래를 형성할 반도체 기술의 큰 도약으로 가능해진 흥미진진한 컴퓨팅의 새 시대에 접어들고 있다”며, “차세대 컴퓨팅 플랫폼은 선도적인 공정 기술, 제조 역량 및 첨단 패키징 기술과 결합되어 새로운 인텔을 구축하는 과정에서 전사적 혁신의 촉매가 될 것이다. 미국은 항상 인텔의 최첨단 연구개발, 제품 설계 및 제조의 본거지였다. 미국내 운영을 확대하고 시장에 새로운 혁신을 선보이면서 이러한 유산을 계승해 나가게 되어 자랑스럽게 생각한다”고 말했다.
작성일 : 2025-10-10
[무료 다운로드] 제조 혁신의 열쇠, 4M2E 생산자원 데이터 표준화
자율제조를 위한 데이터 표준화와 사이버 보안 강화 전략 (1)   글로벌 제조 환경은 자율제조 AI(인공지능) 및 SDM(소프트웨어 정의 제조)로 전환하고 있다. 그러나 시시각각 급변하는 생산자원(4M2E) 메타 데이터와 OT 사이버 보안에 대한 국제 표준 준수 없이는 사상누각이 될 수 있다. 앞으로 2회에 걸쳐 이에 대응하기 위한 방법을 소개하고자 한다.이번 호에서는 자율제조 AI 및 SDM 환경에서 4M2E 생산자원 데이터 표준화와 관련된 도전과 기회를 종합적으로 분석한다.   ■ 연재순서 제1회 제조 혁신의 열쇠, 4M2E 생산자원 데이터 표준화 제2회 산업 사이버 위협을 돌파하기 위한 IEC 62443   ■ 차석근 에이시에스의 부사장이며 산업부 국표원 첨단제조 표준화 포럼 의장 및 산업부 산업융합 옴부즈만 위원을 맡고 있다.   글로벌 제조 환경은 인공지능(AI) 기반의 자율제조와 소프트웨어 정의 제조(SDM : Software Defined Manufacturing)로의 전환을 통해 전례 없는 혁신을 경험하고 있다. 이러한 변화는 생산성, 효율성, 그리고 경쟁력 향상이라는 막대한 잠재력을 내포하고 있다. 그러나 이러한 혁신의 완전한 실현은 방대한 제조 데이터의 효과적인 관리 및 활용, 특히 4M2E(Man, Machine, Material, Method, Environment, Energy) 생산자원 데이터의 표준화에 달려 있다. 동시에, IT(정보 기술)와 OT(운영 기술) 시스템의 융합이 가속화되면서 산업 제어 시스템(IACS)은 사이버 위협에 더욱 노출되고 있으며, 이는 IEC 62443과 같은 국제 산업용 사이버 보안 표준 준수의 중요성을 증대시키고 있다. 이번 연재에서는 자율제조 및 SDM 환경에서 4M2E 생산자원 데이터 표준화의 필요성과 기술 동향을 심층 분석하고, 대한민국 수출 제품의 IEC 62443 산업용 사이버 보안 준비 현황과 당면 과제를 짚어보고자 한다. 특히 국내 중소기업이 겪는 인력, 예산, 노후 설비 등의 애로사항과 공급망 보안의 중요성을 강조한다. 이러한 분석을 바탕으로, 데이터 표준화와 사이버 보안 역량을 동시에 강화하여 국가 경쟁력을 제고하고 안전한 글로벌 시장 참여를 보장하기 위한 구체적인 정책적 및 전략적 대응 방안을 제안한다. 이는 기술 개발 지원, 인력 양성, 중소기업 맞춤형 프로그램 확대, 그리고 국제 협력 강화를 포함하는 포괄적인 접근 방식을 제시한다.   자율제조 및 SDM 시대의 도래와 산업 혁신 글로벌 제조 산업은 인공지능(AI)과 소프트웨어 정의 제조(SDM)의 발전으로 심오한 변화를 겪고 있다. 이러한 변화는 생산성, 효율성, 그리고 전반적인 경쟁력의 향상을 약속한다. 미국 국립과학재단(NSF)의 지원을 받아 개발된 마빌라(MaVila)와 같은 새로운 AI 모델은 공장 내부를 ‘보고’ ‘대화’할 수 있도록 설계되었다. 이 모델은 부품 이미지를 분석하고, 결함을 평이한 언어로 설명하며, 해결책을 제안하고, 심지어 기계와 통신하여 자동 조정을 수행할 수 있다. 이러한 역량은 지능적이고 적응력 있는 제조 시스템으로의 중요한 도약을 의미한다. 