• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "솔버"에 대한 통합 검색 내용이 587개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
앤시스, ‘시뮬레이션 월드 코리아 2025’ 콘퍼런스에서 최신 기술 비전과 고객 사례 소개
앤시스코리아가 글로벌 연례 행사인 ‘시뮬레이션 월드 코리아(Simulation World Korea) 2025’를 마쳤다고 밝혔다.   ‘시뮬레이션 월드 코리아’는 국내외 산학연 전문가와 고객들을 초청해 앤시스의 최신 설루션, 고객 사례 그리고 기술 트렌드를 소개하는 시뮬레이션 콘퍼런스다. 또한 앤시스 시뮬레이션 전문가 및 국내 시뮬레이션 공학자들이 교류하는 자리이기도 하다. 올해 행사는 ‘더 나은 미래를 위한 역량 강화(Empower Innovators to Drive Human Advancement)’를 주제로 9월 16일 롯데호텔월드에서 열렸다. 현장에는 다양한 산업군의 고객 및 업계 관계자 1400명이 참여했다.     ‘시뮬레이션 월드 코리아 2025’의 오전 세션에서는 앤시스코리아 박주일 대표의 환영사를 시작으로 ▲앤시스 월트 헌(Walt Hearn) 글로벌 세일즈 및 고객 담당 부사장의 ‘시뮬레이션을 통한 더 빠른 혁신’ ▲한국항공우주연구원(KARI) 이상률 박사의 ‘대한민국 우주개발 현황과 미래에 대한 통찰’ ▲삼성전자 이영웅 부사장의 ‘제조 산업에서의 디지털 트윈 기반 시뮬레이션 적용 현황 및 향후 전망’ ▲앤시스 패드메쉬 맨들로이(Padmesh Mandloi) 고객지원 부문 아시아 부사장의 ‘실리콘에서 시스템으로 확장되는 미래’ 등의 기조연설이 이어졌다.   이어서 ▲현대자동차 노일주 파트장의 ‘버추얼개발 체계 구축을 위한 표준 구조 해석 솔버의 유효성 및 미래 확장성 연구’ ▲엘레트리 이남권 대표의 ‘프리미엄 전기자전거 배터리의 초급속 충전 및 열 안정성 혁신 기술 개발’ ▲스페이스앤빈 민경령 대표의 ‘고효율 무선 전력 전송 시스템용 경량 차폐 소재 개발 사례’ ▲유니컨 김영동 대표의 ‘60GHz 초근거리 In-band Full-duplex 통신 구현’ 등의 발표가 진행되며 최신 기술 트렌드와 사례에 대한 인사이트를 공유하는 시간을 가졌다. 그리고 앤시스코리아가 대학생·대학원생을 대상으로 시행한 시뮬레이션 경진대회 ‘앤시스 시뮬레이션 챌린지 2025’에서 대상을 수상한 성균관대학교 기계공학과 에너지공학연구실 SAVE팀이 ‘화력발전 암모니아 혼소를 위한 전산해석모델 개발 및 최적 연소 방안 연구’를 발표했다.   오후에는 전자, 반도체, 모빌리티, 항공우주·방위 및 우주, 산업기계&헬스케어 등 총 5개의 트랙이 동시에 진행되면서 현재 업계 내의 주요 화두에 대한 정보 공유와 네트워킹이 지속됐다. 이와 함께 디지털 세이프티 콘퍼런스 및 플랫폼 트랙이 별도로 마련되었다.   앤시스코리아 박주일 대표는 “시뮬레이션 월드 코리아 2025는 국내 최대 규모의 시뮬레이션 콘퍼런스로 앤시스의 고객 및 관계자를 한 자리에 모시고 업계가 당면한 도전과제를 조망하고, 앞으로의 비전과 인사이트를 공유하기 위해 마련한 자리”라면서, “작년에 이어 올해도 국내외를 대표하는 연사들의 기조연설과 전문가 발표를 통해 한 순간도 놓칠 수 없는 귀중한 시간을 보낼 수 있었다. 앞으로도 앤시스는 분야를 막론하고 모든 고객들께 최고의 기술력을 바탕으로 부족함 없는 지원군이 될 수 있도록 노력할 것”이라고 말했다.
작성일 : 2025-09-17
포토닉스 소자 시뮬레이션을 위한 앤시스 루메리컬
앤시스 워크벤치를 활용한 해석 성공 사례   포토닉스 소자와 시스템 설계 및 해석이 가능한 광학 및 포토닉스 소자 시뮬레이션 소프트웨어 앤시스 루메리컬(Ansys Lumerical)은 오늘날 통신, 반도체, 바이오포토닉스, 센서, 디스플레이 등 다양한 산업에서 활용되고 있다. 이번 호에서는 앤시스 루메리컬에 대한 간단한 소개부터 다양한 솔버에 대해 소개하고자 한다.   ■ 박건 태성에스엔이 SBU팀의 매니저로 포토닉스, 파동광학 해석 기술 지원 및 교육, 용역 업무를 담당하고 있다. 홈페이지 | www.tsne.co.kr   앤시스 루메리컬 앤시스 루메리컬은 포토닉스 소자, 프로세스 설계 및 재료 모델링을 위한 goldstandard 제품으로, 다양한 응용 분야에서 강력하고 신뢰할 수 있는 설루션을 제공한다. 또한 광학 소자와 시스템을 설계하고 분석하는데 있어 높은 성능을 보여준다. 앤시스 루메리컬은 <그림 1>과 같이 통신, 반도체, 바이오포토닉스, 센서, 디스플레이, 복잡한 포토닉스 소자 등 다양한 산업에서 활용되고 있다.   그림 1. 앤시스 루메리컬의 응용 분야   표 1. 앤시스 루메리컬 제품 및 솔버   앤시스 루메리컬 제품은 <표 1>과 같이 크게 디바이스 레벨(device level)과 시스템 레벨(system level)의 두 가지로 분류할 수 있다. 포토닉스 소자 설계 및 해석이 가능한 디바이스 레벨에는 광학적 해석을 하는 FDTD, 웨이브가이드(waveguide) 설계 및 해석에 특화된 모드(MODE), 전기적 특성 및 열적 특성 등 다양한 물리적 해석이 가능한 멀티피직스(Multiphysics)가 있으며, 설계한 포토닉스 소자를 회로 레벨에서 시뮬레이션 가능한 인터커넥트(INTERCONNECT)가 있다.   그림 2. 앤시스 루메리컬의 다양한 솔버를 사용한 설계 예시   <그림 2>처럼 앤시스 루메리컬의 다양한 솔버를 사용하여 소자를 설계하면 광학적 특성 해석 뿐만 아닌 광학적으로 생성된 전기, 열 특성 분석도 가능하다. 