• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "수리"에 대한 통합 검색 내용이 416개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
[케이스 스터디] 인더스트리 4.0을 위한 로봇 예측 유지보수의 발전
디지털 트윈과 AI가 시뮬레이션과 현실의 간극을 메우다   제조 시설은 지속적인 문제에 직면해 있다. 정비 일정은 일반적으로 실제 마모와 관계없이 3개월마다 부품을 점검하고 6개월마다 구성 요소를 교체하는 등 엄격한 일정을 따른다. 그 결과 불필요한 점검과 교체로 인한 비효율적인 시간 낭비가 발생하고, 반대로 정비 일정 전에 부품이 고장 나는 일도 생긴다. 센트랄수펠렉-파리 사클레대학교(CentraleSupélec–Université Paris-Saclay)의 지궈 젠(Zhiguo Zeng) 교수와 그의 연구팀은 디지털 트윈 기술과 딥러닝을 결합한 혁신적인 접근 방식을 통해 이 문제를 해결하고 있다. 그들의 목표는 모든 중요 부품에 센서를 배치할 필요 없이 시스템 수준의 모니터링 데이터만으로 로봇 시스템의 구성요소 수준의 고장을 감지하는 것이다. 젠 교수는 “유지보수는 공장에서 매우 큰 문제”라면서, “기계에 유지보수가 필요한 시기를 미리 안다면 주문이 적은 시기에 수리 일정을 잡을 수 있어 생산성 손실을 최소화할 수 있다”고 말했다. 그는 신뢰성 공학과 수명 예측 분야에서 풍부한 경험을 갖고 있지만, 디지털 트윈 기술은 그의 이전 연구와는 결이 다른 새로운 영역이었다. 센트랄수펠렉의 안 바로스(Anne Barros) 교수와 페드로 로드리게스-아예르베(Pedro Rodriguez-Ayerbe) 교수가 주도하는 학제 간 프로젝트인 ‘미래의 산업(Industry of the future)’에 참여하면서, 그는 디지털 트윈이 어떻게 강력한 시뮬레이션 도구를 물리적 시스템에 실시간으로 직접 연결할 수 있는지 깨달았다. 젠 교수는 “디지털 트윈은 결함 진단에 매우 유용하다. 이를 실제 기계의 데이터에 연결하여 그 데이터로 모델을 개선할 수 있다”고 설명했다.  제조업, 자동차, 항공우주 및 기타 분야로 활용 영역이 확대되면서, 디지털 트윈은 인더스트리 4.0에서 유망한 기술 중 하나로 자리잡고 있다. 물리적 객체나 시스템의 가상 복제본인 디지털 트윈(digital twin)을 생성함으로써, 조직은 운영 현황과 유지보수 필요성을 명확하게 파악할 수 있다. 또한 디지털 트윈은 예측 유지 관리 시스템 개발의 어려운 측면 중 하나인 고장 데이터의 부족에 대한 해결책을 제시한다. 젠 교수는 “현실에서는 고장이 자주 발생하는 걸 보기는 어렵다. 그래서 이제는 시뮬레이션을 통해 고장 데이터를 만들어낸다”고 설명했다.   가상과 물리의 가교 역할 디지털 트윈 프로젝트는 물리적 시스템과 가상 시스템 간의 다양한 수준의 통합을 통해 구현 옵션을 제공한다. 젠 교수의 연구팀은 세 가지 서로 다른 수준의 디지털 표현으로 작업했다. 기본 수준에서 디지털 모델은 기존 시뮬레이션처럼 작동하며, 물리적 시스템과 데이터를 교환하지 않는 정적 모델로 오프라인에서 실행된다. 그다음 단계는 디지털 섀도로, 가상 모델이 물리적 시스템의 데이터를 받아 그 행동을 미러링하지만 제어하지는 않는다. 가장 발전된 구현은 데이터와 정보의 양방향 흐름을 갖춘 진정한 디지털 트윈이다. 여기서 모델은 관찰을 바탕으로 스스로 업데이트하고 물리적 시스템을 제어하는 실시간 결정을 내린다. 연구팀은 테스트용으로 ArmPi FPV 교육용 로봇을 선택했다. 이 로봇은 5개의 관절과 하나의 엔드이펙터로 구성되며, 6개의 서보 모터로 제어된다. 결함 진단의 기초가 될 만큼 정확한 디지털 트윈을 만드는 것은 어려운 일이었다. 또한 기존 모니터링 접근 방식의 한계를 해결해야 했다. 젠 교수는 “대부분의 산업 사례에서 베어링을 진단하려면 베어링 수준의 센서가 필요하며, 이는 쉽지 않은 일이다. 내부에 베어링이 있는 큰 기계를 상상해보면 센서를 설치하기 위해서는 기계를 분해해야 하는데 때로는 공간이 충분하지 않을 때도 있다”고 말했다.   그림 1. ArmPi FPV 교육용 로봇(출처 : 센트랄수펠렉)   그들의 접근 방식은 시스템 수준 데이터(로봇 엔드 이펙터의 이동 궤적)를 사용하여 구성 요소 수준의 오류(개별 모터 문제)를 진단하는 것이었다. 또한 디지털 트윈을 사용하여 관찰할 수 있는 것과 감지해야 할 것 사이의 격차를 해소하고자 했다. 연구팀은 시뮬링크(Simulink)와 심스케이프 멀티바디(Simscape Multibody)를 사용하여 디지털 트윈을 구축했으며, 구성요소와 시스템 수준 동작을 모두 나타내는 계층적 모델을 만들었다. 젠 교수는 “모든 것은 시뮬레이션 모델을 설계하는 것으로 시작한다. 동적 시스템과 그 제어기를 모델링하고 싶다면 시뮬링크는 매우 강력하다”고 말했다. 연구팀은 시뮬링크를 사용해 모터 제어기를 PID 제어기로 모델링하면서 실험적으로 조정한 게인 값을 활용했다. 또한, 시뮬링크의 시각화 기능을 적극적으로 활용해 시뮬레이션 데이터와 실제 로봇의 센서 데이터를 연동할 수 있는 인터페이스를 구축하고, 실시간 모니터링 환경을 구성하였다. ROS 툴박스(ROS Toolbox)는 로봇 하드웨어와의 연결에서 유용한 역할을 했다. 젠 교수는 “로봇 운영 체제(Robot Operating System : ROS)를 사용하려면 일반적으로 ROS와 파이썬(Python) 환경을 별도로 구성하고 모든 연결을 직접 처리해야 한다”면서, “ROS 툴박스를 사용하면 이런 설정이 자동으로 관리되기 때문에 많은 노력을 아낄 수 있다”고 설명했다. 연구팀은 AI 모델 학습을 위한 데이터 준비 과정에서는 두 가지 접근 방식을 시도하였다. 먼저, 로봇에 입력되는 모터 명령과 그에 따른 그리퍼(gripper)의 움직임 패턴과 같은 원시 계측값을 기반으로 데이터를 수집하였다. 이후에는 디지털 트윈을 활용한 방식을 도입하였다. 시뮬레이션을 통해 로봇이 명령에 따라 어떻게 움직여야 하는지를 예측하고, 이 결과를 실제 움직임과 비교함으로써 예상과 실제 간의 차이를 도출하였다. 이러한 차이는 미세한 고장을 감지하는 데 유용한 지표로 작용하였다.   그림 2. 심스케이프 멀티바디의 로봇 팔에 대한 시뮬링크 모델(출처 : 센트랄수펠렉)   연구팀은 딥 러닝 툴박스(Deep Learning Toolbox)를 사용하여 장단기 메모리(Long Short-Term Memory : LSTM) 신경망을 훈련하여 특정 실패를 나타내는 패턴을 식별했다. 모델 아키텍처에는 각각 100개의 숨겨진 단위가 있는 두 개의 LSTM 계층, 그 사이의 드롭아웃 계층 및 완전히 연결된 분류 계층이 포함된다. 연구팀은 매트랩 앱 디자이너(MATLAB App Designer)를 사용하여 각 모터의 위치, 전압 및 온도를 포함한 실시간 데이터를 수집하는 그래픽 사용자 인터페이스를 설계했다. 이 인터페이스를 통해 로봇의 상태를 모니터링하고 오류 진단 모델의 예측을 검증할 수 있었다. 이러한 통합 도구들이 원활하게 함께 작동하면서, 연구팀은 소프트웨어 호환성 문제와 씨름하기보다는 효율적으로 기술적 과제 해결에 집중할 수 있었다.   현실 격차에 도전하다 연구팀은 실제 로봇에서 훈련된 모델을 테스트했을 때 연구원들이 ‘현실 격차’라고 부르는 시뮬레이션과 현실 세계 간의 불일치에 직면했다. 결함 진단 모델은 시뮬레이션에서 98%의 정확도를 달성하여 모터 고장의 위치와 유형을 모두 정확하게 식별했지만, 실제 로봇에서 테스트했을 때 성능은 약 60%로 떨어졌다. 젠 교수는 “시뮬레이션이 현실과 일치하지 않는 이유를 분석하고 있다”고 말하며, “실제 세계를 시뮬레이션 상에서 표현할 때 고려하지 못한 요소들이 있다”고 설명했다. 젠 교수와 그의 연구팀은 통신 신뢰성 문제, 시뮬레이션에서 고려되지 않은 모터 노이즈, 제어 명령과 모니터링 활동 간의 동기화 문제 등 성능 격차에 기여하는 여러 요인을 확인했다.   그림 3. 정상 상태 오류에서 로봇 팔의 애니메이션 및 관련 혼동 매트릭스(출처 : 센트랄수펠렉)   이러한 과제는 디지털 트윈 애플리케이션의 광범위한 문제를 반영한다. 현실은 가장 정교한 시뮬레이션보다 더 복잡하다. 연구팀은 낙담하기보다는 실제 노이즈 패턴을 시뮬레이션 하는 모듈을 디지털 트윈에 추가하고 전이 학습에 도메인 적응 기술을 적용하는 등 이러한 격차를 해소하기 위한 방법을 개발했다. 젠 교수는 “디지털 트윈 모델을 개발할 때 보정 테스트를 하긴 하지만, 이 역시 통제된 환경에서 이루어진다”고 말했다. 이어서 “하지만 산업 현장에 모델을 실제로 적용하면 훨씬 더 많은 노이즈가 포함된 데이터를 접하게 된다. 이처럼 현실의 노이즈를 알고리즘 관점에서 어떻게 보정할 것인가는 매우 도전적인 연구 주제”라고 설명했다. 이러한 수정을 통해 연구팀은 실제 세계 정확도를 약 85%까지 개선했다. 이는 실용적 구현을 향한 중요한 진전이다.   소규모 실험실에서 스마트 공장으로 연구팀의 작업은 단일 로봇을 넘어서 확장되고 있다. 이들은 다수의 로봇이 협업하며 생산 라인을 구성하는 소규모 스마트 공장 환경을 구축하고 있으며, 이를 통해 고장 진단 알고리즘을 보다 실제에 가까운 조건에서 실험하고자 한다. 젠 교수는 “우리는 미니 스마트 공장을 구축하려고 한다”면서, “생산 설비와 유사한 환경을 만들어 로봇에 알고리즘을 적용해, 실제 생산 스케줄링에 통합될 수 있는지를 실험하고 있다”고 설명했다. 