• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "신호"에 대한 통합 검색 내용이 700개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
젠하이저, 유선의 음질과 무선의 자유를 결합한 헤드폰 ‘HDB 630’ 출시
젠하이저가 프리미엄 헤드폰 ‘HDB 630’을 출시한다고 밝혔다. 이 제품은 젠하이저의 레퍼런스 라인업인 HD-6 시리즈 중 중립적인 사운드를 지향한 HD 650의 사운드 튜닝을 계승해 깨끗하고 균형 잡힌 중역대와 섬세한 보컬, 자연스러운 고음을 구현한다. 신제품은 아일랜드 툴라모어에 위치한 젠하이저의 첨단 생산시설에서 생산하는 SYS38 다이내믹 트랜스듀서에 HDB 630을 위해 개발한 새로운 어쿠스틱 시스템을 탑재하여, 기존 블루투스 헤드폰과 차별화된 해상도를 제공하는 것이 특징이다.     HDB 630은 단말기의 스펙과 상관없이 최고 음질의 코덱으로 상향 전송하는 USB-C 타입의 BTD700 동글을 함께 제공한다. 이를 통해 단말기의 스펙과 상관없이 모든 사운드를 AptX Adaptive 코덱으로 즐길 수 있고, 무선 연결 시에도 스냅드래곤이 인증한 24bit/96kHz의 고해상도 사운드를 감상할 수 있다. HDB 630에는 젠하이저의 초고가 헤드폰 시스템 ‘HE 1’에 적용된 ‘크로스피드(Crossfeed)’ 기능이 적용됐다. 크로스피드는 스피커로 음악을 들을 때 좌우 스테레오 신호가 공기 중에서 자연스럽게 섞이는 현상을 헤드폰에 적용한 기술로, 이를 통해 청음자는 스피커로 듣는 것과 유사한 자연스러운 입체감과 공간감을 느낄 수 있으며 극단적인 좌우 채널 분리에서 오는 피로감을 줄일 수 있다. HDB 630은 전문 음향 엔지니어가 사용하는 ‘파라메트릭 이퀄라이저(Parametric Equalizer)’도 지원한다. 고정된 주파수 대역에서 효과를 조정해야 하는 그래픽 이퀄라이저(Graphic Equalizer)와 달리 파라메트릭 이퀄라이저는 특정 주파수와 그 범위를 사용자가 선택하여 효과를 세밀하게 적용함으로써 각 사용자의 음향적 취향에 최적화된 맞춤형 사운드를 구현할 수 있도록 한다. 또한, ‘어댑티브 노이즈 캔슬링(ANC)’ 기능은 급격한 볼륨 변화나 먹먹함이 없이 주변의 소음 정도에 자동반응 하면서 음질과 음색에 변화를 주지 않아 사용자에게 자연스러운 청취 환경을 유지해 준다. HDB 630은 USB-C와 3.5mm 아날로그 케이블 등 다양한 연결 방식을 지원하며, ‘스마트 컨트롤 플러스(Smart Control Plus)’ 앱을 사용하면 사운드 설정을 공유하거나 노이즈 캔슬링, 착용 감지, 코덱 설정 등을 세부적으로 제어할 수 있다. HDB 630의 헤드밴드는 프리미엄 프로틴 레더(Protein Lether) 소재를 사용하여 고급감을 강조했으며, 한 번의 충전으로 ANC 모드에서 최대 60시간, 10분 충전으로 약 7시간을 사용할 수 있는 고속 충전 기능을 지원한다. 젠하이저의 토비아스 리터(Tobias Ritter) 음향 엔지니어는 “이동 중에도 깊이 있고 균형 잡힌 사운드를 즐길 수 있도록 하는 것이 이번 튜닝의 핵심 목표였다”면서, “음악의 감정과 디테일을 유선과 무선을 자유롭게 오가면서 생생하게 느낄 수 있다”고 말했다. ‘HDB 630’의 가격은 72만 9000원이다. 신제품은 젠하이저의 공식스토어 및 네이버 브랜드 스토어 등에서 구매할 수 있다.
작성일 : 2025-10-21
[케이스 스터디] 인더스트리 4.0을 위한 로봇 예측 유지보수의 발전
디지털 트윈과 AI가 시뮬레이션과 현실의 간극을 메우다   제조 시설은 지속적인 문제에 직면해 있다. 정비 일정은 일반적으로 실제 마모와 관계없이 3개월마다 부품을 점검하고 6개월마다 구성 요소를 교체하는 등 엄격한 일정을 따른다. 그 결과 불필요한 점검과 교체로 인한 비효율적인 시간 낭비가 발생하고, 반대로 정비 일정 전에 부품이 고장 나는 일도 생긴다. 센트랄수펠렉-파리 사클레대학교(CentraleSupélec–Université Paris-Saclay)의 지궈 젠(Zhiguo Zeng) 교수와 그의 연구팀은 디지털 트윈 기술과 딥러닝을 결합한 혁신적인 접근 방식을 통해 이 문제를 해결하고 있다. 그들의 목표는 모든 중요 부품에 센서를 배치할 필요 없이 시스템 수준의 모니터링 데이터만으로 로봇 시스템의 구성요소 수준의 고장을 감지하는 것이다. 젠 교수는 “유지보수는 공장에서 매우 큰 문제”라면서, “기계에 유지보수가 필요한 시기를 미리 안다면 주문이 적은 시기에 수리 일정을 잡을 수 있어 생산성 손실을 최소화할 수 있다”고 말했다. 그는 신뢰성 공학과 수명 예측 분야에서 풍부한 경험을 갖고 있지만, 디지털 트윈 기술은 그의 이전 연구와는 결이 다른 새로운 영역이었다. 센트랄수펠렉의 안 바로스(Anne Barros) 교수와 페드로 로드리게스-아예르베(Pedro Rodriguez-Ayerbe) 교수가 주도하는 학제 간 프로젝트인 ‘미래의 산업(Industry of the future)’에 참여하면서, 그는 디지털 트윈이 어떻게 강력한 시뮬레이션 도구를 물리적 시스템에 실시간으로 직접 연결할 수 있는지 깨달았다. 젠 교수는 “디지털 트윈은 결함 진단에 매우 유용하다. 이를 실제 기계의 데이터에 연결하여 그 데이터로 모델을 개선할 수 있다”고 설명했다.  제조업, 자동차, 항공우주 및 기타 분야로 활용 영역이 확대되면서, 디지털 트윈은 인더스트리 4.0에서 유망한 기술 중 하나로 자리잡고 있다. 물리적 객체나 시스템의 가상 복제본인 디지털 트윈(digital twin)을 생성함으로써, 조직은 운영 현황과 유지보수 필요성을 명확하게 파악할 수 있다. 또한 디지털 트윈은 예측 유지 관리 시스템 개발의 어려운 측면 중 하나인 고장 데이터의 부족에 대한 해결책을 제시한다. 젠 교수는 “현실에서는 고장이 자주 발생하는 걸 보기는 어렵다. 그래서 이제는 시뮬레이션을 통해 고장 데이터를 만들어낸다”고 설명했다.   가상과 물리의 가교 역할 디지털 트윈 프로젝트는 물리적 시스템과 가상 시스템 간의 다양한 수준의 통합을 통해 구현 옵션을 제공한다. 젠 교수의 연구팀은 세 가지 서로 다른 수준의 디지털 표현으로 작업했다. 기본 수준에서 디지털 모델은 기존 시뮬레이션처럼 작동하며, 물리적 시스템과 데이터를 교환하지 않는 정적 모델로 오프라인에서 실행된다. 그다음 단계는 디지털 섀도로, 가상 모델이 물리적 시스템의 데이터를 받아 그 행동을 미러링하지만 제어하지는 않는다. 가장 발전된 구현은 데이터와 정보의 양방향 흐름을 갖춘 진정한 디지털 트윈이다. 여기서 모델은 관찰을 바탕으로 스스로 업데이트하고 물리적 시스템을 제어하는 실시간 결정을 내린다. 연구팀은 테스트용으로 ArmPi FPV 교육용 로봇을 선택했다. 이 로봇은 5개의 관절과 하나의 엔드이펙터로 구성되며, 6개의 서보 모터로 제어된다. 결함 진단의 기초가 될 만큼 정확한 디지털 트윈을 만드는 것은 어려운 일이었다. 또한 기존 모니터링 접근 방식의 한계를 해결해야 했다. 젠 교수는 “대부분의 산업 사례에서 베어링을 진단하려면 베어링 수준의 센서가 필요하며, 이는 쉽지 않은 일이다. 내부에 베어링이 있는 큰 기계를 상상해보면 센서를 설치하기 위해서는 기계를 분해해야 하는데 때로는 공간이 충분하지 않을 때도 있다”고 말했다.   그림 1. ArmPi FPV 교육용 로봇(출처 : 센트랄수펠렉)   그들의 접근 방식은 시스템 수준 데이터(로봇 엔드 이펙터의 이동 궤적)를 사용하여 구성 요소 수준의 오류(개별 모터 문제)를 진단하는 것이었다. 또한 디지털 트윈을 사용하여 관찰할 수 있는 것과 감지해야 할 것 사이의 격차를 해소하고자 했다. 