• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "실적"에 대한 통합 검색 내용이 2,340개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
어도비, ‘파이어플라이’로 AI 창작 혁신 가속화
어도비(Adobe)가 AI 기반 창작 환경의 새로운 지평을 여는 올인원 크리에이티브 AI 스튜디오 ‘어도비 파이어플라이(Adobe Firefly)’의 대규모 업데이트를 발표했다. 이번 업데이트는 영상, 오디오, 이미지, 디자인 등 전 영역에서 아이디어 구상부터 최종 제작까지 전 과정을 지원하는 통합형 AI 창작 생태계를 구축하는 데 초점을 맞췄다. 파이어플라이는 최고의 AI 모델과 크리에이티브 툴을 단일 플랫폼·단일 가격으로 제공하는 ‘올인원 AI 크리에이티브 스튜디오’로, 복잡한 제작 과정을 단순화하고 창작 효율을 극대화하는 것이 특징이다.  이번 업데이트의 핵심 중 하나는 영상과 오디오 제작 도구의 강화다. 사운드트랙 생성(Generate Soundtrack) 기능은 상업적으로 안전한 라이선스 기반의 오리지널 AI 음악을 자동으로 영상에 동기화해 제작할 수 있도록 지원한다. 음성 생성(Generate Speech) 기능은 텍스트를 자연스러운 음성으로 변환하며, 일레븐랩스(ElevenLabs)와 협력해 다양한 언어와 감정 조절을 구현했다. 파이어플라이 비디오 에디터(Firefly Video Editor)는 웹 기반 멀티트랙 타임라인 편집기로, 영상 클립 생성, 편집, 사운드 및 자막 추가를 직관적으로 수행할 수 있다. 이미지 제작과 편집 분야에서는 더욱 정교하고 사실적인 결과물을 제공한다. 파이어플라이 이미지 모델 5(Image Model 5)는 4MP 해상도의 초고해상도 이미지 생성이 가능하며, 세밀한 질감과 디테일을 구현한다. 프롬프트로 편집(Prompt to Edit) 기능은 사용자가 일상 언어로 편집 내용을 설명하면 AI가 자동으로 수정하는 대화형 편집 기능을 지원한다. 어도비는 파이어플라이의 AI 생태계를 확장하며 크리에이터 맞춤형 모델(Custom Models)을 비공개 베타로 선보였다. 사용자는 자신이 보유한 이미지를 학습시켜 고유한 스타일의 에셋을 생성할 수 있다. 또한 구글, 루마 AI, 오픈AI, 일레븐랩스 등 주요 AI 기업의 모델과 협업해 파이어플라이 내에서 다양한 AI 엔진을 직접 활용할 수 있도록 했다. 이번 업데이트에서는 ‘프로젝트 문라이트(Project Moonlight)’도 함께 공개됐다. 이는 어도비의 앱과 크리에이터 소셜 채널 전반에서 작동하는 에이전틱 AI 기반 대화형 크리에이티브 어시스턴트로, 아이디어 발상부터 콘텐츠 인사이트 제공, 제작 가속화까지 전 과정을 지원한다. 어도비의 CTO 일라이 그린필드(Ely Greenfield)는 “파이어플라이는 아이디어 구상부터 최종 작품 완성까지 크리에이티브의 모든 여정을 지원하는 단일 공간”이라며 “최고의 AI 모델과 크리에이티브 툴을 결합해 창작자들이 더욱 빠르고 유연하게 작업할 수 있는 환경을 구축했다”고 밝혔다. 이번 업데이트를 통해 어도비는 AI 중심의 크리에이티브 워크플로우 혁신을 가속화하며, 글로벌 크리에이터 생태계 전반에 새로운 생산성과 영감을 제공할 것으로 기대된다.
작성일 : 2025-10-29
에픽게임즈, 다양한 산업에서 활용할 수 있는 신기능 추가된 ‘트윈모션 2025.2’ 출시
에픽게임즈는 다양한 산업 분야의 크리에이터를 위한 신규 기능 및 개선 사항이 추가된 ‘트윈모션 2025.2(Twinmotion 2025.2)’를 출시했다고 발표했다. 트윈모션은 언리얼 엔진 5를 기반으로 건축과 영화 & TV, 자동차, 제품 디자인 등 다양한 산업 분야에서 빠르게 사실적인 시각화 작업을 지원하며, 직관적이고 쉬운 UI와 강력한 라이브러리 제공을 통해 전문가와 초보자 모두 누구나 손쉽게 사용할 수 있는 리얼타임 3D 시각화 설루션이다.     최신 버전인 트윈모션 2025.2에서는 ▲나나이트(Nanite) 가상화된 지오메트리 ▲빠르고 쉬운 시각화 ▲향상된 렌더링 기능 ▲향상된 애니메이션 ▲버추얼 카메라(VCam) ▲향상된 머티리얼 할당, 편집, 구성 등 다양한 산업 분야의 크리에이터를 위한 새로운 기능과 향상된 워크플로를 제공한다. 2년 전 언리얼 엔진 5의 다이내믹 글로벌 일루미네이션 시스템 ‘루멘(Lumen)’이 트윈모션에 도입된 데 이어, 이번 버전에서는 UE5의 또 다른 기능인 나나이트 가상화된 지오메트리 시스템이 추가됐다. 나나이트는 보이는 데이터만 필요할 때 자동으로 스트리밍하는 기능으로, 수억 개 또는 수십억 개의 폴리곤으로 구성된 여러 개의 초고해상도 복잡한 메시도 실시간 성능을 유지하면서 작업할 수 있다. 이를 통해 파일을 임포트하기 전에 최적화할 필요가 없어 시간을 절약할 수 있다. 메시는 임포트할 때나 임포트 후에도 나나이트로 변환할 수 있으며, 해당 오브젝트의 모든 메시를 일괄 변환할 수 있는 것은 물론 메가스캔 3D 애셋 및 3D 식물, 스케치팹 애셋도 나나이트로 변환할 수 있다. 트윈모션 2025.2 버전에는 빠르고 쉬운 시각화를 위해 기존과 같은 수준의 시각화를 더 빠르고 간편하게 구현하면서도, 성능 부담을 줄여주는 신규 기능이 추가됐다. 먼저, ‘패럴랙스 윈도우’를 지원한다. 패럴랙스 윈도우는 오픈 셰이딩 언어(OSL) 셰이더를 통해 단순한 가벼운 평면에 실내 공간의 깊이감을 만들어 내 복잡한 3D 지오메트리 없이도 방이나 건물 내부를 시뮬레이션할 수 있는 기능이다. 창문을 모델링할 필요 없이 외부 표면에 패럴랙스 윈도우를 배치하기만 하면 된다. 라이브러리에는 사무실, 주거 공간, 헬스장, 소매점 등 27가지 인테리어가 포함된 패럴랙스 윈도우 폴더가 추가됐다. 이와 함께, ‘애니메이션 포그 카드’를 통해 신에 사실감을 손쉽게 구현할 수 있다. 라이브러리 VFX 폴더에 포함된 17종의 새로운 애니메이션 포그 카드를 사용하면 성능에 미치는 영향을 최소화하면서도 드래그 앤 드롭으로 손쉽게 안개를 배치하고 연출할 수 있다. 안개는 신의 바람이나 카드별로 바람 속도, 방향에 따라 반응할 수 있도록 설정이 가능하다. 트윈모션 2025.2는 향상된 렌더링 기능으로 포토리얼한 트윈모션에서 좀 더 자유로운 스타일이 필요할 때 활용할 수 있도록, 해칭, 쿠와하라 필터링, 펜 등 회화 및 스케치 스타일 효과와 같이 더욱 유연하고 향상된 비주얼 퀄리티를 제공하기 위해 전체 ‘FX 포스트 프로세싱’ 시스템을 개편했다. 또한, 이제 .cube 형식의 자체 룩업 테이블(LUT)을 임포트할 수 있어, 특정 컬러 룩을 구현하고 여러 샷이나 프로젝트 간에 컬러 일관성을 유지하며 컬러 그레이딩 과정을 간소화할 수 있다. 정적인 신에서 움직임을 빠르게 시뮬레이션할 때 유용한 ‘스태틱 오브젝트에 선형 또는 방사형 모션 블러 적용’ 기능과 비디오나 시퀀스를 익스포트할 때 더 높은 퀄리티의 사실적인 모션 블러를 적용할 수 있는 옵션도 추가됐다. 트윈모션 2025.2에는 향상된 애니메이션으로 선택한 형태(평면, 원기둥, 구체)에 따라 오브젝트를 원래 위치에서 바깥쪽이나 안쪽으로 이동시켜 기술 프레젠테이션이나 극적인 연출에 활용할 수 있는 분해도 애니메이션 ‘익스플로더’가 추가됐다. 기존의 트랜슬레이터 및 로테이터 애니메이터에도 ‘스태거 오프셋’이 추가돼 오브젝트가 하늘에서 떨어지거나 지면에서 솟아오르는 효과 그리고 순차적으로 회전하는 것과 같이 신에 역동적인 연쇄 연출을 손쉽게 만들 수 있게 됐다. 또한, 애니메이터를 ‘시퀀스 툴’에서 트랙으로 사용할 수 있어, 애니메이션의 시작 시각 변경, 재생 시간 조절, 다른 애니메이션 요소와 동기화하는 것이 간편해졌으며, 애니메이션을 멈추고 정확한 순간을 선택해 촬영할 수 있도록 이미지 속성에 새로운 글로벌 ‘스태틱/리얼타임 애니메이션’ 재생 옵션이 추가됐다. 이번 버전은 촬영감독부터 시각화 전문가에 이르기까지 누구나 활용 가능한 버추얼 카메라(VCam)를 새롭게 지원한다. 트윈모션을 안드로이드 또는 iOS에서 언리얼 VCam 앱에 연결하면 휴대용 디바이스를 움직이는 것만으로 신에 버추얼 카메라를 배치할 수 있다. ‘샷 탐색’ 기능을 활용하면 신을 자유롭게 탐색하면서 카메라 배치, 각도, 노출, 초점, 배율 등의 설정을 1인칭 시점에서 실험해 볼 수 있으며, ‘디자인 리뷰’에서는 가상의 애셋을 실제로 걸어 다니면서 모든 각도에서 살펴볼 수 있다. 트윈모션 2025.2에서는 향상된 머티리얼 할당, 편집, 구성을 통해 머티리얼 도크에서 머티리얼을 폴더로 정리하고 이름으로 검색할 수 있으며, 머티리얼을 알파벳순으로 정렬할 수 있다. 또한 툴바에 ‘멀티드롭’ 툴 버튼이 추가되어 신에서 마우스 클릭 한 번으로 머티리얼을 빠르게 적용할 수 있어 반복적인 드래그 앤 드롭 작업이 필요 없어졌다. 머티리얼 속성 패널을 탭으로 구성해 가독성을 높이는 한편 주요 설정에 더 쉽게 접근할 수 있고, UV, 엑스레이, 양면과 같은 일부 속성을 서로 다른 유형의 여러 머티리얼을 선택해서 일괄 변경할 수도 있다. 이 탭 중 하나는 해당 머티리얼이 어떤 메시에 할당되어 있는지 확인하고 선택할 수 있는 새로운 기능을 제공한다. 이 외에도, 이번 버전에서는 트윈모션 뷰포트 카메라 위치 및 속성을 DCC 뷰포트 카메라와 동기화할 수 있으며, 컨피규레이션 일괄 익스포트, 클라우드 호스팅 콘텐츠 기능, 3D 잔디, 파노라마 세트, 알리아스(*.wire) 파일 테셀레이션 옵션 등 더욱 향상된 다양한 기능을 만나볼 수 있다.