이러한 접근 방식은 교육적 효과도 크다. 센트랄수펠렉의 공학과 학생들은 수업과 프로젝트를 통해 디지털 트윈, 로보틱스, 머신러닝 기술을 실습 기반으로 학습하고 있다. 젠 교수는 “학생들이 처음부터 가상 공간에서 모델을 직접 설계하고 이를 점차 실제 로봇과 연결해가는 과정을 보면, 그들이 이 과정을 진심으로 즐기고 있다는 걸 알 수 있다”고 전했다. 이 연구는 제조업뿐 아니라 물류, 스마트 창고 등 다양한 산업 분야로의 확장이 가능하다. 예를 들어 스마트 창고에서는 로봇이 정해진 경로를 따라 이동하지만, 장애물이 나타나면 이를 인식하고 경로를 유동적으로 조정해야 한다.   그림 4. 여러 로봇이 소규모 스마트 공장 환경의 생산 라인에서 협력하여 작동한다.(출처 : 센트랄수펠렉)   젠 교수는 “스마트 창고에서 로봇은 사전 정의된 규칙을 따르지만, 패키지가 떨어지고 경로가 막히는 등 경로를 리디렉션하고 다시 프로그래밍해야 하는 경우가 있을 수 있다. 이런 경우 로봇을 조정하기 위해 각 로봇의 실시간 위치를 알아야 하기 때문에 디지털 트윈 시스템이 필요하다”고 설명했다. 연구팀은 구성요소가 고장 날 때 로봇의 움직임을 조정하는 것과 같은 내결함성 제어를 포함한 추가 응용 프로그램을 모색하고 있다. 또한 연구자들은 에너지 소비만 고려하는 것이 아니라, 궤적 최적화 모델에서 각 모터의 성능 저하 수준과 잔여 유효 수명도 고려하는 건전성 인식 제어를 개발하고 있다. 그들의 코드, 모델, 데이터 세트를 깃허브 저장소(GitHub repository)를 통해 자유롭게 공개하고 있으며, 다른 연구자들이 이를 바탕으로 연구를 확장해 나가기를 기대하고 있다. 목표는 개선의 출처가 어디든 간에, 보다 나은 고장 진단 시스템을 구축하는 것이다. 젠 교수는 “누군가 우리보다 더 나은 결과를 만들어낸다면 정말 기쁠 것”이라고 전했다. 중국 제조업 현장에서 일하던 부모님의 영향을 받아 공학자의 길을 걷게 된 젠 교수에게 이번 연구는 단순한 학문적 탐구를 넘어선 개인적인 사명이기도 하다. 젠 교수는 “어릴 때 제조업에서 일하는 것이 얼마나 힘든 일인지 직접 보며 자랐다”면서, “내가 그렸던 비전은 그런 육체 노동을 로봇이 대체하게 해 사람들이 보다 나은 삶을 살 수 있도록 하는 것이었다”고 전했다.   ■ 이웅재 매스웍스코리아의 이사로 응용 엔지니어팀을 이끌고 있으며, 인공지능·테크니컬 컴퓨팅과 신호처리·통신 분야를 중심으로 고객의 기술적 성공을 지원하는 데 주력하고 있다. LG이노텍과 LIG넥스원에서 연구개발을 수행하며 신호처리와 통신 분야의 전문성을 쌓아왔다.     ■ 기사 PDF는 추후 제공됩니다.
작성일 : 2025-10-20
AI 팩토리 M.AX 얼라이언스, 2030 제조 AI 최강국 향한 혁신 가속화
산업통상부는 10월 1일 AI 팩토리 M.AX 얼라이언스 전략 회의를 개최하고, 대한민국 제조업의 인공지능 전환(M.AX)을 통한 2030 제조 AI 최강국 도약을 위한 성과와 전략을 점검했다. 삼성전자, 현대자동차, LG엔솔, 삼성중공업 등 국내 대표 제조 기업들이 한자리에 모여 제조 혁신의 의지를 다졌다. 김정관 장관은 "AI 시대는 속도와의 전쟁이다. AI 팩토리는 빠르게 세계 1위를 도전할 수 있는 분야"라며, "정책과 자원을 집중해 순풍을 만들겠다"고 밝혔다.   AI 팩토리 선도사업, 2030년까지 500개로 대폭 확대 AI 팩토리 선도사업은 제조 공정에 AI를 접목해 생산성을 획기적으로 높이고 제조 비용과 탄소 배출 등을 감축하는 핵심 프로젝트이다. 이날 회의를 계기로 삼성전자, 현대자동차, LG전자, LG엔솔, SK에너지, HD현대중공업, 농심 등 업종 대표 기업들이 신규 참여를 확정했다. 이에 따라 현재 102개인 AI 팩토리 선도 사업은 2030년까지 500개 이상으로 확대될 계획이다. 주요 기업들은 AI 팩토리를 통해 혁신적인 성과를 목표로 했다. 삼성전자는 AI를 통해 HBM(고대역폭메모리반도체)의 품질을 개선한다. HBM은 ’28년까지 연평균 100% 이상 급성장이 기대될 정도로 각광받는 AI 반도체이다. 삼성전자는 현재 전반적으로 사람이 수행중인 HBM 불량 식별 공정에 AI를 도입할 계획이다. AI가 발열검사 영상, CT 이미지 등을 분석해 품질검사의 정확도를 99% 이상 높이고, 영상·이미지 등의 비파괴 검사를 통해 검사시간도 25% 이상 단축할 것으로 기대된다. HD현대중공업은 함정 MRO용(Maintain 유지보수, Repair 수리, Overhaul 정비) 로봇 개발을 추진한다. 보통 선체의 10% 면적에 따개비·해조류 등의 오염물질이 부착되면 연료소비가 최대 40%까지 증가한다. HD현대중공업은 숙련공에 의존하던 해양생물 제거, 재도장 등의 작업을 AI 로봇에 맡겨, MRO효율을 80% 이상 향상시키고 작업자 안전사고 등을 방지할 계획이다. 현대자동차는 셀방식 생산방식에 핵심이 되는 AI 다기능 로봇팔을 개발한다. 자동차산업은 소품종 대량생산의 컨베이어벨트 방식에서, 제품별로 공정을 다르게 적용해 유연생산이 가능한 셀기반 방식으로 전환되고 있다. 현대차는 힌지·도어 조립, 용접품질 검사 등 다양한 공정을 자율적으로 수행가능한 AI 로봇팔을 공정에 도입하여, 시장수요 변화에 신속히 대응하고 생산성을 30% 이상 높일 계획이다. 농심은 라면 제조설비에 AI 기반 자율정비 시스템을 도입한다. 원료공급, 제면, 포장 등의 라면 제조공정은 연속작동 설비가 많아 한 부분의 예기치 못한 고장으로 생산라인 전체가 중단될 수 있다. 이에 각 공정별로 다양한 이상 징후를 조기에 탐지하는 자율정비 시스템을 도입해 설비 효율성을 10% 이상 제고하고, 유지보수 비용은 10% 이상 절감할 계획이다. 현재까지 AI 팩토리 선도사업에 참여중인 업종별 주요기업 자동차 반도체 전자(가전 등) 철강 조선 현대차, LG이노텍, 한국타이어, 기아 삼성전자, 케이씨텍, 이수페타시스 LG전자, 쿠첸, LS전선 포스코, KG스틸, 대한제강 삼성중공업, HD현대삼호 항공·방산 식품·바이오 이차전지 석유화학·섬유 기계·건설 대한항공, KAI. 한화시스템 농심, 삼양식품, 한국콜마 LG에너지솔루션, 삼성SDI SK에너지, GS칼텍스, 코오롱 HD현대건설기계, 코넥 휴머노이드 로봇, 금년부터 제조 현장 실증 본격 투입 AI 팩토리 전략의 한 축으로, 제조 현장 휴머노이드 로봇 투입을 위한 실증 계획도 공개되었다. 금년에는 디스플레이, 조선, 물류 등 6개 현장에 휴머노이드가 투입된다. 분야 수요기업 공급기업 휴머노이드 주요 과업 디플 삼성디스플레이 레인보우로보틱스 레이저 장비내 렌즈교체, 검사 JIG 교체 작업 등 조선 HD현대미포 에이로봇 각종 상황과 이음 형태에 맞는 용접 작업 수행   삼성중공업 에이로봇 다양한 장애물, 협소 공간, 비평탄면 등 극복을 통해 자율 이동하며 용접·청소 등 가전 LG전자 로브로스 인간 수준 핸들링 작업 및 보행을 바탕으로 가전제품 공장 내 조립·운송 화학 SK에너지 홀리데이로보틱스 석유화학 제품 검사, 유압/가스 밸브 등 조작, 시료 제조, 검사 시료 운송 등 수행 유통 CJ대한통운 레인보우로보틱스 피킹·분류·검수·포장 등 복잡한 물류 작업 동작을 다양한 상품에 맞게 자율적으로 수행 산업부는 올해부터 2027년까지 100개 이상 휴머노이드 실증 사업을 통해 핵심 데이터와 기술을 확보하고, 2028년부터는 본격적인 양산 체계에 돌입할 계획이다. 선도사업 성과 가시화, 세계 최고 업종별 제조 AI 모델 개발 착수 현재까지 진행된 AI 팩토리 선도 사업에서는 이미 가시적인 성과가 도출되고 있다. GS칼텍스는 AI를 통해 정유 공정 데이터를 분석해 연료 비용을 20%가량 감축했으며, 온실가스 배출 저감 효과도 달성했다. HD현대미포는 AI 로봇을 투입해 용접 검사·조립 작업시간을 12.5% 단축했다. 반도체 기업인 대덕전자와 신한다이아몬드는 AI 도입으로 기존 육안 품질 검사 시간을 각각 90%, 30% 단축하는 성과를 보였다. 이러한 성과를 바탕으로 AI 팩토리 M.AX 얼라이언스는 세계 최고 수준을 목표로 하는 업종별 특화 제조 AI 모델 개발에 착수했다. 제조 AI에 특화된 전문가를 비롯해 뉴욕대 조경현 교수, 멜버른대 한소연 교수 등 초거대 AI 모델 전문가 23명이 공동으로 참여한다. 개발된 모델은 2028년 완료를 목표로 하며, 제조 현장 배포 시 기업들은 개발 비용 50%, 개발 시간 40%를 줄일 수 있을 것으로 기대했다. '다크 팩토리' 구현 위한 AI 팩토리 사업 확대 전략 산업부는 AI 팩토리 사업을 확대·개편해 내년부터 완전 자율형 AI 공장인 AI 팩토리(다크 팩토리) 건설에 필요한 기술 개발과 실증 사업을 추진한다. 제조 공정뿐 아니라 공장 설계, 시생산, 공급망 관리, 물류, A/S 등 제조 전 단계를 아우르는 AI 모델을 개발·확산할 계획이다. 특히 엔비디아 CEO 젠슨 황이 강조한 디지털 트윈을 활용한 '가상공장(Virtual Factory)' 구현을 전략의 한 축으로 삼았다. 가상공장을 통해 기업은 시스템 변경, 설비 고장, 공급망 변동 등 다양한 상황에서 공정 가동을 미리 테스트하고, 실제 공장과 연동해 모니터링, 예지 보전, 원격 제어 등에 활용할 수 있게 된다. 이러한 기술을 바탕으로 2030년까지 우리나라가 세계 최고의 AI 팩토리 수출국으로 발돋움하는 것을 목표로 관련 전략을 수립했다.