한편, SDM은 경직된 하드웨어 중심의 자동화를 유연한 소프트웨어 중심 아키텍처, AI 기반 지능, 그리고 제어 및 데이터 흐름을 최적화하는 모듈형 산업 플랫폼으로 대체하고 있다. 이러한 운영 기술 인프라의 현대화는 제조 부문의 전반적인 경쟁력을 향상시키는 데 필수이다. SDM의 핵심은 하드웨어, 연결성, 스토리지, 보안 및 IT와 OT 환경 전반에 걸쳐 내장된 지능을 포함한 제조의 모든 측면을 체계적으로 최적화하고 현대화하는 데 있다.   생산자원 데이터 표준화 및 산업용 사이버 보안의 핵심 과제 자율제조 및 SDM의 완전한 구현은 방대한 제조 데이터의 효과적인 관리 및 활용에 크게 의존한다. 그러나 수많은 센서, 기계 및 시스템에서 생성되는 파편화된 데이터는 종종 표준화가 부족하여 관리, 통합 및 분석이 어렵다. 이러한 데이터 파편화는 생산성을 높이고 효율성을 개선하며 비용을 절감하기 위한 산업 데이터의 완전한 활용을 방해한다. 특히 다양한 세대의 기계에서 발생하는 광범위하고 이질적인 데이터 소스를 가진 기업의 경우, 표준화된 라벨링의 부재는 데이터 관리 및 활용을 더욱 복잡하게 만든다. 동시에, 이러한 첨단 제조 환경에서 IT 및 OT 시스템이 융합되면서 산업 제어 시스템(IACS)은 사이버 위협에 점점 더 노출되고 있으며, IEC 62443과 같은 국제 표준 준수를 통한 강력한 사이버 보안은 필수이다. 사용자 질의는 특히 대한민국 수출 제품의 이 분야에서의 잠재적인 ‘준비 미비’를 강조하며, 이는 국가 산업 전략에 있어 중요한 과제를 부각시킨다.   자율제조 및 SDM의 개념과 데이터의 중요성 AI 기반 자율제조의 발전과 데이터 활용 인공지능은 다양한 분야를 근본적으로 변화시키고 있으며, 제새로운 AI 모델은 공장 환경에 특화되어 개발되고 있다. 이 모델들은 공장 내 시각 및 언어 기반 데이터로부터 직접 학습하여 부품 이미지를 분석하고, 결함을 평이한 언어로 설명하며, 해결책을 제안하고, 심지어 기계와 통신하여 자동 조정을 수행할 수 있다. 이렇게 내부적이고 제조 특화된 데이터 중심 접근 방식은 더욱 스마트하고 적응력 있는 제조 시스템을 구축하여 경제 부문을 더욱 효과적으로 지원하는 데 매우 중요하다. 궁극적인 목표는 작업자의 역량을 강화하고, 생산성을 높이며, 치열한 글로벌 시장에서 국가의 입지를 강화하는 것이다. AI가 진정한 자율제조를 가능하게 하려면 일반적이거나 파편화된 데이터에 의존할 수 없다. 복잡한 시스템, 장비 및 워크플로에 대한 깊이 있는 실시간 이해가 요구된다. 이는 데이터가 단순히 수집되는 것을 넘어, AI가 기계가 읽을 수 있고 실행 가능한 형태로 맥락화되고 표준화되어야 함을 의미한다. 만약 AI 모델이 파편화되고 비표준화된 데이터로 학습된다면, 정확하고 관련성 높은 정보를 제공하고 자율적인 조정을 수행하는 능력이 심각하게 제한되어 자율제조의 본질적인 약속을 저해할 수 있다. 따라서 제조 분야에서 AI의 성공과 신뢰성은 입력 데이터의 품질, 일관성 및 표준화에 직접적으로 비례하며, 이는 AI 기반 자율성을 위한 데이터 표준화의 근본적인 중요성을 강조한다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
스티뮬러스의 모델 기반 요구사항 검증 방법