작성일 : 2025-10-01
요구사항 기반 바이브 코딩의 사용 방법
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 더욱 현실적인 앱 개발을 위해, 요구사항을 먼저 상세히 정의한 후 이를 바탕으로 바이브 코딩(vibe coding)을 하는 방법을 살펴본다. 소프트웨어 공학에서 요구사항 문서를 PRD(Product Requirement Document)라고 한다. PRD 작성은 제미나이 프로(Gemini Pro), 바이브 코딩 도구는 깃허브 코파일럿(Github Copilot), 이때 사용되는 대규모언어 모델(LLM)은 클로드 소넷(Claude Sonet)을 사용하도록 한다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   그림 1   바이브 코딩 준비하기 바이브 코딩을 하는 방법은 다음과 같이 다양하다. 챗GPT(ChatGPT)에 코딩 요청을 해서 생성된 파이썬(Python) 같은 코드를 복사&붙여넣기해 프로그램을 완성해 나가는 방법 제미나이 CLI(Gemini CLI), 클로드 코드 CLI(Claude Code CLI), 코덱스 CLI(Codex CLI) 도구를 사용해 프로젝트 파일 및 소스코드를 생성하는 방법 VS 코드(Visual Studio Code)같은 개발 IDE와 연동되는 깃허브 코파일럿, 커서(Cursor), 윈드서프(Windsurf)와 같은 도구를 사용해 바이브 코딩하는 방법 버블(Bubble.io)이나 캔바(Canva)와 같은 바이브 코딩 웹 서비스에서 직접 요구사항을 입력하여 제공 클라우드에 앱을 생성・빌드・실행하는 방법   깃허브 코파일럿 바이브 도구 설치 및 기능 깃허브 코파일럿은 오픈AI(OpenAI)와 협력하여 개발된 AI 페어 프로그래머(AI Pair Programmer)이다. 그 기반은 오픈AI의 코덱스(Codex) 모델에서 발전한 최신 대규모 언어 모델(LLM)이며, 수십억 줄의 공개 소스 코드를 학습하여 코드 생성 및 이해 능력을 갖추었다. 개발자가 코드를 작성할 때 실시간으로 문맥을 분석하여 다음에 올 코드를 추천하거나, 특정 기능에 대한 전체 코드 블록을 생성해 준다. 이는 단순한 자동 완성을 넘어, 개발자가 문제 해결이라는 본질에 더욱 집중하도록 돕는 지능형 코딩 보조 도구이다. 이번 호에서는 로컬 PC에서 프로젝트 소스 파일을 생성하고 직접 수정할 수 있도록 VS 코드에서 바이브 코딩할 수 있는 방법을 취한다. 이를 위해 다음 환경을 미리 준비한다. Gemini Pro(https://gemini.google.com/app?hl=ko) 가입 ■ 파이썬(https://www.python.org/downloads/), node.js(https://nodejs.org/ko/download) 설치 ■ Github(https://github.com/features/copilot) 가입 ■ Github Copilot(https://github.com/features/copilot) 서비스 가입 ■ VS Code(https://code.visualstudio.com/) 설치 및 코딩 언어 관련 확장(Extension) 애드인 설치(https://code.visualstudio. com/docs/configure/extensions/extension-marketplace)   그림 2. 깃허브 코파일럿 가입 모습   주요 기능 깃허브 코파일럿은 생산성 향상을 위한 다양한 기능을 통합적으로 제공한다.   인라인 코드 제안(Code Suggestions) 깃허브 코파일럿의 가장 핵심적인 기능으로, 사용자가 편집기에서 코드를 입력하는 동시에 다음 코드를 회색 텍스트(ghost text) 형태로 제안하는 것이다. 문맥 기반 제안 : 현재 파일의 내용, 열려 있는 다른 탭의 코드, 프로젝트 구조 등을 종합적으로 분석하여 현재 작성 중인 코드의 의도에 가장 적합한 제안을 생성한다. 다양한 제안 범위 : 변수명이나 단일 라인 완성부터 시작해 알고리즘, 클래스, 유닛 테스트 케이스, 설정 파일 등 복잡하고 긴 코드 블록 전체를 생성할 수 있다. 주석을 코드로 변환 : ‘# Read file and parse JSON’과 같이 자연어 주석을 작성하면, 코파일럿이 해당 작업을 수행하는 실제 코드를 생성해준다. 이는 복잡한 라이브러리나 프레임워크 사용법을 숙지하지 않아도 빠르게 기능을 구현하는 것을 가능하게 한다.   코파일럿 챗(Copilot Chat) IDE 환경을 벗어나지 않고 코파일럿과 대화하며 개발 관련 문제를 해결할 수 있는 강력한 채팅 인터페이스이다. 코드 분석 및 설명 : explain 명령어를 사용해 선택한 코드 블록의 작동 방식, 복잡한 정규 표현식의 의미, 특정 알고리즘의 목적 등에 대한 상세한 설명을 한국어로 받을 수 있다. 디버깅 지원 : 코드의 버그를 찾거나, 발생한 오류 메시지를 붙여넣고 해결책을 질문하는 데 활용된다. 잠재적인 오류를 수정하는 fix 명령어도 지원한다. 테스트 생성 : tests 명령어를 통해 특정 함수나 로직에 대한 단위 테스트 코드를 자동으로 생성하여 코드의 안정성을 높이는 데 기여한다. 코드 리뷰 : 작성된 코드를 분석하여 잠재적인 문제점, 성능 개선 방안, 가독성을 높이기 위한 리팩토링 아이디어 등을 제안받을 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-01
NaviQ v2.0 : BIM 기반 공사비 자동 산출 설루션
개발 및 공급 : 글로텍 www.glotechsoft.com 주요 특징 : BIM 기반 수량–공사비 자동 산출, CBS 단가 DB 연동 공사비 자동 산출, OBS/WBS 연동으로 공정·기성관리까지 지원, 기존 2D 산출 방식과의 통합 지원 등 사용 환경(OS) : 윈도우 10 이상 시스템 권장 사양 : 인텔 코어 i5 이상 CPU, 16GB 이상 RAM, 엔비디아 GTX 1060 이상 GPU(나비스웍스 연동 시), 10GB 이상 여유 저장공간 소프트웨어 요구사항 : .NET Framework 4.7 이상, 레빗 또는 나비스웍스(2022~2024) 설치 권장   그림 1. BIM 기반 견적 산출 설루션 NaviQ v2.0   NaviQ(나비큐) v2.0은 글로텍이 개발한 BIM 기반 견적 산출 설루션으로, 설계자가 작성한 BIM(건설 정보 모델링) 모델로부터 수량을 자동 산출하고, CBS 단가 데이터베이스(DB)와 연계하여 공사비 내역서를 자동 작성할 수 있는 실무형 통합 설루션이다. 이 제품은 철도, 도로, LH, 건축, 항만 등 다양한 인프라 분야에서 설계-시공-기성관리 전 단계를 아우르는 비용 자동화 기능을 지원하며, 특히 기존 EBS 사용자에게 친숙한 인터페이스를 제공하여 도입 장벽을 낮춘 것이 특징이다.   NaviQ 2.0의 주요 특징 BIM 모델 기반 수량 산출(체적, 면적, 길이, 갯수 자동 인식) CBS 일위대가 DB 연동 공사비 자동 산출 OBS(단위 기준), WBS(공정 기준)와의 매핑을 통한 공정 연계 기존 2D 산출 수량과의 혼합 사용 가능 가근거, 수량근거 자동 기록 및 내역서 엑셀 출력 무료 뷰어 및 7일 체험판(trial) 제공으로 도입 부담 최소화   제품 구성   그림 2. NaviQ v2.0 제품군   NaviQ v2.0은 다음과 같은 구성으로 이루어져 있다. NaviQ Viewer : BIM 수량 확인 전용 툴(무상 배포) NaviQ Trial : 7일간 전체 기능 사용 가능 NaviQ Standard : 1년 기간제 라이선스(1 유저), 정식 제품(단가DB 연동, 자동산식 적용, 내역서 출력 등 전체 기능 포함) NaviQ Site : 1년 기간제 라이선스(1 사이트), Standard 제품을 한 개 회사가 인원 제한 없이 사용할 경우   NaviQ 2.0의 주요 기능 NaviQ v2.0은 설계자가 작성한 BIM 모델을 기반으로 수량 – 공사비 – 공정 – 기성관리까지 전 주기 데이터를 자동으로 연계할 수 있는 BIM 5D 실무 특화 설루션이다. 특히 국내 표준품셈 기반의 CBS 일위대가 DB를 직접 연동하고, BIM 물량을 공정 단위(WBS)로 분개하여 기성관리까지 연결할 수 있는 구조를 갖추고 있다. 뿐만 아니라 기존 2D 방식의 수동 산출 물량도 함께 병합할 수 있어 디지털 전환에 대한 진입 장벽을 낮추었으며, CBS-WBS 매트릭스 구조 기반의 정량화된 내역서 산출도 가능하다. 또한, 상용 공정관리 소프트웨어와의 연동을 통해 기성율, 공정 진척도, 물량 실적까지 통합 관리할 수 있다.   그림 3. NaviQ v2.0의 사용자별 활용 시나리오   CBS 일위대가 DB 데이터 활용 가능 : 국내 표준품셈 기반 CBS 단가 DB와 자동 연동되어 BIM 수량에 따른 재료비, 노무비, 경비가 자동 산출되며, 내역서 구조에 맞게 자동 적용된다. BIM 산출물량 WBS 단위 물량분개 : BIM 모델로부터 추출한 자동 수량은 WBS 공정 단위별로 분개되며, 각 공정에 해당하는 수량·공사비·일정 정보를 정량화할 수 있다. 수동물량 산입 및 WBS 단위 물량분개 : BIM 미적용 구간의 수동 물량(2D CAD 기반 또는 직접 입력)은 자동 수량과 병합 가능하며, 동일하게 WBS 단위로 분배되어 기성관리까지 연계된다. 