• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "소비자"에 대한 통합 검색 내용이 3,036개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
아코르, 오라클 클라우드로 글로벌 자산 관리 시스템 운영
오라클은 글로벌 호텔 그룹 아코르(Accor)가 호텔 운영을 간소화하고 개선하기 위해 오라클 오페라 클라우드 PMS(Oracle OPERA Cloud PMS)로 글로벌 자산을 이전 중이라고 밝혔다. 아코르는 통합 PMS 플랫폼에서 개별 호텔 시설 및 포트폴리오 전반에 대한 정보를 표준화하여 성과를 모니터링하고, 정보 기반 비즈니스 의사결정을 촉진하여 더 나은 맞춤형 고객 경험을 제공할 수 있게 됐다. 또한 아코르는 수십억 달러 규모의 미팅 및 이벤트 사업 확장과 지원을 극대화하기 위해 오라클 오페라 클라우드 세일즈 앤드 이벤트 매니지먼트(Oracle OPERA Cloud Sales and Event Management)를 선호 설루션으로 선정했다. 회사의 임직원은 이 설루션을 활용해 사용 가능한 행사 공간을 명확히 파악할 수 있고, 게스트와 협력사 이벤트 기획자는 최신 디지털 셀프 서비스 시스템을 통해 행사장, 객실, 케이터링 서비스를 손쉽게 열람하고 예약할 수 있다.     아코르의 장 노엘 라우 켕 룬(Jean Noel Lau Keng Lun) 최고유통책임자는 “통합 클라우드 기반의 PMS 구현은 고객에게 일관적인 고품질 경험을 제공하고, 세계 각지에서의 운영을 최적화하기 위한 당사의 노력의 일환”이라면서, “오라클 호스피탈리티 오페라 클라우드는 전 세계 다양한 브랜드 포트폴리오 전반에서 일관된 기능을 제공하는 최적의 설루션임이 입증되었다. 특히 기술 제공 뿐만 아니라, 특히 단순한 기술 제공업체 차원을 넘어 진정한 전략적 비즈니스 파트너로 변모한 오라클의 협업 정신을 높이 평가한다”고 말했다. 오라클의 알렉스 알트 소비자 산업 부문 총괄 부사장 겸 사업 본부장은 “아코르는 지난 50년간 전면적으로 호스피탈리티 산업의 우수성과 혁신을 대표해 왔다”면서, “아코르는 최근 호스피탈리티 산업의 미래가 대담함과 민첩성, 실행력에 달려 있다고 강조했다. 이 가치관이 이번 협력의 핵심이다. 아코르는 오페라 클라우드를 통해 새로운 기회에 보다 민첩하게 대응하고, 필요에 따라 데이터 기반의 조정 작업을 수행할 수 있다. 또한 현대적이고, API가 풍부하며, 직관적인 오라클 설루션 제품군으로 고객 및 임직원 경험 모두를 위한 새로운 표준을 제시할 수 있게 될 것”이라고 설명했다.
작성일 : 2025-09-08
보쉬–알리바바 그룹, AI 기반 디지털 혁신 위한 전략적 파트너십 확대
보쉬(Bosch)와 알리바바 그룹(Alibaba Group)이 첨단 클라우드 컴퓨팅과 AI 기술을 기반으로 디지털 전환을 가속화하기 위해 전략적 파트너십을 확대한다고 밝혔다. 이번 협력은 클라우드 기반 기업 운영, AI 기반 혁신, 전자상거래 확장을 중점적으로 추진한다. 양사는 이번 협력 확대가 보쉬의 디지털 운영과 산업 혁신을 한 단계 끌어올리는 전환점이 될 것이라고 기대하고 있다. 보쉬 그룹의 대규모 클라우드 인프라 확장 전략인 ‘클라우드 하이퍼스케일러’의 일환으로, 이번 협력은 클라우드 마이그레이션과 AI 협력을 중심으로 기업 운영, 가전제품, 상용차 등 다양한 영역에서 운영 효율을 높이고 지능형 비즈니스 프로세스를 구현한다. 아울러 보쉬의 인텔리전트 드라이빙 환경을 알리바바 클라우드 AI 인프라에서 구현할 수 있는지 검토할 예정이다. 또한, 이번 파트너십을 통해 알리바바는 AI 역량을 활용해 보쉬의 사업을 지원하고, 운영 효율성 제고와 제품 인텔리전스를 강화한다. 자동차 설루션 분야에서는 큐원 기반 멀티모달 모델을 평가해 차량 내 보다 직관적인 상호작용을 구현하고 스마트 콕핏 경험을 강화할 계획이다. 아울러 큐원 시각 언어 모델을 적용한 차세대 자율주행 설루션 개발 가능성을 검토해 장면 인식 정확도를 높일 예정이다. 전자상거래는 이번 협력 확대의 핵심 축이다. 양사는 제품 포트폴리오 확대, 고객 참여 강화, 브랜드 경험 최적화를 통해 성장과 혁신을 동시에 이끌어갈 계획이다. 보쉬는 2025년 알리바바 전자상거래 플랫폼의 소비자 인사이트를 바탕으로 중국 시장에 신규 제품군을 선보일 예정이며, 알리바바는 포괄적인 옴니채널 디지털 마케팅을 통해 보쉬가 더 폭넓은 소비자층에 도달하도록 지원한다. 중국에서 구축한 협력 체계를 바탕으로, 보쉬는 라자다(Lazada), 미라비아(Miravia), 알리익스프레스(AliExpress) 등 알리바바의 글로벌 전자상거래 플랫폼을 활용해 동남아시아, 스페인, 중남미 시장으로 입지를 확대하고, 현지 소비자들에게 혁신적이고 고품질의 제품을 제공할 계획이다. 보쉬와 알리바바의 전자상거래 협력은 2017년 시작됐다. 이후 보쉬는 티몰 플랫폼에서 가전제품, 전동공구, 난방 시스템, 자동차 애프터마켓 부품 등 다양한 소비자 중심 제품을 선보이며 입지를 구축했다. 양사는 마케팅, 판매, 멤버십 프로그램, 온·오프라인 연계 서비스 등 전방위 협력을 이어가며 보쉬의 디지털 생태계와 고객 참여를 강화해왔다. 보쉬의 경영이사회 멤버인 탄야 뤼케르트(Tanja Rückert) 최고디지털책임자는 “이번 파트너십은 보쉬와 알리바바가 글로벌 시장에서 새로운 성장 기회를 여는 계기가 될 것”이라며, “알리바바의 첨단 클라우드 인프라와 AI 역량, 전자상거래 시장 도달력을 보쉬의 모빌리티·산업 기술·소비재 분야 전문성과 결합해 전 세계적으로 더 큰 효율성과 혁신을 이끌어낼 계획이다. AI는 보쉬의 사업 전 부문에서 혁신을 견인하는 핵심 촉매제다. 알리바바와 같은 강력한 파트너와의 협력은 보쉬의 잠재력을 온전히 발휘하고 더 큰 가치를 창출하는 데 필수”라고 말했다. 알리바바 그룹 조 차이(Joe Tsai) 회장은 “알리바바는 보쉬와의 이번 협력을 통해 세계적 수준의 기술로 글로벌 기업을 지원하겠다는 방침을 분명히 하고, 동시에 AI와 클라우드 분야의 강점을 입증하고 있다”면서, “첨단 자동차 설루션과 생활가전 분야에서 보쉬의 탁월한 전문성과 알리바바의 클라우드·AI·전자상거래 혁신을 결합해 양사가 전 세계 고객들에게 차별화된 가치를 제공할 수 있을 것”이라고 말했다.
