• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "설비"에 대한 통합 검색 내용이 1,839개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
미라콤아이앤씨, 대상웰라이프에 클라우드형 MES 구축 스마트팩토리 전환 가속화
대상웰라이프 천안 1, 2공장에 Nexplant MESplus CE 도입   대상웰라이프 천안2공장(출처 – 대상웰라이프)   미라콤아이앤씨가 대상웰라이프의 천안 1, 2공장에 자사의 클라우드 기반 제조실행시스템(MES) 솔루션인  넥스트플랜트 엠이에스플러스(Nexplant MESplus) CE(Cloud Edition)를 구축한다고  밝혔다. 대상웰라이프는 폭넓은 소비자층의 생애주기와 라이프스타일에 맞춘 다양한 뉴트리션 솔루션을 제공하는 헬스케어 기업이다. 특히 환자용 균형영양식 브랜드 ‘뉴케어’는 10년 연속 시장 점유율 1위를 기록하며 많은 이들의 건강 관리에 기여하고 있다. 미라콤아이앤씨의 Nexplant MESplus CE가 적용될 대상웰라이프의 천안 1, 2공장은 건강식품 생산의 핵심 기지 역할을 수행하고 있다. 지난 2월 시작된 이번 프로젝트는 약 7개월간 진행되어 오는 9월 완료될 예정이다. 구축 완료 후 미라콤아이앤씨는 향후 5년간 대상웰라이프에 안정적인 운영 서비스를 제공할 계획이다. 지주사인 대상홀딩스는 그룹 차원에서 수년 전부터 디지털 전환과 제조 경쟁력 강화를 적극적으로 추진해 왔다. 이러한 노력의 일환으로 대상홀딩스는 대상웰라이프가 미라콤아이앤씨와 협력하여 이번 프로젝트를 진행할 수 있도록 중요한 역할을 수행했다. 더불어 대상홀딩스의 IT 계열사인 대상정보통신 역시 대상웰라이프와 미라콤아이앤씨 간의 원활한 협업을 지원하며 시스템 구축에 힘을 보태고 있다. 이번 Nexplant MESplus CE 구축을 통해 미라콤아이앤씨는 대상웰라이프 천안 공장의 디지털화 수준을 한 단계 끌어올릴 것으로 기대된다. 우선 시스템 기반의 재료 오투입 방지 기능을 통해 레시피 변경으로 인한 불량 발생을 사전에 차단하여 식품 안전성을 강화한다. 또한 선입선출 기반의 자재 관리 시스템을 도입하여 제품의 신선도를 유지하고 불필요한 폐기물을 최소화함으로써 제조 과정의 투명성을 높일 예정이다. 멸균기, 자동 충전 장비 등 생산 설비와의 인터페이스를 통해 설비 데이터를 실시간으로 모니터링하고 정밀하게 관리하여 품질 관리 능력을 향상시키는 것도 중요한 목표 중 하나다. 이와 더불어 원부자재를 시스템 기반으로 정확하게 계량하고 측정하여 생산 공정에 투입함으로써 제품 맛의 일관성을 유지하는 데에도 기여할 것으로 보인다. 미라콤아이앤씨는 이뿐만 아니라 탄소 배출량을 체계적으로 산정하는 기능을 이번 시스템 구축에 포함하여 대상웰라이프가 탄소중립 시대를 선도적으로 준비할 수 있도록 지원할 예정이다. 키오스크 및 태블릿 PC 등을 활용한 원부자재 입고 관리 시스템을 구축하여 기존의 수기 문서 작업을 줄이고 공장 내 페이퍼리스 환경을 구현하는 것도 중요한 목표다. 미라콤아이앤씨의 대표적인 MES , Nexplant MESplus Nexplant MESplus CE는 미라콤아이앤씨가 제공하는 대표적인 제조실행시스템(MES)인 Nexplant MESplus의 클라우드 기반 버전이다. Nexplant MESplus CE의 가장 큰 장점은 단연 비용 절감 효과다. 클라우드 기반으로 제공되므로 고객은 서버나 데이터베이스 등 고가의 시스템 인프라를 직접 구축할 필요가 없으며, 합리적인 월 구독 방식으로 비용을 지불하여 초기 투자 부담을 크게 줄일 수 있다. 이는 초기 대규모 투자가 어려운 중소·중견 기업에게 매력적인 대안이 될 수 있다. 또한 시스템 구축 후 유지보수 및 운영 인력을 별도로 채용하거나 관리할 필요가 없어 IT 인력 운영에 대한 부담까지 덜 수 있다. 클라우드 기반으로 비용 효율성을 높였지만, 기능적인 측면에서는 기존 Nexplant MESplus의 강력한 성능을 그대로 제공한다. Nexplant MESplus는 미라콤아이앤씨가 지난 27년간 스마트팩토리 분야에서 쌓아온 풍부한 경험과 기술 노하우를 집약한 솔루션이다. 자체 개발한 디지털 플랫폼인 MDP(Miracom Digital Platform)을 기반으로 생산관리, 설비관리, 자재관리, 품질관리 등 스마트 공장 운영에 필수적인 다양한 기능을 통합적으로 제공한다. 대상웰라이프 측은 "이번 Nexplant MESplus CE 도입을 통해 생산성과 품질 관리 능력을 한층 강화할 수 있을 것으로 기대한다"며 "다양한 건강식품을 기반으로 지속 가능한 성장의 발판을 마련하겠다"고 밝혔다. 미라콤아이앤씨 측은 “국내 스마트팩토리 1위 기업으로서 자부심을 가지고 대상웰라이프 공장의 디지털 전환과 스마트화를 성공적으로 이끌어낼 수 있도록 최선을 다하겠다”고 강조했다.