매트릭스 기반 CBS-WBS 조합 5D 내역서 산출 : CBS(공사비 단가 기준)와 WBS(공정 기준)를 매트릭스(matrix) 형태로 매핑하여 각 공정별 비용 집계와 실행 계획 비교가 가능하며, 실시간 내역서 산출이 이루어진다. 상용 공정관리 SW 연동을 통한 공정–기성 관리 : MS 프로젝트(MS Project), 프리마베라(Primavera) 등 상용 공정관리 소프트웨어와 연동되어 기성 진척도·공정률·수량 실적을 통합 추적할 수 있으며, 실적 기반 예산 통제가 가능하다.   그림 4. NaviQ v2.0의 BIM 견적산출 실행 화면   고객 지원 전략 NaviQ v2.0의 개발·공급·확산은 3개사의 전략적 협업을 기반으로 시작되었다. 제품의 개발 및 기술지원은 글로텍이 주관하고, 공식 판매는 라인테크가 담당하며, 사용자 교육과 도입 지원은 한국디지털교육원이 맡는 구조로 3개사가 MOU를 체결하고 제품 생태계를 공동 구축하고 있다. 이러한 역할 분담 체계는 단순한 유통을 넘어, 고객의 도입–학습–실무 적용까지 전 주기를 통합 지원할 수 있는 파트너십 기반 운영 모델로 자리 잡고 있으며, 향후에는 NaviQ 제품을 도입한 설계사, 시공사, 발주기관 고객을 비즈니스 파트너로 확대 공유하는 전략도 함께 추진 중이다. 특히 BIM 기반 공공사업 확대와 디지털 건설 수요가 증가하는 가운데, 파트너 기업 간 공동 브랜딩, 공동 제안, 공동 마케팅 체계를 통해 기술 + 서비스 + 확산 전략이 결합된 실질적 BIM 5D 산업 플랫폼 구축을 목표로 하고 있다.   향후 계획 글로텍은 2025년 하반기를 NaviQ 신제품의 본격적인 시장 랜딩 시점으로 설정하고, 이를 위해 다각도의 홍보 전략을 추진할 계획이다. 포털 키워드 광고, 전문지 신문기사, SNS·블로그 채널을 활용한 온라인 홍보는 물론, 설계사·시공사·발주처 등 핵심 타깃을 대상으로 한 제품 설명회 및 세미나도 개최하여 인지도 확대와 실질적 도입 확산을 동시에 노린다. 이와 함께, 2026년부터는 사용자 현장의 피드백을 반영한 고도화 업데이트를 지속적으로 추진할 예정이다. BIM 5D 기반의 기능을 넘어 디지털 트윈 연계, AI 기반 수량 예측·기성 분석, 실적 리포트 자동화 등 차세대 건설 자동화를 실현하기 위한 기술 개발이 본격화될 전망이다. 이를 위해 글로텍은 전담 기술지원 조직을 통해 사용자 교육, 온라인 매뉴얼 제공, 커뮤니티 운영, 정기 기술 세미나 개최 등 제품 사용 전·중·후 단계 전반에 걸친 지원 체계를 갖추고 있으며, 공공기관의 BIM 의무화 정책 흐름에 발맞춰 관련 인증 획득과 제도 연계 확대도 병행하여 추진할 방침이다.   ■ 같이 보기 : [피플&컴퍼니] 글로텍 이재홍 센터장, 한국철도기술연구원 박영곤 수석연구원     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[피플&컴퍼니] 글로텍 이재홍 센터장, 한국철도기술연구원 박영곤 수석연구원
BIM 기반의 철도 인프라 통합 운영 설루션 연구·개발   건설 IT 전문 기업 글로텍과 한국철도기술연구원이 철도 인프라를 위한 5D BIM 설루션 ‘NaviQ(나비큐)’를 상용화했다. 나비큐는 3D 모델과 수량, 단가, 공정 정보를 하나의 흐름으로 연결하는 것이 특징이다. 이를 통해 수작업의 비효율을 개선하고, BIM 도입 장벽을 낮출 수 있을 것으로 보인다. NaviQ의 개발 과정과 향후 계획을 인터뷰를 통해 들어보았다. ■ 정수진 편집장   ▲ 글로텍 이재홍 센터장(왼쪽), 한국철도기술연구원 박영곤 수석연구원(오른쪽)   한국철도기술연구원에서 추진한 BIM 통합 운영 시스템 개발 연구에 대해 소개한다면 ‘철도 인프라 생애주기 관리를 위한 BIM 통합 운영 시스템 개발 및 구축 연구’는 철도 인프라의 정보를 BIM 기술 기반으로 관리하기 위해 철도 인프라의 BIM 발주, 설계, 시공 기술을 고도화하고, 운영 및 유지보수 단계까지 연계되도록 표준화된 통합 운영 체계 및 시스템을 개발하여 이를 현장에 구축하고 실증하는 것을 목표로 추진되었다. 한국철도기술연구원이 주관하고 글로텍을 포함한 유관 기관들이 협력하여 실제 철도 노선 사례에 BIM 데이터를 적용하였고, 이를 기반으로 공정, 수량, 공사비 정보를 자동 연동하는 통합 운영 체계를 개발·구축하였다. 현재까지는 설계 단계에서 생성된 BIM 데이터를 기반으로 수량을 자동 산출하고, 이를 CBS 단가와 연계하여 공사비 내역서를 자동 생성하는 핵심 엔진의 실증을 완료한 상태이다. 이후 단계로는 기존 시공 관리 시스템 및 BIM 통합 운영 시스템(KR-BIMS)과의 연계를 통해 생애주기 기반 관리 체계를 확대해 나가고 있다.   NaviQ의 개발을 시작하게 된 배경은 무엇인지 기존 BIM 시스템은 3D 시각화나 설계 자동화에는 효과적이었지만, 실제 공사비 산출이나 수량·공정과의 연동 기능은 부족한 경우가 많았다. 특히 공공기관, 설계사, 시공사 등에서 사용 중인 단가·공정 관리 시스템과 BIM 모델 간의 데이터 연동이 원활하지 않아서 재입력, 정보 누락, 작업 중복과 같은 비효율이 반복되어 왔다. 이러한 한계를 극복하고자, 실무 중심의 접근 방식으로 ‘BIM 모델 → 수량 자동 산출 → 공사비 자동 산출 → 공정 및 기성관리 연계’의 흐름을 구현할 수 있는 설루션의 필요성을 절감하게 되었고, 그 결과로 NaviQ의 개발이 시작되었다.   ▲  한국철도기술연구원 박영곤 수석연구원   NaviQ의 핵심 기능 및 장점에 대해 소개한다면 NaviQ는 BIM 기반 자동 수량·공사비 산출 설루션으로, 설계자가 모델링한 BIM 객체를 기반으로 체적, 면적, 길이, 개수 등의 수량을 자동 추출하고, 이를 CBS(내역서), WBS(공정), OBS(단위체계)와 연동하여 실시간으로 공사비 내역서를 생성할 수 있는 시스템이다. 주요 기능은 다음과 같다. 레빗 및 시빌3D 등 다양한 BIM 모델을 나비스웍스와 연동하여 BIM 수량 자동 추출 CBS 일위대가 DB 연동을 통한 공사비 내역서 자동 산출 기존 2D 산출 수량과의 통합 산출 기능 기성관리용 물량 분개 및 실적 연동 기능 지원 7일 무료 체험판 및 뷰어 무상 배포 제공 무엇보다 사용자 입장에서 가장 큰 장점은, 기존 EBS 기반의 수동 작업 방식을 그대로 유지하면서도 BIM 자동화 기능을 점진적으로 적용할 수 있다는 점이다. 학습 부담이 적고 기존 방식과의 호환성이 뛰어나, 실무에 바로 적용할 수 있다.   기존 BIM 제품과 비교할 때 NaviQ의 차별점과 경쟁력은 무엇인지 NaviQ의 가장 큰 차별점은 ‘BIM 모델과 수량, 단가, 공정, 기성관리까지 하나의 흐름으로 연결한 실무 중심의 통합 설루션’이라는 점이다. 기존의 BIM 도구는 주로 형상 모델링과 시각화 기능에 집중되어 있었으며, 단가 DB와 연동하여 내역서를 자동화하거나 실시간 공사비를 산출하는 기능은 제한적이었다. NaviQ는 국내 공공 발주 기관에서 활용하는 CBS 단가 DB를 직접 연동하고, 이를 OBS 및 WBS와 매핑하여 물량 산출부터 기성관리까지 실무 전체를 커버할 수 있는 구조로 되어 있다. 또한 BIM 기반 수량이 불완전하거나 적용이 어려운 구간에 대해서는 기존 2D 방식의 수량을 혼합 적용할 수 있도록 설계되어, BIM 전환 초기에도 유연한 적용이 가능하다.   NaviQ의 상용화 계획과 참여 업체들의 협력 방안에 대해 소개한다면 2025년 8월 28일 정식 출시와 함께 NaviQ 공식 홈페이지를 https://naviq.co.kr 오픈하였으며, 현재 뷰어 무상 배포, 7일 무료 체험, 그리고 2.0 버전의 정식 라이선스 판매가 동시에 이루어지고 있다. 한국철도기술연구원은 연구 총괄 기관으로서 철도 인프라에 최적화된 BIM 표준 및 응용 기술을 개발하였으며, 글로텍은 실용화를 위한 소프트웨어 기획, UI/UX 설계, 제품화 및 기술 지원 부문을 담당하였다. 앞으로는 설계사, 시공사, 감리사 등과의 협력을 통해 실 프로젝트의 적용 사례를 확대하고, 피드백 기반의 기능 고도화를 추진할 예정이다.   ▲ 글로텍 이재홍 센터장   NaviQ의 비즈니스 모델과 시장 확대 전략에 대해 소개한다면 NaviQ는 현재 대형 건설사, 종합 설계사, 공공 발주기관을 주된 타깃으로 하고 있으며, 점차 중견·중소 설계사 및 기술지원 기관까지 확장해 나갈 계획이다. 비즈니스 모델은 다음과 같이 세 단계로 구성되어 있다. 뷰어 무상 배포 : BIM 내역서 검토·활용 목적 체험판 무료 제공(7일) : 구매 전 체험을 통한 기술 적합성 검토 2.0 버전 판매 : 사용자 수 및 라이선스 기간에 따른 정식 사용 계약 시장 확대 전략으로는 기존 EBS 사용자의 자연스러운 전환을 유도함과 동시에, BIM 의무화 정책에 따른 신규 수요에 적극 대응할 계획이다. 국토교통부, LH, 국가철도공단, 한국도로공사 등 주요 공공기관의 플랫폼과의 연동도 준비 중이다.   NaviQ에 대한 시장의 초기 반응이나 적용 사례가 있다면 정식 출시 직후부터 주요 설계사와 시공사에서 제품 데모 요청과 도입 관련 문의가 꾸준히 이어지고 있다. 특히 기존 수작업 수량 방식과 BIM 산출 방식의 통합 적용 가능성에 대해 많은 관심을 보이고 있으며, ‘BIM 도입 초기 단계에서도 무리 없이 활용 가능하다’는 평가를 받고 있다. 