작성일 : 2025-10-11
무엇을 볼 것인가?
시점 – 사물이나 현상을 바라보는 눈 (10)   지난 호에서는 ‘작용, 반작용, 상호작용’을 주제로 주변에서 일어나는 일을 다양한 사례를 들어가며 조금 특별한 시각으로 바라보았다. 뉴턴의 운동법칙, 작용, 반작용, 상호작용의 사전적 의미, 다양한 물리현상, 생태계의 상호작용, 사회적 상호작용, 관점의 차이, 상관관계를 통해서 세상을 알아가는 방법 등에 관해서 소개했다. 이번 호부터는 3회에 걸쳐서 ‘무엇을 볼 것인가?’, ‘무엇을 믿을 것인가?’, ‘가설, 모델, 이론의 설득력의 시대성’의 이야기를 다룰 예정이다. 이번 호에서는 그 첫 번째 이야기로 ‘무엇을 볼 것인가?’에 관해서 생각해 보고자 한다.   ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com   그림 1. 일제 강점기에 촬영된 청계천의 수위를 관찰하던 수표교의 모습   하천의 수위 측정 수표교는 하천의 수위를 측정할 수 있도록 눈금(수표)이 새겨져 있는 청계천에 있던 다리이다.(그림 1) 세종 2년(1420년)에 만들어질 당시는 그곳에 마전(馬廛)이 있어 마전교라 불렸다. 세종 23년(1441년) 다리 밑을 지나는 개천(청계천)에 흐르는 수위를 측정하기 위해서 수표를 세웠다. 이후부터 수표교로 부르게 되었으며, 주변에 있는 마을은 수표동이라고 부르게 되었다. 수표는 하천의 수위를 과학적, 계량적으로 측정할 수 있는 기구로, 측우기와 함께 세종 때 만들어진 대표적인 과학 기기의 하나로 꼽힌다. 수표교는 현재의 서울특별시 종로구 수표동에 있었으나, 1958년 청계천 복개 공사로 장충단공원에 옮겨졌다. 2005년 청계천 복원 당시 원래 자리에 다시 놓으려고 했으나, 복원된 청계천의 폭과 수표교의 길이가 맞지 않아 옮겨지지 못했다.(그림 2) 대신 그 자리에는 임시 다리가 설치되어 있다. 원래의 수표교는 동대문구 청량리동에 있는 세종대왕기념관으로 이전되었다. 수표교에서 오른쪽으로 다섯 번째 다리의 이름이 오늘날의 마전교로 되어 있다. 초기의 수표는 청계천의 마전교 서쪽과 한강변에 세워졌다. 물속에 기둥을 꽂을 수 있도록 구멍을 판 받침돌을 놓고 그 구멍에 나무 기둥을 세웠다. 나무 기둥에는 눈금을 새겨 수위를 알아볼 수 있도록 하였으나, 나무로 만든 수표는 쉽게 망가져 15세기 성종 때 돌기둥으로 교체하였다. 아마도 물이 차면 부력으로 떠내려가기도 쉽고 물에 젖었다가 마르기를 반복하는 부분은 쉽게 썩지 않았을까 싶다. 돌기둥으로 만들어진 수표 양면에는 1척에서 10척까지 눈금을 새겼으며, 3, 6, 9척의 위치에는 ○표를 새겨서 각각 갈수(渴水), 평수(平水), 대수(大水)를 판단하는 기준으로 삼았다. 6척 안팎의 물이 흐르면 보통의 수위이고, 9척 이상이 되면 위험 수위로 개천의 범람 징후를 미리 헤아릴 수 있도록 한 것이다. 영조 36년(1760년)에 다리를 수리하면서 돌기둥에 ‘庚(경)·辰(진)·地(지)·平(평)’이라는 글씨를 새겨 물 높이를 4단계로 측정하였다. 순조 때 개천을 다시 준설할 때 새로운 수표를 세웠으며, 지금 남아 있는 수표는 이때 만들어진 것이다.   그림 2. 복원된 청계천의 22개 다리 중에서 옛 모습을 찾지 못한 수표교(빨간 별표로 표시된 다리)   강우량을 측정하는 측우기 현존하는 세계 최고의 강우량 측정기구도 우리나라가 가지고 있다. 국보로 지정된 ‘공주 충청감영 측우기’이다.(그림 3) 헌종 3년(1837년)에 제작된 공주 충청감영(금영) 측우기는 농업을 위한 조상의 과학적 발명과 구체적 실행을 증명해주는 유물로 매우 가치가 크다. 금영 측우기는 조선 시대 충남지역 감독관청이었던 충청감영에 설치되었던 것으로, 1915년경 일본인 기상학자 와다 유지가 국외로 반출한 것을 1971년 일본으로부터 환수한 것이다. 현재 서울 기상청 박물관에 보관되어 있다. 조선 시대에는 중앙정부에서 규격이 같은 측우기를 제작해 전국의 감영에 보냈기 때문에, 여러 점이 만들어졌을 것으로 추정된다. 다만 지금까지 남아 있는 것은 금영 측우기가 유일하다. 빗물을 그릇에 받아 강우량을 재는 측우기는 조선 세종 때에 처음 만들어진 후 여러 차례 다시 만들어졌다는 기록은 남아 있으나, 현재 실물로 남아 있는 것은 헌종 3년(1837년)에 만들어진 이 측우기뿐이다. ‘조선왕조실록’ 세종 23년(1441년) 8월 18일의 기록에는 서운관(기상관측 기관)에 대(臺)를 설치해 빗물을 받아 강우량을 측정했으며, 이듬해인 1442년 5월 8일에는 측정방식이 미진해 다시 원칙을 세웠다고 한다. 이때 세운 원칙대로 만들어진 것이 금영 측우기이다. 강우량 측정의 표준이 필요함을 절감하고 표준을 정해서 시행한 셈이다. 오늘날의 표준화 작업과 품질관리가 실행된 구체적인 사례이다. 도량형 표준이 측우기에도 적용된 셈이다. 금영 측우기의 제작 시기와 크기 등은 바깥 면 가운데쯤에 새겨진 명문(銘文)을 통해 알 수 있다. 명문에 따르면 이 측우기는 헌종 3년(1837년)에 만들었으며 높이는 1자(尺) 5치(寸), 지름 7치, 무게 11근으로 제작되었다. 상·중·하단의 3개의 금속 부품으로 구성되었으며, 상부가 약간 넓고 하부가 약간 좁게 만들어져 서로 끼워서 조립하는 형태의 구조이다. 금속 부품을 끼우는 접합부는 대나무 마디처럼 두껍게 만들어 부품의 모양이 변형되지 않도록 고안된 형태이다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
레노버, AI 성능 강화한 일체형 데스크톱 PC 아이디어센터 ‘AIO 27AKP10’ 출시
  한국레노버가 AI 성능을 높이고 업무 및 엔터테인먼트에 최적화된 일체형 올인원 데스크톱 PC 신제품 아이디어센터 ‘AIO 27AKP10’을 출시했다. 이번 제품은 AMD 라이젠 200 시리즈 프로세서와 라이젠 AI 기술을 탑재해 AI 기반 연산 성능을 강화했다. 아이디어센터 일체형 올인원 데스크톱 PC만의 저소음 기능으로 무거운 작업도 적은 소음으로 처리한다. 최대 32GB DDR5 메모리와 1TB PCle SSD 스토리지는 멀티태스킹 효율과 대용량 데이터 처리 속도를 높인다. 27인치 FHD(1920×1080) IPS 디스플레이는 100Hz 주사율, 99% sRGB 색역, 300니트 밝기를 지원해 선명하고 부드러운 화질을 구현한다. 로 블루라이트 인증으로 장시간 사용 시 눈의 피로를 줄였으며, 2개의 3W 하만 스테레오 스피커를 내장해 영화 감상 시 고품질의 풍성한 사운드를 즐길 수 있다. 편의성도 강화했다. -5도에서 15도까지 조절 가능한 힌지로 사용자의 시야각과 자세에 맞춰 화면을 유연하게 조절할 수 있다. 또한, 레노버의 AI 기반 카메라 설루션 ‘레노버 스마트 미팅(Lenovo Smart Meeting)’과 ‘스마트 노이즈 캔슬링’ 기술은 화상 회의에서 쾌적한 영상과 오디오 환경을 제공한다. 연결성과 확장성 측면에서도 와이파이 6 및 블루투스 5.2, USB-A 단자, USB-C 단자, HDMI In·Out 포트 등 다양한 옵션을 갖췄다. 얼굴 인식 로그인과 같은 스마트 기능으로 제품 활용성을 한층 강화했다. 제품은 클라우드 그레이(Cloud Grey) 컬러를 적용해 세련미와 고급스러움을 갖춘 디자인을 내세운다. 아이디어센터 AIO 27AKP10은 89만원부터 쿠팡 및 온라인 마켓을 통해 구매 가능하다. 한편, 한국레노버는 무상 1년 온사이트(On-site) 서비스를 지원한다고 전했다. 전문 엔지니어가 직접 방문해 수리를 진행하며, 현장 수리가 불가할 경우 서비스 센터 입고부터 수리 완료 후 배송까지 책임지는 서비스로 고객 편의를 강화했다는 것이 한국레노버의 설명이다. 한국레노버 신규식 대표는 “일체형 올인원 데스크톱 PC 아이디어센터 AIO 27AKP10 은 라이젠의 최신 AI 기술과 레노버만의 스마트 기능을 적용해 더 효율적이고 몰입감 있는 사용자 경험을 제공한다”며, “앞으로도 AI를 통해 높아지는 제품 편의성을 일상적으로 누릴 수 있는 혁신적인 제품을 선보일 것”이라고 밝혔다.