연구팀은 시뮬링크(Simulink)와 심스케이프 멀티바디(Simscape Multibody)를 사용하여 디지털 트윈을 구축했으며, 구성요소와 시스템 수준 동작을 모두 나타내는 계층적 모델을 만들었다. 젠 교수는 “모든 것은 시뮬레이션 모델을 설계하는 것으로 시작한다. 동적 시스템과 그 제어기를 모델링하고 싶다면 시뮬링크는 매우 강력하다”고 말했다. 연구팀은 시뮬링크를 사용해 모터 제어기를 PID 제어기로 모델링하면서 실험적으로 조정한 게인 값을 활용했다. 또한, 시뮬링크의 시각화 기능을 적극적으로 활용해 시뮬레이션 데이터와 실제 로봇의 센서 데이터를 연동할 수 있는 인터페이스를 구축하고, 실시간 모니터링 환경을 구성하였다. ROS 툴박스(ROS Toolbox)는 로봇 하드웨어와의 연결에서 유용한 역할을 했다. 젠 교수는 “로봇 운영 체제(Robot Operating System : ROS)를 사용하려면 일반적으로 ROS와 파이썬(Python) 환경을 별도로 구성하고 모든 연결을 직접 처리해야 한다”면서, “ROS 툴박스를 사용하면 이런 설정이 자동으로 관리되기 때문에 많은 노력을 아낄 수 있다”고 설명했다. 연구팀은 AI 모델 학습을 위한 데이터 준비 과정에서는 두 가지 접근 방식을 시도하였다. 먼저, 로봇에 입력되는 모터 명령과 그에 따른 그리퍼(gripper)의 움직임 패턴과 같은 원시 계측값을 기반으로 데이터를 수집하였다. 이후에는 디지털 트윈을 활용한 방식을 도입하였다. 시뮬레이션을 통해 로봇이 명령에 따라 어떻게 움직여야 하는지를 예측하고, 이 결과를 실제 움직임과 비교함으로써 예상과 실제 간의 차이를 도출하였다. 이러한 차이는 미세한 고장을 감지하는 데 유용한 지표로 작용하였다.   그림 2. 심스케이프 멀티바디의 로봇 팔에 대한 시뮬링크 모델(출처 : 센트랄수펠렉)   연구팀은 딥 러닝 툴박스(Deep Learning Toolbox)를 사용하여 장단기 메모리(Long Short-Term Memory : LSTM) 신경망을 훈련하여 특정 실패를 나타내는 패턴을 식별했다. 모델 아키텍처에는 각각 100개의 숨겨진 단위가 있는 두 개의 LSTM 계층, 그 사이의 드롭아웃 계층 및 완전히 연결된 분류 계층이 포함된다. 연구팀은 매트랩 앱 디자이너(MATLAB App Designer)를 사용하여 각 모터의 위치, 전압 및 온도를 포함한 실시간 데이터를 수집하는 그래픽 사용자 인터페이스를 설계했다. 이 인터페이스를 통해 로봇의 상태를 모니터링하고 오류 진단 모델의 예측을 검증할 수 있었다. 이러한 통합 도구들이 원활하게 함께 작동하면서, 연구팀은 소프트웨어 호환성 문제와 씨름하기보다는 효율적으로 기술적 과제 해결에 집중할 수 있었다.   현실 격차에 도전하다 연구팀은 실제 로봇에서 훈련된 모델을 테스트했을 때 연구원들이 ‘현실 격차’라고 부르는 시뮬레이션과 현실 세계 간의 불일치에 직면했다. 결함 진단 모델은 시뮬레이션에서 98%의 정확도를 달성하여 모터 고장의 위치와 유형을 모두 정확하게 식별했지만, 실제 로봇에서 테스트했을 때 성능은 약 60%로 떨어졌다. 젠 교수는 “시뮬레이션이 현실과 일치하지 않는 이유를 분석하고 있다”고 말하며, “실제 세계를 시뮬레이션 상에서 표현할 때 고려하지 못한 요소들이 있다”고 설명했다. 젠 교수와 그의 연구팀은 통신 신뢰성 문제, 시뮬레이션에서 고려되지 않은 모터 노이즈, 제어 명령과 모니터링 활동 간의 동기화 문제 등 성능 격차에 기여하는 여러 요인을 확인했다.   그림 3. 정상 상태 오류에서 로봇 팔의 애니메이션 및 관련 혼동 매트릭스(출처 : 센트랄수펠렉)   이러한 과제는 디지털 트윈 애플리케이션의 광범위한 문제를 반영한다. 현실은 가장 정교한 시뮬레이션보다 더 복잡하다. 연구팀은 낙담하기보다는 실제 노이즈 패턴을 시뮬레이션 하는 모듈을 디지털 트윈에 추가하고 전이 학습에 도메인 적응 기술을 적용하는 등 이러한 격차를 해소하기 위한 방법을 개발했다. 젠 교수는 “디지털 트윈 모델을 개발할 때 보정 테스트를 하긴 하지만, 이 역시 통제된 환경에서 이루어진다”고 말했다. 이어서 “하지만 산업 현장에 모델을 실제로 적용하면 훨씬 더 많은 노이즈가 포함된 데이터를 접하게 된다. 이처럼 현실의 노이즈를 알고리즘 관점에서 어떻게 보정할 것인가는 매우 도전적인 연구 주제”라고 설명했다. 이러한 수정을 통해 연구팀은 실제 세계 정확도를 약 85%까지 개선했다. 이는 실용적 구현을 향한 중요한 진전이다.   소규모 실험실에서 스마트 공장으로 연구팀의 작업은 단일 로봇을 넘어서 확장되고 있다. 이들은 다수의 로봇이 협업하며 생산 라인을 구성하는 소규모 스마트 공장 환경을 구축하고 있으며, 이를 통해 고장 진단 알고리즘을 보다 실제에 가까운 조건에서 실험하고자 한다. 젠 교수는 “우리는 미니 스마트 공장을 구축하려고 한다”면서, “생산 설비와 유사한 환경을 만들어 로봇에 알고리즘을 적용해, 실제 생산 스케줄링에 통합될 수 있는지를 실험하고 있다”고 설명했다. 이러한 접근 방식은 교육적 효과도 크다. 센트랄수펠렉의 공학과 학생들은 수업과 프로젝트를 통해 디지털 트윈, 로보틱스, 머신러닝 기술을 실습 기반으로 학습하고 있다. 젠 교수는 “학생들이 처음부터 가상 공간에서 모델을 직접 설계하고 이를 점차 실제 로봇과 연결해가는 과정을 보면, 그들이 이 과정을 진심으로 즐기고 있다는 걸 알 수 있다”고 전했다. 이 연구는 제조업뿐 아니라 물류, 스마트 창고 등 다양한 산업 분야로의 확장이 가능하다. 예를 들어 스마트 창고에서는 로봇이 정해진 경로를 따라 이동하지만, 장애물이 나타나면 이를 인식하고 경로를 유동적으로 조정해야 한다.   그림 4. 여러 로봇이 소규모 스마트 공장 환경의 생산 라인에서 협력하여 작동한다.(출처 : 센트랄수펠렉)   젠 교수는 “스마트 창고에서 로봇은 사전 정의된 규칙을 따르지만, 패키지가 떨어지고 경로가 막히는 등 경로를 리디렉션하고 다시 프로그래밍해야 하는 경우가 있을 수 있다. 이런 경우 로봇을 조정하기 위해 각 로봇의 실시간 위치를 알아야 하기 때문에 디지털 트윈 시스템이 필요하다”고 설명했다. 연구팀은 구성요소가 고장 날 때 로봇의 움직임을 조정하는 것과 같은 내결함성 제어를 포함한 추가 응용 프로그램을 모색하고 있다. 또한 연구자들은 에너지 소비만 고려하는 것이 아니라, 궤적 최적화 모델에서 각 모터의 성능 저하 수준과 잔여 유효 수명도 고려하는 건전성 인식 제어를 개발하고 있다. 그들의 코드, 모델, 데이터 세트를 깃허브 저장소(GitHub repository)를 통해 자유롭게 공개하고 있으며, 다른 연구자들이 이를 바탕으로 연구를 확장해 나가기를 기대하고 있다. 목표는 개선의 출처가 어디든 간에, 보다 나은 고장 진단 시스템을 구축하는 것이다. 젠 교수는 “누군가 우리보다 더 나은 결과를 만들어낸다면 정말 기쁠 것”이라고 전했다. 중국 제조업 현장에서 일하던 부모님의 영향을 받아 공학자의 길을 걷게 된 젠 교수에게 이번 연구는 단순한 학문적 탐구를 넘어선 개인적인 사명이기도 하다. 젠 교수는 “어릴 때 제조업에서 일하는 것이 얼마나 힘든 일인지 직접 보며 자랐다”면서, “내가 그렸던 비전은 그런 육체 노동을 로봇이 대체하게 해 사람들이 보다 나은 삶을 살 수 있도록 하는 것이었다”고 전했다.   ■ 이웅재 매스웍스코리아의 이사로 응용 엔지니어팀을 이끌고 있으며, 인공지능·테크니컬 컴퓨팅과 신호처리·통신 분야를 중심으로 고객의 기술적 성공을 지원하는 데 주력하고 있다. LG이노텍과 LIG넥스원에서 연구개발을 수행하며 신호처리와 통신 분야의 전문성을 쌓아왔다.     ■ 기사 PDF는 추후 제공됩니다.