일부 고객사는 현재 자사 프로젝트에 체험판을 적용하여 실적 데이터를 기반으로 본격적인 도입을 검토하고 있으며, 한국철도기술연구원이 수행한 BIM 실증 노선에도 적용되어 실무 검증을 마쳤다.   국내 BIM 시장의 상황과 전망에 대해 어떻게 보는지 국내 BIM 시장은 여전히 설계 중심의 적용에 머물러 있으며, 시공·기성관리·유지관리 단계로의 연계는 초기 수준에 머물러 있다. 그러나 정부의 디지털 플랫폼 정책, 스마트 건설 기술 로드맵, 공공 BIM 의무화 정책 등이 결합되면서 전체 산업 생태계가 빠르게 변화하고 있다. 향후 BIM 기술이 설계 중심에서 시공, 유지관리, 운영 단계까지 확장되기 위해서는 정량적 수량, 단가, 공정 정보의 자동 연계 기술이 핵심이 될 것이다. NaviQ와 같은 통합형 BIM 5D 설루션이 이를 가능하게 할 중요한 열쇠가 될 것으로 기대한다.   글로텍의 비전 및 향후 계획에 대해 소개한다면 글로텍은 30여 년간 건설 분야 공사비 내역서 시스템(EBS), 단가 DB 시스템, 수량산출 자동화 설루션을 개발해 온 기업으로, 실무 기반의 건설 IT 설루션을 꾸준히 개발해 왔다. 최근에는 BIM 기반 자동 수량·공사비 산출 기술을 집중적으로 고도화하고 있으며, 그 결정체가 바로 NaviQ이다. 앞으로는 디지털 트윈과 연계한 5D 시뮬레이션, AI 기반 원가·공정 예측, 기성관리 자동화 기술 등으로 IT 기술 개발 포트폴리오를 확장하고자 한다. 단순 설루션 제공을 넘어 건설 디지털 전환의 실행 파트너로서 역할을 강화해 나갈 계획이다.   ■ 같이 보기 : NaviQ v2.0 : BIM 기반 공사비 자동 산출 설루션     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[케이스 스터디] 확장현실로 건설 장비의 사용 교육과 운영 효율 강화
포지FX가 VR 훈련 설루션을 만드는 방법   콘크리트 레벨링 기술 기업인 소메로 엔터프라이즈(Somero Enterprises)는 포지FX(ForgeFX)와 파트너십을 맺고 S-22EZ 레이저 스크리드 장비용 몰입형 가상 현실(VR) 설루션으로 작업자 교육에 혁신을 가져왔다. 콘크리트 전문가를 위한 이 몰입형 교육 설루션은 높은 교육 비용과 물류 문제를 줄이는 동시에 작업자에게 안전하고 참여도가 높은 실습 학습 환경을 제공한다. 소메로와 같은 제조업체는 유니티(Unity)의 기술 및 XR 인터랙션 툴킷(XR Interaction Toolkit)과 같은 툴을 활용하여 교육 프로세스를 간소화하고, 운영자의 숙련도를 개선하며, 운영상의 제약을 줄일 수 있다. ■ 자료 제공 : 유니티 코리아     오늘날 건설 업계에서 숙련된 인재를 찾는 것은 인력 부족으로 인해 프로젝트가 중단될 위기에 처한 것과 마찬가지로 벅찬 일이다. 2024년 미국 건설업협회에 따르면, 현재 건설업체의 79%가 숙련된 인력을 구하기 어려워 프로젝트 일정과 비용에 영향을 받고 있다고 한다. 전미 주택 건설업자 협회에 따르면 2031년까지 인력의 41%가 은퇴할 것으로 예상되는 등 인력 고령화도 이러한 격차의 원인 중 하나이다. 건설업계의 기술 인력 부족에 대한 스마트 설루션의 필요성이 그 어느 때보다 커졌다.   기존 교육의 과제 소메로는 고품질의 평탄한 콘크리트 바닥을 만들기 위한 핵심 도구인 S-22EZ 레이저 스크리드 기계를 비롯한 레이저 유도 콘크리트 스크리드 장비 전문 업체이다. 이들의 목표는 높은 출장 비용, 장비의 마모, 물류의 한계 등 글로벌 수용 능력의 제약을 해결하면서, 안전하고 효율적으로 운영자를 교육할 수 있는 VR 시뮬레이터를 개발하는 것이었다. 교육생들은 물리적 기계 없이도 컨트롤을 다루고 공간 역학을 이해하는 경험이 필요했다. 콘크리트 평탄화 기술을 마스터하려면 단순한 도구가 아니라 수년간의 신체적 연습을 통해 연마한 기술을 전수받아야 한다. 소메로의 데이브 라사카(Dave Raasakka) 글로벌 고객 지원 담당 부사장은 “콘크리트는 부패하기 쉬운 제품이다. 일단 땅에 떨어지면 한 시간 내에 완료해야 한다. 그렇지 않으면 문제가 생길 수 있다”고 설명했다. S-22EZ 레이저 스크리드 장비와 같은 중장비 교육에는 일반적으로 기계 자체, 레이저 트랜스미터와 같은 특수 장비, 적절한 콘크리트 형태와 타설 조건을 갖춘 전용 교육 공간 등 광범위한 물리적 자원이 필요하다. 이러한 실제 시나리오는 종종 기계의 마모를 포함하여 높은 비용을 수반하며 장비 가용성, 악천후, 높은 부품에 접근하는 동안의 미끄러짐 및 추락과 같은 위험과 같은 요인으로 인해 방해를 받을 수 있다. 6개의 글로벌 서비스 센터와 연간 수백 명의 교육생을 보유한 소메로 콘크리트 인스티튜트(Somero Concrete Institute)는 이러한 물류, 재무 및 안전 문제를 효과적으로 해결할 수 있는 확장 가능한 설루션이 필요했다. 소메로는 그들의 요구 사항을 충족하고 제약 조건을 해결하는 일관된 고품질 학습 경험을 제공하기 위해 대체 교육 설루션으로 포지FX 시뮬레이션(ForgeFX Simulations)을 선택했다. 실제 기계로 작업하는 경험을 모방하는 데 필요한 촉각적 피드백과 시각적 사실감을 포착하는 등 레이저 스크리드의 작동을 정확하게 재현하는 몰입형 교육 시뮬레이터를 설계해야 하는 복잡한 과제에 직면했다. 유니티 기반의 이 설루션은 S-22EZ의 복잡한 컨트롤을 복제하여 교육생에게 가상 환경에서 실제와 같은 실습 경험을 제공하므로 학습 과정에서 물리적 장비가 필요하지 않다.     사실감을 높여주는 기술/기능 유니티의 XR(확장현실) 툴은 S-22EZ 레이저 스크리드 VR 시뮬레이터를 구동하여 사실적인 몰입형 3D 환경에서 장비 동작을 정밀하게 재현할 수 있다. 유니티 클라우드(Unity Cloud)의 예외 보고 기능은 실행 가능한 스택 추적을 제공하여 최소한의 수동 개입으로 QA 및 이슈 추적을 지원한다. 성능의 경우, 유니티의 CPU 및 GPU 프로파일러를 사용하여 병목 현상을 진단하고 프레임 속도를 최적화하여 원활하고 반응이 빠른 VR 경험을 보장한다. 이러한 도구는 특히 물리 계산에서 비효율적인 부분을 파악하고 해결하여, 원활한 상호 작용과 안정적인 시뮬레이션을 유지하도록 안내한다. XR 인터랙션 툴킷(XRITK)은 가상 상호작용을 간소화하는 직관적인 크로스 플랫폼 설루션으로, 소메로 트레이닝 시뮬레이터의 몰입도와 운영 효율을 높인다. 유니티는 XRITK를 사용하여 VR 릭을 관리함으로써 메타 퀘스트 3에서 컨트롤러와 고급 핸드 트래킹 기능을 지원하여 교육생의 몰입도를 극대화하는 원활하고 반응이 빠른 교육 환경을 만들 수 있었다. 이 설정은 스냅 회전, 순간 이동, 오브젝트 조작과 같은 인터랙션 구성 요소를 표준화하여 개발 시간을 최소화하고 향후 하드웨어 및 소프트웨어 업데이트에도 시뮬레이터가 적응력을 유지할 수 있도록 한다.   ▲ 충돌기가 작동하는 모습을 보여주는 개발자 화면   유니티의 잡 시스템을 사용하면 메인 스레드의 성능에 영향을 주지 않고 보조 스레드에서 콘크리트를 사실적으로 시뮬레이션할 수 있다. 트리거 충돌기를 바운딩 박스로 사용하여 의도적이든 비의도적이든 콘크리트에 영향을 줄 수 있는 요소(예 : 스크리드 헤드 또는 기계 타이어로 인한 요소)를 정의했다. 여기에는 강체(rigid body)가 없고 충돌(collision)에 대한 레이어 마스크가 아무것도 포함하지 않도록 설정되어 있으므로, 메인 스레드에서 최소한의 작업이 수행되고 있다. 작업 시스템을 사용하면 메인 스레드 성능에 영향을 주지 않고 독립형 퀘스트 헤드셋에서 최대 4개의 스레드를 동시에 실행할 수 있다.(메인 스레드에서는 콘크리트에 영향을 줄 수 있는 기계 조각을 나타내는 바운딩 박스의 위치를 추적한다.)   ▲ 핸드 트래킹을 통해 기계 컨트롤과 현실감 있게 상호작용할 수 있다.   유니티는 다음을 활용한다. 유니티 터레인(Unity Terrain)을 활용하여 콘크리트 표면을 사실적으로 렌더링하고 텍스처를 블렌딩하여 타설 전반에 걸쳐 다양한 마감과 일관성을 반영한다. 유니티 잡(Unity Job)은 커스텀 콘크리트 시뮬레이션의 계산을 오프로드하여 쟁기나 진동기와 같은 콘크리트 충돌기가 콘크리트의 매끄러움이나 거칠기에 미치는 영향과 표면에서 콘크리트를 밀고 당기는 방식을 결정하는 커스텀 콘크리트 시뮬레이션에 배포된다. ‘러프’ 및 ‘스무스’ 텍스처가 있으며, 기본값은 러프이다. 지형 높이 맵의 각 지점에서 얼마나 부드러운 텍스처를 표시할지에 대한 알파 값을 설정한다. 메인 스레드에는 작업에 쓰이는 하이트맵 및 알파 맵 데이터와 일치하도록 지형을 업데이트하는 두 가지 빠른 함수가 있다. 이러한 시스템은 사용자가 콘크리트 작업의 시각적, 촉각적 뉘앙스를 경험할 수 있는 몰입형 가상 환경을 강화하여 복잡한 건설 활동을 충실하게 재현함으로써 교육 효과와 사용자 참여를 높인다.   ▲ 워크어라운드 검사 강의 시연하기   고객 피드백 파일럿 단계가 끝날 무렵, 소메로는 VR 교육을 마친 후 22EZ 레이저 스크리드에서 작업자 기술이 향상되었음을 보여주는 두 가지 사례 연구를 수행했다. 사례 1 : 비사용자 직원이 VR 교육을 받고 성공적으로 기계 사용법을 시연할 수 있었다. 