작성일 : 2025-09-24
[케이스 스터디] 가상 커미셔닝으로 산업 과제를 해결하는 스피라텍
개방형 커미셔닝과 협업 혁신으로 제조업을 재정의하다   스피라텍(SpiraTec) 그룹은 디지털 전환, 엔지니어링, 로봇 공학, 자동화 및 산업 IT를 전문으로 하는 공정 산업의 산업 공학 및 설루션 분야의 글로벌 플레이어이다. 스피라텍의 가상 커미셔닝 전문성은 제조사가 프로세스를 최적화하고 비용을 절감하며 전 세계적으로 디지털화를 가속화하는 데 도움을 준다. 이번 호에서는 스피라텍이 고객이 주요 산업 과제를 해결하도록 돕는 방법과 유니티(Unity)를 기반으로 가상 커미셔닝을 위한 협업적이고 접근 가능한 설루션을 목표로 하는 오픈 소스 이니셔티브인 ‘오픈 커미셔닝’의 배경과 여정을 소개한다. ■ 자료 제공 : 유니티 코리아   ▲ 생산 라인의 디지털 트윈 : PLC 및 로봇 컨트롤러 통합으로 물질 흐름 시뮬레이션   산업이 디지털 전환을 가속화함에 따라 제조사는 제품을 더 빠르게 시장에 출시하고 비용을 줄이며 지속 가능성 목표를 달성해야 한다는 압박을 받고 있다. 이 모든 과정에서 단편화된 데이터, 구식 방법론 및 제한된 표준화로 어려움을 겪고 있다. 이러한 도전 과제는 더 스마트하고 통합된 설루션을 요구한다. 그리고 여기서 디지털 트윈과 가상 커미셔닝이 등장한다. 글로벌 디지털 트윈 시장은 수요가 급증하고 있다. 2024년에는 177억 3000만 달러로 평가되며, 2025년에는 244억 8000만 달러에서 2032년에는 2593억 2000만 달러로 성장할 것으로 예상된다. 캡제미니 리서치 인스티튜트(Capgemini Research Institute)의 디지털 트윈 리포트에 따르면, 57%의 조직이 지속 가능성을 디지털 트윈 투자에 대한 주요 동력으로 언급하며, 51%는 이러한 기술이 환경 목표 달성에 도움이 될 것으로 기대하고 있다. 디지털 트윈 기술의 주요 응용 프로그램인 가상 커미셔닝은 디지털화의 게임 체인저로, 제조사가 실제 배포 전에 프로세스를 시뮬레이션하고 최적화할 수 있게 하여 자원 소비를 줄이고 비용을 절감한다.   가상 커미셔닝 이해하기 전통적으로 자동화에서 커미셔닝은 새로운 시스템(장치, 기계, 공장 등)을 완전 작동 가능한 생산 준비 상태로 만드는 과정을 의미한다. 과거에는 대부분의 PLC(프로그래머블 로직 컨트롤러) 프로그래밍 및 시스템 테스트가 물리적 하드웨어가 제자리에 있어야 했으며, 이는 종종 비용이 많이 드는 지연과 막판 문제 해결을 초래했다. 가상 커미셔닝은 이 패러다임을 뒤집고 전체 커미셔닝 프로세스를 디지털 환경에서 복제한다. 실제 장치, 센서 및 액추에이터와 통신하는 대신, PLC는 디지털 트윈과 통신한다. 이는 실제 시스템의 동작을 정확하게 반영하는 에뮬레이션 모델이다. 중요하게도, 동일한 PLC 프로그램 코드는 가상 및 물리적 단계 모두에 사용되어, 물리적 하드웨어가 준비되면 코드 수정이나 막판 재작성 없이 원활한 인계를 보장한다.   ▲ 가상 커미셔닝 : 물리적 배포 전에 디지털 프로세스 시뮬레이션 및 최적화   가상 커미셔닝이 실제 가치를 제공하는 방법 효율성 향상 가상 커미셔닝은 현장 테스트와 물리적 프로토타입의 필요성을 줄여 시간과 비용을 절감한다. 또한 디지털 환경에서 팀이 신속하게 반복할 수 있도록 하여 개발 주기를 가속화하고 시장 출시 시간을 단축한다.   위험 감소 시뮬레이션을 통해 오류를 조기에 발견함으로써, 가상 커미셔닝은 비용이 많이 드는 실수의 위험을 줄인다. 더욱이, 팀이 위험한 작업을 디지털로 시뮬레이션할 수 있도록 하여 물리적 구현 전에 잠재적 위험을 제거함으로써 더 안전한 배포를 지원한다.   협업 및 혁신 현실적인 시뮬레이션은 교차 기능 팀 간의 더 나은 정렬을 촉진한다. 가상 공간에서 시스템을 시각화하고 상호작용함으로써 이해관계자는 더 깊은 통찰력을 얻고, 전반적인 커뮤니케이션을 향상시켜 창의성과 혁신을 촉진한다.   제약에서 능력으로 : 유니티로의 전환 스피라텍은 고객이 가상 커미셔닝을 운영에 원활하게 통합하도록 돕는 단일 목표를 추진해 왔다. 스피라텍은 제한된 확장성을 가진 폐쇄 시스템, 작은 사용자 커뮤니티 및 최소한의 응용 프로그래밍 인터페이스(API)에 직면했다. 이러한 조건은 공급업체 종속을 촉진하고 프로젝트 위험을 증가시켰다. 이러한 제한은 종종 시간 지연을 일으키고, 고객이 필요로 하는 접근 가능하고 확장 가능한 설루션의 가능성을 없앴다. 유니티는 스피라텍의 큰 장애물을 극복하는 열쇠가 된 실시간 3D 엔진이다. 유니티의 편집기의 힘을 활용함으로써 스피라텍은 최첨단 물리학 및 렌더링 기능을 얻었을 뿐만 아니라, 디지털 트윈 모델 개발에 대한 전체 접근 방식을 근본적으로 변화시켰다. 유니티의 다양한 기술 및 기능은 여러 문제를 해결하고 스피라텍의 디지털 트윈 개발 프로세스를 형성하는 데 도움이 되었다. 프리팹 시스템 : 객체 지향적 접근 방식을 통해 재사용 가능한 구성 요소 라이브러리를 활용하여 디지털 트윈을 생성할 수 있다. 이는 다양한 프로젝트에서 일관된 품질을 유지하면서 개발 속도를 크게 가속화한다. 픽시즈(Pixyz) : CAD 데이터를 원활하게 가져오고 특정 메타데이터 및 고객 기준에 따라 디지털 트윈을 생성하기 위한 규칙 기반 워크플로를 설정할 수 있다. 사용자 인터페이스(UI) 툴킷 : 편집기 및 런타임을 위한 UI 콘텐츠의 생성 및 향상을 가능하게 하여, 사용자 정의 도구 및 인터페이스에 대해 더 매끄러운 사용자 경험을 제공한다. 작업 시스템 : 복잡한 프로세스(예 : 유체 흐름, 대량 물질 이동 및 스트레스 모델링) 및 대규모 디지털 트윈 프로젝트의 효율적인 다중 스레드 시뮬레이션을 가능하게 한다. 분석기 및 저장 프로파일러 : 성능 병목 현상에 대한 자세한 통찰력을 제공하여 배포 전에 프로젝트 품질을 최적화하고 개선할 수 있게 하며, 궁극적으로 고객에게 더 신뢰할 수 있는 설루션을 제공한다.   대규모 디지털 트윈 내부 : 창고 커미셔닝의 재구상 물류 회사의 창고 시뮬레이션을 특징으로 하는 성공 사례에서 스피라텍은 12개의 가상 PLC를 완전한 디지털 환경에 통합했다. 모델은 필드버스 에뮬레이션과 드라이브, 안전 모듈 및 RFID 리더와 같은 산업 구성 요소의 시뮬레이션을 특징으로 했다. 사용성을 높이기 위해 대규모 시뮬레이션에 최적화된 경량의 강력한 독립 실행형 *.exe 애플리케이션을 제공하는 맞춤형 사용자 인터페이스가 개발되었다. 또한 시스템은 창고 관리 시스템(WMS)과 원활하게 통합되어, 안전한 가상 환경에서 실시간 제품 데이터 관리를 위한 네이티브 텔레그램 통신을 가능하게 했다. 이는 물리적 기계가 존재하기도 전에 포괄적인 소프트웨어 검증을 보장하여 품질을 크게 향상시키고 배포 위험을 줄였다. 이 이니셔티브는 커미셔닝 시간을 30% 줄였다, 프로젝트 일정을 가속화하면서 비용과 위험을 줄였다. 효율성 향상을 넘어, 이는 부서 간 협업을 강화하여 비용 효율적인 반복 개발과 더 빠른 개념 증명 검증을 가능하게 했다.   ▲ 개방형 커미셔닝으로 구축된 창고 운영 시뮬레이션   효율을 넘어 : 시뮬레이션을 통한 지속 가능성 추진 가상 커미셔닝에 대한 대화는 종종 단축된 커미셔닝 시간과 개선된 협업에 초점을 맞추지만, 이러한 이점은 지속 가능성과 관련하여 특히 실질적인 비즈니스 가치로 직접 전환된다. 스피라텍은 고객과 협력하여 후속 제품 수명주기 전반에 걸쳐 디지털 트윈의 사용을 확장하기 시작했으며, 지속 가능성과 비용 절감의 잠재력은 크다. 프로세스를 간소화하고 고충실도 시뮬레이션을 활용함으로써 기업은 다음과 같은 효과를 얻을 수 있다. 장비 수명의 연장 : 시뮬레이션 데이터로 훈련된 예측 유지보수 알고리즘을 사용하여 조직은 마모를 최소화하고 비용이 많이 드는 교체 및 수리를 연기한다. 고장 감소는 유지보수 비용을 직접 낮추고 계획되지 않은 다운타임을 줄인다. 자원 소비의 절감 : 가상 환경에서 제어 논리와 워크플로를 검증함으로써, 팀은 에너지 사용을 줄이고 자재 낭비를 최소화하는 효율성 격차를 식별할 수 있다. 이러한 개선은 환경 목표를 달성하는 데 도움이 될 뿐만 아니라 운영 비용을 줄인다. 