작성일 : 2025-10-20
마이크로소프트, 윈도우 11에 코파일럿 기반 AI 기능 강화하는 업데이트 발표
마이크로소프트가 코파일럿을 통해 윈도우 11 PC에 강력한 AI 경험을 제공하는 대규모 업데이트를 발표하면서, 모든 윈도우 11 PC를 AI PC로 전환하기 위한 노력을 이어갈 것이라고 전했다. 이번 업데이트는 AI 기능을 윈도우 사용 환경에 통합해, 윈도우 11 사용자가 보다 쉽고 직관적으로 AI를 활용할 수 있도록 설계됐다. 마이크로소프트는 AI PC에 필요한 요소를 ▲자연어 문자 및 음성을 기반으로 상호작용하고 사용자를 이해 ▲사용자가 보는 시각적 정보를 같이 인식하고 도움을 추천 ▲사용자 승인 하에 능동적으로 작업 수행 등 세 가지로 제시하고 있다. 윈도우 11은 코파일럿과의 음성 기반 상호작용을 지원한다. 마이크로소프트는 음성 사용 시 코파일럿과의 상호작용 빈도가 문자보다 두 배 이상 높다는 점에 주목하면서, 간편한 음성 기반 접근으로 사용자가 코파일럿과 더욱 깊은 상호작용을 할 수 있도록 지원한다. 윈도우 11 PC의 코파일럿 앱 설정에서 이 기능을 활성화시키면 호출어인 ‘헤이 코파일럿(Hey, Copilot)’으로 코파일럿 보이스(Copilot Voice)를 실행할 수 있다. 사용자가 호출어를 말하면 화면에 마이크 아이콘이 표시되고 인식 신호음이 울리며 대화가 시작된다. 대화 종료는 ‘굿바이(Goodbye)’라는 음성 명령 또는 종료 버튼으로 실행되며, 몇 초간 상호작용이 없는 경우에도 신호음과 함께 자동으로 코파일럿이 대화를 종료한다. 코파일럿 비전(Copilot Vision)도 코파일럿이 제공되는 전 세계 윈도우 11에서 정식 지원된다. 이 기능은 사용자가 데스크톱 화면이나 앱을 공유하면 코파일럿이 화면 콘텐츠를 인식해 관련 인사이트를 제공하고, 질문에 응답하거나 음성으로 가이드를 제공하는 방식으로 작동한다. 게임 탐색, 이력서 작성, 창작 프로젝트 개선 등 다양한 작업에 활용할 수 있다.     또한, 사용자는 ‘쇼 미 하우(Show me how)’라는 음성 명령어를 통해 특정 작업의 수행 절차를 보여주도록 요청할 수 있다. 코파일럿은 앱 내 클릭 위치와 절차를 시각적으로 안내하며, 게임 플레이, 사진 보정, 여행지와 일정에 따른 준비물 검토 등 다양한 작업 환경에서 조언을 제공한다. 코파일럿 비전과의 문자 기반 대화도 가능해진다. 기존에는 음성 기반의 상호작용만 가능했으나, 마이크로소프트는 윈도우 인사이더 프로그램(Windows Insider Program)을 통해 코파일럿 비전과 텍스트 입력 방식으로도 상호작용할 수 있는 기능을 공개할 예정이다. 윈도우 11의 작업 표시줄에는 새로운 ‘애스크 코파일럿(Ask Copilot)’ 기능이 추가된다. 애스크 코파일럿 활성화를 통해 사용자는 코파일럿 비전과 코파일럿 보이스를 한 번의 클릭으로 손쉽게 이용하고, 코파일럿을 PC 사용 경험에 자연스럽게 통합해 지원, 안내, 협업 등 필요한 기능을 언제든지 활용할 수 있다. 새로운 작업 표시줄은 사용자가 더 적은 노력으로 더 많은 것을 성취하도록 돕고, 한층 생산적이고 재미있는 작업 경험을 제공하는 허브로서 기능한다. 사용자는 앱, 파일, 설정 등에 더욱 빠르게 접근함으로써 검색어를 입력하는 즉시 결과를 확인할 수 있다. 지난 5월 웹 기반 작업 수행 기능으로 공개된 코파일럿 액션(Copilot Actions on the web)은 윈도우 내 로컬 파일에서도 직접 작업을 수행할 수 있도록 기능이 확장된다. 이 기능은 윈도우 인사이더의 코파일럿 랩스(Copilot Labs)에서 프리뷰 형태로 제공될 예정이다. 범용 에이전트로서 코파일럿은 PC에 있는 맥락을 기반으로 데스크톱과 웹 애플리케이션과 상호작용하며 사진 정리, PDF 정보 추출 등 작업을 대신 수행한다. 사용자는 자연어로 작업을 지시한 후 다른 업무에 집중하며 작업 진행 상황을 실시간으로 확인하고 어떤 작업이 수행되었는지 검토할 수 있다. 코파일럿은 외부 서비스와의 연동도 지원한다. 사용자가 연결을 승인하면, 원드라이브(OneDrive), 아웃룩(Outlook), 지메일(Gmail) 등 이메일, 연락처, 일정 기반의 주요 플랫폼 서비스를 코파일럿 온 윈도우(Copilot on Windows)에 직접 연동해 활용할 수 있다. 사용자는 “치과 예약 세부 정보 찾아줘”, “이메일 주소 알려줘” 등의 명령어를 통해 캘린더나 이메일에서 필요한 정보를 빠르게 검색할 수 있으며, 원드라이브에 저장된 문서도 함께 확인할 수 있다. 검색 결과는 워드(Word), 엑셀(Excel), 파워포인트(PowerPoint) 등 다양한 형식으로 내보내는 것도 가능하다. 윈도우 설정과도 연동된다. 사용자가 윈도우 PC 설정에 대해 “화면을 더 읽기 쉽게 만들어줘”, “집중을 위해 방해 요소 줄여줘” 등 자연어 명령으로 요청하면, 코파일럿이 관련 설정 페이지로 자동 안내한다. 더 간편하게 작업을 완료할 수 있는 AI 액션 기능도 추가됐다. 매너스(Manus)는 다양한 작업을 수행할 수 있는 범용 AI 에이전트로, 파일 탐색기(File Explorer) 내에서 한 번의 클릭으로 로컬 폴더의 문서를 활용한 웹사이트를 자동 생성할 수 있다. 문서를 선택한 뒤 마우스 오른쪽 버튼을 눌러 ‘매너스로 웹사이트 만들기’를 실행하면, 별도의 업로드나 코딩 없이 몇 분 만에 웹사이트가 제작된다. 이 기능은 현재 비공개 프리뷰 단계에 있으며, 향후 파일 탐색기에서 필모라(Filmora)를 실행해 쉽고 간편하게 영상을 편집할 수 있는 새로운 AI 액션도 공개될 예정이다. 마이크로소프트는 코파일럿+ PC를 대상으로, 클릭 투 두(Click to Do)와 줌(Zoom) 연동 기능을 윈도우 인사이더 프로그램을 통해 도입할 예정이다. 이 기능을 통해 사용자는 화면에 표시된 이메일 주소 위에 마우스를 올리기만 해도, 별도의 앱 전환 없이 줌 미팅을 즉시 예약할 수 있다. 한편, 마이크로소프트는 “윈도우 11은 마이크로소프트의 시큐어 퓨처 이니셔티브(Secure Future Initiative)에 따라 역대 운영체제들 중 가장 안전하다. 특히 윈도우에 에이전트 기능이 도입되면서, 개인정보와 시스템 보호를 위한 방어 체계가 한층 강화됐다”고 소개했다. 코파일럿 액션은 사용자가 모든 실행 권한을 직접 제어할 수 있도록 설계됐다. 이 기능은 기본적으로 비활성화된 상태로 제공되며, 사용자가 직접 활성화 여부를 선택할 수 있다. 모든 실행 과정은 사용자에게 투명하게 공유되며, 민감한 작업 단계에서는 특정 작업을 위해 사용자에게 별도의 승인을 요청할 수 있다. 마이크로소프트는 프리뷰 테스트를 통해 사용자 피드백을 반영하고, 기능의 안전성과 개인정보 보호 수준을 지속적으로 개선해 나갈 계획이다. 마이크로소프트의 유수프 메흐디(Yusuf Mehdi) 최고 소비자 마케팅 책임자는 “이번 업데이트를 통해 마이크로소프트는 모든 윈도우 11 PC를 코파일럿 중심의 AI PC로 전환하는 데 한 걸음 더 나아갔다”며, “매일 사용하는 윈도우 환경에 AI를 통합함으로써 사용자들이 가장 강력한 AI 기술을 보다 쉽게 활용할 수 있도록 했다”고 말했다.