사례 2 : 교육을 받은 비사용자를 대상으로 설문조사를 실시한 결과, 기계 작동에 자신감이 생겼다고 응답했다.   시뮬레이터의 향후 계획 보다 효과적인 교육 소메로 S-22EZ 고급 레이저 스크리드 VR 교육 시뮬레이터는 건설 교육 기술의 도약을 상징한다. 이 몰입형 교육 플랫폼은 기존 교육 방법의 문제를 해결함으로써 전 세계 운영자에게 높아진 정확성, 접근성 및 참여도를 제공한다. 복잡한 실제 시나리오를 시뮬레이션하고 환경에 미치는 영향을 줄이며 기술 유지를 강화하는 기능을 갖춘 이 시뮬레이터는 작업자가 최적의 성과를 낼 수 있도록 준비할 뿐만 아니라 소메로가 더 높은 효율과 ROI를 달성할 수 있도록 지원한다.   시장 도달 범위 확대 이 시뮬레이터는 유통업체가 대규모 기계를 원격으로 대화형으로 시연할 수 있는 기능을 제공함으로써, 소메로의 글로벌 시장 진출에 긍정적인 영향을 미칠 것으로 보인다. 소메로는 판매 주기를 가속화하고, 고객의 의사 결정을 개선하며, 글로벌 입지를 확장하는 동시에 기존 장비 쇼케이스와 관련된 물류 비용과 환경에 미치는 영향을 줄일 수 있는 잠재력을 가지고 있다.   체계적인 수업 그 이상 소메로는 시뮬레이터 2단계에 대한 추가 테스트를 진행하면서 3단계 로드맵을 구상하고 있다. 다양한 슬럼프 수준이나 건조 단계와 같은 요소를 재현하는 고급 콘크리트 시뮬레이션, 구조화된 수업 단계를 넘어, 교육생이 가상 기계와 자유롭게 상호작용할 수 있는 샌드박스 스타일의 수업 등이 잠재적인 집중 분야이다. 포지FX와 소메로는 유니티 플랫폼에서 혁신을 거듭하면서, 제조 업계에서 혁신적인 교육 경험을 제공할 수 있는 가능성을 높이고 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[포커스] 알테어, 제조 현장의 핵심 기술로 자리 잡는 AI 비전 소개
알테어는 9월 5일 ‘2025 추계 AI 워크숍’을 진행했다. ‘엔지니어를 위한 AI’를 주제로 진행된 이번 워크숍에서 알테어는 AI를 활용해 제품 개발 프로세스를 가속화하고 의사결정의 정확성을 높이며, 지능형 디지털 트윈을 완성한다는 비전을 선보였다. 또한 AI 기반 시뮬레이션, 생성형 AI, AI 에이전트, 지식 그래프 등 최신 AI 기술의 실제 적용 사례와 활용 방안을 소개했다. ■ 정수진 편집장     한국알테어의 김도하 지사장은 개회사를 통해 AI 기술이 산업 고객의 현장에서 빠르게 내재화되며 동반 성장하고 있다면서, “이는 고객들이 명확한 비전과 단계별 로드맵을 가지고 각자의 환경에 맞춰 AI를 접목하고 있기 때문”이라고 설명했다. 또한, 국가 AI 프로젝트가 시작되어 1만 4000 장의 GPU가 1차 도입되는 등 정부가 주도하는 ‘소버린 AI’ 시대가 열리고 있는 점에 주목하면서, “AI를 통한 제조 산업의 르네상스가 도래하고 있으며, 알테어 또한 시장과 함께 성장하기 위해 준비하고 있다”고 전했다.   엔지니어링 언어를 학습하는 AI 알테어의 케샤브 선다레시(Keshav Sundaresh) 디지털 전환 총괄 시니어 디렉터는 “AI는 더 이상 개념이 아니라 실제 현장의 핵심 기술”이라면서, 엔지니어링 수명주기 전반에 걸친 로코드·고효율 AI 접근법을 구현해야 한다고 짚었다. MIT의 연구에 따르면, 기업의 생성형 AI 파일럿 프로젝트 가운데 95%가 실질적인 재무 성과를 내는 데 실패하고 있는 것으로 나타났다. 그 원인으로는 ▲특정 결과에 편중된 데이터 ▲단편적이고 사일로화된 데이터 ▲값비싼 컴퓨팅 자원 ▲도메인 지식과 AI 기술 간 격차 ▲기존 시스템과의 통합 및 신뢰성 문제 등이 꼽힌다. 선다레시 시니어 디렉터는 이런 현실적 장벽을 극복할 수 있도록 알테어와 지멘스의 기술 역량을 결합해 AI 기반의 통합 설루션 포트폴리오를 제공할 수 있다는 점을 강조했다. “제품의 요구사항 정의부터 폐기에 이르는 모든 과정에서 AI를 활용하고, 단절된 디지털 스레드를 통합하여 데이터 기반의 신속한 의사결정을 지원하겠다”는 것이다. 이를 위한 핵심 전략은 ‘AI에게 엔지니어링 및 제조의 언어’를 가르치는 것이다. 기존의 LLM(대규모 언어 모델)이 텍스트나 이미지 등 일반 데이터에 강점을 보인다면, 지멘스와 알테어는 기계 설계, 전기/전자, BOM(Bill-of-Materials), 시뮬레이션 데이터 등 산업 특화 데이터를 학습시켜 신뢰도 높은 ‘산업용 파운데이션 모델(Industrial Foundation Model)’을 구축하고 있다는 것이 선다레시 시니어 디렉터의 설명이다.   AI 확산으로 제조 혁신의 속도 높인다 AI 비전을 구체화하는 방법론으로 알테어는 ‘라이프사이클 인텔리전스(Lifecycle Intelligence)’ 프레임워크를 제시했다. 이 프레임워크는 AI 도입의 장벽을 낮추고 모든 엔지니어가 AI를 손쉽게 활용해 혁신을 가속화할 수 있도록 하는 데에 중점을 두고 있다. 선다레시 시니어 디렉터는 ▲반복 작업의 자동화 및 대규모 데이터 분석으로 인간 전문가의 역량을 강화하고 ▲기존 워크플로와 도구에 AI 기능을 통합하여, 학습 부담 없이 자연스러운 AI 활용을 도우며 ▲코딩 지식과 관계 없이 모든 사용자가 AI를 구축하고 배포할 수 있는 환경을 제공하는 세 가지 접근법을 통해 AI 도입을 가속화한다는 로드맵을 소개했다. 이 프레임워크를 활용하면 전처리 영역에서는 형상 인식 AI 기술로 부품 분류 및 군집화를 자동화하거나, 자연어 처리(NLP) 기반 코파일럿을 통해 모델 정리부터 전체 해석 설정까지 대화형으로 수행할 수 있다. 솔빙 영역에서는 기존의 시뮬레이션 데이터를 학습해 CAD 또는 메시 단계에서 물리 현상을 빠르게 예측할 수 있고, 시스템 레벨의 시뮬레이션 속도를 높일 수 있다. 후처리 영역에서는 AI가 핫스폿이나 파손 영역을 자동 식별해 결과 분석을 돕는다. 이 프레임워크의 기술적 기반은 분산된 데이터를 연결하는 ‘데이터 패브릭’과 AI 모델을 개발·운영하는 ‘AI 팩토리’의 결합이다. 선다레시 시니어 디렉터는 알테어의 데이터 분석/AI 플랫폼인 래피드마이너(RapidMiner)와 로코드 앱 개발을 지원하는 지멘스 멘딕스(Mendix)를 통해 라이프사이클 인텔리전스를 구현할 수 있다고 설명했다.     엔지니어링 AI의 혁신 동력 에이전틱 AI(Agentic AI), 지식 그래프(Knowledge Graph), 생성형 AI 등 최신 AI 기술이 R&D부터 설계와 제조까지 엔지니어링 전반의 혁신을 가속화하고 있다. 알테어는 이들 기술이 개별적으로도 강력하지만, 서로 결합하면서 데이터 기반의 신속한 의사결정을 지원하고 기존 워크플로를 지능적으로 전환하는 핵심 동력으로 작용한다고 소개했다. AI 에이전트는 사용자를 대신해 특정 목표를 이해하고 자율적으로 판단 및 실행하는 ‘지능형 디지털 대리인’이다. 단순 반복 작업을 자동화하는 것을 넘어서, 여러 에이전트가 협업하는 다중 에이전트 구조를 통해 복잡한 과업을 수행하는 것이 최근의 흐름이다. 엔지니어링 현장에도 공정 상 발생한 문제에 대해 자연어로 질문하면 해결 방법을 제시하거나, 생산 라인의 다운타임 원인을 분석하고 관련 데이터를 종합해 보고하는 등의 AI 에이전트가 도입되고 있다. 알테어는 시각적 워크플로 설계 도구를 통해 이러한 AI 에이전트를 쉽게 구축하고 AI 클라우드 프로세스와 원활하게 연결하는 방법을 제시했다. 지식 그래프는 다양한 출처(소스)에 분산된 데이터를 하나의 의미 계층(semantic layer)으로 통합해서 데이터 간의 숨겨진 관계를 파악하게 하는 기술이다. 이는 AI 모델의 가장 큰 문제점으로 꼽히는 환각(hallucination) 현상을 최소화하고, 장기적인 맥락을 이해하는 메모리로 기능하면서 신뢰성 높은 AI 에이전트를 구현할 수 있게 돕는다. 엔지니어링 분야에서 지식 그래프는 여러 AI 에이전트가 일관된 지식 베이스를 공유하게 해서 협업의 효율을 높이고, 공장 문제 해결 시 여러 데이터베이스에 동적으로 접근하여 질문에 답하는 아키텍처를 구현하는 데 쓰인다.   PLM과 AI의 시너지로 더 큰 혁신도 가능 알테어는 지난 3월 지멘스와의 합병을 완료했다. 제조 기술에 강점을 가진 지멘스와 엔지니어링 및 AI 기술에 집중해 온 알테어의 시너지에 대해, 이번 워크숍에서 한 가지 실마리를 발견할 수 있었다. 알테어는 AI와 PLM(제품 수명주기 관리)의 결합이 제조업의 패러다임을 바꿀 것으로 보았다. 한국알테어 최병희 본부장은 “많은 기업이 PLM 시스템에 제품의 설계부터 생산, 운영까지 대량의 데이터를 축적하고 있지만, 이를 제대로 활용하지 못하고 있다. 이 PLM 데이터를 AI로 분석해 기업의 핵심 자산으로 만들고, 경험에 의존하던 사후 대응 방식의 업무 환경을 미래가 예측하고 문제를 예방하는 예측 기반의 업무 환경으로 혁신할 수 있다”고 소개했다. 지멘스의 PLM 설루션인 팀센터(Teamcenter)가 제품의 모든 역사를 기록한 단일 진실 공급원(single source of truth)이라면, 알테어의 래피드마이너는 코딩 지식이 없이도 AI 모델을 개발할 수 있는 ‘똑똑한 AI 분석가’라고 할 수 있다. 두 설루션을 통합하면 래피드마이너가 팀센터의 데이터를 분석해 숨겨진 패턴과 인사이트를 찾아내고, 이를 바탕으로 미래 예측 모델을 생성할 수 있다. 그리고 이 예측 결과를 다시 팀센터에 전달해 시스템 전체가 똑똑해지는 선순환 구조를 만든다. 최종적으로는 현실을 명확히 이해하고 미래를 예측하는 ‘지능형 디지털 트윈’을 완성할 수 있다는 것이 최병희 본부장의 설명이다. 이 외에 공급망 최적화, 품질 이상의 조기 탐지, 고객 피드백의 반영 등 다양한 분야로 시너지를 확장할 수 있는 가능성도 점칠 수 있다. 최병희 본부장은 “PLM 데이터를 시작으로 ERP, MES, CRM 등 분산된 기업 데이터를 통합하면 더 큰 범위의 업무 혁신이 가능하다”고 전했다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[온에어] 설계 효율 극대화한 PTC 크레오 12.4 업데이트
