• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "시각화"에 대한 통합 검색 내용이 2,027개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
시뮬리아 웨이브6를 활용한 환경 소음 시뮬레이션
산업 디지털 전환을 가속화하는 버추얼 트윈 (6)   이번 호에서는 다쏘시스템의 소음·진동 설루션 웨이브6(Wave6)를 활용해 도심 항공 모빌리티와 수중 방사 소음에 적용한 사례를 살펴본다.   ■ 이현충 다쏘시스템코리아의 소음 진동 해석 담당 기술 컨설턴트이다. 자동차/항공/선박 산업을 포함한 다양한 산업군에 진동해석 설루션을 적용하여 고객에서 가치를 전달하는 역할을 담당하고 있다. 홈페이지 | www.3ds.com/ko   환경 소음 규제가 점차 강화됨에 따라 소음 저감 기술의 적용이 중요해지고 있다. 특히 차세대 교통 체계 산업인 도심 항공 모빌리티(UAM : Urban Air Mobility) 분야에서는 이착륙장 위치와 항로를 결정할 때 소음이 가장 중요한 고려 요소이다. 또한 해양 생태계 보호를 위해 국제해사기구(IMO)는 선박의 수중 방사 소음(URN : Underwater Radiated Noise) 저감을 위한 규제를 논의하고 있다. 이는 도심형 항공기와 선박 등 운송 수단의 설계 단계에서부터 시뮬레이션을 기반으로 한 정확한 예측을 요구한다. 웨이브6는 다쏘시스템의 소음·진동 설루션으로, 광대역 주파수에서 소음이 방사되는 현상을 시뮬레이션할 수 있다. 특히 환경 소음의 경우 넓은 영역으로 방사되는 소음을 예측해야 하는데, 이는 많은 해석 시간과 리소스를 필요로 한다. 효율적으로 환경 소음을 예측하기 위해 웨이브6의 공간 경사(Spatial Gradient) 통계 에너지 해석(SEA, Statistical Energy Analysis) 방법론을 적용할 수 있다. 이번 호에서는 항공기 프로펠러 소음 해석 예시와 수중 방사 소음 연구 사례를 통해 웨이브6의 활용법을 소개한다.   웨이브6 소음 해석 방법론 소음 해석 방법론을 설명하기 위해 차량 실내 소음을 예로 들어보자. <그림 1>과 같이 차량 실내 공간 내 다양한 위치에서 음압 레벨(SPL : Sound Pressure Level)을 예측하는 것이 목적이다. 투명한 흰색 표면은 내부 음장 공간의 경계이며, 회색 표면은 공간 내 음압 레벨을 시각화하기 위한 가시화용 표면이다. 마지막으로 파란색 표면은 공간 내 소리를 방사하는 사이드 글라스를 나타낸다. <그림 1-b>는 사이드 글라스가 진동에 의해 발생하는 실내 소음을 경계요소법(BEM : Boundary Element Method)과 공간 경사 통계 에너지 해석(SEA : Statistical Energy Analysis) 방법으로 예측한 결과이다. 가진원인 사이드 글라스 근처에서 높은 음압 레벨이 나타나는 것을 확인할 수 있다. 경계요소법의 경우 주파수가 높아짐에 따라 높은 자유도(DOF : Degree of Freedom)를 필요로 하므로 해석 시간과 메모리 사용량이 크게 증가한다. 반면, 웨이브6의 공간 경사 통계 에너지 해석 기법은 훨씬 적은 메모리를 요구하며, 더 빠르게 해석 결과를 얻을 수 있다. 특히 환경 소음처럼 넓은 영역을 경계 요소법이나 유한 요소법(FEM : Finite Element Method)으로 해석하기 어려운 경우, 공간 경사 통계 에너지 해석 기법을 활용해 예측할 수 있다.   (a) 자동차 내부 공간   (b) 경계요소 해석 결과   (c) 공간경사 통계 에너지 해석 결과 그림 1   ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
데이터 분석 로코드 설루션을 배워보자 Ⅰ
로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (2)   지난 호에서는 로코드 분석 설루션이 필요한 이유에 대해 알아보았다. 또한 데이터 분석이 일반적으로 거치는 과정에 대해서도 살펴 보았는데, 이러한 과정에 파이썬(Python)과 같은 프로그래밍 언어가 활용되는 상황 또한 정리해 보았다. 이번 호에서는 로코드 분석 설루션인 KNIME(나임)에 대해 알아보고, 전력 판매량 예측에 대한 분석 과제를 따라하기 과정을 통해 완성해 보도록 하겠다.   ■ 연재순서 제1회 데이터 분석에 로코드 설루션이 필요한 이유 제2회 데이터 분석 로코드 설루션을 배워보자 Ⅰ 제3회 데이터 분석 로코드 설루션을 배워보자 Ⅱ 제4회 로코드를 활용하여 시뮬레이션 데이터 분석을 따라해 보자 제5회 데이터 분석 로코드 설루션을 클라우드로 확장해 보자   ■ 윤경렬 현대자동차 연구개발본부 책임연구원   ■ 김도희 잘레시아 DX 프로   지난 호에서 살펴본 일반적인 데이터 분석 과정은 다음과 같다.   요청 접수 → 데이터 확보 → 데이터 검토(칼럼/누락/이상치 확인) → 분석 전략 수립 → 데이터 정제 및 가공 → 분석 수행 및 시각화 → 결과 공유   이전에 강조한 바와 같이, 아무리 쉬운 코딩 언어라고 할지라도 데이터 분석을 요청받은 데이터 과학자(data scientist)가 이를 실제 업무에 적용하여 원하는 결과를 빠르고 정확하게 구현해내는 것은 어려운 일이다. 또한 코딩에 능숙한 데이터 과학자라고 해도 깃허브(Github) 및 인터넷 상에 공유된 소스코드를 다운받아 재활용 및 가공하여 사용하는 경우가 많은데, 이때 악성 코드 등에 대한 보안 이슈도 문제가 될 소지가 있다. 사실 데이터 과학자는 수학 및 통계적 지식을 활용하여 빠르게 정확하게 데이터 분석을 하고 싶은 것이고, 이를 위해 효율적인 툴을 사용하고자 한다. 우리는 이러한 현상을 극복해 나가고자 로코드 분석 설루션(low code analytics solution)을 대안으로 검토하였고, 이를 활용하여 데이터 분석을 수행해 나가는 과정을 따라가 보고자 한다. 지난 호에서 유관부서로부터 전력 판매량(electric power sales) 예측에 대한 분석 과제를 요청 받은 상태이고, 언제나처럼 기한은 촉박한 상황의 시민 데이터 과학자(citizen data scientist)로 가정하여 주어진 과제 목표를 달성하였다. 우리에게 주어진 데이터는 발전소 데이터, 기상 정보 데이터, 날짜 및 요일 데이터 등 세 가지로 이를 처리하기 위해 파이썬으로 코드를 작성한 사례를 공유하였고, 동일한 내용을 로코드 분석 설루션인 KNIME을 활용하여 처리한 사례도 공유하였다.   그림 1   이번 호에서는 KNIME에 대해 알아보고 전력 판매량 예측에 대한 분석과제를 따라하기 과정을 통해 완성해 보도록 하겠다. 우선 구글 제미나이(Google Gemini)에게 KNIME에 대한 역사와 특징에 대해 알려 달라고 해보자.(그림 2~4)   그림 2   그림 3   그림 4   가트너(Gatner)의 피어 인사이트(Peer insight) 리뷰를 확인해 보았는데, 평점(rating)이 상당히 높은 편이고 사용자의 반응도 높다는 것을 확인하였다. 또한 오픈소스 기반 소프트웨어로서 기업에서도 무료로 자유롭게 설치하여 사용할 수 있다는 측면에서(KNIME Analytics Platform) 로코드 분석 설루션으로 선택하기에 부족함이 없다는 것을 확인하였다.   그림 5   현재 KNIME은 데이터 사이언스를 위한 최적의 설루션을 위해 세 가지 서비스를 제공하고 있다. 이번 호에서는 KNIME Analytics Platform을 활용하여 전력 판매량 예측에 대한 분석 과제를 따라해보고자 한다.   그림 6     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