산업 디지털 전환을 가속화하는 버추얼 트윈 (7)   현대 산업 시스템이 복잡해지면서 개발 초기 단계의 정확한 요구사항 검증이 중요해졌다. 특히 안전이 중요한 시스템에서 발생하는 오류는 치명적인 결과를 초래할 수 있다. 하지만 자연어 기반의 전통적인 요구사항 명세는 모호하여 해석 오류를 낳고, 요구사항 간 충돌이나 누락을 발견하기 어렵다는 한계를 갖는다. 이번 호에서는 모델 기반 시스템 엔지니어링(MBSE) 접근법을 지원하는 다쏘시스템의 요구사항 시뮬레이션 도구 스티뮬러스(STIMULUS)를 통해 개발 초기부터 정확성, 완전성, 일관성을 검증하는 새로운 해결책을 살펴본다.   ■ 신효주 다쏘시스템코리아의 Industry Process Consultant로 모델 기반 시스템 엔지니어링 설루션을 담당하고 있다. 자동차, 항공, 전자제품 등 다양한 산업 분야에서 프로젝트를 수행하며 복잡한 시스템 개발 과정에서의 어려움을 파악하고 이를 해결하기 위한 방법론과 MBSE 기반의 설루션을 제안하고 있다. 특히, 요구사항 검증 및 시스템 아키텍처 방법론을 중심으로 고객의 개발 효율성과 품질 향상을 지원하는 역할을 수행한다. 홈페이지 | www.3ds.com/ko   MBSE 접근을 통한 요구사항 검증 현대의 산업 시스템은 점점 더 복잡해지고 있으며, 이에 따라 시스템 개발 초기 단계에서의 정확한 요구사항 정의와 검증의 중요성이 커지고 있다. 특히 항공우주, 자동차, 철도, 의료기기 등 안전이 중요한 산업 분야에서는 시스템 오류가 치명적인 결과로 이어질 수 있어, 개발 초기 단계에서의 철저한 요구사항 검증이 필수이다. 그러나 전통적인 요구사항 관리 방식은 여러 가지 심각한 한계점을 가지고 있다. 가장 근본적인 문제는 자연어를 사용한 요구사항 명세에서 시작된다. 자연어의 본질적 모호성으로 인해 동일한 요구사항에 대해 서로 다른 해석이 가능하며, 이는 개발 과정에서 심각한 오해와 실수로 이어질 수 있다. 예를 들어 “시스템은 빠르게 응답해야 한다”와 같은 요구사항은 ‘빠르게’라는 단어의 모호성으로 인해 개발자와 사용자 간에 기대치의 차이를 초래할 수 있다. 또한, 수백 혹은 수천 개의 요구사항이 존재하는 대규모 시스템에서는 요구사항 간의 상충 관계를 수동으로 발견하는 것이 거의 불가능하다. 시스템의 특정 상태나 조건에 대한 요구사항이 누락되었을 때도 이를 문서 검토만으로는 발견하기 어렵다. 더욱 심각한 문제는 대부분의 요구사항 오류가 설계 단계나 심지어 구현 단계에서야 발견된다는 점이다. 이 시점에서의 수정은 많은 비용과 시간을 필요로 하며, 전체 프로젝트의 지연으로 이어질 수 있다. 현대의 복잡한 시스템에서는 이러한 문제가 더욱 심화된다. 정적인 문서로는 여러 컴포넌트가 동시에 상호작용하는 시스템의 동적 동작을 완전히 이해하고 검증하는 것이 불가능하다. 특히 실시간 시스템에서 중요한 타이밍 제약조건을 문서만으로는 충분히 검증할 수 없으며, 요구사항 변경이 시스템의 다른 부분에 미치는 영향을 파악하고 추적하는 것도 매우 어려운 과제이다. 이러한 한계를 극복하기 위해 선진 기업에서는 MBSE 접근법을 주목하고 있으며, 그 중에서도 다쏘시스템의 스티뮬러스(STIMULUS)는 혁신적인 요구사항 시뮬레이션 기능을 통해 새로운 해결책을 제시한다. 스티뮬러스의 Requirement-In-the-Loop(RIL) 시뮬레이션을 통해 요구사항을 형식화 하고 실행 가능한 모델로 변환하여, 개발 초기 단계에서 요구사항의 정확성, 완전성, 일관성을 검증할 수 있다.   모델 기반 요구사항 검증 방법 시스템 개발에서 요구사항의 정확한 명세와 검증은 성공적인 프로젝트 수행을 위한 핵심 요소이다. 이번 호에서는 먼저 스티뮬러스의 핵심 기능인 Requirement-In-the-Loop(RIL) 시뮬레이션에 대해 살펴보려고 한다.   그림 1. 랜딩기어 시스템 핸들 명령 요구사항 모델링   요구사항 모델링 시스템의 기능을 검증하기 위해서는 두 가지 주요 요구사항 관점을 이해해야 한다. 첫 번째는 ‘What’ 관점으로, 시스템이 수행해야 하는 구체적인 동작이나 특정 기능을 명시하는 요구사항을 의미한다. 예를 들어 랜딩기어(landing gear) 시스템에서 “핸들 명령이 down일 때, 모든 랜딩기어는 15초 이내에 확장되고 모든 도어는 닫혀야 한다”와 같은 요구사항이 이에 해당된다. 