작성일 : 2025-10-17
국가핵심기술 지정 등에 관한 고시 개정안 시행
산업통상자원부(이하 산업부)는 10월 2일 목요일, '국가핵심기술 지정 등에 관한 고시' 개정안을 시행했다. 이번 개정안은 지난 5월 행정예고를 통해 발표되었으며, 의견수렴과 규제심사 등의 절차를 거쳐 최종 확정되었다. 국가핵심기술은 기술적·경제적 가치가 높아 해외로 유출될 경우 국가안보와 국민경제 발전에 중대한 악영향을 초래할 수 있는 기술을 의미한다. 산업부가 산업기술보호위원회를 거쳐 해당 기술을 지정하고 보호하고 있다. 신규 지정 기술 및 보호 범위 변경 내용 이번 개정안 시행으로 총 3개 분야의 3개 기술이 국가핵심기술로 신규 지정되었고, 6개 분야의 15개 국가핵심기술의 범위 및 표현이 변경되었다.   신규 지정 기술 (3개) 새롭게 국가핵심기술로 지정된 기술은 다음과 같다: 전기전자 분야: 적층세라믹콘덴서(MLCC) 제조 관련 기술 금속 분야: 아연 제련 관련 기술 우주 분야: 위성레이더(SAR) 제조 및 신호처리 관련 기술 변경되는 국가핵심기술 (15개)   기존 기술 중 보호 범위가 확대되거나 내용이 수정된 기술은 총 15개이다. 주요 변경 사항으로는 5G 고도화 기술까지 보호 범위가 확대되었으며, 초대형 컨테이너선 관련 일부 기술이 제외되고, 단위 수정 등이 이루어졌다. 이 기술들은 반도체, 조선, 정보통신 등 6개 분야에 걸쳐있다. 기술 보유 기관의 의무 사항 강화   신규 지정되거나 범위가 변경된 국가핵심기술을 보유한 기관은 '산업기술의 유출방지 및 보호에 관한 법률'에 따라 강화된 보호 조치를 취해야 한다. 주요 의무 사항은 다음과 같다: 보호구역 설정: 핵심기술 관련 시설 및 구역에 대한 철저한 관리 취급인력 구분 및 관리: 기술 취급 인력에 대한 체계적인 관리와 보안 유지 해외 기술 이전 시 사전 심사: 해당 기술을 해외로 이전하려는 경우 정부의 사전 심사를 반드시 받아야 한다. 향후 지속적인 기술 보호 관리 계획   산업부는 국가핵심기술의 지정, 변경, 해제 작업을 지속적으로 추진할 계획이라고 밝혔다. 기술의 보호 필요성을 산업정책적 관점에서 면밀히 검토하여, 보호가 필요한 기술은 적기에 지정하고 보호 필요성이 낮아진 기술은 과감하게 해제할 방침이다. 이를 위해 산업부는 기술의 국가안보적 및 국민경제적 가치 등을 평가하여 대상 기술을 선정할 예정이며, 수요조사를 포함한 구체적인 내용은 향후 산업부 홈페이지 등을 통해 발표될 예정이다.     「국가핵심기술 지정  등에  관한  고시」  개정안  주요  내용 1.  신규지정 : 3개  분야  3개  기술 분  야 국가핵심기술명 전기전자 (1개) 21uF/mm3   이상  초고용량밀도  MLCC  설계,  공정  및  제조  기술 금속 (1개) 아연제련공정에서의  저온  저압  헤마타이트  공정  기술 우주 (1개) 1m이하  해상도의  SAR  탑재체   제작  및  신호처리  기술   2.  변경 : 6개  분야  15개  기술 분  야 현행  기술명 개정  기술명 반도체 (1개) LTE/LTE_adv/5G  Baseband Modem LTE/LTE_adv/5G/5G_adv  Baseband   설계기술 Modem  설계  기술 자동차·철도 (1개) 자율주행자동차  핵심  부품·시스템 설계  및  제조기술  (단,  상용화   3년 이내의   카메라   시스템,   레이더 시스템,   라이더   시스템   및 정밀위치탐지  시스템에  한함) 자율주행자동차  핵심  부품·시스템 설계  및  제조  기술  (단,  상용화   3년 이내의   카메라,   레이더,   라이더   및 정밀측위모듈 및  제어시스템에 한함) 금속 (4개) 항복강도 700MPa급  이상  철근  및 인장강도 650MPa급  이상  형강  제조 기술  [저탄소강(0.4%  C이하)으로 전기로  방식에  의해  제조된  것에  한함] 항복강도 700MPa급  이상  철근  및 인장강도 650MPa급  이상  형강  제조 기술  [저탄소강(0.4wt.%  C이하)으로 전기로  방식에  의해  제조된  것에  한함]   고가공용  망간(10%  Mn  이상)  함유 특수강   제조기술 고망간(10wt.%  Mn  이상)  함유 특수강   제조  기술   합금원소  총량  4% 이하의   기가급 고강도   철강판재  제조기술 합금원소  총량  4wt.% 이하의 기가급   고강도   철강판재  제조  기술   저니켈(3%  Ni  이하)  고질소(0.4%  N 이상)  스테인리스강  제조기술 저니켈(3wt.%  Ni  이하)  고질소(0.4wt.% N  이상)  스테인리스강 제조  기술 조선 (3개) 고부가가치 선박(초대형컨테이너선, 저온액화탱크선,  빙해화물선, 친환경연료 추진선,  전기추진선 등) 고부가가치 선박(저온액화탱크선, 빙해화물선,  전기추진선,  WIG선  등)   및  해양시스템(해양작업선,  해양구조물 및  해양플랜트 등)  설계기술 및  해양시스템(해양작업선,  해양구조물 및  해양플랜트 등)  설계  기술   선박용  핵심기자재 제조기술(BWMS 제조기술,   WHRS  제조기술,   SCR  및 EGCS 등  대기오염원  배출저감 기자재   제조  기술) 선박용  핵심기자재 제조  기술(BWMS 제조  기술,  WHRS  제조  기술,  SCR, EGCS, OCCUS  등  대기오염원 배출저감  기자재   제조  기술)   친환경연료(저탄소 및  무탄소)  운반  및 추진선박용 연료공급장치,  화물운영 시스템,  재액화  및  재기화장치 등 설계,  