프로세스 자동화Ⅱ - 모터 설계 최적화
최적화 문제를 통찰하기 위한 심센터 히즈 (7)   심센터 히즈(Simcenter HEEDS)는 제품 설계 과정에서 발생하는 다양한 문제에 대해서 최적화 방법론을 적용하고 올바른 결과를 도출하는 데에 도움을 준다. 이번 호에서는 모터의 성능 최적화를 위해 심센터 E-머신 디자인(Simcenter E-Machine Design)을 사용하여 모터 시뮬레이션의 자동화 워크플로를 구성하고 최적화를 진행하는 과정을 소개한다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   심센터 E-머신 디자인(EMD)은 전기기기(e-machine) 설계를 위한 통합 설루션이다. EMD는 모터 및 발전기 설계 과정에서 요구되는 다양한 토폴로지(topology)를 지원하고, 자동화된 전처리/후처리 환경, 전자계-열 연동 해석, 시스템 및 다분야 설계 연계를 위한 확장성을 제공한다.   그림 1   EMD는 대표적으로 <그림 2>와 같은 토폴로지(SM : 동기모터, IM : 유도모터, SRM : 스위치드 릴럭턴스 모터, DCM : 직류모터, AFM : 축 플럭스 모터)를 모두 지원해, 실제 산업 현장에서 필요한 다양한 형태의 전기기기 개발을 한 플랫폼에서 수행한다.   그림 2   설계 과정 전반에 걸쳐 자동화된 전처리(pre-processing)와 후처리(post-processing) 도구를 제공해, 모델 설정에서 결과 해석까지 반복적인 수작업 부담을 최소화한다. 사용자는 빠른 모델링, 자동 메시 할당, 결과 데이터의 즉시 시각화 등 효율적인 설계 프로세스를 구현할 수 있다.   그림 3   전자계 분석과 열 해석을 연동할 수 있으므로, 전자기적 성능뿐만 아니라 실제 운전 조건에서의 온도 및 열적 거동까지 정밀하게 평가한다. 필요에 따라 시스템 해석(Amesim, FMU 등)을 병행해 구동 특성 및 제어 연계 분석도 확장할 수 있다.   그림 4   EMD는 상세 전자기 해석(detailed Emag), 열 및 유동 해석(thermal CFD), 진동 소음(NVH) 해석, 구조 해석 등 지멘스 심센터(Siemens Simcenter) 포트폴리오 내의 다양한 다분야/다중물리 해석 설루션과 직접 연동할 수 있다. 이를 통해 실제 제품 설계 환경에서 요구되는 복잡한 다중물리 연계 및 시스템 수준 평가까지 단일 워크플로에서 처리가 가능하다.   그림 5   종합적으로, 심센터 EMD는 전기기기 설계의 생산성, 신뢰성, 확장성을 극대화하며, 설계 초기 단계부터 상세 검증, 및 시스템 통합까지 모든 프로세스를 통합적으로 지원하는 강력한 모터 설계 검증 설루션이다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
처리 시간이 10시간 미만인 LES 워크플로
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (25)   이번 호에서는 사용자가 피델리티 포인트와이즈(Fidelity Pointwise)와 피델리티 LES 솔버(Fidelity LES Solver, 이전 명칭 CharLES)를 사용하여 LES 워크플로의 이점을 누릴 수 있는 방법에 대해 설명한다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   대규모 와류 시뮬레이션(LES)은 최근 전산 유체 역학(CFD)에서 그 중요성이 커지고 있다. 이러한 급증은 주로 제한된 설계 공간, 긴 실행 시간, 물리학 감소 등 기존의 레이놀즈 평균 나비에 스토크(RANS) 기반 CFD에 내재된 트레이드오프 때문이다. 코드 설계 및 컴퓨팅 아키텍처의 발전으로 경계층 분리, 항공 음향, 연소 등 복잡한 산업 문제에 대해 LES(Large-Eddy Simulation, 대형 와류 시뮬레이션)와 같은 고충실도 시뮬레이션을 구현할 수 있게 되었다. 이러한 발전은 시뮬레이션 결과에 대한 신뢰도를 높여줄 뿐만 아니라, GPU 컴퓨팅 아키텍처의 활용을 통해 LES 솔버의 성능을 크게 향상시켰다. 이러한 개선으로 이제 LES 워크플로를 실제 엔지니어링 작업에 적용하여 10시간 미만의 처리 시간을 달성할 수 있게 되었으며, 이를 통해 LES는 생산 수준의 CFD 환경에서 실용적인 선택이 될 수 있게 되었다.   ▲ CFD Prediction for High-Lift Aerodynamics(Slotnick, 2019)   피델리티 LES 솔버 피델리티 LES 솔버가 고충실도 LES 시뮬레이션에서 갖는 장점은 다음과 같이 네 가지로 볼 수 있다. 보로노이 다이어그램 기반 대규모 병렬 메시 환경 강력하고 비선형적으로 안정적인 수치 체계 및 고급 물리 모델 대규모 데이터 세트를 위한 신속한 시각화 및 심문 확장 가능한 GPU 상주 다중 물리 유동 솔버     전처리는 전체 정확도에 큰 영향을 미치고 일반적으로 전체 워크플로 시간의 약 75~80%를 차지하기 때문에 CFD 워크플로에서 매우 중요한 단계이다. 이 단계에서 CFD 사용자를 지원하기 위해 피델리티 LES는 피델리티 스티치(Fidelity Stitch)라는 고급 메시 툴을 개발했다. 이 툴은 정확도를 개선하고 메시 품질 지표를 향상하는 데 필요한 시간을 단축하여 전처리 워크플로를 훨씬 더 효율적으로 만들 수 있도록 설계되었다. 피델리티 스티치는 LES를 위한 보로노이 다이어그램 기반 볼륨 메시 툴이다. 보로노이 다이어그램은 유클리드 거리를 기반으로 한 고유한 파티션이다. 이 메시 프로세스에는 두 가지 입력이 있다. 첫 번째 입력은 피델리티 스티치가 다이어그램을 클립하는 데 사용할 수밀하고 매니폴드한 표면 메시를 가져오는 것이다. 두 번째 입력은 사이트 생성이다. 토폴로지는 사이트 배치와 해당 사이트 스텐실과 서피스 메시의 교차점을 생성한 결과물이다. 그러면 스티치가 임의의 다면체 셀을 직접 생성한다.     로이드 알고리즘은 반복적으로 메시를 평활화하는 데 사용된다. 이 스무딩 절차는 벽에 가까운 정렬을 유리하게 만들고 고해상도가 필수적인 인터페이스에서 셀 볼륨을 보다 균일하게 분배한다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
모바일 CAD 아레스 터치의 새로운 기능