시장 출시 시간의 가속화 : 가상 커미셔닝은 물리적 프로토타입과 긴 현장 테스트의 필요성을 최소화한다. 결과적으로 기업은 제품을 더 빠르게 출시하고, 시장 점유율을 더 빨리 확보하며, R&D 투자에 대한 더 빠른 수익을 실현할 수 있다. 현장 면적의 축소 : 더 적은 문제 해결 방문과 짧은 설치 시간은 여행 관련 배출가스와 비용을 줄인다. 이 혜택은 여러 글로벌 시설을 가진 조직에 대해 크게 확장된다.   미래를 함께 형성하기 : 커뮤니티 주도 이니셔티브 협업과 개방성이 가상 커미셔닝의 가장 큰 혁신을 이끌어낼 것이며, 이는 계속 발전할 것이다. 개방형 커미셔닝(open commissioning)을 통해 스피라텍은 단순히 도구를 공유하는 것이 아니라, 혁신적인 아이디어가 다듬어지고 테스트되며 실제 문제를 해결하는 데 적용될 수 있는 커뮤니티 주도 생태계를 구축하고 있다. 가장 흥미로운 발전은 아직 오지 않았다. 스피라텍의 다음 진화는 생성형 AI와 실시간 클라우드 시뮬레이션을 통합하고, 데이터 표준을 설정하며, 산업 연결성을 확장하는 것이다. 제조의 미래는 협업적이고, 데이터 기반이며, 친환경적으로 더 스마트하고 지속 가능한 산업 환경을 만들어 나가는 데 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
[케이스 스터디] KAI의 언리얼 엔진 기반 차세대 시뮬레이션 에코시스템
비행 훈련부터 제품 개발·운영까지 아우르는 핵심 인프라를 목표로   최근 몇 년 사이 시뮬레이션 산업은 디지털 트윈, AI(인공지능), VR(가상현실)/AR(증강현실) 등 첨단 디지털 기술 중심으로 빠르게 재편되고 있다. KAI(한국항공우주산업)는 이러한 흐름에 발맞춰 언리얼 엔진을 도입함으로써 항공산업 전반에 걸친 디지털 혁신을 추진하고 있다. ■ 자료 제공 : 에픽게임즈   KAI는 KT-1 기본 훈련기, T-50 고등훈련기, 수리온 기동헬기, 송골매 무인기 등 다양한 항공우주 시스템을 자체적으로 설계 및 제작하며, 지난 40년간 항공산업 및 국방산업을 선도해 온 종합 항공우주 설루션 기업이다. 최근에는 소형무장헬기(LAH)와 차세대 전투기 KF-21 개발을 비롯해 위성과 발사체 총조립 등 우주 분야로도 사업을 확대하고 있다. KAI는 2024년 ‘언리얼 페스트 시애틀 2024(Unreal Fest Seattle 2024)’에 참가해 자사의 시뮬레이션 전략을 소개하는 세션을 진행했다. 이번 호에서는 이 발표 내용을 바탕으로 시뮬레이션 산업의 급변하는 흐름 속에서 KAI가 어떻게 대응하고 있는지, 언리얼 엔진을 중심으로 한 시뮬레이션 통합 전략과 실제 적용 사례, 그리고 향후 비전 등을 중심으로 KAI의 기술 혁신에 대해 살펴본다.   ▲ 이미지 출처 : ‘KAI의 언리얼 엔진 기반 차세대 시뮬레이션 에코시스템 | 언리얼 엔진’ 영상 캡처   시뮬레이션 산업의 변화와 KAI의 대응 최근 시뮬레이션 산업은 빠르게 발전하며 구조적인 변화를 겪고 있다. 클라우드 기반 시뮬레이션 도입으로 언제 어디서든 고성능 자원에 접근할 수 있게 되었고, 디지털 트윈, AI, 머신러닝 기술의 결합을 통해 시뮬레이션은 단순한 재현을 넘어 예측과 최적화를 수행할 수 있는 툴로 진화하고 있다. 또한 VR/AR/MR(혼합현실) 기술은 훈련의 몰입감과 현실감을 높여 실제 환경과 유사한 시뮬레이션을 가능하게 하고, 마이크로서비스 아키텍처를 기반으로 한 소프트웨어 설계는 유연성과 확장성을 높이고 있다. KAI는 이러한 디지털 전환에 적극 대응하기 위해 전통적인 레거시 시뮬레이션 시스템을 언리얼 엔진과 통합하고 있다. 핵심 전략은 세 가지이다. 첫째, 언리얼 엔진을 활용한 빠른 프로토타이핑으로 기술 검증과 적용 속도를 높이는 것이다. 둘째, 표준화된 인터페이스를 통해 기존 시스템과의 원활한 연동을 실현하는 것이다. 셋째, 지속 가능한 콘텐츠 개발을 위한 플랫폼 설계로 장기적인 생태계 구축을 추진하는 것이다. 이를 통해 KAI는 기존 자산의 가치를 극대화함과 동시에 급변하는 기술 환경에 유연하고 효율적으로 대응하고 있다.   언리얼 엔진이 변화하는 시뮬레이션 산업에 주는 영향 언리얼 엔진은 시뮬레이션 산업의 진화에 있어 중요한 역할을 하고 있다. 우선 고품질의 리얼타임 3D 그래픽을 통해 현실감 있는 몰입형 시뮬레이션 환경을 구현할 수 있어, 훈련과 테스트의 효율성을 높이고 있다. 또한 VR/AR/MR과의 통합 지원은 다양한 산업에서 실제 같은 체험 기반 학습을 가능하게 한다. 언리얼 엔진의 모듈형 아키텍처와 개방된 생태계는 기존 레거시 시스템과의 통합을 쉽게 하고, 새로운 기술이나 기능을 빠르게 적용할 수 있는 유연성을 제공한다. 특히 디지털 트윈, AI, 머신러닝 등 최신 기술과의 연계가 원활하여 복잡한 시스템의 설계, 유지보수, 운영 효율을 높일 수 있다. KAI와 같은 기업에게 언리얼 엔진은 단순한 툴을 넘어, 지속 가능한 시뮬레이션 콘텐츠를 개발하고 새로운 시뮬레이션 생태계를 구축하는 핵심 기술로 자리잡고 있다.   ▲ KAI의 시뮬레이터로 본 FA-50의 모습(이미지 출처 : KAI)   기존 시스템에 언리얼 엔진을 통합한 사례 KAI는 항공기 훈련 체계에 언리얼 엔진을 도입해 현실성과 효율을 갖춘 시뮬레이터를 개발하고 있다. 대표적으로 VR 시뮬레이터의 경우, 조종사가 풀 플라이트 시뮬레이터에 들어가기 전 VR 기기를 통해 절차와 조작 감각을 사전에 익힐 수 있도록 돕고 있다. 언리얼 엔진으로 실제 항공기와 동일한 가상 조종석을 구현해 이륙/착륙, 비상절차, 항전 장비 조작 등을 별도 교관 없이 반복 학습할 수 있도록 했다. 기존의 시뮬레이터는 실제 항공기 수준의 조작감과 훈련 효과를 제공하지만, 높은 구축 비용과 운영 비용, 전용 시설의 필요 등으로 대량 보급에 한계가 있었다. KAI는 이러한 문제를 보완하기 위해 VR 기술을 도입했다. 언리얼 엔진은 영상 발생 장치, 계기 패널, 입출력 장치 등을 대체한 것은 물론, VR HMD(헤드 마운트 디스플레이) 하나만으로 기존의 여러 장치를 필요로 하는 대형 시현 시스템의 효과를 구현할 수 있게 했다. 또한 KAI는 독자적인 역학 모델과 항전 시스템을 언리얼 엔진의 실시간 렌더링과 결합해 실제 조종과 유사한 수준의 훈련 환경을 제공하고 있다. GIS(지리 정보 시스템), DEM(수치 표고 모델) 등 초정밀지도 기반의 한반도 3D 지형을 재현해 조종사의 임무 지역 지형 학습까지 지원하고 있다. 정비 훈련 분야에서도 언리얼 엔진은 핵심 플랫폼으로 활용되고 있다. 2024년 I/ITSEC 전시회에서 공개된 FA-50 정비 훈련 시뮬레이터는 VR 환경에서 점검과 부품 교체를 실습할 수 있을 뿐만 아니라, 사용자가 직접 교육 과정을 만들 수 있도록 설계됐다. 이를 통해 기존 문서와 평면형 CBT(컴퓨터 기반 훈련), 반복 시나리오 기반의 실습 중심 교육의 한계를 극복할 대안을 제시했다. 또한 같은 행사에서 선보인 수리온 헬기 비행 시뮬레이터(VFT)는 디지털 트윈과 고해상도 시각화를 통해 실제 기체 성능과 지형 정보를 반영한 몰입형 훈련 환경을 제공했다.   ▲ FA-50 비행 시뮬레이션의 디스플레이 장면(이미지 출처 : KAI)   시뮬레이션·시스템 개발에서 언리얼 엔진의 기여도 언리얼 엔진 도입 이후 KAI의 시뮬레이션 제작 파이프라인에는 큰 변화가 있었다. 데이터스미스를 활용해 카티아 등 설계 도구의 3D 모델을 쉽게 불러올 수 있어, 실제 설계 기반의 가상 조종석과 기체 모델을 빠르게 구축하고 별도의 모델링 없이 제작 시간을 줄일 수 있었다. 또한 자체 개발한 비행역학 엔진과 항공전자 시뮬레이션 소프트웨어를 언리얼 엔진과 실시간으로 연동해, 백엔드 시스템과 시각화 프론트엔드를 효과적으로 통합함으로써 전반적인 생산성이 향상되었다. 특히 조종사가 시각과 청각 정보를 통해 상황을 판단하는 VR 시뮬레이터 개발에서는 언리얼 엔진의 렌더링, 사운드, 애니메이션 기능이 핵심 도구로 사용되었다. 물리 기반 렌더링(PBR)은 금속, 유리, 계기판 등 재질을 사실적으로 구현했으며, 파티클 시스템과 머티리얼 노드를 통해 연기, 공기 왜곡 등의 시각 효과도 유연하게 조정할 수 있었다. 