반대로 전기, 열, 양자적 특성으로 발생하는 광학적 특성도 해석이 가능하다.   앤시스 루메리컬 FDTD 앤시스 루메리컬 FDTD(Finite-Difference TimeDomain)는 시간 영역에서 맥스웰(Maxwell) 방정식을 직접 풀어 전자기파의 전파를 시뮬레이션한다. 이를 통해 전자기장의 시간적 변화를 정확하게 분석할 수 있다. FDTD를 통해 분석할 수 있는 결과는 근거리 전자기장, 원거리 전자기장, 반사 스펙트럼, 투과 스펙트럼, 흡수 스펙트럼, 포인팅(Poynting) 벡터 등이 있다. 앤시스 루메리컬 FDTD에는 FDTD, RCWA, STACK 등 총 세 가지의 솔버가 있다. FDTD는 RCWA와 STACK으로 수행하는 모든 해석이 가능하지만, 특정한 해석 구조와 조건에서 RCWA와 STACK 솔버를 사용한다면 FDTD보다 훨씬 빠른 속도로 해석이 가능하며 데이터 사용량도 줄일 수 있다.   그림 3. FDTD 솔버 선택 방법   <그림 3>처럼 서로 다른 굴절률을 가진 여러 층(다층 구조)에 평면파가 입사되는 조건에 대해 시뮬레이션할 때, 구조의 형태에 따라 적합한 솔버를 선택하면 해석 시간과 컴퓨터 자원을 효율적으로 쓸 수 있다. 다층박막 및 필름 같은 형태의 구조 : STACK 솔버 동일한 형태의 구조가 규칙성을 가지고, 반복적으로 배치된 와이어 그리드(wire grid) 및 창살(grating)같은 형태의 구조 : RCWA 솔버 주기성이 없는 랜덤한 형태의 구조 : FDTD 솔버     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
처리 시간이 10시간 미만인 LES 워크플로
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (25)   이번 호에서는 사용자가 피델리티 포인트와이즈(Fidelity Pointwise)와 피델리티 LES 솔버(Fidelity LES Solver, 이전 명칭 CharLES)를 사용하여 LES 워크플로의 이점을 누릴 수 있는 방법에 대해 설명한다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   대규모 와류 시뮬레이션(LES)은 최근 전산 유체 역학(CFD)에서 그 중요성이 커지고 있다. 이러한 급증은 주로 제한된 설계 공간, 긴 실행 시간, 물리학 감소 등 기존의 레이놀즈 평균 나비에 스토크(RANS) 기반 CFD에 내재된 트레이드오프 때문이다. 코드 설계 및 컴퓨팅 아키텍처의 발전으로 경계층 분리, 항공 음향, 연소 등 복잡한 산업 문제에 대해 LES(Large-Eddy Simulation, 대형 와류 시뮬레이션)와 같은 고충실도 시뮬레이션을 구현할 수 있게 되었다. 이러한 발전은 시뮬레이션 결과에 대한 신뢰도를 높여줄 뿐만 아니라, GPU 컴퓨팅 아키텍처의 활용을 통해 LES 솔버의 성능을 크게 향상시켰다. 이러한 개선으로 이제 LES 워크플로를 실제 엔지니어링 작업에 적용하여 10시간 미만의 처리 시간을 달성할 수 있게 되었으며, 이를 통해 LES는 생산 수준의 CFD 환경에서 실용적인 선택이 될 수 있게 되었다.   ▲ CFD Prediction for High-Lift Aerodynamics(Slotnick, 2019)   피델리티 LES 솔버 피델리티 LES 솔버가 고충실도 LES 시뮬레이션에서 갖는 장점은 다음과 같이 네 가지로 볼 수 있다. 보로노이 다이어그램 기반 대규모 병렬 메시 환경 강력하고 비선형적으로 안정적인 수치 체계 및 고급 물리 모델 대규모 데이터 세트를 위한 신속한 시각화 및 심문 확장 가능한 GPU 상주 다중 물리 유동 솔버     전처리는 전체 정확도에 큰 영향을 미치고 일반적으로 전체 워크플로 시간의 약 75~80%를 차지하기 때문에 CFD 워크플로에서 매우 중요한 단계이다. 이 단계에서 CFD 사용자를 지원하기 위해 피델리티 LES는 피델리티 스티치(Fidelity Stitch)라는 고급 메시 툴을 개발했다. 이 툴은 정확도를 개선하고 메시 품질 지표를 향상하는 데 필요한 시간을 단축하여 전처리 워크플로를 훨씬 더 효율적으로 만들 수 있도록 설계되었다. 피델리티 스티치는 LES를 위한 보로노이 다이어그램 기반 볼륨 메시 툴이다. 보로노이 다이어그램은 유클리드 거리를 기반으로 한 고유한 파티션이다. 이 메시 프로세스에는 두 가지 입력이 있다. 첫 번째 입력은 피델리티 스티치가 다이어그램을 클립하는 데 사용할 수밀하고 매니폴드한 표면 메시를 가져오는 것이다. 두 번째 입력은 사이트 생성이다. 토폴로지는 사이트 배치와 해당 사이트 스텐실과 서피스 메시의 교차점을 생성한 결과물이다. 그러면 스티치가 임의의 다면체 셀을 직접 생성한다.     로이드 알고리즘은 반복적으로 메시를 평활화하는 데 사용된다. 이 스무딩 절차는 벽에 가까운 정렬을 유리하게 만들고 고해상도가 필수적인 인터페이스에서 셀 볼륨을 보다 균일하게 분배한다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
앤시스 2025 R2 : AI·스마트 자동화 기반의 차세대 디지털 엔지니어링 설루션