데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2026 (6)   DWG 호환 CAD로 알려진 독일 그래버트(Graebert)의 아레스 캐드(ARES CAD)는 PC 기반의 아레스 커맨더(ARES Commander), 모바일 기반의 아레스 터치(ARES Touch), 클라우드 기반의 아레스 쿠도(ARES Kudo) 모듈로 구성되어 있으며, 이들 모듈은 상호 간 동기화되어 작동한다. 이러한 구성으로 인해 아레스 캐드는 흔히 삼위일체형(trinity) CAD로 불린다. 이번 호에서는 스마트폰 및 태블릿에서 동작하는 아레스 터치를 중심으로, 새롭게 추가된 주요 기능 네 가지를 살펴보겠다.   ■ 천벼리 캐디안 3D 솔루션 사업본부 대리로 기술영업 업무를 담당하고 있다. 홈페이지 | www.arescad.kr 블로그 | https://blog.naver.com/graebert 유튜브 | www.youtube.com/GraebertTV     아레스 터치는 스마트폰과 태블릿에서 도면을 확인하고 수정하며 주석을 추가할 수 있도록 설계된 모바일 전용 CAD 애플리케이션이다. 안드로이드 스마트폰 및 태블릿, 아이폰 또는 아이패드에서 사용할 수 있다. 이 앱은 전문적인 2D 도면 편집 기능은 물론 3D 파일의 시각화와 협업 기능까지 제공하며, 아레스의 트리니티(Trinity) 기술 개념에 기반한 다양한 도구를 포함하고 있다. 또한, 면적 계산이나 중심선 작성 등 새로운 명령어가 계속 추가되어 기능이 점점 확장되고 있다.   ■ 참고 아레스 터치는 ARES Commander Trinity 라이선스 및 ARES Kudo Professional 라이선스에 포함되어 제공된다. 또는 아레스 터치 단독 구매를 원하는 경우, 그래버트 홈페이지에서 직접 구매할 수 있다.   아레스 터치에 새롭게 추가된 기능 면적 표시 도구 : Area Note 명령어     도면 내 특정 영역(예 : 방, 필드 등)을 다양한 표준 색상과 투명 효과를 사용하여 시각적으로 강조할 수 있는 새로운 명령어이다. 이 기능은 사용자가 영역을 선택하면 해당 면적을 자동 계산하고, 색상과 이름으로 구분해 표시할 수 있도록 도와준다. 해당 명령은 메뉴에서 주석(Annotate) → Area Note 또는 명령어 모음 리스트에서 ‘AREANOTE’로 실행할 수 있다. 영역은 내부 점을 클릭하거나, 선으로 둘러싼 외곽을 지정하여 선택할 수 있다. 선택된 영역은 사용자가 지정한 색상으로 채워지며, 투명도 설정도 가능하다. 면적(도면 단위 기준)은 자동으로 계산되어 삽입되며, 사용자가 입력한 설명(레이블)도 함께 표시할 수 있다. 생성된 영역은 익명 블록(Anonymous Block) 형태로 삽입되며, 속성 팔레트를 통해 색상, 이름 등 다양한 속성 변경이 가능하다.   중심선 생성 도구 : Centerline 명령어     중심선(Centerline)을 생성하는 주석 기능이 새롭게 도입되었다. 이로 인해 주석 기능의 범위가 더욱 확대되고 활용도도 높아지고 있다. ‘CENTERLINE’ 명령어를 사용하면 두 개의 선(line), 호(arc), 폴리선(polyline) 구간 사이에 중심선을 생성할 수 있다. 중심선은 선택한 객체보다 약간 연장된 길이로 생성되며, 정확한 중심에 배치된다. 선택하는 두 객체는 길이가 달라도 상관없으며, 평행하지 않아도 중심선은 그 중간을 기준으로 자동 생성된다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
[케이스 스터디] 가상 커미셔닝으로 산업 과제를 해결하는 스피라텍
개방형 커미셔닝과 협업 혁신으로 제조업을 재정의하다   스피라텍(SpiraTec) 그룹은 디지털 전환, 엔지니어링, 로봇 공학, 자동화 및 산업 IT를 전문으로 하는 공정 산업의 산업 공학 및 설루션 분야의 글로벌 플레이어이다. 스피라텍의 가상 커미셔닝 전문성은 제조사가 프로세스를 최적화하고 비용을 절감하며 전 세계적으로 디지털화를 가속화하는 데 도움을 준다. 이번 호에서는 스피라텍이 고객이 주요 산업 과제를 해결하도록 돕는 방법과 유니티(Unity)를 기반으로 가상 커미셔닝을 위한 협업적이고 접근 가능한 설루션을 목표로 하는 오픈 소스 이니셔티브인 ‘오픈 커미셔닝’의 배경과 여정을 소개한다. ■ 자료 제공 : 유니티 코리아   ▲ 생산 라인의 디지털 트윈 : PLC 및 로봇 컨트롤러 통합으로 물질 흐름 시뮬레이션   산업이 디지털 전환을 가속화함에 따라 제조사는 제품을 더 빠르게 시장에 출시하고 비용을 줄이며 지속 가능성 목표를 달성해야 한다는 압박을 받고 있다. 이 모든 과정에서 단편화된 데이터, 구식 방법론 및 제한된 표준화로 어려움을 겪고 있다. 이러한 도전 과제는 더 스마트하고 통합된 설루션을 요구한다. 그리고 여기서 디지털 트윈과 가상 커미셔닝이 등장한다. 글로벌 디지털 트윈 시장은 수요가 급증하고 있다. 2024년에는 177억 3000만 달러로 평가되며, 2025년에는 244억 8000만 달러에서 2032년에는 2593억 2000만 달러로 성장할 것으로 예상된다. 캡제미니 리서치 인스티튜트(Capgemini Research Institute)의 디지털 트윈 리포트에 따르면, 57%의 조직이 지속 가능성을 디지털 트윈 투자에 대한 주요 동력으로 언급하며, 51%는 이러한 기술이 환경 목표 달성에 도움이 될 것으로 기대하고 있다. 디지털 트윈 기술의 주요 응용 프로그램인 가상 커미셔닝은 디지털화의 게임 체인저로, 제조사가 실제 배포 전에 프로세스를 시뮬레이션하고 최적화할 수 있게 하여 자원 소비를 줄이고 비용을 절감한다.   가상 커미셔닝 이해하기 전통적으로 자동화에서 커미셔닝은 새로운 시스템(장치, 기계, 공장 등)을 완전 작동 가능한 생산 준비 상태로 만드는 과정을 의미한다. 과거에는 대부분의 PLC(프로그래머블 로직 컨트롤러) 프로그래밍 및 시스템 테스트가 물리적 하드웨어가 제자리에 있어야 했으며, 이는 종종 비용이 많이 드는 지연과 막판 문제 해결을 초래했다. 가상 커미셔닝은 이 패러다임을 뒤집고 전체 커미셔닝 프로세스를 디지털 환경에서 복제한다. 실제 장치, 센서 및 액추에이터와 통신하는 대신, PLC는 디지털 트윈과 통신한다. 이는 실제 시스템의 동작을 정확하게 반영하는 에뮬레이션 모델이다. 중요하게도, 동일한 PLC 프로그램 코드는 가상 및 물리적 단계 모두에 사용되어, 물리적 하드웨어가 준비되면 코드 수정이나 막판 재작성 없이 원활한 인계를 보장한다.   ▲ 가상 커미셔닝 : 물리적 배포 전에 디지털 프로세스 시뮬레이션 및 최적화   가상 커미셔닝이 실제 가치를 제공하는 방법 효율성 향상 가상 커미셔닝은 현장 테스트와 물리적 프로토타입의 필요성을 줄여 시간과 비용을 절감한다. 또한 디지털 환경에서 팀이 신속하게 반복할 수 있도록 하여 개발 주기를 가속화하고 시장 출시 시간을 단축한다.   위험 감소 시뮬레이션을 통해 오류를 조기에 발견함으로써, 가상 커미셔닝은 비용이 많이 드는 실수의 위험을 줄인다. 더욱이, 팀이 위험한 작업을 디지털로 시뮬레이션할 수 있도록 하여 물리적 구현 전에 잠재적 위험을 제거함으로써 더 안전한 배포를 지원한다.   