두 번째는 ‘How well’ 관점으로, 시스템이 기능 요구사항을 얼마나 잘 충족하는지 즉 안전성과 성능, 사용성 등 시스템의 품질 속성을 정의하는 요구사항을 의미한다. 랜딩기어 시스템이 15초 이내에 모든 기어를 확장하고 모든 도어를 닫는 데 성공하는지 여부가 이러한 관점의 예시가 될 수 있다. RIL 시뮬레이션에서는 두 가지 관점 중에서도 ‘What’ 관점의 기능 요구사항을 주로 사용한다. 스티뮬러스는 이러한 기능 요구사항을 형식화하기 위해 일련의 문장 템플릿을 제공하며, 이를 레고 블록처럼 조합하여 정형화된 요구사항을 만들 수 있다. 랜딩기어 시스템에서 ‘핸들 명령이 down일때, 모든 랜딩 기어는 15초 이내에 확장되고 모든 도어는 닫혀야 한다’라는 요구사항을 스티뮬러스에서 형식화하기 위해 ‘When’, ‘is’, ‘shall be’와 같은 기본 템플릿을 조합하게 된다. ‘When’, ‘is’, ‘shall be’와 같은 템플릿은 단순한 문장 구조를 넘어 정확한 의미를 내포하고 있다. 예를 들어 ‘When’ 템플릿은 조건이 참일 때 특정 동작을 활성화하는 상태 기계(state machine)로 정의되어 있으며, ‘is’ 템플릿은 수학적 동등성을 의미한다. 이렇게 명확한 의미가 정의되어 있기 때문에 특정 기능 요구사항에 대해 모두가 동일한 방식으로 스티뮬러스 요구사항 모델을 정의하고, 동등한 의미로 해석할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
슈나이더 일렉트릭, 선박의 안정적인 전력 공급을 위한 무정전 전원 공급 장치 제안
슈나이더 일렉트릭이 자사의 무정전 전원 공급 장치(UPS)인 ‘갤럭시 VS(Galaxy VS)’를 통해 조선·해양 산업의 안전성과 지속가능성 강화의 중요성을 강조했다. 오늘날 선박은 항해 장비, 통신 시스템, 안전 설비 등 모든 운영이 전력에 의존하는 환경에 놓여 있어 전력 공급의 연속성이 무엇보다 중요하다. 특히 선박의 운항 환경에서는 한순간의 정전이나 전력 불안정도 항해 차질, 통신 두절, 심각한 안전사고로 직결될 수 있다. 이처럼 선박 운영에서 전력 공급의 연속성은 단순한 효율의 문제가 아니라 인명 보호와 직결된 필수 요건으로 인식되고 있다. 이를 대응하기 위해 슈나이더 일렉트릭은 해양 산업의 특수한 요구에 부합하는 3상 무정전 전원 공급 장치인 ‘갤럭시 VS’를 제안하고 있다. 갤럭시 VS는 IT 시설뿐만 아니라 조선·해양 환경에서 요구되는 고가용성과 공간 효율성을 충족하며, 선박의 전력 안정성을 보장할 수 있는 설루션이다.     갤럭시 VS는 해양 장비의 안전과 성능을 평가하는 선급 회사인 DNV(Det Norske Veritas)와 BV(Bureau Veritas)로부터 해양 타입 승인(Marine-type approval)을 받았다. 특히 고온·저온·습기·진동 등 다양한 해양 환경 조건을 모사한 시험과 전자파 적합성(EMC level C2) 기준을 포함한 해양 표준 테스트를 통과했다. 슈나이더 일렉트릭은 “이는 갤럭시 VS가 선박 운항 및 해양 설비의 안전 규정을 충족하는 것은 물론, 극한 환경에서도 안정적인 전력 공급이 가능하다는 점을 공식적으로 입증한 것”이라고 전했다.  갤럭시 VS는 20~150kW 용량 범위에서 400/440V 전압을 지원하는 것은 물론 현장 여건에 따라 조정이 가능하다. 기본 제공되는 IP22 키트 외에도 옵션으로 IP52 방진·방수 등급을 선택할 수 있어 다양한 설치 환경에 대응할 수 있다. 모듈형 UPS 구조와 내부 N+1 이중화 설계는 전력 연속성을 극대화하며, 손쉽게 모듈을 교체할 수 있어 유지보수 효율 또한 높다는 것이 슈나이더 일렉트릭의 설명이다. 