작성일 : 2025-09-04
ZW3D 2026 : 사용자 경험 혁신하는 3D CAD/CAE/CAM 소프트웨어
개발 : ZWSOFT 주요 특징 : 기계/제조 분야에 특화된 3D CAD/CAE/CAM 소프트웨어, 제품 설계를 위한 특화 기능을 바탕으로 설계 엔지니어링 과정의 효율을 향상, 기계 및 장비 분야에 필요한 대용량 파일 처리 속도 향상, 스마트 구속을 통한 설계 자동화, 2D CAD와 싱크로나이즈를 통해 2D & 3D 설계 협업 최적화 등 공급 : 지더블유캐드코리아   설계 자동화와 도면 연동으로 통합 워크플로 실현 복잡하고 유기적으로 연결된 설계-제조 환경에서 엔지니어는 단순한 모델링을 넘어 변화에 즉각 반응하는 데이터 흐름과 반복 작업 없는 설계, 그리고 설계 의도와 도면 간의 일관성을 요구받고 있다. ZW3D 2026은 이러한 현실적 과제를 해결하기 위해 기존의 단순한 설계 도구에서 벗어나, 설계(CAD) – 검증(CAE) – 제조(CAM) 프로세스의 연속성을 가지기 위해 통합된 플랫폼으로 탈바꿈하고 있다. 이번 ZW3D 2026 버전에서 주목할 만한 점은, 설계자가 수동으로 반복하던 구속 조건 설정을 자동화하고, 제품 설계에 필요한 조립 구조를 클릭 몇 번으로 생성할 수 있도록 자동화 프로세스로 최적화한 부분이다. 여기에 20만개의 부품에 이르는 대용량 어셈블리 환경에서도 안정적인 렌더링과 임포트(import) 속도를 제공하며, 3D 모델의 변경 사항이 DWG 기반의 2D 도면에 실시간으로 반영되는 싱크로나이즈(synchronize)를 통해 설계 일관성과 도면의 정확성을 동시에 확보할 수 있게 되었다. 이러한 기능적 업데이트는 단지 속도 차원에서의 효율화가 아니며, 설계 변경이 잦은 제품 개발 프로세스에서 데이터간 발생되는 오류를 줄이고, 반복 작업 시간을 줄이며 무엇보다 유기적인 설계 협업 관계를 끝까지 유지시킬 수 있는 기반을 제공한다. ZW3D 2026은 2D CAD 전용 소프트웨어인 ZWCAD와 3D CAD/CAE/CAM 소프트웨어인 ZW3D 간의 플랫폼을 통합하여 활용할 수 있는 통로를 구축한 첫 번째 설루션이다. 아직까지도 실제 현업에서 많이 사용하는 *.dwg나 *.dxf와 같은 2D 확장자를 3D 데이터와 연결함으로써 보다 빠른 제조 도면을 생산할 수 있기 때문에, 더욱 최적화된 2D & 3D 통합을 이뤄낸 설루션이 될 것이다. 이를 통해 설계 데이터와 사용자 액션 간의 실시간 연결성이 확보되고, 반복 작업은 자동화되며, 엔지니어는 복잡한 제품 설계를 보다 스마트하고 빠르게 완성할 수 있는 환경을 갖추게 되었다.     신기능 : 설계 워크플로를 혁신하는 생산성 향상 기능 ZW3D 2026은 설계자와 엔지니어의 생산성을 높이기 위해 다양한 신규 기능을 도입했다.   새로운 엔지니어링 기능(마운팅 보스, 립/홈, 스냅 후크) 기계·제품 설계에 요구되는 '마운팅 보스, 립/홈, 스냅 후크’ 등 다양하고 실용적인 엔지니어링 기능이 추가되었다. 마운팅 보스는 플라스틱 및 금속 부품의 고정 구조 설계에 최적화되었으며, 립 기능은 구조적 강성을 강화하는 데 유용하다. 스냅후크 기능은 부품 간 결합을 간소화하며, 특히 플라스틱 사출 성형 설계에서 정밀한 조립이 가능하도록 지원한다. 이러한 기능은 표준화된 템플릿과 함께 제공되어 설계 초기 단계에서부터 시간을 절약할 수 있다.     새로운 슬롯 기능과 나사산 기능의 향상(지능형 구속 조건 추론) 슬롯 및 나사산 생성 기능도 대폭 강화되었다. 이전까지는 사용자가 직접 프로파일을 생성해야 하는 과정이 필요했지만, 새롭게 도입된 슬롯 기능을 통해 복잡한 형상의 슬롯(직사각형, 곡선, 도브테일 등)을 간단한 클릭으로 생성할 수 있다. 그리고, 지능형 구속 조건 추론을 통해 슬롯의 위치와 방향을 자동으로 최적화한다.     나사산 기능 또한 ISO, DIN, ANSI 등 다양한 표준 프로파일을 지원하며, 지능형 추론 알고리즘을 통해 나사산의 피치와 깊이를 자동 조정한다. 이를 통해 나사산 모델링 시간이 약 35% 단축되었으며, 설계 정확도가 향상되었다.     압축 파일 열기(압축 파일에서 직접 임포트) ZW3D 2026은 ZIP, RAR 등 압축 파일에서 설계 데이터를 직접 임포트할 수 있는 기능을 새롭게 추가했다. 이를 통해 사용자는 별도의 압축 해제 과정 없이 대용량 데이터를 신속히 불러와 작업을 시작할 수 있다. 특히, 외부 협력업체와 공유되는 대규모 데이터셋을 효율적으로 처리하며, 데이터 로딩 시간이 기존 대비 약 40% 단축되었다. 이 기능은 복잡한 프로젝트 환경에서 즉시 작업이 가능하다는 점에서 워크플로 간소화에 큰 기여를 한다.     향상된 기능 : 더 빠르고 스마트하게 ZW3D 2026은 기존 기능의 성능을 개선하여 사용자 경험을 한층 강화했다.   판금 변환(원 클릭으로 시트메탈 설계 워크플로 혁신)     소비자 제품의 복잡한 판금 설계는 산업 스타일의 시각적인 니즈를 충족하기 위해 빈번한 설계 변경을 요구하며, 이는 후속 엔지니어링 작업을 복잡하게 만들고 수동 변환 과정에서 시간 소모와 오류를 일으킨다. 판금 모듈에 새롭게 추가된 ‘판금 변환’ 기능은 단 한 번의 클릭으로 복잡한 솔리드 모델이나 외부 판금 부품을 즉시 편집 가능한 판금 형상으로 변환하며, 자동으로 굽힘 영역을 수집하고 정의한다. 새롭게 추가된 벤트, 컷아웃, 루버, 엠보싱과 같은 기능을 활용하여 복잡한 판금 구조 생성을 간소화할 수 있으며, 실제 사례에서 가전제품 케이스 설계 시간을 최대 50% 단축했다.   스마트한 구속 조건 추론 스마트 구속 조건 추론 기능은 어셈블리 설계 과정에서 컴포넌트 선택 시 적합한 구속 조건을 자동으로 추천한다. 자주 사용하는 조건은 시스템이 학습하여 제안하고, 여러 부품을 한 번에 그룹 구속 설정하는 것도 가능하다. 개선된 알고리즘은 과구속 문제를 최소화하며, 구속 조건 충돌 관리자 탭을 통해 문제가 발생한 부품을 직관적으로 확인하고 수정할 수 있다. 이 기능은 최대 20만 부품으로 구성된 대규모 어셈블리에서도 안정적인 성능을 제공하며, 구속 설정 시간을 약 30% 줄였다.     설계 효율 향상(대용량 파일 처리 및 다중 솔리드 도면 작업 속도 향상) 수천~수만 개 부품으로 구성된 대용량 어셈블리 데이터에서도 불러오기/렌더링/저장 속도가 향상되었다. ZW3D 2026은 최적화된 데이터 처리 엔진을 통해 최대 20만 부품의 어셈블리 파일 로딩 속도를 이전 버전 대비 약 50% 단축했다. 또한, 다중 솔리드 도면 작업 시 렌더링 및 편집 속도가 약 40% 개선되어, 복잡한 설계 데이터의 수정과 검토가 더욱 원활해졌다. 이는 중장비, 산업 설비, 금형 설계 등 대규모 프로젝트에서 특히 효과적이다.   자동 도면 생성으로 2D 도면 워크플로 혁신 비표준 장비 설계 프로젝트에서는 수천~수만 개의 2D 도면 생성이 전체 프로젝트 주기의 최대 30%를 차지하며, 이는 설계 프로세스의 주요 병목 지점이다. ZW3D 2026은 자체 Z3RRW 확장자 기반의 자동 도면 생성 기능과 주석 기능을 통해 이러한 문제를 해결한다. 엔지니어는 단일 템플릿 설정만으로 치수와 공정 테이블을 일괄 생성할 수 있으며, 3D 모델 변경 시 해당 2D 도면이 자동으로 갱신되어 수작업을 최소화한다. 실제 사례에서 사출 성형 프로젝트의 도면 업데이트 시간이 4시간에서 3분으로 단축되었고, 15만 개 부품의 공장 레이아웃 프로젝트에서는 최적화된 투영 엔진으로 도면 뷰 생성 시간이 5분에서 1분으로 줄어들었다. 이로써 복잡한 워크플로에서도 도면 출력의 정확성과 일관성을 유지하며, 생산성을 높일 수 있다.     핵심 신기능 : 2D 싱크로나이즈(2D/3D 도면 시트 연동) ZW3D 2026의 핵심 기능인 2D 싱크로나이즈(2D Synchronize)는 2D 도면과 3D 도면 간의 실시간 동기화를 지원한다. 이 기능은 3D 모델(참조 파트)의 변경 사항을 2D 도면에 자동으로 동기화하고 변경된 치수가 연동된 도면에 자동 적용되도록 한다. ZWCAD에서 데이터 연동을 하려면 ‘치수’ 메뉴에서 ‘관련된 DWG/DXF’ 옵션을 활성화하여 생성된 2D 및 3D 도면에 연동성을 부여하고 ‘DWG/DXF로 동기화’ 버튼을 클릭하면, 연동된 DWG/DXF 도면에 변경 사항이 즉시 반영된다. 즉, DWG/DXF 파일로 다시 내보내지 않고도 설계 변경 사항과 주석이 실시간으로 업데이트되어 재작업 프로세스를 줄이고 작업 효율이 향상된다. 이를 통해 설계 일관성을 유지하면서 수정 작업 시간을 약 60% 절감할 수 있다. 또한, 협업 환경에서 다수의 설계자가 동시에 2D 및 3D 데이터를 수정하더라도 충돌을 최소화하며, 2D/3D 설계 데이터 공유를 지원하여 협업 효율을 높였다.     ZW3D 2026은 기존 사용자들이 겪던 불편을 해소하고, 최신 설계 트렌드를 반영한 지능적이고 실용적인 기능 개선에 중점을 두었다. 압축 파일 직접 열기, 원클릭 판금 변환, 스마트 구속 조건 추론, 자동 도면 생성, 그리고 2D 싱크로나이즈를 통한 2D/3D 실시간 연동은 설계 환경의 유연성과 효율을 높인다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
가트너, “올해 전 세계 AI PC 출하량 104% 증가할 것”
가트너는 2025년 전 세계 AI PC 출하량이 전년 대비 약 104% 증가해 전체 PC 시장의 31%를 차지할 것이라는 전망을 발표했다. 가트너는 2026년에는 AI PC 출하량이 1억 4300만 대에 이르고, 전체 PC 시장의 55%를 차지할 것으로 예측했다. 또한, 2029년까지 AI PC가 시장의 표준으로 자리 잡을 것으로 전망했다. 노트북 시장에서는 AI 노트북 점유율이 2024년 19.4%에서 2025년 35.7%, 2026년에는 58.7%로 늘어날 전망이다. 데스크톱 PC 시장에서는 AI 데스크톱 점유율이 2024년 3.8%에서 2025년 16.4%, 2026년 42.1%가 될 것으로 보인다. 기업 및 소비자 시장에서는 프로세서 플랫폼에 따른 AI PC에 대한 선호도 차이가 존재했다. 가트너에 따르면, 애플리케이션 호환성 문제가 점차 해소되면서 ARM 기반 노트북은 기업보다 소비자 시장에서 더 큰 점유율을 확보할 것으로 예상된다. 반면, 기업 시장에서는 윈도우 x86 기반 노트북에 대한 선호가 뚜렷해, 2025년 기업용 AI 노트북 시장에서 윈도우 x86 기반 노트북은 71%, ARM 기반 노트북은 24%의 점유율을 차지할 것으로 예측된다. 가트너는 AI PC 보급이 확대됨에 따라 2026년 말까지 소프트웨어 공급업체의 40%가 PC에 AI를 내장하기 위한 투자를 우선적으로 진행할 것으로 전망했다. 이는 2024년의 2%에서 크게 증가한 수치다. 또한, 소형 언어 모델(SLM)이 PC에서 로컬로 실행되는 사례가 2023년에는 존재하지 않았지만 2026년에는 여럿 증가할 것으로 예상했다. SLM은 PC를 비롯한 기기 전반에서 고급 AI 기능을 직접 실행해 응답 속도를 높이고, 에너지 소비를 줄이며, 클라우드 의존도를 낮춘다. 이는 특정 작업에 특화된 인텔리전스를 제공할 뿐만 아니라, AI가 기기에서 직접 실행되기 때문에 사용자와 기업 데이터를 안전하게 보호할 수 있다. 가트너는 PC 공급업체가 하드웨어를 넘어, 특정 역할과 사용 사례에 최적화된 소프트웨어 정의형, 사용자 중심 기기를 제공하는 것이 AI PC의 미래이자 새로운 성장 동력이라고 조언했다. 가트너의 란짓 아트왈(Ranjit Atwal) 시니어 디렉터 애널리스트는 “AI PC가 시장 재편을 주도하고 있지만, 관세의 영향과 시장 불확실성으로 인해 PC 구매가 보류되면서 올해 도입 속도는 다소 둔화될 전망”이라며, “하지만 그럼에도 사용자는 에지 환경에서의 AI 활용 확대에 대비해 AI PC 투자를 이어갈 것”이라고 전했다. 또한 “AI PC의 미래는 맞춤화에 있다. 사용자가 원하는 앱, 특징, 기능을 선택해 기기를 구성하는 것이 중요하다”고 덧붙였다.