개발 및 공급 : 앤시스코리아 주요 특징 : 원클릭으로 전문 지식에 접근 가능한 AI 기반 어시스턴트 지원, AI+ 기능이 탑재된 7종 제품을 통한 시뮬레이션 효율 및 접근성 향상, 데이터 관리 및 워크플로 자동화 강화를 통한 AI 통합 효과 향상 등   앤시스는 자사 전 제품에 AI 기반 시뮬레이션 기능을 확대 적용한 최신 릴리스 ‘앤시스 2025 R2(Ansys 2025 R2)’를 발표했다. 앤시스 2025 R2는 시뮬레이션 속도와 접근성을 크게 향상시키는 동시에 강화된 솔버, 간소화된 워크플로, 파이썬(Python) 호환성 확대, 온디맨드 클라우드 컴퓨팅 지원 등을 통해 설계 유연성과 생산성을 높인다. 특히, 초기 설계 단계에서의 스마트한 의사결정을 가능하게 하여, 차세대 위성부터 데이터센터 설계에 이르기까지 다양한 산업 분야에서 실질적인 가치를 제공한다. 앤시스의 셰인 엠스윌러(Shane Emswiler) 제품 총괄 수석 부사장은 “앤시스의 시뮬레이션은 물리 기반 설계의 기준점이자 이론과 실험을 연결하는 가교 역할을 해왔다. 50년 이상의 고급 물리 해석 경험을 바탕으로, 앤시스 2025 R2는 더욱 스마트하고 빠르며 복잡한 시뮬레이션을 구현할 수 있도록 지원한다”면서, “모델·메타데이터·추적성·표준 기반의 데이터 활용을 통해 미래의 혁신적인 제품 개발을 위한 엔지니어링 역량을 강화할 것”이라고 강조했다. 앤시스 2025 R2는 AI 기반 다양한 도구와 기능을 통해 시뮬레이션 도입 장벽을 낮추고, 팀 간 협업을 촉진하며, 전사적인 생산성을 향상시켜 더 나은 결과를 창출할 수 있도록 지원한다.   ▲ 앤시스 2025 R2는 시뮬레이션 워크플로 전반의 생산성, 정확성, 인사이트를 향상시키는 AI 기반 기술을 새롭게 선보인다.   물리 기반 AI로 직관적인 시뮬레이션 앤시스 2025 R2는 AI 기반 가상 어시스턴트인 ‘앤시스 엔지니어링 코파일럿(Ansys Engineering Copilot)’을 포함한 다양한 신기능을 통해 시뮬레이션의 접근성과 설계 효율, 정확도를 높인다. 앤시스 엔지니어링 코파일럿은 앤시스 GPT(Ansys GPT), 앤시스 웹사이트, 수천 개의 기술 문서, 800개 이상의 이노베이션 강의, 글로벌 포럼, 지원 케이스 생성/추적 기능에 바로 접근할 수 있다. 마이크로소프트 애저(Microsoft Azure)의 니디 체펠(Nidhi Chappell) AI 인프라 부문 부사장은 “마이크로소프트 애저 AI 파운드리와 앤시스 GPT의 통합을 통해 엔지니어들은 핵심 정보에 신속하게 접근하고, 앤시스의 깊이 있는 엔지니어링 전문성을 활용함으로써 생산성을 높이고 혁신을 가속화할 수 있다”고 전했다. 2025 R2는 앤시스 포트폴리오 전반에 AI 기능을 추가했다. 이를 통해 충실도가 높은 시뮬레이션을 자동으로 생성, 검증 및 최적화하여 모델 생성 속도를 높이고, 수동 작업을 줄이며 인적 오류를 줄일 수 있다. 앤시스 엔지니어링 코파일럿은 앤시스 메카니컬(Ansys Mechanical), 앤시스 디스커버리(Ansys Discovery), 앤시스 플루언트(Ansys Fluent), 앤시스 HFSS(Ansys HFSS), 앤시스 일렉트로닉 데스크톱(AEDT), 앤시스 스케이드 원(Ansys Scade One), 앤시스 스피오스(Speos), 앤시스 맥스웰(Maxwell), 앤시스 옵티스랭(optiSLang), 앤시스 루메리컬(Ansys Lumerical) 등 주요 설루션에 통합되어 있으며, 클릭 한 번으로 축적된 엔지니어링 전문 지식에 대한 즉각적 접근 가능 HFSS 기반 방사 패턴 시뮬레이션의 연산 속도는 17배 향상, 위상 배열 안테나의 빔 조향 정확도 개선으로 5G/6G, 레이더 센서, 위성통신 등 고주파 애플리케이션 최적화 이러한 기능을 향상된 데이터 처리 및 자동화와 결합함으로써, 기업은 새로운 효율을 확보하고 보다 간소화되고 확장 가능한 워크플로를 구축할 수 있다.   데이터 처리 및 자동화를 통한 AI 활용 극대화 앤시스 2025 R2는 복잡한 데이터 처리 및 관리 작업을 간소화함으로써 디지털 엔지니어링의 생산성과 협업 수준을 높인다. 견고한 데이터 관리 체계를 기반으로 제품 수명주기 전반에 걸쳐 데이터를 최대한 활용하고, AI 모델 학습 및 신뢰성 높은 합성 데이터 생성을 지원한다. 또한, 모델 기반 시스템 엔지니어링(MBSE)의 기능이 한층 강화되어 팀 간 신뢰 기반 협업은 물론, 디지털 연속성과 조직 간 통합된 워크플로 체계를 안정적으로 유지할 수 있다. 파이썬 호환성 확장을 통해 워크플로 자동화와 데이터 관리 유연성이 강화되었으며, 반복 가능한 프로젝트 운영과 품질 향상에 기여하고 있다. 40개 이상의 파이썬(Python) 라이브러리를 포함한 파이앤시스(PyAnsys) 컬렉션은 신규 도구인 파이에스티케이(PySTK) 및 파이켐킨(PyChemkin)을 통해 앤시스 설루션과의 자동화 연동을 강화 및 다양한 산업 애플리케이션 내 생산성·효율성 강화 웹 기반 협업 플랫폼인 앤시스 메디니 사이버 보안(Ansys medini Cybersecurity) SE는 위협 분석 및 취약점 관리 자동화 통해 사이버 보안 리스크 최소화 SysML v2 기반 웹 플랫폼 앤시스 시스템 아키텍처 모델러(Ansys System Architecture Modeler : SAM)를 통한 소프트웨어·안전·시뮬레이션 통합, 포괄적 MBSE 구현 지원 스마트 자동화와 고도화된 데이터 관리 기술은, 조직 내 다양한 팀들 간의 유기적이고 효율적인 협업 환경을 구축하고, 고성능 연산 기반으로 도출된 인사이트는 실행 가능한 결과로 제안되어, 정확하고 신속한 의사결정을 지원한다. 대표 사례로, 에너지 효율형 모터 제어 설루션 분야의 글로벌 선도 기업인 댄포스 드라이브(Danfoss Drives)는 앤시스의 시뮬레이션을 활용해 복잡한 시스템 설계를 검증하고, 성능 최적화, 에너지 절감, 운영 신뢰성 향상 등 산업 전반의 지속 가능한 혁신적인 드라이브 기술을 구현하고 있다. 댄포스 드라이브의 가상 설계·테스트·최적화 총괄 책임자인 마이클 라우르센(Michael Laursen)은 “파이앤시스는 사용자 맞춤형 자동화, 시스템 통합, 확장성을 구현하는 핵심 도구이다. 