특히, 갤럭시VS는 옵션으로 제공되는 모듈형 배터리 캐비닛(Modular Battery Cabinet)을 통해 배터리 운영의 유연성과 안정성을 강화했다. 이 캐비닛은 스마트 모듈형 배터리를 탑재해 자동 감지(Self-detection), 이중화(Redundancy), 실시간 모니터링, 사용자 교체(User-swappable)가 모두 가능하도록 설계되었다. 사용 환경과 수명 요구에 따라 표준형(Standard, 3~5년)과 장수명형(Long Life, 10년) 두 가지 옵션이 제공된다. 해양 전용 설계도 특징이다. 할로겐 프리 케이블(Halogen-free cables)을 채택하여 화재 시 유독가스 발생을 최소화했다. 선박 용접용 마린 스키드(Marine Skid) 옵션을 제공하여 해양 환경의 안전 규격도 충족한다. 아울러 갤럭시VS는 이컨버전(eConversion) 모드에서 최대 99%, 이중변환 모드에서 최대 97%의 높은 에너지 효율을 제공하며, 총 소유 비용 절감이 가능한 리튬 이온 배터리 옵션도 지원한다. 이외에도 ▲공간 제약이 큰 선박 및 해양 시설에도 적합한 컴팩트 모듈형 설계 ▲라이브 스왑(Live Swap) 옵션을 통한 모듈 교체 ▲슈나이더 일렉트릭의 통합 아키텍처 플랫폼인 에코스트럭처(EcoStruxure) 지원 등 원격 모니터링과 유지보수를 간소화할 수 있는 강점을 지니고 있다. 슈나이더 일렉트릭 코리아 시큐어파워 사업부의 최성환 본부장은 “조선·해양 산업은 전 세계 물류와 에너지 공급의 중추적 역할을 수행하는 동시에, 안전성과 지속가능성 확보가 무엇보다 중요한 산업”이라며, “갤럭시 VS는 단순한 UPS를 넘어 선박 운영의 안전성을 보장하고, 해양 산업 전반의 친환경 전환에도 기여할 수 있는 최적의 설루션”이라고 강조했다. 한편 슈나이더 일렉트릭 코리아는 10월 21일부터 부산 벡스코에서 개최되는 조선·해양 산업 전문 전시회인 ‘코마린(KORMARINE) 2025’에 참가해 선박의 안정적인 전력 공급을 위한 무정전 전원 공급 장치 갤럭시 VS를 선보일 예정이라고 전했다.
작성일 : 2025-10-02
델, 텔레콤 업계와 엔터프라이즈 에지 구축에 최적화된 서버 신제품 공개
델 테크놀로지스가 오픈랜(Open RAN) 및 클라우드랜(Cloud RAN)에 적합한 최적의 성능과 연결성을 제공함으로써 에지 및 통신 인프라 혁신을 견인하는 서버 신제품 ‘델 파워엣지 XR8720t(Dell PowerEdge XR8720t)’를 공개했다. 전통적으로 클라우드랜 및 고도화된 에지 컴퓨팅을 구축하기 위해서는 여러 대의 서버를 설치해야 했기 때문에 높은 비용, 운영상의 복잡성, 공간 부족, 전력 수요 등이 걸림돌로 지적됐다. 이러한 비효율성과 확장성의 제한으로 차세대 애플리케이션에 필요한 실시간 성능 요구 사항을 충족하기 어려웠다. 델 파워엣지 XR8720t는 단일 서버 기반 클라우드랜 설루션으로, 인프라를 간소화하고 성능과 효율을 강화하며, 최신 네트워크 및 에지 구축 환경에서 총소유비용(TCO)을 절감하도록 돕는다.      파워엣지 XR8720t 컴퓨팅 슬레드는 델 파워엣지 XR8000 플랫폼과 통합되며, 까다로운 환경에서의 인프라 구축에 걸림돌이 되는 성능 문제를 해결하게끔 설계됐다. 향상된 처리 능력과 확장된 연결성을 통해 고성능 애플리케이션을 강력하게 지원할 수 있다.  파워엣지 XR8720t는 클라우드와 기존 RAN 아키텍처 간의 성능 격차를 해소하며, 이전 세대 대비 두 배 이상의 처리 성능을 제공한다. 컴팩트한 2U 구성에서 최대 72코어와 24개의 SFP28 연결 포트를 지원한다. 단일 서버 통합으로 다중 서버 아키텍처 대비 구축 시간, 유지보수 및 운영의 복잡성을 낮췄다.  