사운드 역시 메타사운드를 통해 엔진 RPM이나 환경 변화에 따라 실시간으로 반응하며, 조종사에게 실제 비행과 유사한 감각을 제공했다. 또한 애니메이션 블루프린트를 활용해 조종간, 계기판, 비행 제어면 간 연동 애니메이션의 비주얼을 직관적으로 구현할 수 있었으며, 스카이 애트머스피어, 볼류메트릭 클라우드, 하이트 포그 등의 기능은 대기 표현과 공간 인식 훈련의 몰입감을 높였다. 지형 구현에서도 언리얼 엔진의 LWC(Large World Coordinates)를 통해 수천 km 단위의 지형에서도 고속 이동 시 정밀도를 유지할 수 있었고, 풀 소스 코드를 활용해 AI 훈련 체계에 맞는 좌표 변환, 시스템 연동, 정밀 지형 구조를 구현할 수 있었다. 이 과정에서 실제 지형 데이터, 항공 사진, 고도 정보를 언리얼 엔진에 통합했고, GIS, DEM 기반의 정밀 지형 정보를 효과적으로 활용해 복잡한 비행 경로, 저공 비행 훈련, 목표 탐색 등 고난도 시나리오도 현실감 있게 구현할 수 있었다. 그 결과 KAI는 초대형 지형 데이터, 초정밀 위치 기반 훈련, 외부 시스템과의 정밀한 좌표 연동을 모두 만족하는 차세대 항공기 시뮬레이터 플랫폼을 성공적으로 구축할 수 있었다. 이외에도 다양한 플러그인, 하드웨어 인터페이스, 형상 관리 툴 연동, 이제는 리얼리티스캔으로 변경된 리얼리티캡처, 마켓플레이스 등을 활용하여 프로젝트 확장성과 콘텐츠 제작 유연성이 높아졌다.   ▲ 애니메이션 블루프린트를 활용해 구현한 조종간(이미지 출처 : KAI)   대규모 전술 훈련을 위한 AI 에이전트를 언리얼 엔진에 도입 KAI는 차세대 전술 훈련 시뮬레이터 개발을 위해 강화학습 기반의 AI 에이전트를 실제 훈련 시나리오에 연동하는 작업을 진행 중이다. 특히, 복잡한 전장 환경에서는 다양한 무기 체계와 플랫폼이 동시에 운용되기 때문에, 이를 하나의 시뮬레이션 공간에서 유기적으로 연동하는 기술이 매우 중요하다. 기존 상용 시뮬레이터 설루션의 경우 외부 시스템 연동이나 커스터마이징에 제약이 많지만, 언리얼 엔진은 C++ 기반의 풀 소스 코드 접근이 가능해 이러한 한계를 극복할 수 있다. KAI는 이러한 개방성을 바탕으로 자체 개발한 AI 에이전트를 정밀하게 통합해, 복잡한 상호작용이 필요한 전술 훈련 시나리오에서도 실질적인 이점을 확보할 수 있었다. 이와 같은 통합은 단순히 AI를 활용하는 수준을 넘어, 인간 조종사와 AI가 동일한 시뮬레이션 환경에서 훈련하고 상호 작용할 수 있는 구조를 의미한다. 기존의 설루션으로는 구현하기 어려웠지만 KAI는 언리얼 엔진을 도입해 이를 실현할 수 있었다. 결과적으로 언리얼 엔진은 AI, 실시간 시뮬레이션, 데이터 피드백이 통합된 플랫폼을 제공하며, KAI의 차세대 전술 훈련체계 구현에 핵심 역할을 하고 있다.   ▲ 지형 데이터 통합으로 구현한 대규모 도시 지역 디지털 트윈(이미지 출처 : KAI)   향후 시뮬레이션 에코시스템의 방향과 KAI의 비전 향후 시뮬레이션 에코시스템은 개방성, 지속 가능성, 개인화를 중심으로 발전해 나갈 것이다. AI와 빅데이터를 기반으로 한 맞춤형 훈련 시스템, 클라우드 환경에서의 지리적 제약 없는 고성능 시뮬레이션 그리고 VR/AR, 웨어러블 기술 등을 활용한 몰입형 실시간 피드백 시스템이 표준이 되어갈 것으로 전망된다. 이러한 변화 속에서 KAI는 기술 통합형 플랫폼과 자체 시뮬레이션 에코시스템을 구축하며, 대한민국 시뮬레이션 산업의 지속 가능한 성장 기반을 마련할 예정이다. 언리얼 엔진을 단순한 개발 툴이 아닌 시뮬레이션 엔진으로 활용하며, 플랫폼을 중심으로 고퀄리티 콘텐츠를 빠르게 생산할 수 있는 시뮬레이션 콘텐츠 파이프라인을 개발 중이다. KAI의 비전은 국내를 넘어 글로벌 시뮬레이션 에코시스템과 연결되는 것이다. 언리얼 엔진의 개방성과 기술력을 바탕으로 산업 전반에 걸쳐 공유 가능한 시뮬레이션 플랫폼을 만들고, 이를 통해 다양한 산업, 기관, 개발자가 협력할 수 있는 건강하고 확장 가능한 에코시스템을 조성하는 것이 목표다. 이러한 방향성과 비전을 바탕으로, KAI는 시뮬레이션 기술을 단순한 훈련 도구를 넘어 제품 개발, 유지보수, 운영 효율 개선을 위한 핵심 인프라로 성장시키고자 한다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
한국레노버, 스냅드래곤 X 탑재한 80만원대 AI PC ‘아이디어패드 슬림 3x’ 출시
한국레노버가 AI 기능을 강화하면서 실용성, 이동성, 보안성을 갖춘 차세대 인공지능(AI) PC ‘아이디어패드 슬림 3x(IdeaPad Slim 3x)’를 국내 공식 출시했다. 아이디어패드 슬림 3x는 퀄컴 스냅드래곤 X(Snapdragon X) 프로세서와 코파일럿(Copilot) 기능을 탑재한 AI PC다. 최대 45 TOPS의 NPU(신경망 처리 장치)를 기반으로 멀티태스킹, 화상 회의, 콘텐츠 실시간 최적화 등 다양한 AI 기능을 빠르고 스마트하게 수행한다. 기본 운영체제는 윈도우 11 홈이다. 한국레노버는 “대학생과 직장인 등 일상 속 다양한 작업을 실행하고, 실용성을 갖춘 AI PC를 찾는 사용자층을 고려해 시작가 80만원대의 합리적인 가격대로 선보인다”고 소개했다.      기본 디스플레이는 15.3인치 WUXGA(1920×1200) 해상도의 IPS 패널로 NTSC 45% 색 재현율과 300니트 밝기, 눈부심을 줄여주는 안티글레어(Anti-Glare) 기능을 기본 탑재했다. OLED 패널 선택도 가능하며 최대 2.5K 해상도까지 지원한다. TUV 라인란드 로우 블루라이트 인증을 획득해 장시간 사용에도 눈의 피로를 최소화한다. 아이디어패드 슬림 3x는 AI PC의 보편화를 위해 일상 작업에 최적화된 휴대성과 내구성을 갖췄다. 최대 60Wh 용량의 배터리는 한 번 충전으로 최대 22시간(로컬 FHD 영상 재생 기준)까지 사용할 수 있으며, 급속 충전 기능을 통해 15분 충전으로 최대 2시간까지 사용할 수 있다. 여기에 슬림한 디자인과 약 1.5kg의 무게로 이동의 부담을 줄였다. 프리미엄 메탈 섀시를 적용한 제품 외관은 미국 국방부의 밀리터리 등급(MIL-STD-810H)을 통과하는 등 안정적인 사용 환경을 제공한다. 보안 기능도 강화했다. 상단에는 웹캠을 사용하지 않을 때 렌즈를 가릴 수 있는 프라이버시 셔터를 탑재해 사생활을 보호한다. 지문 인식 기능을 통해 빠르고 안전한 로그인이 가능하며, 향상된 보안 시스템이 개인 데이터와 PC를 보호한다. 노트북의 좌우 측면에는 디스플레이 연결을 위한 USB Type-C 단자, USB Type-A 단자, HDMI 1.4, 콤보 오디오 잭, SD카드 리더기 등을 배치해 연결성을 높였다. 와이파이(Wi-Fi) 7과 블루투스 5.4는 안정적인 무선 연결을 지원해 화상 회의, 스트리밍, 파일 전송 등 다양한 작업을 끊김 없이 지원한다. 전문가 도움 없이 추가 SSD 설치도 쉬워 여유로운 저장공간을 확보할 수 있다. 레노버는 고객 과실로 인한 파손에도 무상 수리를 지원하는 ‘우발적 손상 보장(ADP) 서비스’와 문제 발생 시 엔지니어가 직접 방문해 수리하는 온사이트(On-site) 서비스를 포함한 ‘프리미엄 케어’ 서비스를 각 1년간 지원한다. 한편, 한국레노버는 8월 5일부터 네이버 브랜드스토어에서 사전 예약을 실시하고, 신제품 출시를 기념한 프로모션을 진행한다고 밝혔다. 네이버 브랜드스토어에서 단독 출시하는 이번 제품을 구매하는 고객에게는 마우스와 마이크로소프트 M365 오피스 프로그램을 선착순으로 증정한다. 구매자 후기 이벤트도 진행한다. 1등에게는 레노버 태블릿을, 2등과 3등에게는 각각 레노버 모니터와 상품권 등 사은품을 제공한다. 한국레노버 신규식 대표는 “아이디어패드 슬림 3x는 AI 시대에 최적화된 코파일럿+ PC로, 학습, 업무, 창작 등 다양한 분야에서 더 많은 사용자가 보다 스마트하고 효율적으로 컴퓨팅 환경을 누릴 수 있도록 설계된 제품”이라며, “일상 속 AI PC 활용의 진입 장벽을 낮춘 이번 신제품 출시를 통해 단순한 작업 속도 향상을 넘어 사용자의 창의성과 몰입도까지 높이는 AI PC의 새로운 가치를 직접 체감하길 바란다”고 밝혔다.