개방형 생태계를 기반으로 다양한 툴을 유기적으로 연결하고 AI 기능을 접목함으로써 설계부터 최적화까지의 워크플로를 가속화할 수 있다”고 밝혔다. 또한 “앤시스 기술은 디지털 설계 프로세스를 고도화하는 동시에 빠르게 변화하는 산업 환경에 유연하게 대응할 수 있는 기반을 마련해줄 뿐만 아니라, 비용 절감과 제품 개발 기간 단축에도 실질적으로 기여하고 있다”고 전했다.   현실을 모사하는 고성능 물리 시뮬레이션 정교한 물리 모델과 시뮬레이션 기술은 복잡한 설계 과제를 해결하는 데 필수이다. 앤시스는 핵심 엔지니어링 역량을 지속적으로 고도화하며, 사용자가 보다 신속하게 시뮬레이션 결과를 도출하고 혁신 기회를 창출할 수 있도록 지원한다. 앤시스 메카니컬(Ansys Mechanical)의 신규 혼합 솔버는 대형 과도 모델의 연산 속도 향상 및 시간에 따른 열 변화 분석 지원 복잡한 적층형 전자 시스템 메싱 작업의 자동화 및 속도·정확도·사용성 향상, 신규 메싱 플로 기능을 통한 수작업 간소화 앤시스 록키(Ansys Rocky) 및 프리플로우(Ansys FreeFlow)를 통한 고급 다물리(multiphysics) 연성 해석 기능 제공, 열·유체-구조·전자기 결합을 포함한 상세 시뮬레이션 및 성능 최적화 지원 앤시스 파워X(Ansys PowerX) 디버깅 툴을 통한 반도체 전력 소자의 설계 시간 단축, 기생 성분 이슈의 신속한 식별, 설정 간소화 및 효율적인 2D 메싱 작업 지원 RF 전력 분야의 기업인 앰플리온은 앤시스의 고급 시뮬레이션 기술을 활용해 4G LTE 및 5G NR 인프라는 물론 산업, 과학, 의료, 방송, 항법, 안전 무선통신용으로 사용되는 고신뢰·고성능 GaN 및 LDMOS 설루션을 설계하고 있다. 앰플리온의 모델링 및 특성화 그룹 팀장인 비토리오 쿠오코(Vittorio Cuoco, Ampleon) 박사는 “전자기, 열, 기계 간의 복잡한 상호작용을 효과적으로 제어하며 RF 전력 제품을 설계하는 일은 매우 까다로운 과제”라며, “앤시스의 설루션은 이러한 복잡성을 정면으로 해결할 수 있는 정밀한 시뮬레이션을 제공해 설계 리스크를 줄이고 제품 신뢰성을 높이는 데 도움이 되며, 그 결과는 성능 향상, 에너지 절감, 그리고 더 높은 효율성이라는 측면에서 크다”라고 전했다. 이러한 가속화는 클라우드 기반 시뮬레이션의 유연성을 통해 한층 강화된다. 온디맨드 방식의 기술을 적극 활용함으로써, 기업은 디지털 전환을 보다 수월하게 실현할 수 있다.   클라우드 기반 시뮬레이션 통한 디지털 전환 가속 앤시스 2025 R2는 클라우드 기술, 고성능 컴퓨팅(HPC), GPU 최적화 인프라를 적극 활용하여 연산 효율과 시뮬레이션 확장성을 극대화한다. 이를 통해 고객은 더 많은 설계 가능성을 더 짧은 시간 안에 탐색할 수 있으며, 웹 기반 및 온디맨드 기능 확장을 통해 엔지니어는 필요한 툴에 손쉽게 접근할 수 있으며 데스크톱 환경을 넘어서는 개발 역량 확보가 가능해졌다. 앤시스 아이스팩(Ansys Icepak) 및 플루언트 GPU 솔버(Fluent GPU Solver)를 통한 전자 냉각 시뮬레이션 연산 속도 최대 2.5배 향상, 앤시스 플루언트(Ansys Fluent) 웹 인터페이스에서는 제한적 GPU 솔버 기반의 실시간 모니터링 기능 제공 앤시스 디스커버리(Ansys Discovery)의 메싱 기능 개선을 통한 시뮬레이션 신뢰도 및 품질 향상, GPU 기반의 셋업 속도 개선으로 더 빠르고 안정적인 해석 환경 구현 앤시스 클라우드 버스트 컴퓨팅(Ansys Cloud Burst Compute)의 온디맨드(on-demand) HPC 성능이 앤시스 스피오스(Speos) 및 루메리컬 FDTD(Lumerical FDTD) 포함한 6종 제품에 적용, 별도 설치나 IT 지원 없이 고성능 클라우드 환경 활용 가능     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
프로세스 자동화Ⅰ - 구조 설계 최적화
최적화 문제를 통찰하기 위한 심센터 히즈 (6)   심센터 히즈(Simcenter HEEDS)는 제품 설계 과정에서 발생하는 다양한 문제에 대해서 최적화 방법론을 적용하고 올바른 결과를 도출하는 데에 도움을 준다. 이번 호에서는 토크 암(torque arm)의 설계 최적화를 위해 히즈에서 심센터 3D(Simcenter 3D) 솔버를 연계하여 시뮬레이션 자동화 워크플로를 구성하고 최적화를 진행하는 예제를 소개한다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화   ■  이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   그림 1   <그림 1>은 실제 토크 암 제품 이미지와 적용된 위치 및 구조적 특성을 보여주는 예시로, 이 최적화 사례에서 다룬 실제 제품 및 설계 환경을 이해하는 데 참고하길 바란다. 이번 예제에서는 질량 최소화 및 구조적 제약 조건 만족이라는 실제 공학 설계 과제를 효율적으로 수행하는 데 히즈의 성능과 활용성을 살펴 볼 것이다. 이 사례에서 설계 최적화의 목표는 토크 암의 질량을 최소화하는 것이다. 단, 구조적 제약 조건을 반드시 만족해야 하는데, 이 때 구조적 무결성(structural integrity)을 유지하기 위해 응력 수준이 재료의 항복 응력(yield stress)을 넘지 않아야 하는 조건을 만족해야 한다. 이를 위해 설계 상에서 사전에 선정한 치수 변수를 범위 내에서 조정하게 된다. 최적화 설계 프로세스는 심센터 3D와 히즈 MDO를 활용하여 자동화된 워크플로 방식으로 진행된다. 