작성일 : 2025-08-29
엔비디아, "AI와 디지털 트윈으로 물리적 프로토타입 없는 제조 혁신 이끈다"
엔비디아는 글로벌 컴퓨터 그래픽 콘퍼런스인 ‘시그라프(SIGGRAPH) 2025’에서, 아마존 디바이스 앤 서비스(Amazon Devices & Services)가 엔비디아 디지털 트윈 기술을 활용해 제조 분야의 혁신을 이끌고 있다고 밝혔다. 아마존 디바이스 생산 시설에 이달 도입된 이 설루션은 시뮬레이션 우선 접근 방식을 적용한 ‘제로 터치(zero-touch)’ 제조 방식을 구현했다. 제로 터치의 핵심은 로봇 팔이 다양한 장비의 제품 품질을 자율적으로 검사하고, 새로운 제품을 생산 라인에 통합하도록 훈련하는 과정 전체를 하드웨어 변경 없이 합성 데이터를 기반으로 수행하는 것이다. 이를 위해 아마존 디바이스가 자체 개발한 조립 라인 공정 시뮬레이션 소프트웨어와 엔비디아 기술 기반의 디지털 트윈을 결합했다. 모듈형 AI 기반 워크플로를 통해 기존보다 더 빠르고 효율적인 검사를 진행하며, 제조업체의 워크플로를 간소화해 신제품을 소비자에게 전달하는 시간을 줄일 수 있다는 것이 엔비디아의 설명이다.     또한, 이 설루션은 공장 작업대와 장비의 사실적인 물리 기반 표현에 기반한 합성 데이터를 생성해 로봇 운영을 위한 ‘제로샷(zero-shot)’ 제조를 가능하게 한다. 공장에 특화된 데이터는 시뮬레이션과 실제 작업 환경에서 AI 모델의 성능을 높이는 데에 쓰이며, 시뮬레이션과 실제 작업 환경에서의 AI 모델 성능 격차를 최소화할 수 있다. 엔비디아는 “제로샷 제조를 통해 물리적 프로토타입 없이도 다양한 제품과 생산 공정을 유연하게 처리할 수 있는 범용 제조 시대를 향한 중요한 도약을 이뤄냈다”고 평가했다. 아마존 디바이스 앤 서비스는 디지털 트윈 환경에서 로봇을 훈련시켜 새로운 장비를 인식하고 다루도록 한다. 이를 통해 소프트웨어 변경만으로 한 제품의 감사 작업에서 다른 제품으로 손쉽게 전환할 수 있으며, 더 빠르고 제어가 용이한 모듈화 제조 파이프라인을 구축했다. 이를 위해 엔비디아의 아이작(Isaac) 기술 제품군을 활용한다. 아마존은 신규 장치가 도입되면 CAD 모델을 엔비디아 옴니버스(Omniverse) 플랫폼 기반의 오픈소스 로보틱스 시뮬레이션 애플리케이션인 엔비디아 아이작 심(Sim)에 적용한다. 아이작 심은 각 장치의 CAD 모델을 통해 물체 및 결함 탐지 모델 훈련에 필수인 5만 개 이상의 합성 이미지를 생성한다. 이후 엔비디아 아이작 ROS를 활용해 제품 취급을 위한 로봇 팔 궤적을 생성하고 조립부터 테스트, 포장, 검사까지 모든 과정을 구성한다. 로봇이 작업 환경을 이해하고 충돌 없는 궤적을 생성하는 데에는 엔비디아 젯슨 AGX 오린(Jetson AGX Orin) 모듈에서 실행되는 쿠다(CUDA) 가속 동작 계획 라이브러리 엔비디아 cu모션(cuMotion)이 사용된다. 또한, 500만 개의 합성 이미지로 훈련된 엔비디아의 파운데이션 모델 파운데이션포즈(FoundationPose)는 로봇이 장비의 정확한 위치와 방향을 파악하도록 돕는다. 파운데이션포즈는 사전 노출 없이도 새로운 물체에 맞춰 일반화할 수 있어, 모델 재훈련 없이 다양한 제품 간의 원활한 전환을 가능하게 한다. 한편, 이 기술을 더욱 빠르게 개발하기 위해 아마존 디바이스 앤 서비스는 AWS 배치(Batch)와 아마존 EC2 G6 인스턴스를 통해 분산 AI 모델 훈련을 수행했으며, 생성형 AI 서비스인 아마존 베드록(Bedrock)으로 제품 사양 문서를 분석해 공장 내 고수준 작업과 특정 검사 테스트 사례를 계획했다. 아마존 베드록 에이전트코어(Bedrock AgentCore)는 생산 라인 내 다중 공장 작업대를 위한 자율 워크플로 계획에 사용되며, 3D 설계와 표면 특성 등 멀티모달 제품 사양 입력을 처리할 수 있다.
작성일 : 2025-08-18
인이지, AI 기술력과 예측 정확도를 집약한 AI 예측 솔루션 공급
제조 산업 공정 최적화 솔루션 기업인 인이지(INEEJI) 는 설명가능 인공지능(Explainable AI, XAI)과 AI 예측 기술력을 바탕으로 제조업 및 다양한 산업의 생산성과 효율성을 향상시켜 공정 수율을 개선하는 데 중점을 두고 있다. 주요 기술로는 세계 최고 수준의 설명가능 인공지능 기술력과 예측 정확도를 집약한 AI 예측 솔루션 INFINITE OPTIMAL SERIES(인피니트 옵티멀 시리즈)와 원자재, 환율, 날씨, 소비자 행동 등 주요 경제 지표를 바탕으로 비즈니스 전반에 활용 가능한 클라우드 기반 AI 예측 서비스인 Cloud AI EEJI(이:지)가 있다.   인이지(INEEJI)는 2019년 설립되어, 세계적 수준의 AI 예측 솔루션을 통해 제조 산업 공정의 최적화를 실현하는 기업이다. 별도의 하드웨어 설치 없이 소프트웨어만으로 적용 가능한 AI 예측·제어 가이던스 솔루션을 제공하며 제조업의 디지털 전환과 공정 효율화에 앞장서고 있다.  (1) INFINITE OPTIMAL SERIES 인이지의 대표 AI 예측 솔루션인 INFINITE OPTIMAL SERIES(인피니트 옵티멀 시리즈)는 공정의 문제를 정확하게 예측하고, 작업자가 쉽게 이해할 수 있도록 가이던스를 제공하여 공정을 최적의 상태로 운영할 수 있도록 지원한다. 주요 고객사는 철강, 시멘트, 화학, 정유 등 다양한 제조 산업에 걸쳐 있으며, 주요 핵심 공정에 적용되어 제조 공정의 품질 개선, 생산성 향상, 에너지 절감을 돕고 있다. 일본을 포함한 글로벌 시장에서 성공적인 프로젝트 사례를 확보하며 입지를 다지고 있다. INFINITE OPTIMAL SERIES는 제조 공정 데이터를 기반으로 품질과 생산성을 개선하고 에너지를 절감할 수 있는 AI 예측 기반 공정최적화 솔루션이다. 이 솔루션은 시계열 데이터 분석과 설명가능 AI 기술을 활용하여 예측 결과와 근거를 명확히 전달하며 철강, 시멘트, 화학 등 다양한 제조 산업에서 생산성과 품질 개선 효과를 실현하고 있다.  세계적인 인공지능 학술대회인 ICML, AAAI, KDD등을 통해 기술력을 인정받으며, 최근에는 AI 모델이 어떤 원리로 작동하는지, 어떤 변수가 현재의 의사 결정에 중요한 영향을 미치는지 그 기여도를 선별하고 예측 정확도를 산출하는 딥러닝 설명 과정 입력 기여도 측정 기술(NeurIPS 2022)로 세계 최고 수준의 기술력으로 인정받았다. (2) Cloud AI EEJI Cloud AI EEJI[이:지]는 기업이 보유한 데이터 기반 인사이트 도출 및 주요 지표 예측을 통한 폭넓은 활용을 지원하며, 다양한 경제적·환경적 요인을 통합적으로 분석하는 강점을 갖추고 있다. 인이지의 기술력은 산업별 맞춤형 AI 솔루션 설계, 데이터 수집, 모델 개발, 현장 적용 및 통합 운영까지 아우르는 end-to-end 서비스로 제공되며, 고객의 디지털 전환과 공정 혁신을 효과적으로 지원한다. EEJI는 경제 지표, 수요 예측, 원자재 가격 분석 등 비즈니스 데이터에 가장 적합한 최적의 예측 모델을 제공한다. EEJI는 API를 통해 손쉽게 연동되며, 고객사가 데이터 활용도를 극대화할 수 있도록 지원한다. 두 솔루션 모두 사용자의 비즈니스와 제조 공정의 효율성을 극대화하는 데 중점을 두고 설계되었다. 관련 트렌드 및 전망 (1) 산업 AI 기술 및 지속가능성 글로벌 기술 패권 시대에 제조업이 국가 경쟁력의 중심으로 떠오르고 있으며, 미국은 제조 기술의 약점인 생산성을 첨단 기술로 극복하고 첨단 제조업으로의 전환을 준비하고 있다. AI는 제조업에서 생산성 향상, 에너지 효율 증대, 인력 운용 최적화, 제품 품질 개선 등 주요 과제를 해결하는 핵심 기술로 부상하고 있다. 산업 AI 기술은 제조업에서 실시간 데이터 분석을 통해 공정을 최적화하고 설비의 유지보수를 사전에 예측하는 방향으로 발전하고 있다. 특히 석유화학, 시멘트, 제철 등 대규모 공정을 보유한 산업에서는 에너지 효율 향상과 운영 비용 절감을 위한 AI 활용이 필수적이다. 기업들은 산업별 맞춤형 모델과 거버넌스 전략을 통해 AI를 도입하고 있으며, 기존 AI/ML 기법과의 조합을 통해 한계점을 보완하고 있다. 