작성일 : 2025-08-05
[케이스 스터디] 성공적인 산업 메타버스 구현을 위한 필수 요소
디지털 전환의 잠재력을 실현하는 메타버스 기술   이번 호에서는 산업 분야 메타버스의 발전을 이끄는 요인과 그 잠재력에 대해 알아보고, 디지털 전환의 중요성과 이를 실현하는 기술을 살펴보고자 한다. 또한, 실제 성공 사례를 통해 산업 분야 메타버스를 즉시 시작해야 하는 세 가지 이유를 제시한다. ■ 자료 제공 : 유니티 코리아     메타버스는 주로 게임, 엔터테인먼트, 소셜 네트워크, 가상 경제 같은 소비자 지향적 활동을 위해 구상되었으며, 현재 로블록스(Roblox), 디센트럴랜드(Decentraland), 호라이즌 월즈(Horizon Worlds) 등의 플랫폼에서 관련 콘텐츠를 찾아볼 수 있다. 반면에 제조, 자동차, 물류 등의 산업 분야에서는 효율과 생산성, 혁신 등에 메타버스를 응용하는 방안을 주목한다. 산업 분야의 메타버스는 디지털 트윈, 시뮬레이션, 실시간 협업 등의 툴을 통합하여 운영과 설계, 교육을 개선한다. 유니티의 헤닝 린(Henning Linn) 인더스트리 고객 성공 담당 시니어 디렉터는 “산업 분야 메타버스는 데이터 연결성과 접근성을 새로운 차원으로 인도하며, 가속화된 연결을 통해 한 시스템에서 다른 시스템으로 데이터를 전송하는 방식을 개선한다”고 전했다.   든든한 토대를 마련하는 산업 분야 메타버스 산업 분야 메타버스는 몰입형 3D 기술과 실제 기업용 애플리케이션을 혼합하는 방법이다. 주된 용도는 비즈니스의 내부 프로세스에 사용하거나 고객의 참여를 유도하는 것이다. 산업 분야 메타버스는 기업에게 디지털 작업 공간이 되며, 현실 공간에서 써야 할 시간이나 비용을 절약하면서 테스트와 디자인을 거쳐 운용 방안을 개선할 수 있다. 공장, 기계 또는 시스템의 첨단 디지털 시뮬레이션, 즉 가상의 모형이 생긴다고 생각해 보자. 디지털 3D 공간에서 여러 팀이 협력하여 문제를 해결하고 작업자를 교육하거나 프로세스를 최적화할 수 있다. 산업 분야 메타버스는 형태나 규모의 제약에서 벗어나 제품을 선보일 수 있는 가상 쇼케이스가 되기도 하며, 한층 새로운 수준으로 고객의 참여를 유도하는 수단이 되기도 한다. 고객이 어디서나 가상 환경을 통해 제품을 체험할 수 있는 몰입형 플랫폼을 제공할 수 있으므로 참여도와 구매 가능성이 높아진다. 산업 분야 메타버스에서는 VR(가상현실), AR(증강현실), XR(확장현실) 같은 툴을 사용하여 이러한 가상 세계에 몰입할 수 있는 환경을 제공한다. 그 기반이 되는 실시간 3D 기술을 활용해 센서, IoT(사물인터넷), 글로벌 제품 카탈로그, 소재 정보를 비롯한 현실 세계의 데이터를 연동할 수 있다. 이 모든 것을 하나로 엮으면 실시간으로 가상 세계에서 환경이나 제품을 정확하게 표현할 수 있다. 산업 분야 메타버스를 통해 몰입형 3D 기술을 실제 정보와 결합하면 더 스마트하게 작업하고, 비용을 절감하며, 고객 참여를 유도하고, 보다 안전하고 신속하게 의사 결정을 내리는 데 도움이 된다.   산업 분야 메타버스에 대한 주목도가 높아지는 이유 PwC의 2024년 운영 디지털 트렌드 설문 조사에 따르면, 운영 및 공급망을 담당하는 임원 10명 중 거의 7명(69%)은 기술 투자가 전반적으로 기대치를 충족하지 못한다고 답했다. 산업 분야의 기업들은 다음과 같은 과제에 직면하고 있다.  빠르게 변화하는 시장에 대응 : 기술과 비즈니스 모델은 빠르게 발전하고 있으며, 산업 분야의 기업은 경쟁력을 유지하기 위해 미래를 향한 비전을 제시하고 새로운 기술에 투자해야 한다. 분산된 조직 간 협업 및 전략적 의사 결정 지원 : 인력은 다양한 지역과 시간대에 흩어져 있으며, 직원과 임원 모두 저마다 시간대가 달라 협업하기가 쉽지 않다. 전사적 차원에서 단절된 데이터 파악 : 그 어느 때보다 많은 데이터가 디지털화되고 클라우드에 저장되어 접근성이 높아졌지만, 대부분의 조직에서 데이터는 여전히 상당 부분 고립되어 있다. 사용자가 데이터와 상호 작용하고 데이터를 이해할 수 있도록 지원 : 복잡한 데이터 세트를 다른 데이터 세트와 통합하고, 사람들이 그 안에 담긴 맥락과 의미를 파악할 수 있도록 데이터를 시각화해야 한다.   산업 분야 메타버스가 지닌 혁신적인 잠재력 산업 분야 메타버스가 다양한 유형의 비즈니스에 적합한 이유는 무엇일까? 교육, 고객 경험, 협업 툴, 영업 및 마케팅 실무와 같은 실질적인 응용 사례에 집중하면 그 가능성은 무궁무진하다. 몇 가지 가능한 사례를 살펴보겠다.   운영 프로세스 간소화 목표 : 기존 프로세스, 워크플로, 시스템을 진단한다. 응용 사례 : 정유소에서 공장 전체의 디지털 트윈을 제작한다. 유지 관리 담당자는 가상 환경에서 디지털 트윈을 탐색하고, 그 구성 요소와 상호 작용하고, 유지 관리 작업을 시뮬레이션할 수 있다. 여기에는 마모된 부분이 있는지 파악하고, 수리 절차를 계획하고, 모든 안전 프로토콜이 준수되었는지 확인하는 작업이 포함된다. 장점 : 더 효과적으로 계획을 수립하고 휴먼 에러를 줄일 수 있으므로 유지 관리 다운타임 및 비용이 대폭 감소한다.   비즈니스 모델 전환 목표 : 기존 비즈니스 모델에서 더 혁신적인 모델로 전환 응용 사례 : 중장비 제조업체가 PaaS(Product-as-a-Service) 모델로 전환한다. PaaS 모델을 도입하면 고객은 제품 사용 비용을 한 번에 전부 지불하는 대신 사용한 만큼만 지불하면 된다. 기업은 장비의 디지털 트윈을 구축하고 실제 기계의 IoT 센서와 동기화함으로써 성능, 사용량, 마모 관련 데이터에 액세스할 수 있다. 고객은 장비를 구매하지 않고 사용량(예 : 작동 시간, 생산 산출량)을 기준으로 요금을 납부할 수 있다. 장점 : 제조업체는 PaaS 모델을 통해 반복적인 수입이 발생하는 새로운 수익원을 창출하여 재무적 예측 가능성을 높일 수 있다.   업종 전환 목표 : 새로운 지역, 업종 또는 프로젝트 모색 응용 사례 : 건설 회사가 디지털 기술을 사용해 건물의 설계, 건축, 관리 방식을 혁신하는 3D 프로젝트 모델을 구축함으로써 효율성과 지속 가능성, 비용 절감을 전체적으로 개선한다. 장점 : 실제 건설을 시작하기 전에 잠재적인 문제를 탐지하면 비용을 절감하고, 오류를 최소화하며, 프로젝트 일정을 줄일 수 있다.   인력과 조직 문화의 변화 목표 : 직원의 협업과 혁신을 촉진하고 민첩성 강화 응용 사례 : 다양한 지역에 떨어져 있는 여러 팀이 마치 같은 현장에 있는 것처럼 서로 보고 들을 수 있는 가상 3D 회의실에서 실시간으로 협업하고, 다 함께 제품의 3D 디지털 버전을 검토한다. 장점 : 직원 간의 커뮤니케이션을 개선하고, 더욱 빠르게 의사 결정을 내리고, 프로젝트를 완료하는 데 걸리는 시간을 단축한다.   고객과 파트너의 경험 혁신 목표 : 고객에게 더 흥미로운 경험 제공 응용 사례 : 자동차 제조업체가 고객에게 집에서 차량을 자세히 살펴보고 원하는 대로 커스터마이즈해 볼 수 있는 3D 가상 쇼룸을 제공한다. 고객은 실시간으로 차량의 기능을 사용해 보고, 차량의 색상, 인테리어 옵션, 액세서리를 변경하고, 모든 각도에서 변경에 따른 차이를 확인할 수 있다. 장점 : 자동차 제조업체는 고객이 더욱 많은 정보를 바탕으로 의사 결정을 내릴 수 있도록 도와주며, 고객 만족도와 참여 수준이 높아진다.   디지털 전환이 중요한 이유 기업이 소프트웨어와 전자 제품을 통해 기능과 사용자 경험을 개선할 방안을 모색하는 한편 지속 가능한 설루션에 대한 관심이 증가함에 따라, 많은 산업 분야에서 스마트 제품과 커넥티드 제품이 점점 더 다양하게 보급되고 있다. 공급망 관리, 인력 역학, 지속 가능한 혁신을 둘러싼 과제들로 인해 불확실성이 늘어나지만, 동시에 창의적인 솔루션을 통해 기업이 경쟁 우위를 확보할 기회가 생겨나기도 한다. 이러한 압박과 어려움으로 인해 기업은 운영 방식뿐 아니라 시장에 출시하는 제품과 서비스도 혁신해야 하는 상황에 놓였다. 실시간 3D 렌더링, AI, 클라우드 컴퓨팅이 발전하면서 산업 분야 메타버스에는 새로운 길이 열렸다. 미래의 성공을 위해 기업은 더 탄력적이고 민첩해져야 하며, 역동적으로 변하는 환경에 대한 적응력을 높여야 한다. 그러려면 디지털 전환과 산업 분야 메타버스를 핵심 요소로 채택해야 한다. 린 시니어 디렉터는 “데이터가 디지털화되었다고 해서 연동되었다는 것은 아니다. 예를 들면 제품의 동작을 설명하는 데이터라고 하더라도 제품 데이터와는 연동되지 않을 수 있다. 동작을 시뮬레이션하려면 수동으로 데이터를 연결해야 한다. 산업 분야 메타버스는 데이터 사일로(silo)를 연결하며, 이는 디지털 전환을 통해 실현할 수 있다”고 짚었다.   실시간 3D : 산업 분야 메타버스의 기반 기술 현재 디지털 전환을 시작하는 조직에 중요한 혁신 중 하나는 바로 실시간 3D이다. 실시간 3D는 컴퓨터로 생성되어 단순히 보는 것에 그치지 않고, 직접 체험할 수 있는 3D 이미지를 만들고 표시하는 기술이다. 그 이름에서 알 수 있듯이 이 이미지는 실시간으로 업데이트된다. 즉, 사용자의 행동에 따라 바로 바뀌는 것이다. 실시간 3D는 원래 비디오 게임을 제작하기 위해 개발되었지만 이제는 산업 분야에서도 널리 응용되고 있으며, 가상 세계가 사용자 행동에 즉각적으로 반응하는 몰입형 인터랙티브 경험의 근간이 된다.   검증된 실시간 3D 응용 사례 고도로 발전한 고성능 실시간 3D 기술은 이미 존재한다. 제조업체, 사치품 소매 업체, 자동차 제조 업체 등 다양한 기업들이 이미 실시간 3D 기술을 활용하고 있다. 다음은 몇 가지 예시이다.   