즉, 심센터 3D에서 나스트란(Nastran) 솔버를 이용한 구조 해석 결과를 히즈가 자동으로 처리하고, 해당 결과를 평가하여 최적의 설계안을 찾는 방식이다.   프로세스 자동화(Process Automation) 다분야 설계 최적화(MDO : Multidisciplinary Design Optimization) 수행 시, 설계 및 분석 프로세스는 여러 소프트웨어 환경에서 이루어진다. 이런 환경에서 효율적인 데이터 교환 및 프로세스 연동이 필수이므로, 데이터를 신속하고 정확하게 받기 위해서는 직접 인터페이스 포털(Direct Interface Portal)이 필요하다. 히즈에서는 여러 공학 분야에서 흔히 사용하는 CAD 및 CAE 툴(아바쿠스, 앤시스, 카티아, 솔리드웍스, 매트랩, LS-다이나, 심센터, 파이썬 등)을 모두 지원하므로, 사용자는 기존에 보유한 다양한 소프트웨어를 그대로 활용하면서 히즈를 이용하여 최적화 작업을 자동화할 수 있다. 히즈가 제공하는 직접 인터페이스 포털 중 일부를 <그림 2>에 나타내었다. 포털을 사용하여 <그림 3>과 같이 구성하면 사용자가 수동으로 결과를 처리하고 데이터를 전환하는 번거로운 작업을 하지 않아도 된다. 이는 시간 소모 및 인적 오류 가능성을 줄이고, 작업 흐름을 더 효율적이고 빠르게 만든다. 워크플로의 자동화가 가능하기 때문에, 결과적으로 여러 분야의 시뮬레이션 모델이나 분석을 보다 빠르고 신뢰도 높게 수행하여 더 나은 설계 및 최적화 결과를 도출할 수 있다.   그림 2   그림 3   최적화 문제 정의   그림 4   설계 목적은 <그림 4>에 나타낸 토크 암의 질량을 최소화하는 것이다. 주어진 하중 조건은 25kN이며, 이 때 구조물이 교차 방향에서 받는 최대 응력이 항복 강도를 초과하지 않아야 한다.(최대 700MPa) 또한 최대 변형량이 4mm를 초과하지 않는다는 제약 조건도 함께 고려한다. 최적화에 적용할 주요 치수 변수는 <그림 5>와 같으며, 특히 두께(Thickness of Extrude)를 변수(T1)로 설정하여 최적화 문제를 규정했다.   그림 5     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-08-04
충실도 흐름 솔버로 항공 엔진의 시뮬레이션 정확도 업그레이드
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (24)   현재의 컴퓨팅 성능은 전례 없는 수준이다. 덕분에 더 큰 시스템을 시뮬레이션하고 복잡한 현상을 더 정확하게 예측할 수 있는 고급 계산 기법이 개발되었다. 그러나 터보 기계 시스템의 시뮬레이션은 각 구성 요소를 개별적으로 시뮬레이션하는 현재의 관행으로 인해 구성 요소 간의 상호 작용을 고려하지 못하기 때문에 여전히 과제를 안고 있다. 이 문제를 해결하고 효율성, 신뢰성, 저배출 측면에서 항공 엔진 설계를 개선하기 위해 피델리티 플로우(Fidelity Flow) 유동 솔버의 레이놀즈-평균 나비에-스토크스 방정식을 기반으로 새로운 방법론이 개발되었다. 이 접근 방식을 사용하면 단일 코드를 사용하여 전체 엔진의 완전 결합 시뮬레이션이 가능하다. 이번 호에서는 새로운 방법론인 유동 솔버 기술과 그 구현을 통해 얻은 결과에 대해 설명한다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   그림 1. KJ66 MGT의 레이아웃 : ① 임펠러, ② 디퓨저, ③ 연소실, ④ HPT 노즐, ⑤ HPT 로터, ⑥ LPT 노즐, ⑦ LPT 로터, ⑧ 디월 베인, ⑨ 배기 후드   방법론 완전한 항공 엔진 및 가스 터빈 시스템에 대해 안정적이고 시간이 정확하며 완전히 결합된 시뮬레이션을 수행하기 위한 새로운 접근 방식이 개발되었다. 이 방법은 비선형 고조파(NLH) 기법을 사용하여 불안정한 효과를 포착하여 계산 시간을 절약할 수 있다. 이 접근법의 연소 프로세스는 효율적이고 신뢰할 수 있는 화염 생성 매니폴드(FGM)에 의존한다. 비활성 시뮬레이션에 비해 연소 과정을 모델링할 때 발생하는 계산 오버헤드는 약 50%에 불과하다. 또한 스마트 인터페이스 접근 방식은 전체 시스템에서 스칼라의 이동을 피하기 위해 구현되어, 흐름이 반응하는 곳에서만 연소 이동 변수를 해결함으로써 계산 오버헤드를 최소화한다.   유동 솔버 이 연구는 압력 기반 및 밀도 기반 설루션 체계로 구성된 케이던스 충실도 유동 솔버를 사용하여 수행된다. 유동 솔버 패키지에는 터보 기계 모델링, 대형 와류 시뮬레이션(LES), 공액 열전달(CHT), 유체-구조 상호작용(FSI), 스프레이용 라그랑지안 모듈, 캐비테이션, 복사, 다상 유동 및 연소 모델을 포함한 광범위한 물리 모델이 탑재되어 있다. 혼합 평면, 프로즌 로터, 슬라이딩 메시와 같은 표준 접근 방식이 터보 기계 모듈에 구현되어 있다. 또한 다음에서 설명하는 터보 기계 애플리케이션의 불안정한 흐름을 효율적으로 계산하기 위해 비선형 하모닉 방법을 사용할 수 있다.   비선형 고조파 방법(NLH) NLH 방법은 시간 평균 흐름에 대한 불안정성의 영향을 고려하는 비선형 접근 방식이다. 이러한 효과는 결정론적 스트레스로, 주기적 변동의 시간 평균 곱으로 나타난다. NLH 방법의 장점은 계산 효율에 있다. 평균 유동장에 대한 정상 상태 해와 사용자가 해결하기로 선택한 각 고조파의 실수 및 가상 부분에 대한 정상 상태 해만 결정하면 된다. 설루션 정확도는 고조파의 수에 따라 달라지지만, 일반적으로 불안정한 효과를 포착하는 데에는 몇 개의 고조파만 필요하다. 피델리티 플로우의 NLH 모듈은 인접한 행과 인접한 행 사이의 상호작용을 상대 회전 속도에 관계 없이 모델링할 수 있는 랭크 2 효과를 설명한다. 즉, NLH 모듈은 더 복잡하고 불안정한 상호작용을 설명할 수 있다. 랭크 2 설루션을 사용하면 포스트 프로세싱 모드에서 클로킹의 효과를 연구할 수 있다. 또한 피델리티 플로우의 NLH 모듈은 각 블레이드 행에서 사용할 고조파 수를 유연하게 정의할 수 있어, 시뮬레이션 프로세스를 더욱 맞춤화할 수 있고 효율적으로 만들 수 있다.   그림 2. 혼합 평면과 NLH 방식을 사용한 회전자-회전자 상호작용 비교     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-08-04