또한, AI 기술을 활용해 에너지 절감과 탄소 배출 저감을 실현하는 솔루션은 제조업계에서 중요한 과제로 자리 잡고 있으며, 관련 기술 수요는 꾸준히 증가하고 있다. (2) 설명가능 AI의 중요성 설명가능 AI(Explainable AI)는 AI의 의사결정 과정을 명확히 드러내 신뢰를 구축하는 핵심 기술로, 제조업 등 산업 분야에서 중요성이 높아지고 있다. 주요 정부와 규제 기관은 책임감 있는 AI 활용을 위해 투명성과 신뢰성을 강화하는 정책을 추진하고 있으며, 이를 통해 사용자와 이해관계자가 쉽게 이해하고 모니터링할 수 있는 솔루션에 대한 수요가 증가하고 있다. 인이지는 설명가능 AI 기술을 활용해 산업 현장에서 AI 의사결정 과정을 투명하게 제시하며, 신뢰와 책임감을 강화하고 있다. 이로써 윤리적이고 책임감 있는 AI 활용을 지원하며, 산업계의 지속가능한 디지털 전환에 기여하고 있다. 비즈니스 전개 방향 인이지는 ‘인간(人)을 이(利)롭게 하는 인공지능(知)’이라는 기업 비전 아래 철강, 시멘트, 정유, 화학, 발전, 유리 제조 등 주요 제조 공정에서 AI 예측 가이던스의 실효성을 입증하며 국내 레퍼런스를 확대하는 동시에 산업 현장에서 제조 품질을 향상시키고 기업 성장 촉진에 매진하고 있다. 2025년 코스닥 상장을 목표로 하고 있지만, 궁극적인 목표는 Siemens와 같은 세계적인 기술 기업으로 도약하는 것이다. 최근 인이지는 국내 제조 기업들과의 협력 경험을 바탕으로 일본 시장 진출 1년 만에 주요 제조사들과 실증 프로젝트를 성공적으로 진행하며 글로벌 확장을 가속화하고 있다. 일본의 지요다 강철 공업과의 AI 공정 실증 실험을 시작으로, 제강, 시멘트, 생활가전 제조사 네 곳에 AI 예측 솔루션을 도입하고 운영을 확정했다. 일본을 시작으로 독일, 대만 등 글로벌 제조 강국으로 시장을 확대해 나가며 글로벌 시장에서 AI 예측 기술의 혁신성과 실효성을 입증하며 세계적인 AI 예측 전문 기업으로 자리매김하고자 한다.
작성일 : 2025-08-09
[칼럼] 2025년 하노버 산업박람회가 던진 시사점과 교훈
세계는 지금 기술패권 시대다. 국가와 기업의 명운이 기술에 달려 있다고 해도 과언이 아니다. 인류 사회를 총체적으로 혁신하고 있는 디지털·그린·문명 대전환도 기술 혁신이 핵심이다. 한편으로 위협받고 있는 인류의 지속가능성을 확보하고 인류의 비전을 실현하기 위한 수단으로서, 다른 한편으로 국가의 명운을 좌우하는 패권의 핵심으로서 과학기술의 중요성이 국가 최우선 이슈로 자리 잡고 있다. AI를 비롯한 기술 트렌드를 따라잡지 못하면 기업 경영은 물론 국가 경영도 어렵다. 기술의 미래 트렌드를 제시하는 양대 기술 전시회인 매년 1월초 미국 라스베이거스 CES(소비자전자쇼)와 4월초 독일 하노버 산업박람회에 세계인의 관심이 쏠리는 이유다.    주영섭 / 서울대학교 공학전문대학원 특임교수 전 중소기업청장 하노버 산업박람회, 왜 우리에게 중요한가 미국 CES와 함께 우리나라가 특히 많은 관심을 가져야 할 세계적 기술 전시회가 매년 4월 독일의 북부 도시 하노버에서 열리는 산업박람회다. 세계 산업계의최신 기술과 트렌드를 선보이는 글로벌 산업 기술의 메카로 주목받고 있는 하노버 산업박람회가 우리에 중요한 이유는 대한민국 경제의 중추를 이루고 있는 주력 및 미래 산업의 기술 트렌드를 제시하는 핵심 전시회이기 때문이다. 우리 경제의 근간인 수출의 대부분을 반도체, 자동차, 철강·화학, 선박, 기계 등 제조업이주도하고 있기 때문에 산업 기술 트렌드를 보여주는 하노버 산업박람회는 우리나라에 특히 중요한 기술 전시회라 할 수 있다. 지대한 중요성에도 불구하고 미국CES 대비하여 국내 기업 및 정부의 관심이 상대적으로 낮은 것은 속히 개선해야할 점이다. 산업 AI 대전환, 지속가능성의 열쇠 올해로 78회를 맞은 하노버 산업박람회는 우리 산업의 전략적 방향에 많은 시사점을 제시하여 우리 기업은 물론 정부, 대학 및 연구기관의 많은 관심과 연구가 요구된다. 올해는 지난 3월 31일부터 4월 4일까지 5일간 60개 국가에서 약 4000개 전시업체, 150개 국가에서 12만 7천명의 관람객이 참가해 성황리에 개최되었다. 전시와 컨퍼런스 프로그램에 온라인으로 참가한 관람객을 합치면 수십만에 이를 것으로 추산된다.  하노버 산업박람회는 올해 슬로건으로 “기술로 미래를 만들자”를 내세웠다. 그리고 지난 해 슬로건 “지속가능한 산업에 활력을 불어넣자”에서 강조한 지속가능성을 확보하기 위한 수단으로 기술 혁신을 강조했다. 그 중에서도 올해 최고 화두는 단연 산업 AI 대전환이었다. 사실상 모든 전시업체가 제시한 제품이나 솔루션에 AI를 활용하지 않은 사례가 없을 만큼 이제 산업 AI 대전환은 기본이 되고 있다. 작년부터 CES와 하노버 산업박람회가 공히 제시하기 시작한 ‘디지털 및 AI 대전환을 통한 인류의 지속가능성 확보’가 새로운 패러다임이자 시대정신으로 자리매김하고 있다. 심각한 위험에 처한 환경·사회 및 인류의 지속가능성 확보와 같은 난제 해결과 인류 비전 실현을 위해서는 AI 활용 및 대전환을 통한 인류의 지적·신체적 역량의 확장이 필수적이라는 의미다.  올해 하노버 산업박람회는 산업 AI 대전환에 의한 에너지 효율화, 탄소배출 감축, 자원 최적화를 통해 환경의 지속가능성에 크게 기여하고, 산업의 효율성 및 생산성 향상과 새로운 비즈니스 모델 창출, 산업 인력의 교육 및 지식 관리로 경제적 및 사회적 지속가능성에 획기적 기여를 할 수 있는 많은 가능성을 제시했다.  이러한 맥락에서 하노버 산업박람회가 우리 산업에 던진 가장 중요한 교훈은 무엇보다도 산업 AI 대전환에 민관 협력의 국가적 총력을 경주해야 한다는 것이다. 한 시도 지체할 수 없이 시급한 국가 최우선 과제다. 이를 위해서는 산업 AI 대전환을 위한 미국과 유럽의 불꽃 튀는 경쟁과 협력 구도를 잘 이해하고 대비해야 한다. 세계 AI 및 클라우드 분야를 선도하는 마이크로소프트, 아마존(AWS), 구글 등 미국의 빅테크 기업과 지멘스, SAP, 슈나이더 일렉트릭, 보쉬 등 유럽의 제조 솔루션 기업 간에 피나는 경쟁을 하는 동시에 서로 협력하는 이중적 관계를 가지고 있다. 액센추어, EY, 딜로이트, KPMG 등 세계적 컨설팅 기업들도 AI 역량을 바탕으로 이 경쟁구도에 뛰어들고 있다.  산업 AI 주도권 경쟁과 글로벌 전략 산업 AI 대전환 분야에서 이처럼 독보적 기업이 나타나지 않고 군웅할거의 전국시대가 전개되는 이유는어느 누구도 산업 AI 대전환의 핵심 성공 요인인 AI 역량과 데이터 및 도메인 노하우를 다 가지고 있지 못하기 때문이다.  미국은 세계 최고의 AI 및 클라우드 역량을 가지고 있는 반면에 제조업 등 산업 현장의 해외 이전 심화로 산업 데이터 및 도메인 노하우는 열세를 면치 못하고 있다. 독일이 주도하는 유럽은 상황이 정반대다. 산업 데이터 및 도메인 노하우는 강세를 보이고 있는 반면 AI 및 클라우드 역량은 열세다. 비유하자면 미국은 짜장면 그릇은 잘 만드는데 담을 짜장면이 시원치 않고 유럽은 그 반대인 셈이다. 이번 박람회에서 미국과 유럽의 세계적 기업들이 서로 약속이나 한 듯 하나같이 타 기업들과의 협력 및 연합을 통한 공동 전시에 나선 배경으로 분석된다.  미국 빅테크 기업들은 미국 및 유럽의 대·중소 솔루션 기업들과 함께, 유럽의 메이저 기업들도 미국의 빅테크 기업 및 미국·유럽의 소프트웨어·컨설팅 기업과 함께 전시장을 꾸미고 운영하는 협력 사례가 대종을 이루었다. 미국의 마이크로소프트가 영국의 항공기 엔진 기업 롤스로이스와 협력하여 개발한 AI 기반의 항공기 엔진 검사 솔루션을 제시한 것이 좋은 사례다. 마이크로소프트 전시장에 AI 검사 솔루션을 장착한 롤스로이스 항공기 엔진을 최초로 공개해 참관객의 눈길을 사로잡았다. 내시경 형태의 LED 조명의 검사 시스템과 AI 기반 실시간 영상 분석을 통한 솔루션 개발로 엔진 검사 시간을 기존 12시간에서 5~6시간으로 대폭 단축하여 엔진 가동시간 확대와 수익성 제고에 기여하고 있다. 아울러 롤스로이스는 항공기 엔진 가격이 아니라 항공기 운행시간에 따라 엔진 사용 요금을 청구하는 서비스형 제품(PaaS)을 신규 비즈니스 모델로 추진하여 사업 확대에도 기여하고 있다.  