공정  및  제조  기술 친환경연료(저탄소  및  무탄소)   운반 및  추진선박용 연료공급장치, 화물·BOG  운영시스템의  설계와 제조  기술 정보통신 (4개) 기지국  소형화  및  전력을  최소화하는 PA  설계  기술 무선장치에 활용가능한 전력증폭기 설계  기술   LTE/LTE_adv/5G  계측기기 설계기술 LTE/LTE_adv/5G/5G_adv  계측기기 설계  기술   SDN(소프트웨어 정의  네트워크) 구현을  위한  광통신  핵심  기술 차세대  패킷  광  전달망  구현을  위한 광통신  핵심  기술   5G  시스템(빔포밍/MIMO  및 이동통신망)  설계  기술 5G  및  5G_adv  시스템(빔포밍/MIMO 및  이동통신망)  설계  기술 로봇 (2개) 제조  공정에서 작업영역을 공유하는 다중  제조  로봇  운영  소프트웨어 기술 제조  및  물류  환경에서 다중의 로봇을   운영하는  소프트웨어  기술   영상  감시  기반  다중  이동로봇 통합통제 기술 이동형  감시·정찰  로봇  통합통제 기술
작성일 : 2025-10-12
인텔, 팬서 레이크 아키텍처 공개하면서 18A 공정 기반의 AI PC 플랫폼 제시
인텔은 차세대 클라이언트 프로세서인 인텔 코어 울트라 시리즈 3(코드명 팬서 레이크)의 아키텍처 세부 사항을 공개했다. 2025년 말 출시 예정인 팬서 레이크는 미국에서 개발 및 제조되며, 진보된 반도체 공정인 인텔 18A로 제작된 인텔의 첫 번째 제품이 될 것으로 보인다. 인텔 코어 울트라 시리즈 3 프로세서는 인텔 18A 기반으로 제조된 클라이언트 시스템 온 칩(SoC)으로, 다양한 소비자 및 상업용 AI PC, 게이밍 기기, 에지 설루션을 구동할 예정이다. 팬서 레이크는 확장 가능한 멀티 칩렛 아키텍처를 도입하여 파트너사들에게 폼 팩터, 세그먼트, 가격대 전반에 걸쳐 향상된 유연성을 제공한다. 인텔이 소개한 팬서 레이크의 주요 특징은 ▲루나 레이크 수준의 전력 효율과 애로우 레이크 급 성능 ▲최대 16개의 새로운 P-코어 및 E-코어로 이전 세대 대비 50% 이상 향상된 CPU 성능 제공 ▲최대 12개의 Xe 코어를 탑재한 새로운 인텔 아크 GPU로, 이전 세대 대비 50% 이상 향상된 그래픽 성능 제공 ▲최대 180 플랫폼 TOPS(초당 수 조의 연산)를 지원하는 차세대 AI 가속화를 위한 균형 잡힌 XPU 설계 등이다.     인텔은 팬서 레이크를 PC뿐 아니라 로봇 공학을 포함한 에지 애플리케이션으로 확장할 계획이다. 새로운 인텔 로봇 공학 AI 소프트웨어 제품군과 레퍼런스 보드는 정교한 AI 기능을 갖춘 고객이 팬서 레이크를 제어 및 AI /인식 모두에 활용하여 비용 효율적인 로봇을 신속하게 혁신하고 개발할 수 있도록 지원한다.  팬서 레이크는 2025년 대량 생산을 시작하며, 첫 번째 SKU는 연말 이전에 출하될 예정이다. 또한 2026년 1월부터 폭넓게 시장에 공급될 예정이다.  한편, 인텔은 또한 2026년 상반기에 출시될 예정인 인텔 18A 기반 서버 프로세서인 제온 6+(코드명 클리어워터 포레스트)를 미리 공개했다. 팬서 레이크와 클리어워터 포레스트는 물론 인텔 18A 공정으로 제조된 여러 세대의 제품들은 모두 애리조나주 챈들러에 위치한 인텔의 공장인 팹 52에서 생산된다. 인텔의 차세대 E-코어 프로세서인 인텔 제온 6+는 인텔이 지금까지 개발한 가장 효율적인 서버 프로세서로, 인텔 18A 공정으로 제작된다. 인텔은 2026년 상반기에 제온 6+를 출시할 계획이다.  제온 6+의 주요 특징은 ▲최대 288개의 E-코어 지원 ▲전 세대 대비 사이클당 명령어 처리량(IPC) 17% 향상 ▲밀도, 처리량 및 전력 효율의 개선 등이다. 클리어워터 포레스트는 하이퍼스케일 데이터센터, 클라우드 제공업체 및 통신사를 위해 설계되어 조직이 워크로드를 확장하고 에너지 비용을 절감하며 더 지능적인 서비스를 제공할 수 있도록 지원한다.  인텔 18A는 미국에서 개발 및 제조된 최초의 2나노미터급 노드로, 인텔 3 대비 와트당 성능이 최대 15% 향상되고 칩 밀도가 30% 개선되었다. 이 공정은 미국 오리건 주 공장에서 개발 및 제조 검증 과정을 거쳐 초기 생산을 시작했으며, 현재 애리조나 주에서 대량 생산을 향해 가속화되고 있다. 인텔은 향후 출시될 자사의 클라이언트 및 서버 제품에서 최소 3세대에 인텔 18A 공정을 활용할 계획이다. 인텔 18A는 10년 만에 선보이는 인텔의 새로운 트랜지스터 아키텍처 리본FET(RibbonFET)를 적용해, 더 큰 확장성과 효율적인 스위칭을 통해 성능과 에너지 효율을 높인다. 그리고 새로운 백사이드 전원 공급 시스템인 파워비아(PowerVia)를 통해 전력 흐름과 신호 전달을 개선한다. 인텔의 첨단 패키징 및 3D 칩 적층 기술인 포베로스(Foveros)는 여러 칩렛을 적층 및 통합하여 고급 시스템 온 칩(SoC) 설계로 구현함으로써 시스템 수준에서 유연성, 확장성 및 성능을 제공한다.  인텔의 립부 탄(Lip-Bu Tan) CEO는 “우리는 향후 수십 년간 미래를 형성할 반도체 기술의 큰 도약으로 가능해진 흥미진진한 컴퓨팅의 새 시대에 접어들고 있다”며, “차세대 컴퓨팅 플랫폼은 선도적인 공정 기술, 제조 역량 및 첨단 패키징 기술과 결합되어 새로운 인텔을 구축하는 과정에서 전사적 혁신의 촉매가 될 것이다. 미국은 항상 인텔의 최첨단 연구개발, 제품 설계 및 제조의 본거지였다. 미국내 운영을 확대하고 시장에 새로운 혁신을 선보이면서 이러한 유산을 계승해 나가게 되어 자랑스럽게 생각한다”고 말했다.