협업 및 혁신 현실적인 시뮬레이션은 교차 기능 팀 간의 더 나은 정렬을 촉진한다. 가상 공간에서 시스템을 시각화하고 상호작용함으로써 이해관계자는 더 깊은 통찰력을 얻고, 전반적인 커뮤니케이션을 향상시켜 창의성과 혁신을 촉진한다.   제약에서 능력으로 : 유니티로의 전환 스피라텍은 고객이 가상 커미셔닝을 운영에 원활하게 통합하도록 돕는 단일 목표를 추진해 왔다. 스피라텍은 제한된 확장성을 가진 폐쇄 시스템, 작은 사용자 커뮤니티 및 최소한의 응용 프로그래밍 인터페이스(API)에 직면했다. 이러한 조건은 공급업체 종속을 촉진하고 프로젝트 위험을 증가시켰다. 이러한 제한은 종종 시간 지연을 일으키고, 고객이 필요로 하는 접근 가능하고 확장 가능한 설루션의 가능성을 없앴다. 유니티는 스피라텍의 큰 장애물을 극복하는 열쇠가 된 실시간 3D 엔진이다. 유니티의 편집기의 힘을 활용함으로써 스피라텍은 최첨단 물리학 및 렌더링 기능을 얻었을 뿐만 아니라, 디지털 트윈 모델 개발에 대한 전체 접근 방식을 근본적으로 변화시켰다. 유니티의 다양한 기술 및 기능은 여러 문제를 해결하고 스피라텍의 디지털 트윈 개발 프로세스를 형성하는 데 도움이 되었다. 프리팹 시스템 : 객체 지향적 접근 방식을 통해 재사용 가능한 구성 요소 라이브러리를 활용하여 디지털 트윈을 생성할 수 있다. 이는 다양한 프로젝트에서 일관된 품질을 유지하면서 개발 속도를 크게 가속화한다. 픽시즈(Pixyz) : CAD 데이터를 원활하게 가져오고 특정 메타데이터 및 고객 기준에 따라 디지털 트윈을 생성하기 위한 규칙 기반 워크플로를 설정할 수 있다. 사용자 인터페이스(UI) 툴킷 : 편집기 및 런타임을 위한 UI 콘텐츠의 생성 및 향상을 가능하게 하여, 사용자 정의 도구 및 인터페이스에 대해 더 매끄러운 사용자 경험을 제공한다. 작업 시스템 : 복잡한 프로세스(예 : 유체 흐름, 대량 물질 이동 및 스트레스 모델링) 및 대규모 디지털 트윈 프로젝트의 효율적인 다중 스레드 시뮬레이션을 가능하게 한다. 분석기 및 저장 프로파일러 : 성능 병목 현상에 대한 자세한 통찰력을 제공하여 배포 전에 프로젝트 품질을 최적화하고 개선할 수 있게 하며, 궁극적으로 고객에게 더 신뢰할 수 있는 설루션을 제공한다.   대규모 디지털 트윈 내부 : 창고 커미셔닝의 재구상 물류 회사의 창고 시뮬레이션을 특징으로 하는 성공 사례에서 스피라텍은 12개의 가상 PLC를 완전한 디지털 환경에 통합했다. 모델은 필드버스 에뮬레이션과 드라이브, 안전 모듈 및 RFID 리더와 같은 산업 구성 요소의 시뮬레이션을 특징으로 했다. 사용성을 높이기 위해 대규모 시뮬레이션에 최적화된 경량의 강력한 독립 실행형 *.exe 애플리케이션을 제공하는 맞춤형 사용자 인터페이스가 개발되었다. 또한 시스템은 창고 관리 시스템(WMS)과 원활하게 통합되어, 안전한 가상 환경에서 실시간 제품 데이터 관리를 위한 네이티브 텔레그램 통신을 가능하게 했다. 이는 물리적 기계가 존재하기도 전에 포괄적인 소프트웨어 검증을 보장하여 품질을 크게 향상시키고 배포 위험을 줄였다. 이 이니셔티브는 커미셔닝 시간을 30% 줄였다, 프로젝트 일정을 가속화하면서 비용과 위험을 줄였다. 효율성 향상을 넘어, 이는 부서 간 협업을 강화하여 비용 효율적인 반복 개발과 더 빠른 개념 증명 검증을 가능하게 했다.   ▲ 개방형 커미셔닝으로 구축된 창고 운영 시뮬레이션   효율을 넘어 : 시뮬레이션을 통한 지속 가능성 추진 가상 커미셔닝에 대한 대화는 종종 단축된 커미셔닝 시간과 개선된 협업에 초점을 맞추지만, 이러한 이점은 지속 가능성과 관련하여 특히 실질적인 비즈니스 가치로 직접 전환된다. 스피라텍은 고객과 협력하여 후속 제품 수명주기 전반에 걸쳐 디지털 트윈의 사용을 확장하기 시작했으며, 지속 가능성과 비용 절감의 잠재력은 크다. 프로세스를 간소화하고 고충실도 시뮬레이션을 활용함으로써 기업은 다음과 같은 효과를 얻을 수 있다. 장비 수명의 연장 : 시뮬레이션 데이터로 훈련된 예측 유지보수 알고리즘을 사용하여 조직은 마모를 최소화하고 비용이 많이 드는 교체 및 수리를 연기한다. 고장 감소는 유지보수 비용을 직접 낮추고 계획되지 않은 다운타임을 줄인다. 자원 소비의 절감 : 가상 환경에서 제어 논리와 워크플로를 검증함으로써, 팀은 에너지 사용을 줄이고 자재 낭비를 최소화하는 효율성 격차를 식별할 수 있다. 이러한 개선은 환경 목표를 달성하는 데 도움이 될 뿐만 아니라 운영 비용을 줄인다. 시장 출시 시간의 가속화 : 가상 커미셔닝은 물리적 프로토타입과 긴 현장 테스트의 필요성을 최소화한다. 결과적으로 기업은 제품을 더 빠르게 출시하고, 시장 점유율을 더 빨리 확보하며, R&D 투자에 대한 더 빠른 수익을 실현할 수 있다. 현장 면적의 축소 : 더 적은 문제 해결 방문과 짧은 설치 시간은 여행 관련 배출가스와 비용을 줄인다. 이 혜택은 여러 글로벌 시설을 가진 조직에 대해 크게 확장된다.   미래를 함께 형성하기 : 커뮤니티 주도 이니셔티브 협업과 개방성이 가상 커미셔닝의 가장 큰 혁신을 이끌어낼 것이며, 이는 계속 발전할 것이다. 개방형 커미셔닝(open commissioning)을 통해 스피라텍은 단순히 도구를 공유하는 것이 아니라, 혁신적인 아이디어가 다듬어지고 테스트되며 실제 문제를 해결하는 데 적용될 수 있는 커뮤니티 주도 생태계를 구축하고 있다. 가장 흥미로운 발전은 아직 오지 않았다. 스피라텍의 다음 진화는 생성형 AI와 실시간 클라우드 시뮬레이션을 통합하고, 데이터 표준을 설정하며, 산업 연결성을 확장하는 것이다. 제조의 미래는 협업적이고, 데이터 기반이며, 친환경적으로 더 스마트하고 지속 가능한 산업 환경을 만들어 나가는 데 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
[케이스 스터디] KAI의 언리얼 엔진 기반 차세대 시뮬레이션 에코시스템
비행 훈련부터 제품 개발·운영까지 아우르는 핵심 인프라를 목표로   최근 몇 년 사이 시뮬레이션 산업은 디지털 트윈, AI(인공지능), VR(가상현실)/AR(증강현실) 등 첨단 디지털 기술 중심으로 빠르게 재편되고 있다. KAI(한국항공우주산업)는 이러한 흐름에 발맞춰 언리얼 엔진을 도입함으로써 항공산업 전반에 걸친 디지털 혁신을 추진하고 있다. ■ 자료 제공 : 에픽게임즈   KAI는 KT-1 기본 훈련기, T-50 고등훈련기, 수리온 기동헬기, 송골매 무인기 등 다양한 항공우주 시스템을 자체적으로 설계 및 제작하며, 지난 40년간 항공산업 및 국방산업을 선도해 온 종합 항공우주 설루션 기업이다. 최근에는 소형무장헬기(LAH)와 차세대 전투기 KF-21 개발을 비롯해 위성과 발사체 총조립 등 우주 분야로도 사업을 확대하고 있다. KAI는 2024년 ‘언리얼 페스트 시애틀 2024(Unreal Fest Seattle 2024)’에 참가해 자사의 시뮬레이션 전략을 소개하는 세션을 진행했다. 