현재로서는 이렇듯 시너지가 큰 협력에 주력하지만 서로의 속내는 오월동주처럼 달라 향후 귀추가 주목된다. 내재적 성장만이 아니라 M&A(인수·합병)를 통한 주도권 쟁탈전이 커질 것으로 전망된다.  올해 박람회 직전 발표된 대로 유럽의 메이저 제조 솔루션 기업인 지멘스가 미국의 디지털 트윈 기반 시뮬레이션 및 데이터 분석 기업인 알테어를 무려 15조원에 인수한 것이 좋은 사례다. 알테어는 이번 박람회에서 통상 20~30시간 걸리던 자동차 공조시스템 시뮬레이션을 20분으로줄이고 판금 성형 작업의 재료 손실을 15% 이상 줄이는획기적 기술을 제시해 주목을 받았다. 대한민국의 전략 : 경쟁과 협력의 균형 하노버 산업박람회가 보여준 협력과 경쟁 사례는 글로벌 협력이 상대적으로 약한 우리 기업 생태계가 잘 유념하여 참고해야 할 대목이다. 우리의 기회이기도 하다. 산업 AI 대전환의 핵심 성공요소 중 하나인 AI 및 클라우드 역량은 미국보다는 열세이나 유럽 대비 강세로 볼 수 있어 민관이 합심하여 네이버, LG 등 국내 기업의 AI 역량 강화에 주력하는 한편 미국의 빅테크 기업과의 전략적 제휴 및 협력을 모색하면 훌륭한 시너지를 기대할 수 있다.  다른 성공요소인 산업 데이터 및 도메인 노하우에서 미국 대비 강점을 가지고 있기 때문이다. 이 점에서 우리와 유사한 상황에 있는 유럽과는 AI 및 클라우드 역량을 공동 개발하고 산업 데이터 및 도메인 노하우 측면에서 시장 지배력을 확보할 수 있는 데이터 표준화 및 생태계 구축의 협력에 적극 나서야 한다.  특히, 독일이 제조 데이터 생태계 구축을 통한 디지털 주권 및 세계 산업 주도권 확보를 위해 강력히 추진하고 있는 매뉴팩처링-X 프로젝트에 적극 참여하여 협력할 필요가 있다. 자동차 산업의 Catena-X, 화학 산업의 Chem-X, 항공 산업의 Aerospace-X 등 추진 중인 10여개의 산업 특화 데이터 생태계 구축 프로젝트에 대한 개별 또는 전체 참여 및 협력이 대상이다.  우리가 AI 대전환의 핵심인 산업 데이터와 도메인 노하우의 구조화 및 표준화를 국내외로 주도할 수 있으면 산업 AI 대전환 최강국이 될 수 있다는 점도 올해 하노버 산업박람회가 남긴 중요한 교훈이다. AI는 늦었지만 AI 대전환은 앞서 가자!    
작성일 : 2025-08-08
에이수스, 메탈 디자인의 고성능 AI PC 비보북 S16 및 S14 출시
에이수스가 강력한 AI 퍼포먼스와 오래가는 배터리 성능을 결합한 차세대 노트북 ‘비보북(Vivobook) S16’ 및 ‘비보북(Vivobook) S14’를 출시한다고 밝혔다. 이번 신제품은 슬림하고 가벼운 노트북에 강력한 AI 성능을 더한 차세대 코파일럿+(Copilot+) PC다. 특히, 비보북 S16은 최대 50 TOPS의 NPU 성능을 제공하는 AMD 라이젠 AI 7 350 프로세서를 탑재해 업무, 학습, 엔터테인먼트 등의 다양한 작업에서 고급 AI 기능을 지원한다. 또한, AI 기반 디지털 콘텐츠 관리 도구인 스토리 큐브(StoryCube)와 함께 고품질 화상 회의를 위한 AI 카메라 및 AI 노이즈 캔슬링 기능이 내장돼, 사용자 중심의 스마트하고 효율적인 작업 환경을 제공한다.   ▲ 에이수스 비보북 S16 매트 그레이   에이수스는 “비보북 S16 및 S14는 견고한 메탈 디자인에 CNC 각인 로고를 적용해 모던하고 세련된 외관을 완성했다”고 소개했다. 16인치 및 14인치 모델 모두 16:10 비율의 WUXGA OLED 디스플레이를 탑재했으며, 블루라이트 방출을 줄여주는 로 블루라이트 기술이 적용돼 장시간 사용에도 눈의 피로를 줄인다. 여기에 최대 70Wh의 대용량 배터리를 장착했는데, 최대 23시간 지속되는 배터리 수명으로 언제 어디서든 작업이 가능하다. 특히, 49분만에 60% 충전이 가능한 고속 충전 기술이 함께 내장돼 휴대성과 생산성을 높였다. 이와 함께 돌비 애트모스(Dolby Atmos) 오디오 기술이 더해져 선명한 음질과 몰입감 있는 엔터테인먼트 환경을 제공한다. USB 3.2 Gen 1 Type-C 2개, USB 3.2 Gen 1 Type-A 2개, HDMI 2.1 1개, 3.5mm 오디오 콤보 잭 등 다양한 입출력 포트를 지원하며, Wi-Fi 6를 통해 안정적인 초고속 무선 연결이 가능하다. 비보북 S16 및 S14는 강화된 보안 기능도 갖췄다. FHD IR 카메라를 통한 윈도우 헬로(Windows Hello) 핸즈프리 로그인을 지원하며, 민감한 데이터를 보호하기 위해 마이크로소프트 플루톤(Microsoft Pluton) 기반의 보안 칩을 탑재했다. 또한, 카메라를 사용하지 않을 때 카메라 기능을 차단하는 프라이버시 셔터가 내장됐다. 신제품은 매트 그레이 단일 색상으로 출시되며, 에이수스 공식 온라인 스토어를 비롯해 네이버, 쿠팡, 11번가, G마켓, 옥션 등 주요 온라인 판매처에서 구매할 수 있다. 공식 소비자 가격은 119만 9000원부터 시작한다.
작성일 : 2025-08-04
[케이스 스터디] 성공적인 산업 메타버스 구현을 위한 필수 요소
디지털 전환의 잠재력을 실현하는 메타버스 기술   이번 호에서는 산업 분야 메타버스의 발전을 이끄는 요인과 그 잠재력에 대해 알아보고, 디지털 전환의 중요성과 이를 실현하는 기술을 살펴보고자 한다. 또한, 실제 성공 사례를 통해 산업 분야 메타버스를 즉시 시작해야 하는 세 가지 이유를 제시한다. ■ 자료 제공 : 유니티 코리아     메타버스는 주로 게임, 엔터테인먼트, 소셜 네트워크, 가상 경제 같은 소비자 지향적 활동을 위해 구상되었으며, 현재 로블록스(Roblox), 디센트럴랜드(Decentraland), 호라이즌 월즈(Horizon Worlds) 등의 플랫폼에서 관련 콘텐츠를 찾아볼 수 있다. 반면에 제조, 자동차, 물류 등의 산업 분야에서는 효율과 생산성, 혁신 등에 메타버스를 응용하는 방안을 주목한다. 산업 분야의 메타버스는 디지털 트윈, 시뮬레이션, 실시간 협업 등의 툴을 통합하여 운영과 설계, 교육을 개선한다. 유니티의 헤닝 린(Henning Linn) 인더스트리 고객 성공 담당 시니어 디렉터는 “산업 분야 메타버스는 데이터 연결성과 접근성을 새로운 차원으로 인도하며, 가속화된 연결을 통해 한 시스템에서 다른 시스템으로 데이터를 전송하는 방식을 개선한다”고 전했다.   든든한 토대를 마련하는 산업 분야 메타버스 산업 분야 메타버스는 몰입형 3D 기술과 실제 기업용 애플리케이션을 혼합하는 방법이다. 주된 용도는 비즈니스의 내부 프로세스에 사용하거나 고객의 참여를 유도하는 것이다. 산업 분야 메타버스는 기업에게 디지털 작업 공간이 되며, 현실 공간에서 써야 할 시간이나 비용을 절약하면서 테스트와 디자인을 거쳐 운용 방안을 개선할 수 있다. 공장, 기계 또는 시스템의 첨단 디지털 시뮬레이션, 즉 가상의 모형이 생긴다고 생각해 보자. 디지털 3D 공간에서 여러 팀이 협력하여 문제를 해결하고 작업자를 교육하거나 프로세스를 최적화할 수 있다. 산업 분야 메타버스는 형태나 규모의 제약에서 벗어나 제품을 선보일 수 있는 가상 쇼케이스가 되기도 하며, 한층 새로운 수준으로 고객의 참여를 유도하는 수단이 되기도 한다. 고객이 어디서나 가상 환경을 통해 제품을 체험할 수 있는 몰입형 플랫폼을 제공할 수 있으므로 참여도와 구매 가능성이 높아진다. 산업 분야 메타버스에서는 VR(가상현실), AR(증강현실), XR(확장현실) 같은 툴을 사용하여 이러한 가상 세계에 몰입할 수 있는 환경을 제공한다. 그 기반이 되는 실시간 3D 기술을 활용해 센서, IoT(사물인터넷), 글로벌 제품 카탈로그, 소재 정보를 비롯한 현실 세계의 데이터를 연동할 수 있다. 이 모든 것을 하나로 엮으면 실시간으로 가상 세계에서 환경이나 제품을 정확하게 표현할 수 있다. 산업 분야 메타버스를 통해 몰입형 3D 기술을 실제 정보와 결합하면 더 스마트하게 작업하고, 비용을 절감하며, 고객 참여를 유도하고, 보다 안전하고 신속하게 의사 결정을 내리는 데 도움이 된다.   산업 분야 메타버스에 대한 주목도가 높아지는 이유 PwC의 2024년 운영 디지털 트렌드 설문 조사에 따르면, 운영 및 공급망을 담당하는 임원 10명 중 거의 7명(69%)은 기술 투자가 전반적으로 기대치를 충족하지 못한다고 답했다. 