앤시스, AI 기능으로 시뮬레이션 효율 및 접근성 높인 ‘앤시스 2025 R2’ 발표
앤시스는 자사의 모든 제품에 AI 기반 시뮬레이션 기능을 확대 적용한 최신 릴리스 ‘앤시스 2025 R2(Ansys 2025 R2)’를 발표했다. 앤시스 2025 R2는 시뮬레이션의 속도와 접근성을 높이는 동시에 강화된 솔버, 간소화된 워크플로, 파이썬(Python) 호환성 확대, 온디맨드 클라우드 컴퓨팅 지원 등을 통해 설계 유연성과 생산성을 높일 수 있게 했다. 또한, 초기 설계 단계에서 스마트한 의사결정을 가능하게 하여 차세대 위성부터 데이터센터 설계까지 다양한 산업 분야에서 실질적인 가치를 제공하는 데에 초점을 맞췄다. AI 기반의 도구와 기능을 통해 시뮬레이션 도입 장벽을 낮추고, 팀 간 협업을 촉진하며, 전사적인 생산성을 향상시켜 더 나은 결과를 창출할 수 있도록 지원하는 것도 특징이다. 앤시스 2025 R2는 AI 기반 가상 어시스턴트인 앤시스 엔지니어링 코파일럿(Ansys Engineering Copilot)을 포함한 다양한 신기능을 통해 시뮬레이션의 접근성과 설계 효율, 정확도를 높인다. 앤시스 엔지니어링 코파일럿은 앤시스 GPT(Ansys GPT), 앤시스 웹사이트, 수천 개의 기술 문서, 800개 이상의 이노베이션 강의, 글로벌 포럼, 지원 케이스 생성/추적 기능에 바로 접근할 수 있다. 앤시스는 마이크로소프트 애저 AI 파운드리와 앤시스 GPT의 통합으로 엔지니어가 핵심 정보에 신속하게 접근하고, 엔지니어링 전문성을 활용할 수 있게 했다. 앤시스 엔지니어링 코파일럿은 앤시스 메카니컬(Ansys Mechanical), 앤시스 디스커버리(Ansys Discovery), 앤시스 플루언트(Ansys Fluent), 앤시스 HFSS(Ansys HFSS), 앤시스 일렉트로닉 데스크톱(AEDT), 앤시스 스케이드 원(Ansys Scade One), 앤시스 스피오스(Speos), 앤시스 맥스웰(Maxwell), 앤시스 옵티스랭(optiSLang), 앤시스 루메리컬(Ansys Lumerical) 등 주요 설루션에 통합되어 있으며, 클릭 한 번으로 축적된 엔지니어링 전문 지식에 대한 즉각적 접근이 가능하다. 앤시스는 “AI 기반의 엔지니어링 코파일럿을 활용하면 HFSS 기반 방사 패턴 시뮬레이션의 연산 속도를 17배 높일 수 있다. 이외에도 위상 배열 안테나의 빔 조향 정확도를 개선해 5G/6G, 레이더 센서, 위성통신 등 고주파 애플리케이션을 최적화할 수 있다”면서, “이러한 기능을 향상된 데이터 처리 및 자동화와 결합함으로써, 기업은 새로운 효율성을 확보하고 보다 간소화되고 확장 가능한 워크플로를 구축할 수 있다”고 설명했다.     앤시스 2025 R2는 복잡한 데이터 처리 및 관리 작업을 간소화함으로써 디지털 엔지니어링의 생산성과 협업 수준을 높인다. 견고한 데이터 관리 체계를 기반으로, 제품 수명주기 전반에 걸쳐 데이터를 최대한 활용하고, AI 모델 학습 및 신뢰성 높은 합성 데이터 생성을 지원한다. 또한, 모델 기반 시스템 엔지니어링(MBSE)의 기능이 한층 강화되어 팀 간 신뢰 기반 협업은 물론, 디지털 연속성과 조직 간 통합된 워크플로 체계를 안정적으로 유지할 수 있다. 파이썬 호환성 확장을 통해 워크플로 자동화와 데이터 관리 유연성이 강화되었으며, 반복 가능한 프로젝트 운영과 품질 향상에 기여하고 있다. 스마트 자동화와 고도화된 데이터 관리 기술은 조직 내 다양한 팀들 간의 유기적이고 효율적인 협업 환경을 구축하고, 고성능 연산 기반으로 도출된 인사이트는 실행 가능한 결과로 제안되어, 정확하고 신속한 의사결정을 지원한다. 뿐만 아니라, 앤시스는 핵심 엔지니어링 역량을 지속적으로 고도화하며, 사용자가 보다 신속하게 시뮬레이션 결과를 도출하고 혁신 기회를 창출할 수 있도록 지원한다고 소개했다.  이러한 가속화는 클라우드 기반 시뮬레이션의 유연성을 통해 한층 강화된다. 앤시스 2025 R2는 클라우드 기술, 고성능 컴퓨팅(HPC), GPU 최적화 인프라를 적극 활용하여 연산 효율과 시뮬레이션 확장성을 강화한다. 앤시스는 “이를 통해 고객은 더 많은 설계 가능성을 더 짧은 시간 안에 탐색할 수 있다. 웹 기반 및 온디맨드 기능 확장을 통해 엔지니어는 필요한 툴에 손쉽게 접근할 수 있으며, 데스크톱 환경을 넘어서는 개발 역량 확보가 가능해졌다”고 전했다. 앤시스의 셰인 엠스윌러(Shane Emswiler) 제품 총괄 수석 부사장은 “앤시스의 시뮬레이션은 물리 기반 설계의 기준점이자 이론과 실험을 연결하는 가교 역할을 해 왔다. 50년 이상의 고급 물리 해석 경험을 바탕으로, 앤시스 2025 R2는 더욱 스마트하고 빠르며 복잡한 시뮬레이션을 구현할 수 있도록 지원한다”면서, “모델·메타데이터·추적성·표준 기반의 데이터 활용을 통해 미래의 혁신적인 제품 개발을 위한 엔지니어링 역량을 강화할 것”이라고 강조했다.