이번 호에서는 이 발표 내용을 바탕으로 시뮬레이션 산업의 급변하는 흐름 속에서 KAI가 어떻게 대응하고 있는지, 언리얼 엔진을 중심으로 한 시뮬레이션 통합 전략과 실제 적용 사례, 그리고 향후 비전 등을 중심으로 KAI의 기술 혁신에 대해 살펴본다.   ▲ 이미지 출처 : ‘KAI의 언리얼 엔진 기반 차세대 시뮬레이션 에코시스템 | 언리얼 엔진’ 영상 캡처   시뮬레이션 산업의 변화와 KAI의 대응 최근 시뮬레이션 산업은 빠르게 발전하며 구조적인 변화를 겪고 있다. 클라우드 기반 시뮬레이션 도입으로 언제 어디서든 고성능 자원에 접근할 수 있게 되었고, 디지털 트윈, AI, 머신러닝 기술의 결합을 통해 시뮬레이션은 단순한 재현을 넘어 예측과 최적화를 수행할 수 있는 툴로 진화하고 있다. 또한 VR/AR/MR(혼합현실) 기술은 훈련의 몰입감과 현실감을 높여 실제 환경과 유사한 시뮬레이션을 가능하게 하고, 마이크로서비스 아키텍처를 기반으로 한 소프트웨어 설계는 유연성과 확장성을 높이고 있다. KAI는 이러한 디지털 전환에 적극 대응하기 위해 전통적인 레거시 시뮬레이션 시스템을 언리얼 엔진과 통합하고 있다. 핵심 전략은 세 가지이다. 첫째, 언리얼 엔진을 활용한 빠른 프로토타이핑으로 기술 검증과 적용 속도를 높이는 것이다. 둘째, 표준화된 인터페이스를 통해 기존 시스템과의 원활한 연동을 실현하는 것이다. 셋째, 지속 가능한 콘텐츠 개발을 위한 플랫폼 설계로 장기적인 생태계 구축을 추진하는 것이다. 이를 통해 KAI는 기존 자산의 가치를 극대화함과 동시에 급변하는 기술 환경에 유연하고 효율적으로 대응하고 있다.   언리얼 엔진이 변화하는 시뮬레이션 산업에 주는 영향 언리얼 엔진은 시뮬레이션 산업의 진화에 있어 중요한 역할을 하고 있다. 우선 고품질의 리얼타임 3D 그래픽을 통해 현실감 있는 몰입형 시뮬레이션 환경을 구현할 수 있어, 훈련과 테스트의 효율성을 높이고 있다. 또한 VR/AR/MR과의 통합 지원은 다양한 산업에서 실제 같은 체험 기반 학습을 가능하게 한다. 언리얼 엔진의 모듈형 아키텍처와 개방된 생태계는 기존 레거시 시스템과의 통합을 쉽게 하고, 새로운 기술이나 기능을 빠르게 적용할 수 있는 유연성을 제공한다. 특히 디지털 트윈, AI, 머신러닝 등 최신 기술과의 연계가 원활하여 복잡한 시스템의 설계, 유지보수, 운영 효율을 높일 수 있다. KAI와 같은 기업에게 언리얼 엔진은 단순한 툴을 넘어, 지속 가능한 시뮬레이션 콘텐츠를 개발하고 새로운 시뮬레이션 생태계를 구축하는 핵심 기술로 자리잡고 있다.   ▲ KAI의 시뮬레이터로 본 FA-50의 모습(이미지 출처 : KAI)   기존 시스템에 언리얼 엔진을 통합한 사례 KAI는 항공기 훈련 체계에 언리얼 엔진을 도입해 현실성과 효율을 갖춘 시뮬레이터를 개발하고 있다. 대표적으로 VR 시뮬레이터의 경우, 조종사가 풀 플라이트 시뮬레이터에 들어가기 전 VR 기기를 통해 절차와 조작 감각을 사전에 익힐 수 있도록 돕고 있다. 언리얼 엔진으로 실제 항공기와 동일한 가상 조종석을 구현해 이륙/착륙, 비상절차, 항전 장비 조작 등을 별도 교관 없이 반복 학습할 수 있도록 했다. 기존의 시뮬레이터는 실제 항공기 수준의 조작감과 훈련 효과를 제공하지만, 높은 구축 비용과 운영 비용, 전용 시설의 필요 등으로 대량 보급에 한계가 있었다. KAI는 이러한 문제를 보완하기 위해 VR 기술을 도입했다. 언리얼 엔진은 영상 발생 장치, 계기 패널, 입출력 장치 등을 대체한 것은 물론, VR HMD(헤드 마운트 디스플레이) 하나만으로 기존의 여러 장치를 필요로 하는 대형 시현 시스템의 효과를 구현할 수 있게 했다. 또한 KAI는 독자적인 역학 모델과 항전 시스템을 언리얼 엔진의 실시간 렌더링과 결합해 실제 조종과 유사한 수준의 훈련 환경을 제공하고 있다. GIS(지리 정보 시스템), DEM(수치 표고 모델) 등 초정밀지도 기반의 한반도 3D 지형을 재현해 조종사의 임무 지역 지형 학습까지 지원하고 있다. 정비 훈련 분야에서도 언리얼 엔진은 핵심 플랫폼으로 활용되고 있다. 2024년 I/ITSEC 전시회에서 공개된 FA-50 정비 훈련 시뮬레이터는 VR 환경에서 점검과 부품 교체를 실습할 수 있을 뿐만 아니라, 사용자가 직접 교육 과정을 만들 수 있도록 설계됐다. 이를 통해 기존 문서와 평면형 CBT(컴퓨터 기반 훈련), 반복 시나리오 기반의 실습 중심 교육의 한계를 극복할 대안을 제시했다. 또한 같은 행사에서 선보인 수리온 헬기 비행 시뮬레이터(VFT)는 디지털 트윈과 고해상도 시각화를 통해 실제 기체 성능과 지형 정보를 반영한 몰입형 훈련 환경을 제공했다.   ▲ FA-50 비행 시뮬레이션의 디스플레이 장면(이미지 출처 : KAI)   시뮬레이션·시스템 개발에서 언리얼 엔진의 기여도 언리얼 엔진 도입 이후 KAI의 시뮬레이션 제작 파이프라인에는 큰 변화가 있었다. 데이터스미스를 활용해 카티아 등 설계 도구의 3D 모델을 쉽게 불러올 수 있어, 실제 설계 기반의 가상 조종석과 기체 모델을 빠르게 구축하고 별도의 모델링 없이 제작 시간을 줄일 수 있었다. 또한 자체 개발한 비행역학 엔진과 항공전자 시뮬레이션 소프트웨어를 언리얼 엔진과 실시간으로 연동해, 백엔드 시스템과 시각화 프론트엔드를 효과적으로 통합함으로써 전반적인 생산성이 향상되었다. 특히 조종사가 시각과 청각 정보를 통해 상황을 판단하는 VR 시뮬레이터 개발에서는 언리얼 엔진의 렌더링, 사운드, 애니메이션 기능이 핵심 도구로 사용되었다. 물리 기반 렌더링(PBR)은 금속, 유리, 계기판 등 재질을 사실적으로 구현했으며, 파티클 시스템과 머티리얼 노드를 통해 연기, 공기 왜곡 등의 시각 효과도 유연하게 조정할 수 있었다. 사운드 역시 메타사운드를 통해 엔진 RPM이나 환경 변화에 따라 실시간으로 반응하며, 조종사에게 실제 비행과 유사한 감각을 제공했다. 또한 애니메이션 블루프린트를 활용해 조종간, 계기판, 비행 제어면 간 연동 애니메이션의 비주얼을 직관적으로 구현할 수 있었으며, 스카이 애트머스피어, 볼류메트릭 클라우드, 하이트 포그 등의 기능은 대기 표현과 공간 인식 훈련의 몰입감을 높였다. 지형 구현에서도 언리얼 엔진의 LWC(Large World Coordinates)를 통해 수천 km 단위의 지형에서도 고속 이동 시 정밀도를 유지할 수 있었고, 풀 소스 코드를 활용해 AI 훈련 체계에 맞는 좌표 변환, 시스템 연동, 정밀 지형 구조를 구현할 수 있었다. 이 과정에서 실제 지형 데이터, 항공 사진, 고도 정보를 언리얼 엔진에 통합했고, GIS, DEM 기반의 정밀 지형 정보를 효과적으로 활용해 복잡한 비행 경로, 저공 비행 훈련, 목표 탐색 등 고난도 시나리오도 현실감 있게 구현할 수 있었다. 그 결과 KAI는 초대형 지형 데이터, 초정밀 위치 기반 훈련, 외부 시스템과의 정밀한 좌표 연동을 모두 만족하는 차세대 항공기 시뮬레이터 플랫폼을 성공적으로 구축할 수 있었다. 이외에도 다양한 플러그인, 하드웨어 인터페이스, 형상 관리 툴 연동, 이제는 리얼리티스캔으로 변경된 리얼리티캡처, 마켓플레이스 등을 활용하여 프로젝트 확장성과 콘텐츠 제작 유연성이 높아졌다.   ▲ 애니메이션 블루프린트를 활용해 구현한 조종간(이미지 출처 : KAI)   대규모 전술 훈련을 위한 AI 에이전트를 언리얼 엔진에 도입 KAI는 차세대 전술 훈련 시뮬레이터 개발을 위해 강화학습 기반의 AI 에이전트를 실제 훈련 시나리오에 연동하는 작업을 진행 중이다. 특히, 복잡한 전장 환경에서는 다양한 무기 체계와 플랫폼이 동시에 운용되기 때문에, 이를 하나의 시뮬레이션 공간에서 유기적으로 연동하는 기술이 매우 중요하다. 기존 상용 시뮬레이터 설루션의 경우 외부 시스템 연동이나 커스터마이징에 제약이 많지만, 언리얼 엔진은 C++ 기반의 풀 소스 코드 접근이 가능해 이러한 한계를 극복할 수 있다. KAI는 이러한 개방성을 바탕으로 자체 개발한 AI 에이전트를 정밀하게 통합해, 복잡한 상호작용이 필요한 전술 훈련 시나리오에서도 실질적인 이점을 확보할 수 있었다. 이와 같은 통합은 단순히 AI를 활용하는 수준을 넘어, 인간 조종사와 AI가 동일한 시뮬레이션 환경에서 훈련하고 상호 작용할 수 있는 구조를 의미한다. 기존의 설루션으로는 구현하기 어려웠지만 KAI는 언리얼 엔진을 도입해 이를 실현할 수 있었다. 결과적으로 언리얼 엔진은 AI, 실시간 시뮬레이션, 데이터 피드백이 통합된 플랫폼을 제공하며, KAI의 차세대 전술 훈련체계 구현에 핵심 역할을 하고 있다.   ▲ 지형 데이터 통합으로 구현한 대규모 도시 지역 디지털 트윈(이미지 출처 : KAI)   향후 시뮬레이션 에코시스템의 방향과 KAI의 비전 향후 시뮬레이션 에코시스템은 개방성, 지속 가능성, 개인화를 중심으로 발전해 나갈 것이다. AI와 빅데이터를 기반으로 한 맞춤형 훈련 시스템, 클라우드 환경에서의 지리적 제약 없는 고성능 시뮬레이션 그리고 VR/AR, 웨어러블 기술 등을 활용한 몰입형 실시간 피드백 시스템이 표준이 되어갈 것으로 전망된다. 이러한 변화 속에서 KAI는 기술 통합형 플랫폼과 자체 시뮬레이션 에코시스템을 구축하며, 대한민국 시뮬레이션 산업의 지속 가능한 성장 기반을 마련할 예정이다. 언리얼 엔진을 단순한 개발 툴이 아닌 시뮬레이션 엔진으로 활용하며, 플랫폼을 중심으로 고퀄리티 콘텐츠를 빠르게 생산할 수 있는 시뮬레이션 콘텐츠 파이프라인을 개발 중이다. KAI의 비전은 국내를 넘어 글로벌 시뮬레이션 에코시스템과 연결되는 것이다. 언리얼 엔진의 개방성과 기술력을 바탕으로 산업 전반에 걸쳐 공유 가능한 시뮬레이션 플랫폼을 만들고, 이를 통해 다양한 산업, 기관, 개발자가 협력할 수 있는 건강하고 확장 가능한 에코시스템을 조성하는 것이 목표다. 이러한 방향성과 비전을 바탕으로, KAI는 시뮬레이션 기술을 단순한 훈련 도구를 넘어 제품 개발, 유지보수, 운영 효율 개선을 위한 핵심 인프라로 성장시키고자 한다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
[포커스] 넥스트콘 2025에서 만난 건설 디지털 전환의 미래
건설 융복합 혁신 기술을 한자리에 선보인 ‘넥스트콘 2025(NextCon 2025)’ 전시회가 7월 30일부터 8월 2일까지 코엑스 B홀에서 진행됐다. ‘코리아 빌드 위크’의 일부로 마련된 넥스트콘 2025는 ‘MOMENTUM : New Wave - 디지털 가속화, 새로운 건설 시대로의 전환’을 주제로 나흘간 진행됐는데, 건설 산업의 디지털 전환을 위한 고민과 돌파구를 엿볼 수 있는 기회가 되었다. ■ 정수진 편집장   ▲ 코엑스에서 진행된 넥스트콘 2025 전시회   모든 산업 분야에서 디지털 전환(DX)이 중요한 화두로 떠오르는 가운데, 건설산업에서도 디지털 전환의 필요성을 절감하고 있다. 건설 산업은 다른 산업에 비해 디지털화 수준이 낮다는 지적이 나오고 있으며, 낮은 노동 생산성과 고령화 및  젊은 인력의 유입 감소에 따른 인력 부족도 문제가 되고 있다. 문제 해결을 위해 정부에서는 디지털화 및 스마트 건설의 활성화를 촉진하기 위한 정책을 마련하고 있으며, 업계에서도 시공–설계–유지관리에 이르는 전반의 과정에서 디지털 전환을 실현하기 위한 기술의 활용에 더 많은 관심을 보이고 있다. 이번 넥스트콘 2025 전시회에서는 스마트 건설&OSC(OffSite Construction), 건설 자동화&로보틱스, 스마트 홈&빌딩, 탄소중립&건설 신공법·신기술, 스마트 안전 등 분야의 다양한 기술이 소개됐다. 또한 ▲건설 자동화 및 로보틱스 관련 정책을 설명하고 현장 적용 사례 및 기술을 소개한 ‘건설자동화&로보틱스 콘퍼런스’ ▲최신 콘테크(contech) 트렌드 및 중대재해처벌법 대응 방안을 소개한 ‘C-Insight Con(건설산업 인사이트 콘퍼런스)’, ▲ 스마트 건설·건축 및 스마트 빌딩 분야의 기술 비전을 공유하고, 빌딩 자동화 및 통합 관리 설루션 기술과 현장 적용 사례를 소개한 ‘스마트+빌딩 콘퍼런스’ 등이 함께 진행되었다.   스마트 건설 & OSC BIM(건설 정보 모델링)은 건설 산업 디지털 전환의 핵심 요소로 여겨지고 있다. 설계 BIM은 모델링, IFC 파일 활용, 도면 자동 생성, 공간 데이터 구축을 통해 효율을 높이고, 시공 BIM은 사전 설계 검토, 물량 산출, 공정 시뮬레이션, 시각 자료 생성에 기여한다. 유지관리 BIM은 3D 스캔 및 데이터 통합을 통해 시설물의 실시간 통합 관리 환경을 조성하며, 리모델링 BIM은 3D 스캔을 통한 현황 파악 및 안전 관리에 활용된다. 공장에서 구조물이나 부재 등을 생산하고 이를 시공 현장에서 조립·설치하는 방식을 뜻하는 OSC는 건축 분야에서 기술 개발이 활발히 진행 중이며, 향후 더욱 확산되어 스마트 건설의 중요한 축을 이룰 것으로 전망된다.   ▲ 메이사는 드론, 360도 카메라, CCTV, 모바일 GPS 데이터를 통해 원격 현장관리를 실시간으로 할 수 있는 클라우드 플랫폼을 선보였다.   ▲ 비전스페이스는 로보틱스/AI/디지털 트윈 기반으로 산업용 로봇의 설계·운영·최적화를 지원하는 자동화 설루션을 소개했다.   건설 자동화 & 로보틱스 드론 기술은 건설 현장의 데이터를 수집하고 가상화하는 리얼리티 캡처의 주요 도구이다. 드론은 수백에서 수천 장의 사진을 찍어 사진 측량학 기술을 통해 3차원 모델을 재구성하며, 이를 통해 현장 측량, 토공 물량 산출, 시간 경과에 따른 물량 변화 추적, 시뮬레이션 및 현장 검사에 활용된다. 드론 기술은 자율 비행이 진전되고 GPS 외에 비전 인식 기술이 업그레이드고 있다, 또한, 사람의 개입 없이 데이터를 수집하고 전송하는 드론 스테이션/독 연동 기술이 발전하면서 현장의 번거로움을 해소하고 있다. 드론 외에도 건설 공정을 자동화하고, 원격 시공에도 활용될 수 있는 다양한 로보틱스 기술에 대한 연구 개발도 활발히 진행 중이다. 공간 데이터와 LLM(대형 언어 모델), 비전 데이터, 딥러닝 기술을 접목한 AI 서비스가 속속 등장하면서 현장 활용이 시도되고 있는 상황이다. 이런 서비스는 3D BIM 도면, 측량 데이터, CCTV 영상 등 다양한 데이터를 취합·비교해 공정 진행 상황 확인 및 보고서 작성 등 자동화된 분석을 가능하게 한다.   ▲ 마션케이는 비정형 건축물의 시공에 활용할 수 있는 건설용 3D 프린터 기술을 선보였다.   ▲ 딥인사이트는 BIM 설계뿐 아니라 다양한 분야에서 활용 가능한 3D 스캐너 및 스마트 비전 설루션을 소개했다.   스마트홈 & 빌딩 및 탄소중립 건설 프로세스뿐 아니라 스마트 기술을 건물 자체에 적용하면 에너지 효율, 거주 편의성, 안전성 등을 높이는 방향으로 디지털 전환을 실현할 수 있을 것으로 여겨지고 있다. 한편, 탄소중립은 건설 산업의 지속가능성을 위해 중요한 과제이며, 디지털 기술은 자원 효율의 증대와 폐기물 감소를 통해 이에 기여할 수 있을 것으로 보인다.   스마트 안전 건설 현장의 안전 관리 또한 디지털 전환의 중요한 부분으로 꼽힌다. BIM은 현장 정보를 반영한 안전 계획 수립 및 시각화 정보를 제공하여 작업자의 안전을 높이고, 드론은 시설물 점검, 이슈 탐지 및 안전 관리에 활용된다. 최근에는 스마트 안전 교육 과정 개발도 추진 중에 있다.   ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
[온에어] AI로 혁신하는 3D 시각화와 산업의 미래
캐드앤그래픽스 지식방송 CNG TV 지상 중계   CNG TV는 8월 18일 ‘AI로 혁신하는 3D 시각화와 산업의 미래’를 주제로, 오는 9월 11일~12일 온라인으로 개최되는 ‘코리아 그래픽스 2025’의 프리뷰 방송을 진행했다. 이번 방송에는 한양대학교 최종우 교수, 전문건설공제조합 박남용 교수가 참여해 AI 기반 3D 시각화 기술의 최신 트렌드를 중심으로, 시각화 기술의 발전 방향을 살펴보았다. 자세한 내용은 다시보기를 통해 확인할 수 있다. ■ 박경수 기자   ▲ 디지털지식연구소 조형식 대표(사회), 한양대학교 최종우 교수, 전문건설공제조합 박남용 교수   AI가 산업디자인의 전 과정에 깊숙이 스며들며 디자이너의 역할과 사고방식에 큰 변화를 요구하고 있다. 디자인은 더 이상 단순한 ‘예쁜 것’을 만드는 과정이 아니라, AI를 활용해 ‘창의성’과 ‘효율성’을 동시에 극대화하는 방향으로 재편되고 있다.   AI가 바꾸는 산업디자인의 미래 코로나19 팬데믹을 기점으로 디지털 전환이 가속화되면서, AI는 디자인 툴과 워크플로에 혁신적인 변화를 불러왔다. 3D 프린팅, VR, 협업 툴의 급성장으로 디자인 과정이 빠르게 디지털화되었다. 또한 미드저니(Midjourney), 비즈컴(Vizcom), 스테이블 디퓨전(Stable Diffusion) 등의 생성형 AI 툴은 아이디어 발상부터 렌더링, 3D 모델링, 건축 설계 자동화까지 폭넓게 적용되고 있다. 특히 AI는 인간이 직접 처리하기 어려운 방대한 데이터를 신속하게 가공·검증할 수 있어, 디자이너가 아이디어 발상과 선택·조율에 집중할 수 있는 환경을 제공한다. 더 나아가 기업들은 AI를 활용한 맞춤형 서비스와 초개인화된 제품 생산을 시도하고 있으며, 이는 기존의 대량 생산 방식을 넘어 새로운 제조 패러다임을 제시하고 있다. 산업 전반에서 AI는 단순한 ‘보조 도구’를 넘어 핵심 경쟁력으로 자리잡고 있다. 한양대학교 최종우 교수는 “디자이너는 앞으로 단순 창작자가 아니라 AI를 관리하고 조율하는 시스템 디자이너로 진화해야 한다”며, “무엇을 선택하느냐가 곧 디자이너의 경쟁력이 될 것”이라고 말했다.   AI, 건축 설계 도구에서 동반자로 인공지능(AI)이 건축 분야에도 빠르게 확산되고 있다. 박남용 교수는 “건축에서 AI 활용은 단순한 시각화를 넘어 방법론적 영역으로 확장되고 있다”고 밝혔다. 그동안은 대규모 언어 모델(LLM)이 주로 주목받았지만, 최근에는 대규모 비전 모델(LVM)의 영향력이 커지고 있다는 설명이다. 그는 “건축은 스케치, 도면, 이미지 등 시각 자료가 풍부하기 때문에 비전 모델과의 결합 효과가 크다”고 강조했다. 현재 건축계에서 자주 활용되는 도구로는 달리(DALL·E), 미드저니(Midjourney), 스테이블 디퓨전(Stable Diffusion)이 꼽힌다. 특히 건축 설계는 구조적 분석과 단계적 검토가 필요해 스테이블 디퓨전이 더 적합하다고 덧붙였다. AI 활용이 확대되면서 단순 텍스트 입력뿐 아니라 스케치나 간단한 모형 이미지를 기반으로 3차원 모델을 신속하게 구축할 수 있게 됐다. 여기에 GPT와의 결합을 통해 대지 조건, 용도 구분, 층별 계획까지 자동으로 제시되면서 설계 속도가 큰 폭으로 향상되고 있다. 또한 스케치업과 레빗 등 기존 BIM(빌딩 정보 모델링) 툴과의 연동 시도도 활발히 이뤄지고 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
[칼럼] 나만의 AI 에이전트 필살기 Ⅰ– 나만의 지식 지도를 그리다
현장에서 얻은 것 No. 22   “가장 현명한 사람은 계속해서 배우는 사람이다.” – 소크라테스   거대한 변화의 파도 속에서 AI(인공지능)라는 거대한 변화의 파도는 우리 삶 곳곳을 흔들고 있다. 단순히 새로운 기술 하나가 등장한 것이 아니라, 사고방식과 일하는 방식, 나아가 사회 전체의 구조를 바꾸는 흐름이다. 지난 7개월 동안 필자는 이 변화의 흐름 속에서 매일 배우고 실험하며 자신만의 여정을 이어왔다. 이 글은 단순히 도구를 사용한 후기나 기능 소개가 아니다. 오히려 그 과정을 통해 AI와 필자의 사이에 맺어진 관계, 그리고 인간이 놓치지 말아야 할 본질에 대한 성찰을 담은 기록이다. 필자는 이 시간을 통해 AI를 도구로만 보지 않게 되었다. 그것은 자신의 업무와 창작, 학습과 삶 전반을 통틀어 스스로를 끊임없이 자극하는 동반자였다. 그렇다고 AI를 맹목적으로 신뢰하지도 않았다. 오히려 신중하게 거리를 두고, 동시에 적극적으로 받아들이는 태도를 통해 자신만의 ‘필살기’를 다듬어왔다.   나만의 학습 공식 ― 눈 70%, 손 30% 돌아보면 필자의 학습법은 조금 독특했다. 눈으로 익힌 것이 70%, 손으로 부딪히며 체득한 것이 30%. 이 비율을 받아들인 이유는 필자의 경험이 개발자의 삶이 아니었기 때문이다. 바이브 코딩(vibe coding)이다, 비 개발자도 개발을 한다고 광고한다지만, 실제 뚜껑을 열고 보니 실상은 그것이 아님을 이해했다. 물론 개중에는 바이브 코딩으로 화면을 만들고 기능을 만들고 퍼블리싱해서 프로그램으로 만들 수는 있다. 커서 AI(Cursor AI)로 회사 홈페이지도 만들어보고, REPLIT 프로그램으로 MBTI 판별 프로그램도 바이브 코딩으로 해 보았다. 만들 수도 있고, 또 수정도 바이브 코딩으로 가능하다. 하지만, PLM을 기업에 구축하는 PM으로써 경험한 바로는, 비개발자가 프로그램을 만드는 것은 한계가 있다. 취미삼아 만들어 보는 것은 지금도 환영하지만, 프로그램이 론칭된 이후 발생하는 많은 이슈를 경험한 것을 토대로 필자는 자신만의 학습 공식을 이렇게 정했다. 필자가 하는 방식은 개발자와의 협업이다. 그것이 필자에게 더 효율적이라는 것을 터득했다. 강의와 책, 스터디에서 얻은 지식이 토대가 되었고, 실습과 시행착오가 그 지식을 현실과 연결해 주었다. 