산업 분야의 기업들은 다음과 같은 과제에 직면하고 있다.  빠르게 변화하는 시장에 대응 : 기술과 비즈니스 모델은 빠르게 발전하고 있으며, 산업 분야의 기업은 경쟁력을 유지하기 위해 미래를 향한 비전을 제시하고 새로운 기술에 투자해야 한다. 분산된 조직 간 협업 및 전략적 의사 결정 지원 : 인력은 다양한 지역과 시간대에 흩어져 있으며, 직원과 임원 모두 저마다 시간대가 달라 협업하기가 쉽지 않다. 전사적 차원에서 단절된 데이터 파악 : 그 어느 때보다 많은 데이터가 디지털화되고 클라우드에 저장되어 접근성이 높아졌지만, 대부분의 조직에서 데이터는 여전히 상당 부분 고립되어 있다. 사용자가 데이터와 상호 작용하고 데이터를 이해할 수 있도록 지원 : 복잡한 데이터 세트를 다른 데이터 세트와 통합하고, 사람들이 그 안에 담긴 맥락과 의미를 파악할 수 있도록 데이터를 시각화해야 한다.   산업 분야 메타버스가 지닌 혁신적인 잠재력 산업 분야 메타버스가 다양한 유형의 비즈니스에 적합한 이유는 무엇일까? 교육, 고객 경험, 협업 툴, 영업 및 마케팅 실무와 같은 실질적인 응용 사례에 집중하면 그 가능성은 무궁무진하다. 몇 가지 가능한 사례를 살펴보겠다.   운영 프로세스 간소화 목표 : 기존 프로세스, 워크플로, 시스템을 진단한다. 응용 사례 : 정유소에서 공장 전체의 디지털 트윈을 제작한다. 유지 관리 담당자는 가상 환경에서 디지털 트윈을 탐색하고, 그 구성 요소와 상호 작용하고, 유지 관리 작업을 시뮬레이션할 수 있다. 여기에는 마모된 부분이 있는지 파악하고, 수리 절차를 계획하고, 모든 안전 프로토콜이 준수되었는지 확인하는 작업이 포함된다. 장점 : 더 효과적으로 계획을 수립하고 휴먼 에러를 줄일 수 있으므로 유지 관리 다운타임 및 비용이 대폭 감소한다.   비즈니스 모델 전환 목표 : 기존 비즈니스 모델에서 더 혁신적인 모델로 전환 응용 사례 : 중장비 제조업체가 PaaS(Product-as-a-Service) 모델로 전환한다. PaaS 모델을 도입하면 고객은 제품 사용 비용을 한 번에 전부 지불하는 대신 사용한 만큼만 지불하면 된다. 기업은 장비의 디지털 트윈을 구축하고 실제 기계의 IoT 센서와 동기화함으로써 성능, 사용량, 마모 관련 데이터에 액세스할 수 있다. 고객은 장비를 구매하지 않고 사용량(예 : 작동 시간, 생산 산출량)을 기준으로 요금을 납부할 수 있다. 장점 : 제조업체는 PaaS 모델을 통해 반복적인 수입이 발생하는 새로운 수익원을 창출하여 재무적 예측 가능성을 높일 수 있다.   업종 전환 목표 : 새로운 지역, 업종 또는 프로젝트 모색 응용 사례 : 건설 회사가 디지털 기술을 사용해 건물의 설계, 건축, 관리 방식을 혁신하는 3D 프로젝트 모델을 구축함으로써 효율성과 지속 가능성, 비용 절감을 전체적으로 개선한다. 장점 : 실제 건설을 시작하기 전에 잠재적인 문제를 탐지하면 비용을 절감하고, 오류를 최소화하며, 프로젝트 일정을 줄일 수 있다.   인력과 조직 문화의 변화 목표 : 직원의 협업과 혁신을 촉진하고 민첩성 강화 응용 사례 : 다양한 지역에 떨어져 있는 여러 팀이 마치 같은 현장에 있는 것처럼 서로 보고 들을 수 있는 가상 3D 회의실에서 실시간으로 협업하고, 다 함께 제품의 3D 디지털 버전을 검토한다. 장점 : 직원 간의 커뮤니케이션을 개선하고, 더욱 빠르게 의사 결정을 내리고, 프로젝트를 완료하는 데 걸리는 시간을 단축한다.   고객과 파트너의 경험 혁신 목표 : 고객에게 더 흥미로운 경험 제공 응용 사례 : 자동차 제조업체가 고객에게 집에서 차량을 자세히 살펴보고 원하는 대로 커스터마이즈해 볼 수 있는 3D 가상 쇼룸을 제공한다. 고객은 실시간으로 차량의 기능을 사용해 보고, 차량의 색상, 인테리어 옵션, 액세서리를 변경하고, 모든 각도에서 변경에 따른 차이를 확인할 수 있다. 장점 : 자동차 제조업체는 고객이 더욱 많은 정보를 바탕으로 의사 결정을 내릴 수 있도록 도와주며, 고객 만족도와 참여 수준이 높아진다.   디지털 전환이 중요한 이유 기업이 소프트웨어와 전자 제품을 통해 기능과 사용자 경험을 개선할 방안을 모색하는 한편 지속 가능한 설루션에 대한 관심이 증가함에 따라, 많은 산업 분야에서 스마트 제품과 커넥티드 제품이 점점 더 다양하게 보급되고 있다. 공급망 관리, 인력 역학, 지속 가능한 혁신을 둘러싼 과제들로 인해 불확실성이 늘어나지만, 동시에 창의적인 솔루션을 통해 기업이 경쟁 우위를 확보할 기회가 생겨나기도 한다. 이러한 압박과 어려움으로 인해 기업은 운영 방식뿐 아니라 시장에 출시하는 제품과 서비스도 혁신해야 하는 상황에 놓였다. 실시간 3D 렌더링, AI, 클라우드 컴퓨팅이 발전하면서 산업 분야 메타버스에는 새로운 길이 열렸다. 미래의 성공을 위해 기업은 더 탄력적이고 민첩해져야 하며, 역동적으로 변하는 환경에 대한 적응력을 높여야 한다. 그러려면 디지털 전환과 산업 분야 메타버스를 핵심 요소로 채택해야 한다. 린 시니어 디렉터는 “데이터가 디지털화되었다고 해서 연동되었다는 것은 아니다. 예를 들면 제품의 동작을 설명하는 데이터라고 하더라도 제품 데이터와는 연동되지 않을 수 있다. 동작을 시뮬레이션하려면 수동으로 데이터를 연결해야 한다. 산업 분야 메타버스는 데이터 사일로(silo)를 연결하며, 이는 디지털 전환을 통해 실현할 수 있다”고 짚었다.   실시간 3D : 산업 분야 메타버스의 기반 기술 현재 디지털 전환을 시작하는 조직에 중요한 혁신 중 하나는 바로 실시간 3D이다. 실시간 3D는 컴퓨터로 생성되어 단순히 보는 것에 그치지 않고, 직접 체험할 수 있는 3D 이미지를 만들고 표시하는 기술이다. 그 이름에서 알 수 있듯이 이 이미지는 실시간으로 업데이트된다. 즉, 사용자의 행동에 따라 바로 바뀌는 것이다. 실시간 3D는 원래 비디오 게임을 제작하기 위해 개발되었지만 이제는 산업 분야에서도 널리 응용되고 있으며, 가상 세계가 사용자 행동에 즉각적으로 반응하는 몰입형 인터랙티브 경험의 근간이 된다.   검증된 실시간 3D 응용 사례 고도로 발전한 고성능 실시간 3D 기술은 이미 존재한다. 제조업체, 사치품 소매 업체, 자동차 제조 업체 등 다양한 기업들이 이미 실시간 3D 기술을 활용하고 있다. 다음은 몇 가지 예시이다.   단일 에셋 라이브러리로 XR 제작 과정을 간소화 글로벌 과학 및 임상 연구 회사인 써모피셔사이언티픽(Thermo Fisher Scientific)은 디지털 트윈, 영업 지원, 교육, 기능성 게임 같은 설루션을 제공하기 위해 단일 소스의 3D 애셋을 활용하는 XR 기반 플랫폼을 구축했다. 이 XR 플랫폼의 성과는 다음과 같다. 애셋 파이프라인 효율 250% 향상 로코드/노코드 비주얼 스크립팅을 통한 개발 시간 단축   ▲ 이미지 출처 : 써모피셔사이언티픽   사이버 공간에 오프라인 매장 경험을 구현 파리의 럭셔리 가죽 제품 브랜드 카뮤포네(Camille Fournet)는 섬세한 디자인과 장인 정신으로 잘 알려져 있지만, 실시간 3D를 사용하여 고객의 경험을 향상하는 데 앞장선 브랜드이기도 하다. 이 기업에서는 고객이 매장에서 누리는 럭셔리한 경험을 온라인에도 똑같이 제공하고자 했다. 유니티를 기반으로 스마트픽셀(SmartPixels)에서 제작한 실시간 3D 제품 컨피규레이터 덕분에 카뮤포네는 다음과 같은 성과를 거뒀다. 탐색에서 구매로 이어지는 전환 수 5배 증가 고객 참여도 66% 상승   ▲ 이미지 출처 : 스마트픽셀   교육 비용을 절감 칼스 주니어(Carl’s Jr.)는 미국에 뿌리를 둔 패스트푸드 체인으로, 30개국에서 1100개가 넘는 식당을 운영한다. 만 명에 달하는 직원 대부분이 서로 멀리 떨어져 다양한 지역에서 근무하고 있다. 안전, 위생 및 고객 서비스에 대한 높은 기준을 유지하려면 지속적이고 일관된 신입 직원 교육이 필수이다. 칼스주니어는 AR 기반의 자기 주도형 인력 교육을 통해 다음과 같은 성과를 달성했다. 교육 비용 73% 절감 고객 만족도 43% 증가   ▲ 이미지 출처 : 비저너리스 777(Visionaries 777)   지금 산업 분야 메타버스를 시작해야 하는 세 가지 이유 디지털 기술은 빠르게 발전하고 있다. 