작성일 : 2025-05-10
크렐로, 서울 최대 규모 산업용 3D프린팅 대량 양산 시스템 구축…생산능력 3배 확대
크렐로, 서울 최대 규모 산업용 3D프린팅 대량 양산 시스템 구축   AI 기반 맞춤형 온라인 제조 서비스 기업인 크렐로(Creallo)는 산업용 SLA(광경화성 수지 조형 방식) 3D 프린터 6대를 추가 도입해 서울 최대 규모의 3D프린팅 대량 양산 시스템을 구축 완료했다고 밝혔다. 이로써 생산 능력을 기존 대비 3배 이상 대폭 확장했다. 크렐로는 최근 발주량의 지속적인 증가와 더불어 보안과 납기 등 국내 생산을 선호하는 고객 니즈에 적극 대응하기 위해 이번 설비 확장을 결정했다. 확장된 시스템은 총 10대의 산업용 3D 프린터와 2대의 CNC 장비로 구성되며, 서울 직영 공장에서 직접 운영된다. 이번에 새롭게 도입된 산업용 SLA 프린터는 크렐로가 다년간의 3D프린팅 서비스 노하우와 고객 맞춤형 설계 역량을 바탕으로 자체 개발한 고사양 장비다. 흰색, 검정, 투명 등 다양한 레진 소재를 지원하며, 고속 출력이 가능하고 장시간 연속 가동 시에도 높은 안정성과 출력 효율성을 유지한다. 특히, ㄷ자형 석정반 구조를 채택하여 장기적인 정밀도 유지와 출력 안정성을 확보했으며, 재도포 정확도와 효율성도 크게 향상되었다. 출력 범위 전반에 걸쳐 균일한 경화 품질을 구현함으로써 생산성과 품질을 동시에 끌어올렸다. 크렐로는 '품질', '속도', '보안'을 핵심 가치로 삼아 특히 정밀도가 중요한 산업 분야에서 경쟁력을 인정받고 있다. 국내에서는 3D프린팅과 CNC 가공을 결합한 통합 제조 솔루션을 제공하며, 시제품 제작부터 대량 생산까지 원스톱 서비스를 구현하고 있다. 이로써 로봇, 드론, 의료기기, 전자제품, 자동차 등 다양한 산업군의 R&D 기업과 협력하며 신뢰받는 제조 파트너로 자리잡았다. 뿐만 아니라, 글로벌 제조 네트워크를 기반으로 3D프린팅 및 CNC 가공은 물론, 진공 주형, 플라스틱 사출, 판금 가공 등 다양한 제조 공정과 소재를 지원하며 양산 서비스를 제공 중이다. 특히 중국 선전(Shenzhen)에 설립한 현지 법인을 통해 생산 공정, 품질, 물류 시스템을 철저하게 관리하며, 우수한 파트너 발굴로 합리적인 견적, 신속한 납기, 고품질 대응에 집중하고 있다. 크렐로 김희중 대표는 “크렐로는 빠르게 변화하는 산업 환경과 고객의 다양해지는 요구에 선제적으로 대응하기 위해 지속적인 투자를 이어가고 있다”며, “이번 설비 확장뿐 아니라, 자체 개발한 AI 기반 자동 설계 검토 및 견적 산출 시스템, 프로젝트별 전담자 배정 등 체계적인 관리 시스템을 통해 고객 만족도를 더욱 높이고 있다”고 말했다. 또한 그는 “2025년 상반기 중 추가 설비 도입이 예정되어 있어, 앞으로도 더 향상된 서비스 제공이 가능할 것으로 기대한다”고 밝혔다.