단일 에셋 라이브러리로 XR 제작 과정을 간소화 글로벌 과학 및 임상 연구 회사인 써모피셔사이언티픽(Thermo Fisher Scientific)은 디지털 트윈, 영업 지원, 교육, 기능성 게임 같은 설루션을 제공하기 위해 단일 소스의 3D 애셋을 활용하는 XR 기반 플랫폼을 구축했다. 이 XR 플랫폼의 성과는 다음과 같다. 애셋 파이프라인 효율 250% 향상 로코드/노코드 비주얼 스크립팅을 통한 개발 시간 단축   ▲ 이미지 출처 : 써모피셔사이언티픽   사이버 공간에 오프라인 매장 경험을 구현 파리의 럭셔리 가죽 제품 브랜드 카뮤포네(Camille Fournet)는 섬세한 디자인과 장인 정신으로 잘 알려져 있지만, 실시간 3D를 사용하여 고객의 경험을 향상하는 데 앞장선 브랜드이기도 하다. 이 기업에서는 고객이 매장에서 누리는 럭셔리한 경험을 온라인에도 똑같이 제공하고자 했다. 유니티를 기반으로 스마트픽셀(SmartPixels)에서 제작한 실시간 3D 제품 컨피규레이터 덕분에 카뮤포네는 다음과 같은 성과를 거뒀다. 탐색에서 구매로 이어지는 전환 수 5배 증가 고객 참여도 66% 상승   ▲ 이미지 출처 : 스마트픽셀   교육 비용을 절감 칼스 주니어(Carl’s Jr.)는 미국에 뿌리를 둔 패스트푸드 체인으로, 30개국에서 1100개가 넘는 식당을 운영한다. 만 명에 달하는 직원 대부분이 서로 멀리 떨어져 다양한 지역에서 근무하고 있다. 안전, 위생 및 고객 서비스에 대한 높은 기준을 유지하려면 지속적이고 일관된 신입 직원 교육이 필수이다. 칼스주니어는 AR 기반의 자기 주도형 인력 교육을 통해 다음과 같은 성과를 달성했다. 교육 비용 73% 절감 고객 만족도 43% 증가   ▲ 이미지 출처 : 비저너리스 777(Visionaries 777)   지금 산업 분야 메타버스를 시작해야 하는 세 가지 이유 디지털 기술은 빠르게 발전하고 있다. 산업 분야의 기업이 뒤처지지 않으려면 더 전략적으로, 더 장기적인 관점에서 변화를 예측해야 한다. 경쟁력 확보 : 경쟁 업체는 이미 실시간 3D를 활용할 방법을 모색하고 있고, 움직임이 더딘 조직을 빠르게 앞지를 것이다. 실시간 3D에 대한 고객의 수요와 기대치가 모두 증가하고 있으며, 고객이 원하는 것을 제공하지 않는 조직은 고객 이탈을 겪게 될 것이다. 인재 확보 : 최고의 인재, 특히 기술 인력은 늘 부족하며 수요가 많다. 새로운 기술을 도입하여 디지털 전환을 추진하는 기업은 기술 커뮤니티의 이목을 끌 수 있다. 혁신 실현 : 복잡한 3D 데이터에 대한 보편적인 액세스 권한을 제공하고 전 세계의 관계자가 협업할 수 있도록 지원하면 작업자가 더욱 생산적이고 효과적인 동시에 보다 빠르게 작업할 수 있다.   향후 전망 살펴보기 기술의 융합 그 자체인 산업 분야 메타버스의 목표는 가상 세계와 증강현실을 서로 연결하는 것이다. 유연함이라는 본질 덕분에 기술과 활용 사례가 발전함에 따라 그 정의도 계속 변화할 것이다. 기업은 IoT, AI, XR 같은 디지털 전환 툴을 연동하여 공장, 공급망, 제품을 세밀한 부분까지 그대로 재현함으로써 몰입도 높은 산업 분야 메타버스 애플리케이션을 제작할 수 있다. 이 가상 모형은 실시간 모니터링, 예측형 유지 관리, 시나리오 테스트, 교육, 협업 등을 가능케 한다. 결론적으로, 산업 분야 메타버스는 기존 프로세스를 개선하는 것을 넘어서 더욱 민첩하고 지속 가능하며 혁신적인 산업으로 향하는 혁신의 기틀이 되고 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-08-04
산업용 AI 솔루션, 가디원 터보
주요 디지털 트윈 소프트웨어 산업용 AI 솔루션, 가디원 터보 개발 및 자료 제공 : 원프레딕트, www.onepredict.com    1. 가디원 터보란? 가디원 터보는 대형 회전설비의 디지털 운영 및 유지보수(O&M)를 위한 혁신적인 산업용 AI 솔루션이다. 설비의 상태를 실시간으로 모니터링하고, 고장 가능성을 사전에 예측하며, 설비의 안정성과 운영 효율성을 극대화하는데 중점을 두고 있다.  가디원 터보는 첨단 AI 기술과 디지털 트윈 기술을 기반으로 설계 되었으며, 주요 개발 배경은 대형 회전설비의 복잡성과 고장 리스크를 효과적으로 관리하려는 산업적 요구에 있다. 이 제품은 설비의 안정적인 운영이 필수적인 연속 공정 산업에서 시작하여, 발전소, 석유 및 가스, 철강, 화학, 시멘트, 제지 등 다양한 분야로 확장되었다.  특히 발전소에서는 가스터빈 및 증기터빈 같은 핵심 설비의 안정성을 높이는 데 활용되며, 석유 및 가스 산업에서는 설비 가동 중단을 방지하고 효율적인 운영을 지원한다. 또한, 철강 및 화학 산업에서는 연속 공정의 원활한 운영을 보장하며, 전체 생산성을 향상시키는데 기여한다. 2. 주요 특징 가디원 터보는 경쟁사 제품과 비교해 진동 데이터와 운전 데이터를 통합 분석하여 고장의 원인을 정확히 진단하고, AI 기반의 고급 알고리즘을 통해 실시간 예지 보전을 제공한다.  특히, 직관적인 사용자 인터페이스(UI)와 3D 오빗 선도 등 고급 시각화 기능으로 비전문가도 쉽게 활용할 수 있으며, 맞춤형 유지보수 솔루션을 통해 설비 가동 중단과 유지보수 비용을 최소화한다.  또한, 자동화된 진단 보고서 생성 기능과 지속적인 소프트웨어 업데이트로 고객의 요구를 유연하게 충족시키며, 글로벌 경쟁사 대비 신속하고 현지화된 지원을 제공하는 점이 차별화된 강점이다. 3. 주요 기능 가디원 터보의 주요 기능은 다음과 같다. (1) 실시간 설비 상태 모니터링 가디원 터보는 진동 데이터와 운전 데이터를 실시간으로 수집하고 분석하여 설비 상태를 정밀하게 파악한다. 이를 통해 관리자는 설비의 작동 상태를 즉각적으로 확인할 수 있으며, 이상 징후가 감지되면 즉시 경고를 받아 빠르게 대처할 수 있다. 온도, 압력, 회전 속도 등의 핵심 데이터를 모니터링하며, 잠재적인 문제를 사전에 예측할 수 있다. (2) AI 기반 고장 예측 및 이상 감지 고급 딥러닝 알고리즘과 비지도 학습 기술(VAE 기반)을 활용하여 설비의 정상 작동 패턴을 학습하고, 비정상 상태를 감지한다. 특히, 15가지 주요 고장 모드를 실시간으로 진단할 수 있는 기능을 제공하며 고장 모드에는 축의 불균형(Unbalance), 정렬 오류(Misalignment), 윤활유 문제(Oil Whirl/Whip), 베어링 손상 등이 포함된다. 또한, 설비의 운전 조건에 따라 동적으로 경계값을 설정하여 오경보를 줄이고, 고장의 사전 예측 정확도를 높입니다. (3) 상세 진단 보고서 자동 생성 가디원 터보는 수집된 데이터를 기반으로 상세 진단 보고서를 자동 생성한다. 이 보고서는 설비 상태 평가, 고장 원인 분석, 판단 근거, 그리고 유지보수를 위한 권장 조치 사항 등을 포함한다. 유지보수 팀은 이 보고서를 활용하여 문제를 신속히 파악하고, 적절한 대응 방안을 수립할 수 있어, 의사결정 과정을 단축하고 유지보수 효율성을 높인다. (4) 3D 오빗 선도 기능 설비의 회전축 운동을 3차원 공간에서 시각화하여 설비의 동적 거동을 한 눈에 파악할 수 있도록 지원한다. 이 기능은 미세한 정렬 오류, 불균형, 베어링 손상 등의 문제를 식별하는 데 유용하며, 설비 상태를 직관적으로 이해할 수 있는 강력한 시각화 도구이다. (5) 디지털 트윈 및 직관적 UI 디지털 트윈 기술을 활용하여 실제 설비와 동일한 3D 모델을 제공하고, 설비의 상태와 변화 과정을 실시간으로 시각화한다. 또한, 카드형 대시보드와 같은 직관적인 UI를 통해 비전문가도 쉽게 설비 데이터를 이해하고 활용할 수 있다. (6) 맞춤형 유지보수 솔루션 설비 상태와 데이터를 바탕으로 고객의 요구에 맞춘 유지보수 계획을 제안한다. 이를 통해 설비 가동 중단을 최소화하고, 불필요한 유지보수를 줄이며, 설비 수명을 연장한다. 고객 맞춤형 접근 방식을 통해 설비 운영 효율성과 비용 절감을 동시에 실현할 수 있다. 4. 도입 효과 설비관리자들의 가장 큰 고민은 ‘설비 고장으로 인한 Downtime’이며 이를 최소화하는 것이  굉장히 중요한 과제다. 설비에 문제가 생기면 필연적으로 Downtime이 발생하며, 이로 인해 생산이 중단되면 납기 지연, 수리 및 유지보수 비용 발생, 리소스 낭비, 직원들의 초과근무 등 여러가지 문제가 연쇄적으로 일어나 그 피해가 매우 크다. 가디원 터보는 이런 문제점을 해결하고자, Root cause, Recommended action을 지원함으로써 고객의 빠른 의사결정을 돕고 있다. 특히 많은 운영사에서 운전데이터와 진동데이터를 수집하는 소프트웨어가 다르다는 점 때문에 데이터를 통합하여 모니터링하는데 어려움을 겪고 있는데 가디원 터보는 운전데이터와 진동데이터를 통합하여 모니터링 할 수 있을 뿐 아니라, 진동 발생의 원인까지 분석함으로써 빠른 의사결정을 돕고 이에 따라 Downtime 최소화를 실현할 수 있는 제품이다. 5. 주요 고객 사이트 석유화학산업, 공공발전산업, 민간발전산업 전반 걸쳐 두루 존재하며, 석유화학산업으로는 GS칼텍스가 대표적이고, 민간발전 영역에서는 GS파워 안양열병합 발전소, 2025년에는 GS파워 부천열병합 발전소에 가디원 터보를 도입하게 될 예정이다. 공공발전사 중 한국중부발전의 신보령, 신서천 화력발전소에 가디원 터보를 도입되어 있다. 특히 신보령화력발전소의 경우, 2024년 한국중부발전 내부 동반성장 우수사례 경진대회에서 최우수상을 받은 바 있다.   상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기    
작성일 : 2025-07-30