XR8720t는 인텔 vRAN 부스트(Intel vRAN Boost)와 인텔 이더넷(Intel Ethernet) E830-XXVDA8F 네트워킹 기술이 통합된 인텔 제온 6 SoC(Intel Xeon 6 SoC)로 구동된다. 정밀한 네트워크 타이밍 동기화를 위해 PTP, PTM 및 SyncE를 지원하며, 하드웨어 기반 타이밍 팔로어를 탑재했다. 까다로운 클라우드랜 워크로드에 필요한 처리 성능, 포트 밀도(24x SFP28) 및 네트워크 대역폭(600GbE)을 제공하며, 공간 제약이 있는 셀 사이트 구축을 위해 설계된 430mm 깊이의 컴팩트한 사이즈가 특징이다. CPU 기반 워크로드에 AI 기능을 활용하여 에이전틱 AI, 실시간 분석 및 머신러닝과 같은 고급 에지 AI 사용 사례를 지원한다. 유연한 구성으로 필요에 따라 GPU 지원도 가능하여 AI 잠재력을 더욱 확장시킬 수 있다. 극한 환경을 위해 설계된 XR8720t는 영하 5℃에서부터 영상 55℃까지 작동하며, 모듈식 설계로 손쉬운 유지보수 및 업그레이드가 가능하다. 네트워크 장비 구축 시스템(NEBS) 레벨 3 준수 서버로, 전면 접근형 I/O를 통해 가동 중단 시간 및 운영 복잡성을 줄인다. 통신, 에지, 군용 애플리케이션을 위한 확장된 내구성과 신뢰성을 갖췄으며, 지능형 냉각 설계로 비좁은 공간에서도 최적의 냉각 성능을 구현한다. 통신 사업자들은 이 설루션을 활용해 성능 집약적 애플리케이션을 효과적으로 운영하는 동시에 비용을 절감하며, 에지에서 AI를 수월하게 구동시킬 수 있다. 텔레콤뿐 아니라, 리테일, 국방, 제조 등 다양한 분야의 기업들이 AI, 머신러닝 및 기타 컴퓨팅 집약적 워크로드와 높은 수준의 동기화가 요구되는 정밀한 작업을 수행할 수 있다. 한국 델 테크놀로지스의 김경진 총괄사장은 “델 테크놀로지스는 통신 및 에지 인프라 혁신에 지속적으로 기여하고 있다”고 말하며, “고객들은 델 파워엣지 XR7620t를 활용해 구축하기 까다로운 오픈랜이나 클라우드랜 인프라를 단순화하고, 더 강력하고 효율적이며 AI에 최적화된 네트워크를 완성시킬 수 있을 것으로 기대한다”고 덧붙였다.
작성일 : 2025-10-01
HP Z2 미니 G1a 리뷰 : 초소형 워크스테이션의 AI·3D 실전 성능
워크스테이션은 콤팩트한 외형 속에 데스크톱급 성능을 담아낸 전문가용 시스템이다. 단순한 소형 PC와 달리, 3D·영상·AI·엔지니어링 등 고성능이 필요한 크리에이터와 전문 작업자를 위해 설계된 것이 특징이다. 이번 리뷰에서는 실제 소프트웨어 워크플로와 AI·LLM 테스트까지 다양한 관점에서 심층 평가를 진행했다.   ▲ HP Z2 미니 G1a   하드웨어 및 설치 환경 HP Z2 미니 G1a(HP Z2 Mini G1a)의 가장 큰 강점 중 하나는 강력한 하드웨어 스펙이다. AMD 라이젠 AI 맥스+ 프로 395(AMD Ryzen AI Max+ PRO 395) 프로세서(16코어 32스레드, 3.00GHz), 최대 128GB LPDDR5X 메모리, 8TB NVMe SSD, 그리고 16GB VRAM을 탑재한 라데온 8060S(Radeon 8060S) 통합 그래픽 등, 동급 소형 워크스테이션에서는 보기 힘든 구성을 갖췄다. 특히 메모리는 최대 128GB까지 확장 가능하며, 이 중 최대 96GB를 그래픽 자원에 독점 할당할 수 있다. 듀얼 NVMe 및 RAID 지원으로 대용량 데이터 처리와 안정성을 확보했으며, 50TOPS에 달하는 NPU 성능 덕분에 AI 추론 등 최신 워크로드도 소화할 수 있다. 테스트는 윈도우 11 프로 기반, 64GB RAM과 16GB 라데온 8060S, 듀얼 NVMe SSD가 장착된 구성으로 진행됐다.   ▲ HP Z2 미니 G1a의 하드웨어 스펙   전문 소프트웨어 워크플로 직접 HP Z2 미니 G1a를 사용해 본 첫 인상은 “미니 사이즈에서 이 정도 성능이라니?”였다. 