이부일 대표의 강의를 들으며 챗GPT(ChatGPT)를 활용한 파이썬 코드를 직접 따라가던 순간, AI가 단순히 언어 모델이 아니라 강력한 실무 도구라는 사실을 처음 체감했다. 첫날은 곧잘 따라갔지만, 둘째 날 노트북 배터리가 나가 낭패를 본 기억은 아직도 생생하다. 하지만 그 경험조차도 학습 과정의 일부였다. AI 학습은 지식을 머리에 담는 것만이 아니라, 삶과 환경 속에서 몸으로 받아들이는 과정임을 깨닫게 된 것이다. 실패와 해프닝도 자산이 되었다. 예측 모델을 돌려보던 설렘, 통계 분석을 따라가던 집중의 순간, 예상치 못한 오류에 당황했던 경험까지. 이 모든 것이 쌓여 필자의 학습 지도 위에 하나씩 좌표가 찍혀갔다. 중요한 건 속도가 아니었다. 정답을 빨리 찾는 것보다, 끊임없이 배우고 기록하고 다시 활용하는 과정이 훨씬 값지었다.   그림 1. 데이터로 보는 핵심 통찰(create by Gemini deep research)   “성공의 비결은 기회를 잡기 위해 준비하는 것이다.” – 벤저민 디즈레일리   집단 지성의 힘 ― 나만의 ‘AI 어벤저스 팀’ AI와 함께한 여정에서 필자는 혼자의 힘이 결코 충분하지 않다는 사실을 절감했다. 그래서 스스로 만든 것이 바로 ‘AI 어벤저스 팀’이다. 각자의 분야에서 뛰어난 전문가들을 연결해놓은 필자만의 네트워크다. AI 시대에 개인이 모든 것을 아는 것은 불가능하다. 그러나 누가 잘 아는지를 아는 것은 가능하다. 그리고 이 능력은 집단 지성을 발휘하는 가장 중요한 힘이 된다. 전문가들과의 대화는 단순히 정보 교환에 그치지 않았다. 그들은 내가 새로운 프로젝트에 도전할 수 있도록 용기를 주었고, 지식의 공백을 메워주었으며, 때로는 내가 보지 못하는 시야를 열어주었다. 나는 이 네트워크를 하나의 ‘팀’처럼 생각한다. 마치 마블 영화 속 어벤저스가 저마다의 능력을 발휘하듯, 필자의 어벤저스팀 역시 각자의 전문성을 바탕으로 협력한다. 디즈레일리의 말처럼 “성공의 비결은 기회를 잡기 위해 준비하는 것”이라면, 이 팀은 나에게 기회를 포착할 수 있는 준비된 힘이었다.   나만의 AI 필살기 7개월간의 여정 속에서 필자는 점차 자신만의 AI 활용법, 즉 ‘필살기’를 만들어갔다. 업무 헬프데스크 : PLM·APS 분야의 Q&A 시스템을 노트북LM(NotebookLM)으로 구축해 개인화된 지식 관리 체계를 마련했다. 투자 분석가 : AI에게 딥 리서치를 맡기고 이미지 생성을 결합해 주식 시장을 다각도로 분석했다. 콘셉트맵 직원 : 자료를 모아 정리하고 시각화하는 과정을 AI와 협업해 효율과 품질을 동시에 확보했다. 영상 감독: 비오 3(Veo 3)로 8초 영상을 스무 편 이상 제작하면서 프롬프트 기획과 스토리텔링 능력을 키웠다. 작가 : AI의 초안을 바탕으로 단기간에 책 집필 속도를 높였다. 아티스트 : 챗GPT와 제미나이(Gemini)를 활용해 이미지 창작 실험을 이어갔다. 지식 관리자 : 옵시디언으로 디지털 지식 지도를 설계해 자신만의 아카이브를 구축했다. 이렇게 나열하면 마치 여러 갈래의 길처럼 보이지만, 실제로는 하나의 지도 위에 유기적으로 연결되어 있다. AI는 단순히 도구가 아니라, 이 지도를 함께 그려가는 협력자가 되었다.   그림 2. 다섯 가지 핵심 필살기(create by Gemini deep research)   AI의 본질 ― ‘주체’가 아닌 ‘도움’ 그러나 필자는 늘 스스로를 경계했다. AI는 주체가 아니라 도움이라는 사실을 잊지 않으려 했다. AI는 망설임 없이 실행한다. 그러나 그것이 옳은 방향인지 아닌지를 판단하는 것은 인간의 몫이다. 필자는 회의록 요약 같은 업무를 AI에 맡겼다가 보안 문제와 인간 역량 퇴화의 위험성을 깨달았다. 편리함이 언제나 효율을 의미하지는 않는다. 오히려 잘못된 의존은 인간의 중요한 능력을 잃게 만든다. 그래서 필자는 지금도 AI의 답변을 최소 세 번 이상 검증한다. 빠른 실행보다 중요한 것은 올바른 방향 설정이기 때문이다. AI가 주는 답은 끝이 아니라 출발점이다.   AI가 던지는 질문 AI와 함께한 여정은 필자를 끊임없이 질문하게 했다. 나는 앞으로 어떤 역량에 집중해야 할까? AI가 대체할 수 없는 나만의 가치는 무엇일까? 효율을 넘어 의미를 만드는 방법은 무엇일까? 앨런 케이가 말했듯, “미래는 예측하는 것이 아니라 상상하는 것”이다. 그렇다면 필자는 지금 이 순간의 질문과 상상을 통해 미래를 설계하고 있는 셈이다.   인간과 AI, 그리고 나의 길 AI는 인간을 대체하는 기계가 아니다. 오히려 인간이 더 깊은 사고와 창조의 세계로 들어가도록 돕는 동반자다. 필자가 찾은 필살기는 바로 이것이다. AI 덕분에 자신의 본질(core)에 더 많은 시간을 쏟을 수 있게 된 것. 단순 반복 업무를 대신해 주는 AI 덕분에, 필자는 사고하고 기획하고 판단하는 인간 고유의 역량에 집중할 수 있다. 앞으로도 이 여정은 계속될 것이다. 필자는 AI와 함께 자신만의 필살기를 더욱 정교하게 다듬어 갈 것이다. 그리고 이 글을 읽는 독자에게도 묻고 싶다.   당신은 어떤 AI 필살기를 준비하고 있는가? 필자만의 AI 에이전트(agent) 필살기를 한 장의 맵으로 만들었다. 한 장의 맵은 내용을 쉽게 그리고 전체적으로 한번에 이해되도록 하는 효과가 있다. 주요 키워드를 뽑아 보면, 미래는 예측하는 것이 아니라 상상하는 것, AI는 주체가 아닌 도움, 나만의 AI 어벤저스 팀이다.   그림 3. 나만의 AI 필살기(map by 류용효) (클릭하면 큰 그림으로 볼 수 있습니다.)   “나는 똑똑한 것이 아니다. 단지 문제와 더 오래 씨름할 뿐이다.” – 알베르트 아인슈타인   당신의 AI 에이전트 필살기는 무엇인가? 이 칼럼을 통해 독자들도 자신만의 AI 활용 전략과 철학을 정립하고, AI 시대를 능동적으로 헤쳐나갈 수 있는 ‘필살기’를 찾아 나서기를 제안한다. AI는 더 이상 선택이 아닌 필수적인 도구이자 협력자이다. 중요한 것은 이 강력한 도구를 어떻게 나의 본질과 연결하여, 나만의 고유한 가치를 창출하고 미래를 만들어갈 것인가에 대한 깊은 고민과 끊임없는 실행이다. “세계를 정복하려 애쓰지 말라. 당신 스스로가 하나의 깊은 세계가 되면, 모든 것은 당신을 향해 흐른다.” AI는 단순히 기술이 아니라, ‘재능은 있지만 한계에 부딪힌’ 사람들에게 ‘도움’이 되어 AI 가수, AI 영화감독, AI 작가, AI 프로그래머가 될 수 있는 길을 열어준다. 효율만을 쫓기보다는 본질에 집중하고, 변화의 흐름을 읽으면서도 자신만의 ‘필살기’를 계속해서 갈고 닦아야 한다. 앞으로도 AI와 인간의 협업은 더욱 깊어질 것이다. 필자는 이 여정을 계속해서 탐험하며, 자신만의 AI 에이전트 필살기를 더욱 정교하게 다듬어 나갈 것이다. 모든 것에 감사하다.   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다. (블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03