캐드앤그래픽스 지식방송 CNG TV 지상 중계   CNG TV는 9월 2일 ‘PTC 크레오12 론칭 웨비나’를 개최하고, 설계 및 엔지니어링 작업 효율을 극대화하도록 향상시킨 크레오 12.4의 새로운 기능을 소개했다. 이번 웨비나에서는 더욱 강력하고 사용자 친화적으로 개선된 크레오 12의 핵심 변화점들이 집중 조명됐다. 특히 단순한 기능 확장을 넘어 실제 업무 현장에서 체감할 수 있는 생산성 향상에 초점을 맞춘 업데이트 내용이 주목받았다. 자세한 내용은 다시보기를 통해 확인할 수 있다. ■ 박경수 기자   설계부터 제조까지 통합 설루션 강화 크레오 12.4는 설계 효율과 검증 정확도를 높이는 핵심 기능들로 업데이트됐다. 주요 개선사항은 UI/UX 개선, 시뮬레이션 고도화, MBD 및 GD&T Advisor 정밀성 강화, 생성형 설계(GTO/ GDX) 성능 향상 등이다. PTC코리아 김도균 대표는 “크레오 12.4는 이전 버전에서 경험하지 못했던 체감 성능과 워크플로 효율을 제공한다”며, “중요한 것은 기능의 개수가 아니라, 이를 통해 리드타임을 줄이고 비용을 절감할 수 있느냐”라고 강조했다. PTC코리아 박정호 CAD 사업 총괄대표는 “이번 웨비나는 단순히 새로운 기능을 소개하는 자리가 아니라 실제 업무에서 얼마나 효율적으로 활용할 수 있는가에 초점을 맞췄다”고 설명했다.   ▲ PTC코리아 김도균 대표   반복 작업 절반으로 단축, 생산성 대폭 향상 가장 눈에 띄는 개선점은 설계자 생산성 강화다. 신기능 툴팁과 개선된 트리 구조로 설계 환경이 직관적으로 개선됐으며, 피처 옵션 프리셋과 최근 사용값 불러오기 기능으로 반복 작업 시간을 절반 이상 단축했다. 인클로즈 볼륨 기능, 멀티보디 지원, 성능 리포트 강화 등도 설계 과정 전반의 효율을 높였다. 선도솔루션 황교성 주임은 “크레오 12.4에는 48가지 이상의 기능 개선이 포함되어 있으며, 이를 통해 설계자의 실제 작업 시간이 평균 30% 단축되는 효과를 기대할 수 있다”고 밝혔다.   ▲ 선도솔루션 황교성 주임   GPU 활용 확대로 시뮬레이션 성능 대폭 개선 시뮬레이션 분야에서는 앤시스 2025R1 솔버 탑재로 GPU 활용이 확대되고 접촉 처리와 오류 로깅이 향상됐다. 자동 접촉 인식, 베어링 하중, 패스너 이상화 기능이 추가돼 복잡한 해석도 간단한 조건만으로 현실적인 결과를 얻을 수 있게 됐다. 글루온아이엔에스 허훈 팀장은 “CSL과 앤시스 솔버가 GPU 활용과 자동 접촉 기능을 강화하면서 복잡한 해석도 간단한 조건 정의만으로 실제와 유사한 결과를 얻을 수 있게 됐다”고 평가했다.   ▲ 글루온아이엔에스 허훈 팀장   국제 표준 준수 자동화로 설계 오류 최소화 모델 기반 정의(MBD)와 GD&T Advisor 기능도 대폭 개선됐다. MBD는 3D 모델에 직접 치수와 공차를 입력해 협업과 변경 검토를 용이하게 하며, 주석 복사·붙여넣기, 의도 체인, 평면 지름 치수 지원 등 실무 친화 기능이 추가됐다. 쓰리피체인 박상범 차장은 “MBD와 GD&T Advisor 개선으로 반복 입력이 크게 줄었고, 표준을 자동으로 준수할 수 있어 설계 오류와 제조 비용을 동시에 줄이는 효과가 크다”고 설명했다.   ▲ 쓰리피체인 박상범 차장   AI 기반 생성형 설계로 최적화 수준 한 단계 향상 생성형 설계 모듈(GTO/GDX)에는 열 기반 최적화, 보존 보디·서피스 연결, 강체 지정 기능이 새롭게 추가됐다. 이를 통해 열 해석이 필요한 분야의 설계 최적화가 가능해지고, 형상 연결의 안정성이 강화되며, 해석 속도도 향상됐다. 모두솔루션 백승환 과장은 “크레오 제너레이티브 디자인은 설계자가 미처 생각하지 못한 형상을 자동으로 생성하며, 이번 업데이트로 더욱 신뢰성 있고 완성도 높은 최적화가 가능해졌다”고 강조했다.   ▲ 모두솔루션 백승환 과장   한편 발표자들은 크레오 12.4가 실시간성, 재사용성, 표준성을 기반으로 설계·검증·제조 전 과정을 더 빠르고 안정적으로 연결한다고 한 목소리로 강조했다. 이번 업데이트는 설계자가 현장에서 직접 체감할 수 있는 생산성과 경쟁력 향상을 목표로 하고 있다는 것이 PTC의 설명이다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[칼럼] 나만의 AI 에이전트 필살기 Ⅱ – 코드를 이해하는 기획자, 비개발자의 바이브 코딩 입문기
현장에서 얻은 것 No. 23   “거인의 어깨 위에 올라서서 더 넓은 세상을 바라보라.” – 아이작 뉴턴 AI라는 거대한 변화의 파도는 우리 삶 곳곳을 흔들고 있었다. 이는 단순히 새로운 기술의 등장이 아니라, 사고방식과 일하는 방식, 나아가 사회 전체의 구조를 바꾸는 흐름이었다. 필자는 지난 8개월 동안 이 변화의 흐름 속에서 매일 배우고 실험하며 자신만의 여정을 이어갔다. 이 시간 동안 AI를 단순한 도구로만 보지 않게 되었는데, 그것은 업무, 창작, 학습, 그리고 삶 전반을 통해 스스로를 끊임없이 자극하는 동반자였다. AI를 맹목적으로 신뢰하기보다는 신중하게 거리를 두고, 동시에 적극적으로 받아들이는 태도를 통해 자신만의 ‘필살기’를 다듬어왔다. 필자의 학습법은 눈으로 익힌 것이 70%, 손으로 부딪히며 체득한 것이 30%로 다소 독특했다. 이러한 비율을 받아들인 이유는 필자의 경험이 개발자의 삶이 아니었기 때문이었다. ‘바이브 코딩(vibe coding)’을 통해 비개발자도 개발을 할 수 있다고 광고했지만, 실제로는 한계가 있음을 이해했다. 커서 AI(Cursor AI)로 회사 홈페이지를 만들고, 리플릿(Replit) 프로그램으로 MBTI 판별 프로그램을 바이브 코딩으로 시도하며, 만들고 수정하는 것도 가능했다. 하지만 PLM을 기업에 구축하는 PM으로서 경험한 바로는, 비개발자가 프로그램을 만드는 데에는 한계가 있었다. 취미로 만드는 것은 환영하지만 프로그램이 론칭된 이후 발생하는 많은 이슈를 경험하며, 개발자와의 협업이 더 효율적이라는 자신만의 학습 공식을 터득했다. 강의와 책, 스터디에서 얻은 지식이 토대가 되었고, 실습과 시행착오가 그 지식을 현실과 연결해 주었다. 이부일 대표의 강의를 들으며 챗GPT를 활용한 파이썬 코드를 직접 따라가던 순간, AI가 단순한 언어 모델이 아니라 강력한 실무 도구라는 사실을 처음 체감했다. 첫날은 잘 따라갔지만 둘째 날 노트북 배터리가 나가 낭패를 본 기억도 생생했는데, 이러한 경험조차도 학습 과정의 일부가 되었다. AI 학습은 지식을 머리에 담는 것뿐만 아니라 삶과 환경 속에서 몸으로 받아들이는 과정임을 깨달았다. 실패와 해프닝도 자산이 되어 필자의 학습 지도 위에 하나씩 좌표가 찍혀갔다. 중요한 것은 속도가 아니라, 끊임 없이 배우고 기록하고 다시 활용하는 과정이 훨씬 값지다는 것이었다.  “미래는 예측하는 것이 아니라 상상하는 것이다.” – 앨런 케이   ▲ 코드를 이해하는 기획자, 비개발자의 바이브 코딩 입문(Map by 류용효) (클릭하시면 큰 이미지로 볼수 있습니다.)   비개발자가 코드를 배우려 했던 이유 필자가 비개발자로서 코드를 배우기 시작한 동기는 개인적인 필요에서 비롯되었다. PLM 구축 PM으로서 개발자와 같은 언어로 소통하고 싶었고, 프로세스 컨설팅을 수행하며 시스템/프로세스 흐름을 실제 코드 레벨에서 검증하고 싶었다. 또한 콘셉트맵과 AI를 접목하여 아이디어를 프로토타입 코드로 구현하고, 데이터 및 AI 기반으로 확장하고자 했다. 바이브 코딩을 통해 손쉽게 프로토타입을 직접 만들어 아이디어를 빠르게 실험하고 싶었던 것도 큰 동기였다. 일반적인 경우에도 비개발자가 코드를 배우는 다양한 이유가 있었다. 반복적이고 단순한 작업을 효율화하여 업무를 자동화하고, 데이터 구조를 직접 다루어 인사이트를 도출하며 데이터 이해력을 강화하는 것이었다. 개발자와의 협업 과정에서 기술적 언어를 이해하여 소통을 원활하게 하고, 아이디어를 직접 테스트하고 시각화하여 창의적 문제 해결 능력을 키우는 데에도 코딩이 필요했다. 또한 디지털 리터러시와 융합 역량을 확보하여 커리어를 확장하고, AI 툴 활용의 전제 조건인 코드 이해를 통해 AI 시대에 적응하고자 했다. 결론적으로, 비개발자가 코드를 배우는 이유는 개발자가 되기 위해서가 아니라 아이디어를 직접 다루고, 빠르게 실험하며, 더 나은 협업자이자 창의적 문제 해결자가 되기 위함이었다. 개발자와 비개발자의 시선 차이는 명확했는데, 개발자는 ‘코드와 로직을 어떻게 짤까’에 집중하고 성능, 안정성, 기술적 가능성에 관심을 두는 반면, 비개발자는 ‘왜 이게 필요한 걸까’에 집중하며 사용성, 효율, 비즈니스 가치를 중요하게 생각했다. 