크기는 작지만, 성능은 결코 작지 않았다. 시네마 4D(Cinema 4D)로 복잡한 3D 신을 제작하고, 지브러시(ZBrush)에서 대형 폴리곤 모델링과 서브툴 멀티 작업을 해 보니 작업 흐름이 부드럽고, 장시간 동작에도 다운이나 랙 없이 꾸준한 성능으로 작업할 수 있었다. 시네벤치(Cinebench), 시네마 4D, 지브러시, 애프터 이펙트(After Effects), AI 생성형 이미지·영상, LLM 실행 등 전 영역에서 성능 저하를 체가하기 어려웠다. 시네마 4D에서는 수십만~수백만 폴리곤에 달하는 대형 3D 신 파일을 불러오고, 뷰포트 내 실시간 조작이나 배치 렌더링, 애니메이션 키프레임 작업에서 CPU 기반 멀티스레드 성능이 큰 장점을 발휘했다. 시네벤치 2024 멀티코어 점수는 1832점으로, 애플의 M1 울트라보다 높은 수치를 달성해 전문 사용자에게 매력적인 대안이 될 것으로 보인다.   ▲ 시네마 4D에서 테스트   애프터 이펙트 환경에서는 GPU 가속 지원이 부족한 점에도 불구하고, 강력한 CPU 성능 덕분에 고해상도(4K) 다중 레이어 영상 합성, 이펙트, 복수 트랙 편집에서도 랙이나 끊김 없이 작업을 이어갈 수 있었다. 시네마 4D, 지브러시, 콤피UI(ComfyUI) 등과의 멀티태스킹 환경에서도 리소스 병목 없이 쾌적하게 여러 프로그램을 병행 실행하는 것이 가능했다.   ▲ 애프터 이펙트에서 테스트   아이언캐드 대형 어셈블리 테스트 엔지니어링 현장에서 요구되는 대형 어셈블리 작업을 검증하기 위해 동료와 함께 아이언캐드(IronCAD)로 2만여 개(2만 1800개)에 달하는 파트가 포함된 820MB 대용량 CAD 파일을 로딩해 테스트를 진행했다. 이 워크플로는 최근 산업·기계 설계 현장에서 자주 마주치는 극한 환경을 그대로 반영한 조건이었다. 테스트 결과, HP Z2 마니 G1a의 평균 FPS는 약 19로 측정됐다. 이는 노트북용 RTX2060 GPU가 내는 실제 CAD 작업 성능과 동등한 수준에 해당한다. 고용량 모델의 빠른 불러오기, 실시간 3D 뷰 조작, 개별 파트 속성 편집 작업에서 큰 병목이나 지연 없이 효율적인 사용 경험을 확인했다. 대형 파일임에도 불구하고 시스템 자원 부족이나 다운 없이 멀티태스킹 환경에서도 안정적으로 작업이 이어지는 점이 인상적이었다.   ▲ 아이언캐드에서 테스트   AI 및 LLM 활용 AI 작업이나 LLM 실행에서도 강점이 명확했다. 콤피UI에서 Wan2.2, Video-wan2_2_14B_t2v 같은 고사양 텍스트-비디오 생성 모델도 무리 없이 돌릴 수 있었고, LM 스튜디오(LM Studio)와 올라마(Ollama) 기반의 대형 LLM 역시 빠른 추론 속도를 보여줬다. NPU(50TOPS)의 연산 가속과 64GB RAM의 넉넉함 덕분에, AI 모델 로컬 실행/추론에서 항상 안정적인 환경이 보장된다는 느낌이다. 오픈소스 AI 이미지 생성이나 텍스트-비디오 워크플로도 CPU-메모리 조합만으로 병목 없이 부드럽게 동작했다. 쿠다(CUDA)를 지원하지 않는 환경의 한계로 일부 오픈소스 AI 툴은 실행에 제약이 있었으나, CPU와 NPU 조합만으로도 로컬 기반 AI 이미지 생성 및 텍스트-비디오 워크플로에서 동급 대비 빠르고 매끄러운 결과를 보였다.    ▲ 콤피UI에서 테스트   LLM 분야에서는 LM 스튜디오와 올라마를 이용해 7B~33B 규모의 다양한 대형 언어 모델을 구동했다. 64GB RAM과 50TOPS NPU의 지원 덕분에 GPT-3.5, 라마 2(Llama 2) 등 대용량 파라미터 기반의 모델도 실제 업무에서 실시간 질문-응답, 코드 자동완성, 문서 요약 등에 무리 없이 활용 가능했다.   ▲ LLM 테스트   통합 메모리 아키텍처 효과 Z2 미니 G1a의 최고 강점은 UMA(통합 메모리 아키텍처)에 있다. 