산업 분야의 기업이 뒤처지지 않으려면 더 전략적으로, 더 장기적인 관점에서 변화를 예측해야 한다. 경쟁력 확보 : 경쟁 업체는 이미 실시간 3D를 활용할 방법을 모색하고 있고, 움직임이 더딘 조직을 빠르게 앞지를 것이다. 실시간 3D에 대한 고객의 수요와 기대치가 모두 증가하고 있으며, 고객이 원하는 것을 제공하지 않는 조직은 고객 이탈을 겪게 될 것이다. 인재 확보 : 최고의 인재, 특히 기술 인력은 늘 부족하며 수요가 많다. 새로운 기술을 도입하여 디지털 전환을 추진하는 기업은 기술 커뮤니티의 이목을 끌 수 있다. 혁신 실현 : 복잡한 3D 데이터에 대한 보편적인 액세스 권한을 제공하고 전 세계의 관계자가 협업할 수 있도록 지원하면 작업자가 더욱 생산적이고 효과적인 동시에 보다 빠르게 작업할 수 있다.   향후 전망 살펴보기 기술의 융합 그 자체인 산업 분야 메타버스의 목표는 가상 세계와 증강현실을 서로 연결하는 것이다. 유연함이라는 본질 덕분에 기술과 활용 사례가 발전함에 따라 그 정의도 계속 변화할 것이다. 기업은 IoT, AI, XR 같은 디지털 전환 툴을 연동하여 공장, 공급망, 제품을 세밀한 부분까지 그대로 재현함으로써 몰입도 높은 산업 분야 메타버스 애플리케이션을 제작할 수 있다. 이 가상 모형은 실시간 모니터링, 예측형 유지 관리, 시나리오 테스트, 교육, 협업 등을 가능케 한다. 결론적으로, 산업 분야 메타버스는 기존 프로세스를 개선하는 것을 넘어서 더욱 민첩하고 지속 가능하며 혁신적인 산업으로 향하는 혁신의 기틀이 되고 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-08-04
[칼럼] AI 시대 제조업 생존 전략 : ‘듀얼 브레인’을 장착하라
현장에서 얻은 것 No. 21   “데이터의 양이 아니라 활용이다. 우리는 쌀을 먹지 않고 밥을 먹는다.” – 최재홍 교수(가천대)   거대한 전환점에 선 제조업 21세기, 우리는 산업 혁명의 물결이 AI(인공지능)라는 이름으로 다시금 거세게 밀려오는 시대를 살고 있다. 제조업은 그 최전선에 서 있다. 과거 증기기관, 전기, 컴퓨터가 생산 방식을 송두리째 바꿔놓았듯이, 이제 AI는 우리가 제품을 설계하고, 생산하고, 유통하며, 심지어 소비자와 소통하는 방식까지 근본적으로 재편하고 있다. 많은 제조업체는 이 변화의 물결 속에서 생존과 번영을 위한 새로운 전략을 모색하고 있다. 기존의 방식만으로는 더 이상 지속 가능한 성장을 기대하기 어렵다는 냉정한 현실에 직면하게 된 것이다. 이 거대한 전환점에서 우리는 AI를 어떻게 받아들이고 활용해야 할까? 단순히 자동화를 위한 도구로만 생각할 것인가, 아니면 그 이상의 잠재력을 가진 파트너로 인식할 것인가? 이선 몰릭 교수의 저서 ‘듀얼 브레인’은 이러한 질문에 대한 명쾌한 해답을 제시한다. 바로 AI를 인간의 ‘두 번째 뇌’로 활용하여 시너지를 창출하는 ‘듀얼 브레인’ 개념이다. 이번 호 칼럼은 ‘듀얼 브레인’의 핵심 인사이트를 바탕으로, AI 시대 제조업이 나아가야 할 생존 전략을 제시하고자 한다.   ▲ ‘듀얼 브레인’ 서평 맵(Map by 류용효컨셉맵연구소) (클릭하면 큰 이미지로 볼 수 있습니다.)   AI, 단순한 도구에서 두 번째 뇌로 “인간의 마음은 한계가 없으며, 그것은 스스로를 확장하는 방법을 끊임없이 찾아낸다.” – 이선 몰릭(‘듀얼 브레인’ 저자) 오랜 시간동안 제조업 현장에서 자동화는 주로 육체 노동의 효율을 높이는 데 초점을 맞추었다. 로봇 팔이 정밀하게 부품을 조립하고, 자동화된 설비가 제품을 대량 생산하였다. AI 역시 이러한 자동화의 연장선상에서 ‘똑똑한 도구’로 인식되는 경향이 강하였다. 그러나 ‘듀얼 브레인’이 강조하는 바는 AI가 단순한 도구를 넘어, 인간의 지적 활동을 확장하고 보완하는 ‘두 번째 뇌’가 될 수 있다는 점이다. 제조업 현장에서 AI는 더 이상 데이터를 수집하고 분석하여 보고서를 제공하는 수동적인 역할에 머무르지 않는다. AI는 설계 단계에서 수많은 변수를 고려하여 최적의 디자인을 제안하고, 생산 공정에서 예측 불가능한 오류를 사전에 감지하며, 품질 검사에서 인간이 놓칠 수 있는 미세한 결함을 찾아낸다. 이는 AI가 인간의 인지적 한계, 즉 방대한 데이터 처리 능력의 부재나 고정관념에서 벗어나지 못하는 사고의 경직성을 보완해 주기 때문에 가능한 일이다. 예를 들어, 신제품 개발에 있어 인간 디자이너는 오랜 경험과 직관으로 디자인을 구상한다. 하지만 AI는 방대한 고객 데이터, 시장 트렌드, 과거 성공 사례 등을 학습하여 인간이 상상하기 어려웠던 수십, 수백 가지의 디자인 대안을 즉시 제시할 수 있다. 또한, 각 디자인의 생산성, 재료비, 잠재적 소비자 반응까지 예측하여 제공함으로써 인간 디자이너의 의사결정을 획기적으로 개선한다. 이는 인간의 창의성과 AI의 분석 능력이 결합된 진정한 듀얼 브레인의 작동 방식이라 할 수 있다. 따라서 제조업은 AI를 단순히 공정을 자동화하는 기계로 볼 것이 아니라 R&D, 설계, 생산 관리, 품질 관리, 마케팅 등 모든 분야에서 인간의 지적 파트너이자 두 번째 뇌로 장착해야 한다. 이러한 관점의 전환이야말로 AI 시대 제조업이 생존하고 번영할 첫 걸음이 될 것이다.   듀얼 브레인 활용법 : 질문, 실험, 그리고 인간의 역할 “중요한 것은 질문하는 것을 멈추지 않는 것이다. 호기심은 그 자체로 존재 이유가 있다.” – 알베르트 아인슈타인 듀얼 브레인을 제조업에 효과적으로 장착하기 위해서는 몇 가지 핵심적인 활용법을 숙지해야 한다. 단순히 최신 AI 기술을 도입하는 것만으로는 충분하지 않다. 중요한 것은 ‘어떻게 AI와 협업할 것인가’이다. 첫째, ‘질문하는 기술’의 중요성이다. AI, 특히 생성형 AI는 우리가 던지는 질문(프롬프트)에 따라 전혀 다른 결과물을 내놓는다. 제조업에서는 AI에게 ‘현재 생산 라인의 병목 현상을 파악하고 개선 방안을 제시하라’, ‘신소재 개발을 위해 특정 물성을 가진 분자 구조를 추천하라’, ‘고객 불만 데이터에서 제품 개선에 필요한 핵심 인사이트를 도출하라’와 같이 구체적이고 명확한 질문을 던질 수 있어야 한다. 추상적인 질문은 모호한 답변을 낳고, 결국 AI 활용의 효율을 떨어뜨릴 것이다. 질문의 질이 곧 AI 활용의 질을 결정한다는 사실을 명심해야 한다. 둘째, ‘실험적 사고’와 ‘빠른 반복’이다. AI는 완벽하지 않다. 때로는 잘못된 정보(환각 현상)를 생성하거나, 우리가 의도한 바와 다른 결과를 내놓기도 한다. 제조업에서는 이러한 AI의 특성을 이해하고, 두려워하지 않고 다양한 가설을 세워 AI와 함께 실험하는 태도가 중요하다. AI가 제시한 생산 최적화 방안이 실제로 효과가 있는지 소규모 테스트를 거치고, AI가 제안한 디자인을 프로토타입으로 제작하여 시장 반응을 살피는 등의 빠른 반복 과정이 필수이다. 실패를 통해 배우고, 그 학습을 바탕으로 다음 실험을 진행하는 애자일(agile) 방식이 듀얼 브레인 시대의 핵심 역량인 것이다. 셋째, ‘인간의 개입과 검증’이다. AI는 방대한 데이터를 기반으로 통계적인 결론을 도출하지만, 그 결과가 항상 현실의 복잡한 맥락이나 윤리적 판단에 부합하지는 않는다. 제조업에서는 AI가 제시한 생산 계획이 과연 현장의 인력 운용이나 안전 규정에 부합하는지, AI가 추천한 신소재가 환경 규제를 만족하는지 등을 인간 전문가가 반드시 검토하고 최종 결정해야 한다. AI의 결과물을 맹목적으로 신뢰하기보다는, 비판적인 시각으로 검증하고 인간의 경험과 지혜를 더하는 것이 듀얼 브레인을 완성하는 핵심 단계이다. AI는 강력한 보조 도구이지만, 최종적인 책임과 판단은 결국 인간의 몫인 것이다.   창의성과 생산성 증대 : 제조업의 새로운 경쟁력 “생산성은 우연이 아니다. 그것은 항상 탁월함에 대한 헌신, 지능적인 계획, 집중된 노력의 결과이다.” – 폴 마이어 듀얼 브레인 개념을 제조업에 적용함으로써 얻을 수 있는 가장 큰 이점은 바로 창의성과 생산성의 비약적인 증대이다. 이는 AI 시대 제조업의 새로운 경쟁력이 될 것이다. 창의성 증대 측면에서 제조업은 전통적으로 ‘효율’과 ‘정확성’을 강조해왔다. 그러나 AI는 이제 제조업의 ‘창의성’을 자극하는 촉매제가 되고 있다. 