작성일 : 2025-10-10
[칼럼] 인공지능 기술 : 도입에서 혁신으로
디지털 지식전문가 조형식의 지식마당   빠르게, 그리고 깊게 지난 2년간 필자는 정신없이 AI 지식을 흡수하고 수많은 설루션을 직접 사용했다. 신기함과 불편함이 뒤섞인 체험 끝에, 직감적으로 2025년이 인공지능 기술의 이정표가 될 것이라 확신하게 됐다.   거시 흐름, 지능형 자동화와 에이전트의 부상 인공지능(AI) 기술의 발전은 2024년을 기점으로 단순히 새로운 기술의 도입을 넘어, 산업과 사회 전반의 혁신을 촉발하는 핵심 동력으로 자리 잡았다. 여러 분석가는 2024년이 AI 도입의 해였다면, 2025년은 AI가 기존 산업의 경계를 허물고 운영 방식을 근본적으로 재정의하는 ‘혁신의 해’가 될 것으로 전망하고 있다. 이러한 변화의 물결 속에서 기업들은 막연한 기대감을 넘어, AI 기술을 통해 실질적인 비즈니스 가치(ROI)를 창출하는 데 집중하고 있다. 특히, 반복적이고 명확한 규칙 기반의 작업을 AI로 자동화함으로써 즉각적인 효율성 증대와 함께 투자 성과를 확보하는 전략이 부상하고 있다. 이러한 맥락에서 ‘지능형 자동화(intelligent automation)’는 단순 반복 작업을 넘어 복잡한 워크플로를 자율적으로 처리하고 의사결정까지 내리는 단계로 진화하고 있다. 이는 ‘AI 에이전트’의 형태로 구현되며, 응용 AI의 차세대 진화로 주목받고 있다.  이러한 거시적 흐름 속에서 AI 기술의 3대 핵심 분야인 언어 모델, 이미지 및 영상 모델, 음성 모델의 최신 기술적 동향과 시장 변화를 심층적으로 분석하고, 나아가 이들 간의 융합 현상인 ‘멀티모달 AI’의 부상을 조망함으로써 비즈니스 리더와 기술 전문가에게 전략적 통찰을 만들어 봤다. 첫 번째, 대규모 언어 모델(LLM)의 혁신은 대부분 ‘트랜스포머(transformer)’ 아키텍처에 기반을 두고 있다. GPT-4, LLaMA 2, Falcon 등 현재 시장을 선도하는 모델은 이 아키텍처를 활용하여 방대한 데이터 세트에서 인간 언어의 패턴과 구조를 학습한다. 트랜스포머는 언어 모델의 근간을 이루며, 그 영향력은 비단 텍스트에만 머무르지 않고, 오픈AI(OpenAI)의 최신 비디오 생성 모델인 소라(Sora)의 ‘디퓨전 트랜스포머’ 아키텍처에도 확장 적용되고 있다. 최근 LLM 훈련 방법론은 단순히 모델의 규모를 키우는 것을 넘어, 효율과 특화된 성능을 확보하는 방향으로 진화하고 있다. LLM 시장은 ‘규모’를 추구하는 초대형 모델(LLM)과 ‘효율’을 추구하는 소형 언어 모델(SLM)이 공존하는 양면적 발전 양상을 보인다. GPT-4o나 제미나이(Gemini)와 같은 초대형 모델은 뛰어난 범용성과 성능으로 시장을 선도하는 한편, 특정 산업이나 용도에 맞게 최적화된 SLM은 적은 비용과 빠른 속도를 무기로 틈새시장을 공략하고 있다. 이러한 이원화된 전략은 기업이 적용 업무의 성격에 따라 두 모델을 전략적으로 선택하거나 조합하는 하이브리드 접근법을 채택하도록 유도하고 있다. 두 번째, 최근 이미지 및 영상 생성 모델의 핵심 기술은 ‘디퓨전 모델(diffusion model)’이다. 이 모델은 기존의 생성적 적대 신경망(GAN)이 가진 ‘모드 붕괴(mode collapse)’ 문제를 해결하며 고품질의 다양하고 사실적인 이미지 생성을 가능하게 했다. 디퓨전 모델은 이미지에 점진적으로 노이즈를 추가한 뒤, 이 노이즈를 단계적으로 제거하며 깨끗한 이미지를 복원하는 방식을 사용한다. 이 기술은 스테이블 디퓨전(Stable Diffusion), 달리(DALL-E)와 같은 대표적인 서비스에 활용되고 있다. 대규모 언어 모델과 마찬가지로, 이미지 및 영상 모델 역시 규모의 확장과 효율의 최적화라는 상반된 흐름을 동시에 경험하고 있다. 디퓨전 모델은 모델의 규모가 클수록 더 좋은 성능을 보이지만, 그만큼 막대한 연산 자원과 느린 처리 속도라는 문제에 직면한다. 이러한 한계를 극복하기 위해 모델 경량화와 처리 속도를 높이는 기술적 접근이 중요하게 다루어지고 있다. 이는 AI 기술의 상용화와 대중화를 위한 필수 단계이다. 영상 생성 기술은 미디어 및 엔터테인먼트 산업의 콘텐츠 창작 패러다임을 근본적으로 변화시키고 있다. 텍스트 입력만으로 원하는 비디오를 만들 수 있는 능력은 브레인스토밍을 가속화하고, 마케팅 자료, 게임 비주얼, 와이어프레임 및 프로토타입 제작 시간을 획기적으로 단축시켜 기업의 시장 대응력을 높인다. 특히, 전자상거래 기업은 AI 생성 이미지를 사용하여 다양한 제품 쇼케이스와 맞춤형 마케팅 자료를 대규모로 제작할 수 있다. 세 번째, 음성 모델은 크게 음성 신호를 텍스트로 변환하는 ‘음성 인식(ASR : Automatic Speech Recognition)’과 텍스트를 음성으로 변환하는 ‘음성 합성(TTS : Text-to-Speech)’ 기술로 구분된다. 딥러닝 기술의 발전은 이 두 분야에 혁명적인 변화를 가져왔다. 음성 인식(ASR) : 딥러닝 기반의 엔드 투 엔드 모델은 음향 모델링과 언어 모델링 과정을 통합하여 ASR의 정확도를 비약적으로 향상시켰다. 최신 시스템은 배경 소음을 제거하고 자연어 처리(NLP) 기술을 활용하2025/10여 문맥을 이해함으로써 최대 99%에 가까운 정확도를 달성하고 있다. 이는 단순히 음성을 텍스트로 바꾸는 것을 넘어, 사용자의 의도를 정확히 이해하고 적절하게 대응하는 대화형 AI 시스템의 핵심 기반이 된다. 음성 합성(TTS) : 딥러닝 기반 모델은 기계적인 느낌을 벗어나 사람처럼 자연스럽고 운율이 담긴 목소리를 생성하는 데 큰 발전을 이루었다. 이는 텍스트 분석, 운율 모델링, 그리고 실제 음성 파형을 생성하는 ‘보코더(vocoder)’ 과정을 통해 이루어진다. 현대 음성 합성 기술의 발전 방향은 단순히 자연스러움을 넘어, 인간-기계 상호작용을 더욱 몰입감 있고 개인화된 경험으로 이끄는 데 있다. 감정 표현 TTS : 이는 기계에 감정을 부여하여 인간 언어와 더욱 유사한 음성을 생성하는 것을 목표로 한다. 기쁨, 슬픔, 분노 등 다양한 감정을 표현하는 음성 합성은 사용자 경험을 더욱 풍부하게 만든다. 개인화된 음성 합성(Personalized TTS) : 이 기술은 약 1시간 분량의 데이터만으로 개인의 목소리를 복제하여 맞춤형 TTS를 만드는 연구 단계에 있다. 이는 부모의 목소리로 동화책을 읽어주는 등 감성적이고 따뜻한 응용 분야에 적용될 가능성을 열어준다.   감성으로 완성되는 기술 올해는 유난히 더운 것인지 아니면, 우리가 에어컨 환경에 너무 노출되어서 더위에 대한 저항력이 없어진 것인지는 모르지만 너무 더워서 정신적 활동이 힘들었다. 그 와중에 개인 자료를 정리하던 중에 개인적으로는 필자의 입사 이력서 사진을 우연히 찾아봤으나, 손상이 많이 되어서 인공지능으로 복원해 보기로 했다.     그림 1. 옛날 사진을 스마트폰으로 촬영한 이미지와 구글 인공지능으로 생성한 이미지   우선 스마트폰으로 이 사진을 찍은 다음 구글의 제미나이로 복원하고 다양한 모습으로 재현해 봤다. 그리고 동영상도 만들어 봤다. 아주 작고 희미한 흑백 사진이라고 우리의 머리속에 있는 이미지와 유사할 때까지 계속 보강된 이미지를 만들 수 있다. 그래서 최근에는 ‘포즈의 정리(Theorem of Pose)’라는 책을 구입해서 인공지능 생성 이미지 프롬프트를 본격적으로 연구해 보기로 했다.     그림 2. 구글 제미나이로 생성된 이미지   돌이켜보면 생각보다 빠른 속도다. 기술은 때로 불안과 경외를 동시에 불러온다. 그러나 확실한 것은, 인공지능이 우리의 감성을 자극하기 시작했다는 사실이다. 오래된 사진이 되살아나고, 목소리가 감정을 띠며, 텍스트가 움직이는 영상으로 변한다. 도입의 해를 지나 혁신의 해로 들어서는 지금, 우리는 효율을 넘어 의미를 설계해야 한다. AI는 결국, 우리 일과 삶의 이야기를 더 풍부하게 엮어내는 도구다. 기술이 감성을 만나 경험을 재편할 때, 진짜 혁신은 비로소 현실이 된다. 기업의 입장에서 2024년이 ‘도입의 해’였다면 2025년은 운영 방식 자체를 재정의하는 ‘혁신의 해’다. 기업은 막연한 기대가 아니라 ROI로 말하기 시작했고, 반복적·규칙 기반 업무를 AI로 자동화하여 즉각적인 효율과 투자 성과를 확보하는 전략이 주류로 부상했다. 그 중심에는 언어, 시각(이미지·영상), 음성이라는 세 가지 축과 이들을 촘촘히 엮어내는 멀티모달 AI가 있다.   ■ 조형식 항공 유체해석(CFD) 엔지니어로 출발하여 프로젝트 관리자 및 컨설턴트를 걸쳐서 디지털 지식 전문가로 활동하고 있다. 현재 디지털지식연구소 대표와 인더스트리 4.0, MES 강의, 캐드앤그래픽스 CNG 지식교육 방송 사회자 및 컬럼니스트로 활동하고 있다. 보잉, 삼성항공우주연구소, 한국항공(KAI), 지멘스에서 근무했다. 저서로는 ‘PLM 지식’, ‘서비스공학’, ‘스마트 엔지니어링’, ‘MES’, ‘인더스트리 4.0’ 등이 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[에디토리얼] AI 기반 스마트홈, 엔지니어링의 새로운 도전과 기회