예를 들어, 같은 CSV 데이터를 보더라도 개발자는 데이터의 구조와 처리 방법을, 비개발자는 그 데이터가 무엇을 말해주고 경영 의사결정에 어떻게 쓰일지에 대한 의미와 활용 방법을 보았다. “가장 현명한 사람은 계속해서 배우는 사람이다.” – 소크라테스   나만의 바이브 코딩 조합 : 작은 성공에서 배운 것들 AI와 바이브 코딩 시대에 기획자의 새로운 역할이 중요하게 부각되었다. 바이브 코딩은 2025년 2월 안드레이 카르파티가 처음 언급한 개념으로, 코드 작성보다는 ‘원하는 결과물의 느낌(바이브)’을 AI에게 자연어로 설명하여 프로그래밍하는 방식이었다. 이는 코드 작성 능력이 창의력과 기획 능력으로 전환되는 트렌드를 반영했다. 비개발자를 위한 AI 개발 방법론은 문제 정의, PRD(제품 요구 문서) 작성, AI 프롬프팅, 그리고 결과 검증의 단계로 이루어졌다. 기획자는 문제 정의와 사용자 경험에 집중하고, AI와 대화하며 요구사항을 구체화하고 결과물을 정제하며, 빠른 프로토타입으로 아이디어를 시각화하고 개선점을 파악하는 데 주력했다. 필자는 8개월간의 여정 속에서 자신만의 AI 활용법, 즉 ‘필살기’를 만들어갔다. 이는 단순히 나열된 여러 갈래의 길이 아니라, 하나의 지도 위에 유기적으로 연결되어 있었다. AI는 단순히 도구가 아니라 이 지도를 함께 그려가는 협력자가 되었다. 필자의 AI 필살기는 다음과 같았다. 커서 AI : 비개발자의 ‘첫 코치’ 역할을 했다. 코딩의 벽을 낮춰주는 동반자로, 복잡한 문법, 오류, 환경 설정의 두려움을 덜어주었다. 커서 AI는 단순한 코드 자동 생성이 아니라 필자의 의도를 코드로 번역하여 작은 실험과 반복을 가능하게 했고, 바이브 코딩 학습을 지원했다. GPT-4 기반의 AI 코드 에디터로 비주얼 스튜디오 코드(VS Code)와 호환되며, 자연어로 코딩하고, 즉각적인 에러 수정, 단계별 설명, 코드 리팩토링 기능을 제공했다. 구글 CLI(Google CLI) : 데이터와 시스템을 다루는 새로운 무기였다. 클릭 대신 명령어로 반복 작업을 자동화하여 속도와 효율성을 극대화했다. 가상머신(VM), 스토리지(Storage), 데이터베이스(DB) 등 클라우드 리소스를 제어하고, 데이터를 핸들링하며, API를 직접 호출하여 서비스 통합을 용이하게 했다. 이는 GUI의 한계를 넘어서는 전문가의 무기가 되었다. 파이썬(Python) : 실전에서 가장 유용한 최소 단위였다. 쉽고 직관적인 문법, 방대한 라이브러리, 빠른 프로토타이핑이 강점이었다. 데이터 읽기/쓰기 한 줄, 간단한 자동화 스크립트 등 작은 코드로도 큰 효과를 낼 수 있었고, CSV 분석 및 시각화, 업무 자동화, AI·ML 모델 실험 등에 활용되었다. 커서 AI와 제미나이(Gemini)가 내장되어 더 쉽게 사용할 수 있었다. 이러한 도구들을 조합하여 데이터 분석 자동화 시나리오와 업무 자동화 봇 구축 시나리오를 구현할 수 있었다. 예를 들어, 커서 AI로 데이터 수집 스크립트를 작성하고, 파이썬으로 데이터 정제 및 시각화를 하며, 구글 CLI로 정기적 실행을 스케줄링했다. 무엇보다 데이터 이해는 코드보다 중요한 사고 프레임이었다. 코딩은 기술 습득이 아니라 사고방식의 확장임을 깨달았다. 데이터 구조를 이해하면 문제 정의력이 달라지고, 기획자로서 문제를 바라보는 시각이 새로워졌다. CSV 한 줄이 어떤 의미를 담고 있는지, 칼럼이 단순한 값이 아니라 업무의 맥락임을 이해하게 되면서, 데이터를 읽는 순간 업무 프로세스가 보이기 시작했다. 이러한 변화된 시각은 단순 결과물이 아닌 흐름과 원인을 질문하게 했고, 개발자와 같은 언어로 협업 및 설계를 가능하게 하며, 데이터 기반의 빠른 실험과 검증으로 이어졌다. 필자는 매일 새로운 프로그램에 도전하는 ‘하루 한 프로그램 도전기’를 통해 작은 성공을 쌓아갔다. 완벽함보다는 경험과 시행착오를 통한 학습을 강조했고, 개발의 본질이 사고의 연습임을 깨달았다. 즉, 코드는 도구일 뿐 핵심은 문제를 정확히 이해하고 구조화하는 능력이며, 실패는 학습이고 작은 성공이 쌓여 성장 곡선을 만든다는 것이었다. 끊임없이 배우고 기록하고 다시 활용하는 과정이 훨씬 값지다는 것을 체감했다. 그러나 바이브 코딩에는 현실적인 문제점도 있었다. 새로운 기능을 추가할 때 기존 기능이 손상되는 회귀 테스트 부재 문제, AI가 전체 맥락을 충분히 기억하지 못해 발생하는 기능 안정성 문제가 있었다. 무한루프나 잘못된 로직 생성, 에러 메시지 오해 등으로 인한 오류 및 디버깅 한계, 그리고 수정 과정에서 토큰/리소스를 과다하게 소비하는 문제도 발생했다. 세션이 바뀌거나 컨텍스트가 길어지면 AI가 이전 코드의 세부 흐름을 잊어버리는 지속성 부족 문제와, AI에 의해 산발적으로 작성된 코드가 구조화가 부족하여 협업 및 유지보수가 어렵다는 한계도 있었다. 이러한 문제를 경험하며 코드를 이해하거나 개발자와 협업하는 것이 필수라는 결론에 도달했다. “성공의 비결은 기회를 잡기 위해 준비하는 것이다.” – 벤저민 디즈레일리   미래를 향한 다리 : 기획자의 새로운 역할 AI 시대에 기획자의 역할은 크게 확장될 수 있었다. 비개발자의 강점은 데이터 맥락 해석력, 비즈니스 중심 사고, 그리고 맥락적 설명 능력에 있었고, 이는 CSV 데이터 컬럼의 의미와 관계를 명확하게 설명하고, 로직보다 비즈니스 가치와 목적에 집중하며, 기술적 디테일보다 전체적인 흐름과 맥락을 설명하는 커뮤니케이션 역량을 제공했다. 프로세스 컨설턴트에서 프로그램 기획자로의 역량 확장이 필요했다. 컨설팅 경험을 시스템 아키텍처 설계에 적용하고, 업무 분석 능력을 시스템 요구사항으로 전환하며, 사용자 관점과 시스템 관점의 통합을 통해 더 나은 UX(사용자 경험)를 설계하는 것이었다. 현업 부서와 IT 부서 간의 가교 역할을 수행하고, 업무 프로세스 최적화를 통해 비효율 지점을 발견하고, 시스템 병목 현상을 데이터 흐름 관점에서 해결하는 역량이 중요했다. 컨설팅 산출물을 소프트웨어 명세서로 변환하고 워크플로 시뮬레이션으로 최적화를 검증하는 방법이 요구되었다. 기획자는 기술 이해도를 바탕으로 개발팀과의 협상력을 강화하고, 데이터 기반의 의사결정 모델을 구축하며, 비즈니스와 기술을 잇는 통합적 관점을 제시하고, 프로토타입으로 아이디어를 구체화하는 능력을 확보해야 했다. 이를 위한 역량 개발로는 시스템 사고, 기술 리터러시(API, DB 구조, 클라우드 서비스 기본 개념), 애자일 방법론, 그리고 지라(Jira), 피그마(Figma), 미로(Miro)와 같은 협업 도구 활용 능력이 있었다. 기획자와 개발자의 경계를 허물고 함께 문제를 정의하고 해결하는 통합적 협업 체계를 구축하는 것이 중요했다. “나는 똑똑한 것이 아니다. 단지 문제와 더 오래 씨름할 뿐이다.” – 알베르트 아인슈타인 AI의 본질은 ‘주체’가 아니라 ‘도움’이었다. AI는 망설임 없이 실행하지만, 그것이 옳은 방향인지 판단하는 것은 인간의 몫이었다. 필자는 회의록 요약 같은 업무를 AI에 맡겼다가 보안 문제와 인간 역량 퇴화의 위험성을 깨달았다. 편리함이 언제나 효율을 의미하는 것은 아니며, 잘못된 의존은 인간의 중요한 능력을 잃게 만들 수 있었다. 그래서 필자는 AI의 답변을 최소 세 번 이상 검증했는데, 빠른 실행보다 올바른 방향 설정이 중요했기 때문이었다. AI가 주는 답은 끝이 아니라 출발점이었다. 필자가 AI와 함께한 여정은 자신을 끊임없이 질문하게 했다. AI는 인간을 대체하는 기계가 아니라, 인간이 더 깊은 사고와 창조의 세계로 들어가도록 돕는 동반자였다. 필자가 찾은 필살기는 바로 이것이었다. AI 덕분에 자신의 본질(core)에 더 많은 시간을 쏟을 수 있게 된 것이었다. 단순 반복 업무를 대신해 주는 AI 덕분에, 필자는 사고하고 기획하고 판단하는 인간 고유의 역량에 집중할 수 있었다. AI는 더 이상 선택이 아닌 필수 도구이자 협력자였다. 중요한 것은 이 강력한 도구를 어떻게 나의 본질과 연결하여, 나만의 고유한 가치를 창출하고 미래를 만들어갈 것인가에 대한 깊은 고민과 끊임없는 실행이었다. AI는 재능은 있지만 한계에 부딪힌 사람에게 ‘도움’이 되어 AI 가수, AI 영화감독, AI 작가, AI 프로그래머가 될 수 있는 길을 열어주었다. 효율만을 쫓기보다는 본질에 집중하고, 변화의 흐름을 읽으면서도 자신만의 ‘필살기’를 계속해서 갈고 닦아야 했다. 미래를 향한 첫걸음은 지금 바로 도전하는 것이었다. 바이브 코딩은 기획 의도와 개발 실행 사이의 간극을 해소하고, AI 시대 기획자의 역할 확장과 가능성을 발견하게 해주었다. 업무 자동화로 반복 작업에서 벗어나 창의적 업무에 시간을 활용하고, 데이터 기반의 의사결정과 인사이트 도출 능력을 강화할 수 있었다. 하루 30분, 한 프로그램 만들기로 시작하는 것이 중요했고, 완벽함보다는 시작하는 용기가 중요했다. 하지만 잊지 말아야 할 것은, 바이브 코딩의 장단점을 잘 파악하여 적용해야 한다. 특히 개인적인 사용의 간단한 프로그램은 괜찮으나, 대외적인 서비스를 하는 프로그램 개발의 경우, 반드시 고급 개발자의 코드리뷰를 거쳐서 보안상의 문제, 데이터 유출 등이 없도록 해야 한다. AI는 명확하게 정의된 문제를 푸는 데 능숙하지만, 복잡하고 모호한 비즈니스 요구사항을 해석하여 견고한 시스템을 설계하는 것은 못하는 것을 명심해야 한다. “코딩은 기술이 아닌 사고 프레임의 확장이다.”    ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다. (블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[칼럼] 인공지능 기술 : 도입에서 혁신으로