예를 들어, 제품 디자인 과정에서 AI는 기존 데이터를 기반으로 전혀 새로운 형태나 기능을 제안할 수 있다. 이는 인간 디자이너의 고정관념을 깨고 상상력을 자극하여 혁신적인 제품 개발로 이어진다. 또한, AI는 제조 공정 자체의 혁신에도 기여한다. AI 시뮬레이션을 통해 기존에는 불가능하다고 여겼던 새로운 생산 방식을 탐색하고, 재료의 낭비를 최소화하며, 에너지 효율을 극대화하는 창의적인 해결책을 찾아낼 수 있다. 이는 인간의 직관과 AI의 방대한 계산 능력이 결합되어 가능해지는 결과이다. 생산성 증대 측면은 더욱 명확하다. 제조업의 생산성 증대는 곧 비용 절감과 납기 단축으로 이어져 기업의 수익성에 직접 영향을 미친다. 듀얼 브레인 시스템은 다음과 같은 방식으로 생산성을 극대화할 것이다. 예측 유지보수 : AI가 설비의 미세한 진동, 온도 변화, 전력 소비량 등을 실시간으로 분석하여 고장을 예측하고 사전 유지보수를 가능하게 함으로써, 예기치 않은 생산 중단 시간을 획기적으로 줄일 것이다. 생산 공정 최적화 : AI는 복잡한 생산 라인에서 각 단계의 효율성을 분석하고, 병목 현상을 식별하며, 재고 관리와 물류 흐름을 최적화하여 생산 리드 타임을 단축시키고 생산량을 증대시킬 것이다. 품질 관리 혁신 : AI 기반의 비전 검사 시스템은 인간의 눈으로 감지하기 어려운 미세한 불량까지 정확하게 찾아내어 불량률을 낮추고 제품 품질을 일관되게 유지할 것이다. 데이터 기반 의사결정 : AI는 시장 동향, 고객 피드백, 공급망 데이터 등 방대한 정보를 분석하여 경영진의 전략적 의사결정을 지원하고, 이는 곧 더 빠르고 정확한 시장 대응으로 이어질 것이다. 이처럼 듀얼 브레인은 제조업의 고질적인 문제를 해결하고 나아가 새로운 가치를 창출하는 핵심 동력이 될 것이다.   AI 시대, 제조업 인간의 역할 재정립 “기계는 인간의 일을 대신할 수 있지만, 인간의 마음을 대신할 수는 없다.” – 스티븐 호킹 AI가 제조업 현장에 깊숙이 들어올수록, 많은 이들이 인간의 역할에 대한 불안감을 느끼는 것이 사실이다. 하지만 ‘듀얼 브레인’은 AI가 인간의 일자리를 완전히 대체하는 것이 아니라, 오히려 인간 고유의 역량을 더욱 빛나게 하고 그 역할을 재정립할 기회를 제공한다고 역설한다. 제조업 현장에서 AI는 반복적이고 위험하며, 데이터 기반의 정량적 분석에 특화된 업무를 수행하게 될 것이다. 그렇다면 인간은 어떤 역할을 해야 할까? 문제 정의 및 비판적 사고 : AI는 주어진 문제를 해결하는 데 유능하지만, 무엇이 진정한 문제인지 파악하고 AI가 도출한 결과에 대해 비판적으로 질문하며, 맥락을 이해하여 의미를 부여하는 것은 여전히 인간의 몫이다. 예를 들어, AI가 불량률 감소를 위한 수치적 해답을 제시할 수는 있지만, ‘이 불량이 고객에게 미치는 정서적 영향’이나 ‘기업의 장기적인 브랜드 이미지’와 같은 비정량적인 가치를 판단하고 정책을 결정하는 것은 인간 경영자의 역할인 것이다. 창의적 기획 및 혁신 : AI는 기존 데이터를 기반으로 새로운 조합을 만들 수는 있지만, 완전히 새로운 개념을 무에서 유로 창조하거나, AI의 한계를 뛰어넘는 파격적인 아이디어를 제안하는 것은 인간의 고유 영역이다. 제조업에서 다음 세대 먹거리를 기획하고 시장 판도를 바꿀 기술을 상상하는 것은 AI가 아닌 인간 전문가의 몫인 것이다. 감성 지능 및 공감 : 협상, 팀 빌딩, 고객과의 관계 형성 등 인간 상호작용이 필요한 부분에서는 AI가 인간의 감성을 이해하고 공감하는 데 한계가 있다. 제조업의 영업, 마케팅, 인력 관리 등에서는 여전히 인간의 감성 지능과 공감 능력이 필수인 것이다. 윤리적 판단과 책임 : AI는 데이터를 기반으로 작동하므로 윤리적 가치 판단이나 사회적 책임을 스스로 질 수 없다. 제조업 공정에서 발생할 수 있는 환경 문제, 노동자의 안전, 제품의 사회적 영향 등 윤리적 딜레마에 대한 최종 판단과 책임은 전적으로 인간에게 달려 있는 것이다. 따라서 AI 시대 제조업의 인재는 AI를 활용하는 ‘도구적 능력’을 넘어, AI가 할 수 없는 ‘인간 고유의 역량’을 더욱 갈고 닦아야 한다. 이는 AI를 두려워할 것이 아니라, 오히려 AI의 도움을 받아 자신만의 강점을 극대화하는 길을 모색해야 함을 의미한다.   미래를 위한 제언 : 제조업의 듀얼 브레인 로드맵 “미래를 예측하는 가장 좋은 방법은 미래를 창조하는 것이다.” – 피터 드러커 AI 시대 제조업의 생존과 번영은 듀얼 브레인을 얼마나 성공적으로 장착하느냐에 달려 있다. 이를 위한 몇 가지 제언을 하고자 한다. 첫째, CEO를 포함한 경영진의 인식 전환과 비전 공유가 필수이다. 듀얼 브레인 전략은 단순히 기술팀만의 과제가 아니다. 최고 의사결정권자가 AI를 기업의 핵심 전략 자산이자 ‘두 번째 뇌’로 인식하고, 전사적인 변화의 비전을 제시해야 한다. 기술 투자뿐만 아니라 인력 재교육 및 문화 변화를 위한 투자를 아끼지 않아야 한다. 둘째, 지속적인 학습과 실험 문화를 정착시켜야 한다. AI 기술은 빠르게 진화하고 있다. 어제의 최적해가 오늘의 최적해가 아닐 수 있다. 제조업체는 AI 기술 트렌드를 주시하고, 새로운 AI 도구를 끊임없이 실험하며, 실패를 두려워하지 않고 거기서 배우는 문화를 구축해야 한다. 작은 규모의 파일럿 프로젝트를 통해 AI 활용의 성공 경험을 쌓고, 이를 점차 확대해 나가는 방식이 효과적일 것이다. 셋째, 인력 재교육 및 역량 강화에 적극적으로 투자해야 한다. 기존 인력들이 AI를 두 번째 뇌로 활용할 수 있도록 AI 기초 교육, 데이터 리터러시, 프롬프트 엔지니어링 교육 등을 제공해야 한다. 동시에 AI가 대체하기 어려운 인간 고유의 역량 즉 비판적 사고, 창의성, 문제 해결 능력, 협업 능력 등을 강화하는 교육 프로그램도 병행해야 한다. 넷째, 데이터 기반의 의사결정 체계를 확립해야 한다. 듀얼 브레인은 결국 데이터에 기반한다. 제조업 현장의 모든 데이터(생산, 품질, 재고, 고객, 시장 등)를 통합적으로 수집하고 분석할 수 있는 인프라를 구축해야 한다. 이를 통해 AI가 더 정확하고 깊이 있는 통찰력을 제공할 수 있으며, 인간의 의사결정 역시 데이터에 기반하여 더욱 합리적으로 이루어질 수 있을 것이다. 다섯째, 외부 AI 전문 기업과의 협력을 고려해야 한다. 모든 AI 역량을 자체적으로 구축하는 것은 현실적으로 어렵고 비효율적일 수 있다. AI 설루션 제공 기업, 컨설팅 회사, 학계 등 외부 전문가 그룹과의 협력을 통해 필요한 AI 기술과 노하우를 빠르게 도입하고 내재화하는 전략도 필요할 것이다.   결론 : 듀얼 브레인, 제조업의 새로운 항해를 위한 나침반 “완벽한 계획을 기다리기보다 빠르게 실행하고(선지랄 후수습), 시장과 고객의 피드백을 통해 방향을 수정해 나가는 것이 중요하다.” – 최재홍 교수(가천대) AI 시대는 제조업에 거대한 도전인 동시에 전례 없는 기회이다. 이 기회를 잡기 위해서는 AI를 단순한 생산성 향상 도구로 여기는 구시대적 관점을 벗어나, 인간의 지적 능력을 확장하고 협력하는 듀얼 브레인으로 장착해야 한다. 인간의 비판적 사고와 창의성, 그리고 AI의 방대한 처리 능력이 결합될 때 제조업은 새로운 차원의 혁신과 경쟁력을 확보할 수 있을 것이다. 이제 제조업은 단순히 물건을 만드는 것을 넘어, 지능형 시스템과 인간 지능이 함께 작동하는 ‘코인텔리전스 제조(co-intelligence manufacturing)’의 시대로 진입하고 있다. 듀얼 브레인을 장착하고, AI와 함께 배우고 실험하며, 인간 고유의 가치를 더욱 빛내 나간다면, AI 시대의 제조업은 더욱 강력하고 지속 가능한 미래를 향해 성공적으로 항해할 수 있을 것이다. 이는 선택이 아닌 필수 생존 전략이 될 것이다. 최재홍 교수는 2025년 7월 9일 미모세(미래모빌리티세미나) 2025 키노트에서 이런 말을 남겼다. “오너는 될 때까지 하기 때문에 실패가 없다.” 이 말은 강연장에 모인 스타트업 그리고 상장사 CEO들에게 큰 영감과 감동을 주었다.   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다. (블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-08-04