작성일 : 2025-07-31
CAD&Graphics 2025년 8월호 목차
  18 THEME . PLM과 AI로 가속화하는 제조 디지털 전환의 미래 Ⅰ   설계 데이터를 연결하다 : 퍼시스그룹의 디지털 트윈 기반 DX 전략 / 정연석 생성형 경험 기반 PLM을 통한 업무 혁신 : 다쏘시스템의 새로운 접근 / 김병균 현장이 원하는 디지털 트윈 : 최소 인프라, 최대 효과를 위한 접근법 / 송희삼 수주형 제조기업을 위한 PLM 연계 프로젝트형 생산 관리 DX / 김장순   Infoworld   Editorial 17 AI 에이전트와 함께 하는 제조업 혁신의 골든타임   Case Study 30 올림픽 금메달을 뒷받침한 3D 프린팅 혁신 금속 3D 프린팅으로 경기용 요트의 부품 제작 32 디지털 전환의 잠재력을 실현하는 메타버스 기술 성공적인 산업 메타버스 구현을 위한 필수 요소   New Product 36 2D CAD의 새로운 기준 제시하는 차세대 설계 플랫폼 ZWCAD 2026 42 디지털 휴먼의 제작 워크플로 향상 및 생태계 확장 메타휴먼 5.6 79 이달의 신제품   Focus 46 AI와 클라우드로 뻗어나가는 NX, 제품 개발의 혁신을 뒷받침한다 48 트림블 코리아, ‘파워팹’으로 철골 제작의 디지털화 및 효율 향상 지원 50 3D 콘텐츠 제작 시대, 어도비 서브스턴스가 펼치는 미래 52 3D 프린팅, 제조 혁신 이끌 생산 기술 될까…현실의 벽과 돌파구는? 54 SAP, 모든 설루션에 AI 탑재…“데이터 중심의 선순환 구조로 비즈니스 AI 혁신” 56 AWS, “다양한 기술로 국내 기업의 생성형 AI 활용 고도화 돕는다” 58 한국생산제조학회 2025 춘계학술대회, 생산제조 기술의 미래를 논의하다   On Air 60 캐드앤그래픽스 CNG TV 지식방송 지상중계 자율주행의 미래 : AI와 데이터 통합을 통한 지멘스 ADAS 혁신 62 캐드앤그래픽스 CNG TV 지식방송 지상중계 HP Z북 울트라, AI 워크스테이션의 새로운 기준 제시 63 캐드앤그래픽스 CNG TV 지식방송 지상중계 창의적 디자인의 미래, AI와 3D 프린팅에서 찾는다 64 캐드앤그래픽스 CNG TV 지식방송 지상중계 제조업을 바꾸는 양자 컴퓨팅의 힘 66 캐드앤그래픽스 CNG TV 지식방송 지상중계 디지털 트윈 시대의 3D 자산 관리 혁신하는 유니티 애셋 매니저   Column 67 포괄적 디지털 트윈으로 제조 공장의 미래를 설계하다 / 오병준 70 디지털 지식전문가 조형식의 지식마당 / 조형식 스마트 디지털 트윈을 위한 디지털 온톨로지와 디지털 스레드 74 현장에서 얻은 것 No. 21 / 류용효 AI 시대 제조업 생존 전략 : ‘듀얼 브레인’을 장착하라   82 New Books   Directory 147 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 84 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2026 (5) / 천벼리 온라인 CAD 아레스 쿠도의 주요 기능 88 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 오픈소스 LLM 모델 젬마 3 기반 AI 에이전트 개발해 보기 97 새로워진 캐디안 2025 살펴보기 (9) / 최영석 유틸리티 기능 소개 Ⅶ 100 BIM 전문인력 양성을 위한 해법을 찾는다 / 함남혁 BIM 전문가 민간자격 국가공인 현황과 발전 방향   Visualization 104 AI 크리에이터 시대 : 영상 제작의 새로운 패러다임 (5) / 최석영 AI 기반 몰입형 사운드 디자인   Reverse Engineering 110 시점 – 사물이나 현상을 바라보는 눈 (8) / 유우식 확률과 통계   Mechanical 116 제품 개발 혁신을 돕는 크레오 파라메트릭 12.0 (1) / 박수민 크레오 파라메트릭 12의 개선된 인터페이스 기능   Manufacturing 122 생산 계획부터 운영까지 혁신하는 스마트 제조 / 이노쏘비 PINOKIO가 선보이는 스마트 공장 기술과 사례   Analysis 107 로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (1) / 윤경렬, 김도희 데이터 분석에 로코드 설루션이 필요한 이유 128 앤시스 워크벤치를 활용한 해석 성공 사례 / 이효행 바닥 충격음과 층간 소음 문제 해결을 위한 예측 모델 및 실험 분석 133 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (24) / 나인플러스IT 충실도 흐름 솔버로 항공 엔진의 시뮬레이션 정확도 업그레이드 136 최적화 문제를 통찰하기 위한 심센터 히즈 (6) / 이종학 프로세스 자동화 | – 구조 설계 최적화 142 산업 디지털 전환을 가속화하는 버추얼 트윈 (5) / 강주연, 임영빈 아바쿠스의 Contact Wear 기능을 활용한 마모 해석과 응용     캐드앤그래픽스 당월호 책자 구입하기   캐드앤그래픽스 당월호 PDF 구입하기
작성일 : 2025-07-25
심스케일, 클라우드 네이티브 방식의 마크 비선형 구조 해석 기능 출시
AI 네이티브 엔지니어링 시뮬레이션용 클라우드 플랫폼인 심스케일(SimScale)은 자사의 플랫폼에 헥사곤의 마크(Marc) 비선형 유한요소해석(FEA) 솔버 기술을 정식 출시한다고 발표했다. 심스케일은 “마크의 클라우드 네이티브 통합은 변형, 복잡한 접촉 또는 고도의 비선형 재료 거동에 노출되는 부품을 설계하는 R&D 팀에게 혁신적인 도약을 제공한다. 이제 사용자는 대변형, 임의 접촉, 자가 접촉은 물론 소성 및 초탄성을 포함해 복잡한 FEA 시뮬레이션을 설계 과정 초기에 온프레미스 소프트웨어나 인프라 없이 웹 브라우저에서 수행할 수 있다”고 설명했다. 심스케일 플랫폼에 마크가 추가됨으로써 사용자는 까다로운 엔지니어링 문제에 대해 빠르고 견고한 비선형 해석을 높은 속도와 안정성으로 사용할 수 있다. 심스케일의 클라우드 플랫폼을 통해 사용자는 어디서나 마크의 기능에 접근하고, 시뮬레이션 데이터를 손쉽게 관리 및 공유하며, 실시간으로 협업하는 것이 가능해진다. 또한, 심스케일의 통합 AI를 활용하여 간소화된 설정, 즉각적인 결과 예측, 에이전트 기반 워크플로 자동화의 이점을 누릴 수 있고, 고성능 컴퓨팅(HPC) 프로비저닝으로 까다로운 경우에도 대규모 확장성과 빠른 시뮬레이션 처리 시간을 지원한다. 마크를 포함해 구조, 열, 전기, 자기장 등 폭넓은 다중 물리 해석을 심스케일의 통합 플랫폼에서 수행할 수 있게 된다.     심스케일의 리처드 쇠케-슐러(Richard Szöke-Schuller) 제품 관리자는 “헥사곤의 마크 기술을 심스케일의 클라우드 네이티브 환경과 통합한 것은 고급 시뮬레이션을 위한 게임 체인저다. 이제 모든 엔지니어는 온디맨드 방식으로 동급 최고의 비선형 FEA에 접근할 수 있게 되어 기존의 기술 장벽을 제거하고 혁신을 가속할 수 있다”고 밝혔다. 헥사곤 매뉴팩처링 인텔리전스 사업부의 위그 장콜라(Hugues Jeancolas) 설계 및 엔지니어링 제품 담당 부사장은 “이번 파트너십은 단순히 마크를 클라우드로 가져오는 것을 넘어 엔지니어가 시뮬레이션 도구를 다루는 방식을 바꾸는 것이다. 심스케일의 직관적인 인터페이스와 에이전트 기반 AI를 통해 시뮬레이션을 처음 접하는 사용자도 도구 작동법을 배우는 대신 엔지니어링 문제를 해결하는 데 집중할 수 있다. 이는 대중화, 민첩성, 생산성 측면에서 큰 도약”이라고 전했다.