독일 베를린에서 열린 IFA 2025는 단순한 가전 박람회가 아니라, AI가 어떻게 일상과 산업을 재편하는지를 보여준 무대였다. 전시를 관통한 키워드는 ‘AI in Everything’. 그 중에서도 ‘스마트홈’은 엔지니어링 업계가 주목해야 할 사례로 떠올랐다.   스마트홈, ‘맥락 기반 지능’으로 진화 삼성전자가 선보인 ‘앰비언트 AI’는 단순한 명령형 제어에서 벗어나, 상황과 맥락을 스스로 파악해 작동하는 방향으로 진화하고 있다. 음성인식 수준을 넘어 다중 센서 데이터, 사용자 행동 패턴, 생활 맥락을 종합적으로 분석해 자율적으로 의사결정을 내리는 구조다. 이는 상황 인지 컴퓨팅(context-aware computing)과 사이버 물리 시스템(CPS)이 결합된 고도화된 형태로 해석된다. LG전자의 ‘AI 가전의 오케스트라’ 역시 같은 흐름이다. 개별 가전이 따로 움직이는 대신, 중앙 AI 엔진이 전체를 조율해 에너지 효율과 사용자 편의를 높인다. 이는 분산 제어 시스템과 시스템 오브 시스템즈(SoS) 아키텍처가 적용된 사례로, 제조 현장의 생산 관리 시스템(MES)이 생활 공간으로 확장된 모습에 가깝다.   상호운용성 표준화의 본격화 스마트홈이 대중화되지 못했던 가장 큰 이유는 기기 간 상호운용성이 부족했기 때문이다. 이를 해결하기 위해 글로벌 기업들이 합의한 매터(Matter) 표준은 엔지니어에게 중요한 시사점을 준다. 매터는 와이파이, 스레드, 이더넷 같은 기존 네트워크 환경 위에서 동작하며, 브랜드와 무관하게 기기간 원활한 연결을 보장한다. 최근 공개된 매터 1.4.2는 QR 코드 기반 설정, 다중 환경 지원, 공개키 기반 보안 체계를 포함한다. 이는 단순한 사용자 편의성을 넘어, 기기 수명 주기 관리·원격 유지보수·사이버 보안까지 고려한 통합 설계가 필요하다는 점을 보여준다. 결국 표준화는 기술의 시장 채택률을 좌우하는 핵심 요인으로, 앞으로 산업 전반에서도 필수적 과제가 될 것이다.   엔지니어링을 향한 메시지 : 자동화·웰빙·지속가능성 IFA 2025의 또 다른 메시지는 지능형 자동화와 웰빙 중심 설계다. 요리 상태를 컴퓨터 비전으로 인식해 자동으로 조리하는 스마트 오븐, 생체 신호를 연속 모니터링해 맞춤형 건강 관리 설루션을 제시하는 헬스케어 기기들은 에지 AI와 실시간 데이터 분석 기술을 기반으로 한다. 이는 제조, 건설, 에너지 등 다양한 엔지니어링 분야에서 인간 중심 설계와 예측 유지보수로 확장될 수 있는 모델이다. 특히 주목할 점은 이러한 시스템이 데이터 현지 처리와 개인 정보 보호를 전제로 설계되고 있다는 것이다. 건강 정보나 생활 패턴과 같은 민감한 데이터는 클라우드가 아닌 로컬 기기에서 처리하는 에지 컴퓨팅 아키텍처를 적용하고 있다. 스마트홈은 단순히 생활 편의성을 높이는 기술이 아니라, AI·사물인터넷(IoT)·표준화·자동화가 결합될 때 어떤 엔지니어링 생태계가 만들어지는지를 보여주는 대표적인 사례다. 엔지니어에게는 시스템적 사고와 통합 설계 역량의 중요성을 예고하고 있다.   ■ 박경수 캐드앤그래픽스 기획사업부 이사로, 캐드앤그래픽스가 주최 또는 주관하는 행사의 진행자 겸 사회자를 맡고 있다. ‘플랜트 조선 컨퍼런스’, ‘PLM/DX 베스트 프랙티스 컨퍼런스’, ‘CAE 컨퍼런스’, ‘코리아 그래픽스’, ‘SIMTOS 컨퍼런스’ 등 다수의 콘퍼런스 기획에 참여했고,행사의 전반적인 진행을 담당해 왔다. CNG TV 웨비나의 진행자 겸 사회자로, IT 분야의 취재기자로도 활동 중이다. ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
매스웍스, ETRI의 직교형 레이더 신호 개발에 FPGA 워크플로 지원
매스웍스는 한국전자통신연구원(ETRI)이 매스웍스의 매트랩(MATLAB)과 시뮬링크(Simulink)를 활용하여 직교형 레이더 신호 송수신용 실시간 신호처리 모듈을 개발했다고 발표했다. 이 모듈은 내셔널인스트루먼트(NI) FPGA(Field-Programmable Gate Array) 기반 레이더 에뮬레이션 동작을 가속화한다. ETRI 입체통신연구소의 전파연구본부는 소출력 레이더 시스템에서 동작하는 직교형 레이더 신호 송수신이라는 복잡한 신호 처리 과제를 해결하기 위해, 매트랩과 시뮬링크를 활용한 모델 기반 설계(MBD) 접근 방식을 도입했다. 이를 통해 알고리즘을 시스템 수준에서 설계하고 검증한 뒤 자동 HDL 코드 생성과 하드웨어 구현까지 가능해졌으며, FPGA 기반 실시간 처리 시스템의 개발 효율성과 구현 정확도를 동시에 향상시켰다. 실시간 신호처리 모듈을 개발하는 과정에서 ETRI 연구팀은 그래픽 프로그래밍 환경을 이용한 기존의 CPU 기반 실행 방식만으로는 정해진 시간 내에 다중 신호를 동시에 분석하고 처리해야 하는 성능 요구사항을 충족할 수 없음을 확인했다. 신호 간섭을 줄이기 위한 정합 필터 뱅크(matched filter bank)와 같은 병렬 처리 알고리즘은 실시간 실행이 필요했고, 직교 신호 수신기는 파이프라인 구조로 구현되어야 했다. 이에 연구팀은 이러한 성능 목표 달성을 위해 NI FPGA로의 전환이 필수라고 판단했다. 그러나 매트랩 알고리즘을 HDL 코드로 변환하는 과정은 비효율적이고 오류가 발생하기 쉬웠으며, 특히 알고리즘이 변경될 때마다 수동으로 코드를 업데이트해야 하는 문제가 있었다.  또한, 알고리즘과 HDL 코드 간의 구조적 불일치로 인해 디버깅 과정이 복잡해졌다.     이러한 문제를 해결하기 위해 연구팀은 알고리즘을 시뮬링크 모델로 변환한 후 HDL 코더(HDL Coder)를 통해 HDL 코드를 자동 생성하는 워크플로를 선택했다. 이러한 접근 방식을 통해 아키텍처, 고정소수점 데이터 타입, 구현 방법 등 FPGA 구현을 위한 다양한 설계 옵션을 쉽게 평가할 수 있었다. 또한 매스웍스의 HDL 베리파이어(HDL Verifier)를 활용해 생성된 HDL 코드와 원본 알고리즘의 동작을 코시뮬레이션을 통해 비교함으로써, 시스템 수준에서의 동작 검증과 성능 테스트를 효과적으로 수행했다. ETRI는 기존의 수동 코딩 워크플로 대비 HDL 코드 구현과 검증에 소요되는 시간과 노력을 약 50% 절감할 수 있었다. 더 나아가, 알고리즘 설계자와 하드웨어 엔지니어 간의 워크플로를 통합하여 반복 작업을 줄이고 인적 오류를 최소화했다. ETRI는 머신러닝 기반 알고리즘이 포함된 향후 프로젝트에서도 동일한 방식으로 HDL Coder를 활용한 자동 코드 생성을 적극 적용할 계획이다. 한국전자통신연구원 전파연구본부의 책임연구원인 김형중 박사는 “매트랩 펑션 블록(MATLAB Function blocks)을 사용하면 주요 알고리즘 코드 대부분을 별도 작업 없이 그대로 사용할 수 있어 특히 유용하다”면서, “HDL 전문 지식이 없어도 HDL 코더를 사용해 알고리즘을 HDL 코드로 쉽게 변환할 수 있었다”고 설명했다. 매스웍스코리아의 정승혁 애플리케이션 엔지니어는 “한국전자통신연구원의 직교형 레이더 신호 개발에서복잡한 신호처리 알고리즘을 FPGA 하드웨어로 효율적으로 구현하는 데 매트랩과 시뮬링크가 핵심 역할을 했다. 이번 성과는 매스웍스의 모델 기반 설계 접근법이 한국의 첨단 연구개발 프로젝트에서 실질적인 혁신을 가능하게 한다는 것을 보여준다”면서, “매스웍스는 앞으로도 한국의 선도적인 연구기관들과 지속적인 협력을 통해 차세대 기술 개발에 적극 지원할 것”이라고 말했다.