이 기술은 시스템 메모리(RAM)의 상당 부분을 GPU 연산에 직접 할당해, 기존 분리형 GPU VRAM 성능의 한계를 극복한다. 실제로 탑재된 메모리(64GB~128GB 중 구매 옵션에 따라 선택)를 GPU에 최대 96GB까지 독점적으로 할당할 수 있으며, 복잡한 3D·그래픽 집약적 프로젝트 처리와 생성형 AI·LLM 등의 작업에서 병목 없이 고효율 워크플로를 경험할 수 있었다.   실사용·테스트를 위한 리뷰 환경 제품 리뷰 당시 64GB RAM 탑재 모델을 기준으로, 기본 설정에서는 16~32GB를 GPU에 할당해 일반 CAD·3D·AI 작업을 진행했다. 또한 고해상도 3D 렌더나 생성형 AI 영상 작업에서는 BIOS/소프트웨어에서 48~50GB까지 VRAM 할당을 수동 조정해 본 결과, 대형 프로젝트 파일에서 뷰포트 프레임 저하나 메모리 부족 경고 없이 안정적인 작업 환경을 제공했다. 반대로 GPU에 할당하는 메모리를 늘리면 고용량 데이터 병목이 해결되고, 3D 뷰포트 FPS나 AI 추론 속도 및 이미지 품질·정확도가 확실히 향상되는 것이 일관되게 확인되었다. 실제 기업 환경에서는 128GB 모델을 쓰면 최대 96GB까지 VRAM 할당이 가능하므로 GPU 메모리 병목이 무의미해지고, 기존 미니PC와는 비교할 수 없는 확장성과 작업 안전성을 확보할 수 있다.   아쉬운 점 첫째, 테스트용으로 받았던 장비에서는 HDMI 단자의 부재로 미니 DP로 모니터를 연결해야 했는데, 이는 테스트했던 데모 제품의 기본 옵션에 해당한다. 하지만 HP Z2 미니 G1a는 기업용/구매 시 고객 요구에 따라 HDMI 포트를 포함한 맞춤형 Flex I/O 슬롯 옵션 구성이 가능하다고 한다. 실제로 HP 공식 문서 및 판매 페이지에 따르면, 썬더볼트4(Thunderbolt4), USB-C, 미니 DP 외에도 HDMI를 Flex IO 슬롯에 추가할 수 있으므로, 다수의 모니터·TV·AV 장비로 연결해 사용하는 환경에서도 문제없이 세팅할 수 있다. 둘째, GPU가 AMD 라데온 기반이기 때문에 엔비디아 CUDA를 필요로 하는 GPU 가속 작업(예 : Redshift GPU 렌더러, 딥러닝 프레임워크)은 아예 테스트 자체가 불가능하다. AI, 3D, 영상 워크플로에서 CUDA 생태계를 사용하는 환경에서는 제품 선택 전 미리 확인이 필요하다. 셋째, 고부하 작업 시 팬 소음이 다소 발생할 수 있으므로 조용한 사무실 환경이라면 쿼이엇 모드 설정이 필요하다.   결론 및 추천 HP Z2 미니 G1a 워크스테이션은 한정된 공간에서 고성능이 필요한 크리에이티브 및 AI 전문가, 엔지니어, 디지털 아티스트에게 탁월한 선택지가 될 수 있다. 실제로 써보면, 공간 제약이 있는 환경에서도 3D 모델링, 영상 편집, 생성형 AI, LLM 추론 등 고사양 멀티태스킹을 안정적으로 병행할 수 있었고, 기업용 보안, ISV 인증, 최신 네트워크까지 갖췄다. 다양한 작업을 동시에 손쉽게 처리할 수 있다는 점에서 미니 데스크톱 중에서도 실전 현장에 ‘매우 쓸 만한’ 최상위 선택지라고 생각이 든다. 비록 CUDA 미지원 및 HDMI 포트 부재라는 한계가 있지만, CPU·메모리 중심의 워크플로에선 동급 최고 수준의 안정성과 성능을 보여준다. 최신 AI 및 LLM, 3D·영상·컴포지팅 등 멀티태스킹이 잦은 전문 분야라면 이 제품이 오랜 기간 든든한 실전 파트너가 될 것이다. 견적 상담 문의하기 >> https://www.hp.com/kr-ko/shop/hp-workstation-amd-app   ■ 배현수 부장 마루인터내셔널(맥슨 한국총판) 기술지원팀, AI 크리에이터, 모션그래픽 디자이너     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01