작성일 : 2025-07-16
이차전지 시뮬레이션, NFLOW
주요 디지털 트윈 소프트웨어 이차전지 시뮬레이션, NFLOW   개발 및 자료 제공 : 이에이트, www.e8ight.co.kr   이에이트는 2012년에 설립되었으며 입자 기반 시뮬레이션 디지털 트윈 플랫폼 기술 보유 기업이다. 2014년 자체 기술만을 이용해 국내 최초로 입자 기반 시뮬레이션 NFLOW를 런칭하였고, 2019년 GS(Good Software) 1등급 인증을 받으며 본격적으로 제품을 상용화하였다. 또한, 2021년에는 시뮬레이션 기반 디지털 트윈 플랫폼 NDX PRO를 상용화하는데 성공하여 국내 유일의 자체 기술 디지털 트윈 플랫폼 기업으로 도약하였다.  1. 주요 기능 (1) SPH 솔버 NFLOW SPH는 기존의 CFD가 다루기 어려운 자유표면유동, 대규모 해석 등을 다루기 적합한 솔버이다. SPH는 라그랑지안 좌표계를 기반으로 하여, 연속체인 유체를 입자로 표현되는 좌표 점들의 집합과 그 좌표 간의 상호 작용 관계를 통해 이산화 하여 물리현상을 모의하는 기술이다.  기존 FVM 기반 CFD와 달리 격자를 사용하지 않는 방법으로, 자유 표면 유동이나 변화가 큰 비선형적 문제에 대한 해석에 유리하며, 이산화 된 계산방식으로 병렬처리가 비교적 쉬워 고속연산이 가능하다. 더불어 격자법 대비 자유수면을 해석하는데 있어 메모리 사용이 적고, 간편한 경계처리가 가능하여 대규모 자연재해 시뮬레이션, 복잡한 기어 윤활, 스크류 펌프 내부 유동 해석, 세탁기 내부 부유체 해석 등의 해석에 유리하다.  NFLOW SPH를 활용하여 토석류 흐름, 댐붕괴 해석, 수면 충돌, 탱크 내 슬로싱 해석 등 다양한 시뮬레이션을 수행하였고, 모의실험 등과 비교하여 높은 수준의 정확도를 구현하여 기술력을 인정받았다. (2) LBM 솔버 NFLOW LBM 솔버는 미세한 스케일의 해석에 활용도가 높은 제품이다. LBM은 미시적 스케일의 입자 간 상호작용으로 발생하는 물리현상을 Boltzmann 수송 방정식의 이산화 모델링을 통해 미시적, 중시적, 혹은 거시적 스케일의 물리현상을 예측하는 기법이다.  타 시뮬레이션 기법에 비해 복사 열전달, 다성분 유동, 대류-확산, 상변화 등 시간에 따라 변하는 물리현상을 예측하는데 강점이 있어 기존 방식으로 해결하기 어려웠던 다양한 산업분야에 적용이 가능하다. 상변화 해석은 복잡한 계면 추적 방식이 없어 기존 솔버 대비 계산 비용이 적으며, 농도대류확산, 혼합물 내부의 화학반응, 난류 모델, 복사열전달 등 기존 제품으로는 제공이 어려운 기능이 탑재되어 있다. 이 솔버는 지역적 연산만을 사용하기에 GPU, 멀티 GPU를 이용한 병렬화에도 용이하다.  NFLOW LBM으로는 압축/비압축성 유동, 난류, 열전달, 다상/다성분 모델의 해석 등을 수행하였고, 타 산업군보다 정량적인 해석이 요구되는 전기/전자, 항공우주, 이차전지, 자동차 등의 분야에 활발하게 적용되고 있다.       2. 도입 효과 다양한 산업에서 설계, 운영, 유지보수의 혁신을 가져다 준다. 먼저, 제품 설계와 개발 단계에서는 실제 프로토타입을 제작하기 전에 가상 환경에서 성능을 검증할 수 있어 재료와 생산 비용을 크게 절감할 수 있다. 또한, 설계 변경 및 테스트 과정을 가상으로 반복할 수 있어 제품 개발 주기를 단축시키고, 다양한 조건에서 제품의 성능을 예측하여 최적화를 수행할 수 있다. 운영 측면에서는 운영 효율성을 대폭 향상시킬 수 있다. 디지털 트윈은 실제 환경을 가상으로 재현해 시스템 성능과 생산 공정을 실시간으로 분석하고 최적화할 수 있도록 지원한다. 이를 통해 예지적 유지보수를 구현해 장비의 상태를 지속적으로 모니터링하고 고장을 사전에 예측하여 불필요한 유지보수를 줄이고 가동 중단 시간을 최소화할 수 있다. 더불어, 실시간 데이터와 시뮬레이션 결과를 활용하면 운영 및 관리 의사결정을 더욱 정확하고 신속하게 내릴 수 있다. 또한, 비용 및 리스크 관리에서도 큰 효과를 발휘한다. 시뮬레이션을 통해 프로젝트 진행 전 다양한 환경과 조건에서 발생 가능한 리스크를 사전에 평가하고 대비할 수 있어 안전성을 높이고 비용 낭비를 줄일 수 있다. 전반적으로, 시뮬레이션 소프트웨어와 디지털 트윈 기술은 효율성과 생산성을 극대화하고 리스크를 줄이며, 기업이 더욱 민첩하고 경쟁력 있는 운영을 수행할 수 있도록 돕는 핵심 기술로 자리 잡고 있다.     상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기
작성일 : 2025-07-13