작성일 : 2025-09-25
DJI, 1인치 센서 탑재한 미니 카메라 드론 ‘DJI 미니 5 프로’ 출시
DJI가 ‘DJI 미니 5 프로(DJI Mini 5 Pro)’를 출시했다고 발표했다. 손바닥 크기의 경량 드론인 미니 5 프로는 1인치 센서를 탑재하고, 최대 36분의 비행 시간을 제공하는 인텔리전트 플라이트 배터리와 업그레이드된 액티브트랙(ActiveTrack) 360°를 갖춘 것이 특징이다. 미니 5 프로는 50메가픽셀의 1인치 센서를 탑재해 일몰이나 야경과 같은 저조도 환경에서도 디테일을 보존할 수 있도록 했다. 또한, 새로운 48mm 중망원 모드는 이전 모델보다 높은 디지털 줌 해상도를 제공한다. DJI의 인물 촬영 모드 최적화 기술은 인물 사진의 밝기, 대비, 피부 톤을 향상시킨다. 최대 14스톱의 다이내믹 레인지를 지원하는 4K/60fps HDR 영상을 촬영할 수 있으며, 4K/120fps 슬로 모션 촬영도 지원한다. 한편, H.265 인코딩을 사용한 10-bit 영상 촬영이 가능하고, 최대 ISO가 12,800으로 향상되었다. D-Log M 및 HLG 컬러 모드에서는 최대 ISO가 3200으로 향상됐다.     미니 5 프로는 광각 225° 롤(Roll) 회전과 완전 세로 모드 촬영을 지원해 카메라 무빙이 더 자유로워졌다. 짐벌에 225° 롤 회전 기능을 적용하면 유연하고 역동적인 카메라 무빙을 구현할 수 있으며, QuickShot Rotate, 타임랩스, 스포트라이트, 웨이포인트 모드와 같은 인텔리전트 모드와 결합하면 회전 영상을 더욱 쉽게 촬영할 수 있다. 또한, 완전 세로 촬영 기능으로 고층 빌딩, 폭포, 활기찬 도시 풍경을 즉시 촬영이 가능해, 크롭 작업 없이도 사진과 영상을 소셜 미디어에 바로 업로드할 수 있다. 미니 5 프로는 전방 라이다(LiDAR)와 다중 비전 센서를 탑재한 야간 전방향 장애물 감지 기능으로 더욱 안전한 귀환 비행이 가능하다. 도시 야경에서도 비행 경로와 귀환 경로의 장애물을 능동적으로 감지하고 회피해 걱정 없는 야간 비행을 지원한다. 충분한 조명이 있는 환경에서는 비행 경로를 기억해 위성 신호 없이도 안전한 이륙과 귀환이 가능하다. L1 + L5 듀얼 밴드 GNSS로 더 많은 위성에 연결되어 향상된 신호 안정성과 정확한 위치 측정을 제공한다. 업그레이드된 액티브트랙 360°는 다양한 시나리오에 맞는 맞춤형 추적을 제공하며, 이전 모델보다 더욱 안정적이고 안전한 추적 성능을 특징으로 한다. 해변가 산책이든 구불구불한 도로에서의 자전거 라이딩이든, 미니 5 프로는 스포츠 시나리오를 감지하고 최적의 프레이밍과 추적을 위한 적절한 모드를 선택한다. 추적 성능이 향상되어 속도, 민첩성, 안전성의 균형이 잡힌 제품이다. DJI 인텔리전트 플라이트 배터리 플러스를 사용하면 표준 인텔리전트 플라이트 배터리의 최대 비행 시간인 36분에서 16분 연장된 최대 52분까지 비행 시간이 증가한다. DJI 미니 5 프로는 DJI 스토어 및 공인 판매처에서 주문할 수 있다. DJI 미니 5 프로는 93만 원이며, 구성 옵션에 따른 가격은 ▲DJI 미니 5 프로 플라이 모어 콤보(DJI RC-N3) 107만 원 ▲DJI 미니 5 프로 플라이 모어 콤보(DJI RC 2) 129만 원 ▲DJI 미니 5 프로 플라이 모어 콤보 플러스(DJI RC 2) 137만 원이다.
작성일 : 2025-09-18
세일즈포스, AI 주권 시대 위해 AI 에이전트 포함한 클라우드 인프라 지원 범위 확대
세일즈포스가 차세대 클라우드 인프라 아키텍처인 ‘하이퍼포스(Hyperforce)’의 지원 범위를 확대한다고 밝혔다. 이를 통해 국내 고객도 세일즈포스의 AI 에이전트 플랫폼인 에이전트포스를 포함, 데이터 클라우드, 태블로 넥스트, 마케팅 클라우드를 한국 내 퍼블릭 클라우드 환경에서 운영 및 활용할 수 있게 됐다. 세일즈포스는 2023년 국내 시장에 하이퍼포스를 처음 선보인 이후, AI 시대를 맞아 국내 기업들이 신뢰할 수 있는 환경에서 AI 혁신을 실현할 수 있도록 한국 시장에 대한 투자를 지속 강화해왔다. 특히 최근 발표한 ‘글로벌 AI 준비지수 보고서’를 통해 한국 시장은 AI 혁신을 위한 잠재력이 매우 높은 국가라고 설명하며, 이번 하이퍼포스 지원 범위 확대가 ▲데이터 기반 정립 ▲에이전틱 AI 활용 환경 구축 ▲AI 기반 데이터 분석 및 시각화 등 국내 기업의 AI 에이전트 혁신을 지원하기 위한 전략적 의사결정이라는 점을 강조했다. 이와 관련하여 세일즈포스는 그간 추구해 온 ‘완전히 통합된 단일 플랫폼(Deeply Unified Platform)’이 마침내 국내 데이터 레지던시 요건을 충족하며 온전하게 구현되었다는 점을 강조했다. 국내 기업들 또한 고객과 맞닿아 있는 모든 상호작용, 내부 프로세스, 기능별 업무를 한국 내에 데이터가 저장되는 단일 플랫폼 상에서 통합 관리하며 AI 에이전트를 접목 및 활용할 수 있다는 설명이다.     세일즈포스에 따르면 이번 하이퍼포스 지원 범위 확대는 신뢰할 수 있는 데이터 통합 및 활성화(데이터 클라우드)부터 AI 기반의 고객 여정 설계 및 초개인화 캠페인 실행(마케팅 클라우드), AI 에이전트 개발 및 배포(에이전트포스), AI 기반 데이터 분석 및 시각화(태블로 넥스트)로 이어지는 AI 혁신 전반에 대한 지원 역량을 갖추었다는 점을 시사한다. 또한 공공, 금융, 통신, 유통, 소비재 등 규제로 인해 디지털 기술 도입이 제한적이었던 산업군에서도 세일즈포스 활용이 한층 더 용이해지며 각 산업 특성을 반영한 ‘인더스트리 클라우드’와 ‘산업군별 에이전트포스’ 도입이 본격화될 전망이다. 이에 따라 사전 구축된 데이터 모델과 AI 에이전트를 바탕으로 산업별 특수 요구사항과 규제에 유연하게 대응할 수 있는 것은 물론, 보다 민첩한 비즈니스 가치 창출이 가능하다. 세일즈포스 코리아 박세진 대표는 “이번 하이퍼포스 국내 지원 확대는 한국 시장에 대한 세일즈포스의 확고한 의지를 보여주는 전략적 투자이자, 국내 기업들의 AI 혁신 여정을 본격적으로 지원하기 위한 신호탄”이라며, “세일즈포스는 완전히 통합된 단일 플랫폼을 기반으로 국내 기업의 에이전틱 AI 혁신을 가속화하고, 생산성 향상과 새로운 비즈니스 가치 창출이라는 실질적 성과를 달성하기까지의 전 여정을 지원하는 전략적 파트너 역할을 강화해 나갈 것”이라고 전했다.
작성일 : 2025-09-11