디지털 지식전문가 조형식의 지식마당   빠르게, 그리고 깊게 지난 2년간 필자는 정신없이 AI 지식을 흡수하고 수많은 설루션을 직접 사용했다. 신기함과 불편함이 뒤섞인 체험 끝에, 직감적으로 2025년이 인공지능 기술의 이정표가 될 것이라 확신하게 됐다.   거시 흐름, 지능형 자동화와 에이전트의 부상 인공지능(AI) 기술의 발전은 2024년을 기점으로 단순히 새로운 기술의 도입을 넘어, 산업과 사회 전반의 혁신을 촉발하는 핵심 동력으로 자리 잡았다. 여러 분석가는 2024년이 AI 도입의 해였다면, 2025년은 AI가 기존 산업의 경계를 허물고 운영 방식을 근본적으로 재정의하는 ‘혁신의 해’가 될 것으로 전망하고 있다. 이러한 변화의 물결 속에서 기업들은 막연한 기대감을 넘어, AI 기술을 통해 실질적인 비즈니스 가치(ROI)를 창출하는 데 집중하고 있다. 특히, 반복적이고 명확한 규칙 기반의 작업을 AI로 자동화함으로써 즉각적인 효율성 증대와 함께 투자 성과를 확보하는 전략이 부상하고 있다. 이러한 맥락에서 ‘지능형 자동화(intelligent automation)’는 단순 반복 작업을 넘어 복잡한 워크플로를 자율적으로 처리하고 의사결정까지 내리는 단계로 진화하고 있다. 이는 ‘AI 에이전트’의 형태로 구현되며, 응용 AI의 차세대 진화로 주목받고 있다.  이러한 거시적 흐름 속에서 AI 기술의 3대 핵심 분야인 언어 모델, 이미지 및 영상 모델, 음성 모델의 최신 기술적 동향과 시장 변화를 심층적으로 분석하고, 나아가 이들 간의 융합 현상인 ‘멀티모달 AI’의 부상을 조망함으로써 비즈니스 리더와 기술 전문가에게 전략적 통찰을 만들어 봤다. 첫 번째, 대규모 언어 모델(LLM)의 혁신은 대부분 ‘트랜스포머(transformer)’ 아키텍처에 기반을 두고 있다. GPT-4, LLaMA 2, Falcon 등 현재 시장을 선도하는 모델은 이 아키텍처를 활용하여 방대한 데이터 세트에서 인간 언어의 패턴과 구조를 학습한다. 트랜스포머는 언어 모델의 근간을 이루며, 그 영향력은 비단 텍스트에만 머무르지 않고, 오픈AI(OpenAI)의 최신 비디오 생성 모델인 소라(Sora)의 ‘디퓨전 트랜스포머’ 아키텍처에도 확장 적용되고 있다. 최근 LLM 훈련 방법론은 단순히 모델의 규모를 키우는 것을 넘어, 효율과 특화된 성능을 확보하는 방향으로 진화하고 있다. LLM 시장은 ‘규모’를 추구하는 초대형 모델(LLM)과 ‘효율’을 추구하는 소형 언어 모델(SLM)이 공존하는 양면적 발전 양상을 보인다. GPT-4o나 제미나이(Gemini)와 같은 초대형 모델은 뛰어난 범용성과 성능으로 시장을 선도하는 한편, 특정 산업이나 용도에 맞게 최적화된 SLM은 적은 비용과 빠른 속도를 무기로 틈새시장을 공략하고 있다. 이러한 이원화된 전략은 기업이 적용 업무의 성격에 따라 두 모델을 전략적으로 선택하거나 조합하는 하이브리드 접근법을 채택하도록 유도하고 있다. 두 번째, 최근 이미지 및 영상 생성 모델의 핵심 기술은 ‘디퓨전 모델(diffusion model)’이다. 이 모델은 기존의 생성적 적대 신경망(GAN)이 가진 ‘모드 붕괴(mode collapse)’ 문제를 해결하며 고품질의 다양하고 사실적인 이미지 생성을 가능하게 했다. 디퓨전 모델은 이미지에 점진적으로 노이즈를 추가한 뒤, 이 노이즈를 단계적으로 제거하며 깨끗한 이미지를 복원하는 방식을 사용한다. 이 기술은 스테이블 디퓨전(Stable Diffusion), 달리(DALL-E)와 같은 대표적인 서비스에 활용되고 있다. 대규모 언어 모델과 마찬가지로, 이미지 및 영상 모델 역시 규모의 확장과 효율의 최적화라는 상반된 흐름을 동시에 경험하고 있다. 디퓨전 모델은 모델의 규모가 클수록 더 좋은 성능을 보이지만, 그만큼 막대한 연산 자원과 느린 처리 속도라는 문제에 직면한다. 이러한 한계를 극복하기 위해 모델 경량화와 처리 속도를 높이는 기술적 접근이 중요하게 다루어지고 있다. 이는 AI 기술의 상용화와 대중화를 위한 필수 단계이다. 영상 생성 기술은 미디어 및 엔터테인먼트 산업의 콘텐츠 창작 패러다임을 근본적으로 변화시키고 있다. 텍스트 입력만으로 원하는 비디오를 만들 수 있는 능력은 브레인스토밍을 가속화하고, 마케팅 자료, 게임 비주얼, 와이어프레임 및 프로토타입 제작 시간을 획기적으로 단축시켜 기업의 시장 대응력을 높인다. 특히, 전자상거래 기업은 AI 생성 이미지를 사용하여 다양한 제품 쇼케이스와 맞춤형 마케팅 자료를 대규모로 제작할 수 있다. 세 번째, 음성 모델은 크게 음성 신호를 텍스트로 변환하는 ‘음성 인식(ASR : Automatic Speech Recognition)’과 텍스트를 음성으로 변환하는 ‘음성 합성(TTS : Text-to-Speech)’ 기술로 구분된다. 딥러닝 기술의 발전은 이 두 분야에 혁명적인 변화를 가져왔다. 음성 인식(ASR) : 딥러닝 기반의 엔드 투 엔드 모델은 음향 모델링과 언어 모델링 과정을 통합하여 ASR의 정확도를 비약적으로 향상시켰다. 최신 시스템은 배경 소음을 제거하고 자연어 처리(NLP) 기술을 활용하2025/10여 문맥을 이해함으로써 최대 99%에 가까운 정확도를 달성하고 있다. 이는 단순히 음성을 텍스트로 바꾸는 것을 넘어, 사용자의 의도를 정확히 이해하고 적절하게 대응하는 대화형 AI 시스템의 핵심 기반이 된다. 음성 합성(TTS) : 딥러닝 기반 모델은 기계적인 느낌을 벗어나 사람처럼 자연스럽고 운율이 담긴 목소리를 생성하는 데 큰 발전을 이루었다. 이는 텍스트 분석, 운율 모델링, 그리고 실제 음성 파형을 생성하는 ‘보코더(vocoder)’ 과정을 통해 이루어진다. 현대 음성 합성 기술의 발전 방향은 단순히 자연스러움을 넘어, 인간-기계 상호작용을 더욱 몰입감 있고 개인화된 경험으로 이끄는 데 있다. 감정 표현 TTS : 이는 기계에 감정을 부여하여 인간 언어와 더욱 유사한 음성을 생성하는 것을 목표로 한다. 기쁨, 슬픔, 분노 등 다양한 감정을 표현하는 음성 합성은 사용자 경험을 더욱 풍부하게 만든다. 개인화된 음성 합성(Personalized TTS) : 이 기술은 약 1시간 분량의 데이터만으로 개인의 목소리를 복제하여 맞춤형 TTS를 만드는 연구 단계에 있다. 이는 부모의 목소리로 동화책을 읽어주는 등 감성적이고 따뜻한 응용 분야에 적용될 가능성을 열어준다.   감성으로 완성되는 기술 올해는 유난히 더운 것인지 아니면, 우리가 에어컨 환경에 너무 노출되어서 더위에 대한 저항력이 없어진 것인지는 모르지만 너무 더워서 정신적 활동이 힘들었다. 그 와중에 개인 자료를 정리하던 중에 개인적으로는 필자의 입사 이력서 사진을 우연히 찾아봤으나, 손상이 많이 되어서 인공지능으로 복원해 보기로 했다.     그림 1. 옛날 사진을 스마트폰으로 촬영한 이미지와 구글 인공지능으로 생성한 이미지   우선 스마트폰으로 이 사진을 찍은 다음 구글의 제미나이로 복원하고 다양한 모습으로 재현해 봤다. 그리고 동영상도 만들어 봤다. 아주 작고 희미한 흑백 사진이라고 우리의 머리속에 있는 이미지와 유사할 때까지 계속 보강된 이미지를 만들 수 있다. 그래서 최근에는 ‘포즈의 정리(Theorem of Pose)’라는 책을 구입해서 인공지능 생성 이미지 프롬프트를 본격적으로 연구해 보기로 했다.     그림 2. 구글 제미나이로 생성된 이미지   돌이켜보면 생각보다 빠른 속도다. 기술은 때로 불안과 경외를 동시에 불러온다. 그러나 확실한 것은, 인공지능이 우리의 감성을 자극하기 시작했다는 사실이다. 오래된 사진이 되살아나고, 목소리가 감정을 띠며, 텍스트가 움직이는 영상으로 변한다. 도입의 해를 지나 혁신의 해로 들어서는 지금, 우리는 효율을 넘어 의미를 설계해야 한다. AI는 결국, 우리 일과 삶의 이야기를 더 풍부하게 엮어내는 도구다. 기술이 감성을 만나 경험을 재편할 때, 진짜 혁신은 비로소 현실이 된다. 기업의 입장에서 2024년이 ‘도입의 해’였다면 2025년은 운영 방식 자체를 재정의하는 ‘혁신의 해’다. 기업은 막연한 기대가 아니라 ROI로 말하기 시작했고, 반복적·규칙 기반 업무를 AI로 자동화하여 즉각적인 효율과 투자 성과를 확보하는 전략이 주류로 부상했다. 그 중심에는 언어, 시각(이미지·영상), 음성이라는 세 가지 축과 이들을 촘촘히 엮어내는 멀티모달 AI가 있다.   ■ 조형식 항공 유체해석(CFD) 엔지니어로 출발하여 프로젝트 관리자 및 컨설턴트를 걸쳐서 디지털 지식 전문가로 활동하고 있다. 현재 디지털지식연구소 대표와 인더스트리 4.0, MES 강의, 캐드앤그래픽스 CNG 지식교육 방송 사회자 및 컬럼니스트로 활동하고 있다. 보잉, 삼성항공우주연구소, 한국항공(KAI), 지멘스에서 근무했다. 저서로는 ‘PLM 지식’, ‘서비스공학’, ‘스마트 엔지니어링’, ‘MES’, ‘인더스트리 4.0’ 등이 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01