작성일 : 2025-05-10
[칼럼] 로봇 기반 제조 자동화와 디지털 트윈
디지털 트윈과 산업용 메타버스 트렌드   영화 매트릭스가 개봉된 지 20년이 더 지난 2020년대에 이러한 가상 세상은 영화가 아닌 실제 산업 현장에서 구현되어 산업 혁신을 주도하고 있다. 바로 ‘디지털 트윈 (Digital Twin)’이다 이 글에서는 디지털 트윈의 의미와 제조 산업 특히 로봇 기반 자동화에서 디지털 트윈이 어떻게 제조현장을 혁신하는지 실증 사례를 기반으로 소개한다.   장영재 교수 / 카이스트  “헬기를 몰 줄 알아요?” 남자 요원이 동행한 여자 요원에게 물었다. “아니요. 아직은요. 잠시만 기다리세요.” 그리고 즉시 여자 요원은 무전로 본부에 연락해, 헬기 시뮬레이션 교육프로그램을 업로드 해달라 본부에 요청했다. 본부에서는 즉시 시뮬레이션 교육프로그램을 가속으로 돌려 헬기 조정 능력을 여자 요원의 머리에 업로드하였다. 여자요원은 불과 몇 초 사이에 수백시간 걸릴 헬기훈련을 마친 베터랑 헬기 조정사 능력을 가지게 되었다. 그리고 여자 요원은 외쳤다. “빨리 헬기를 몰고 도망칩시다!” 그리고 여자 요원은 능숙한 솜씨로 헬기를 몰고 남자요원과 함께 탈출한다. 1999년 개봉된 영화 매트릭스의 한 장면이다. 가상의 세상과 실제 세상을 오가며 과연 무엇이 진실이며 실제 (real)이란 무엇일까란 질문을 던지는 매우 철학적인 영화다 .  영화 매트릭스가 개봉된 지 20년이 더 지난 2020년대에 이러한 가상 세상은 영화가 아닌 실제 산업 현장에서 구현되어 산업 혁신을 주도하고 있다. 바로 ‘디지털 트윈 (Digital Twin)’이다. 본 특집에서는 디지털 트윈의 의미와 제조 산업 특히 로봇 기반 자동화에서 디지털 트윈이 어떻게 제조현장을 혁신하는지 실증 사례를 기반으로 소개한다.   1. 시뮬레이션과 디지털 트윈의 차이 우리나라 과학기술정보 통신부에서는 디지털 트윈을 다음과 같이 정의하고 있다.  “가상세계에서 실제 사물의 물리적 특징을 동일하게 반영한 쌍둥이 (Twin)을 3D 모델로 구현하고 제 사물과 실시간으로 동기화 및 시뮬레이션을 통해 관제, 분석, 예측 등 현실의 의사결정에 활용하는 기술” 그러나 이러한 정의만으로는 구체적으로 디지털 트윈을 파악하기에 모호하다. 시뮬레이션과 디지털 트윈의 차이가 무엇인지, 실시간 동기화가 왜 필요한지, 관제, 분석, 예측은 이미 다양한 방식으로도 가능한데 디지털 트윈이 제공하는 또 다른 가치가 있는지 설명이 부족하다. 최근 디지털 트윈 관련 이슈가 많다 보니 기업들도 앞 다투어 디지털 트윈을 기술을 확보했다는 등의 보도자료를 통해 기술 홍보를 하기도 한다. 이런 대부분은 공장의 가공 로봇이 움직임을 실시간 3D 애니메이션으로 구현해서 실제 로봇의 움직임을 컴퓨터에 시연하는 정도다. 그러나 이러한 시연을 보면 대부분 사람들의 반응은 “이것으로 무엇을 하지요?” “굳이 거액을 들여 실물의 움직임을 컴퓨터 그래픽으로 그대로 보여줄 필요 있나요? 그저 CCTV 하나 설치하면 컴퓨터에서 영상으로 볼 수 있는 것을 굳이 컴퓨터 그래픽 3D영상으로 구현할 필요가 있나요?” 등의 반응이다. 그렇다면 우선 시뮬레이션과 디지털 트윈의 차이가 무엇일까? 2. 디지털 트윈이 과연 무엇인가?   시뮬레이션은 가상의 시나리오를 기반으로 그 결과를 재현해 보는 것을 의미한다. 내가 A란 결정을 했을 때 그 결과가 어떻게 나올지를 유추해 보는 것이 시뮬레이션이다. 우리가 일반적으로 잘 알고 있는 시뮬레이션이 컴퓨터 시뮬레이션이다. 즉 컴퓨터가 구현한 상황에서 특정 의사결정에 대해 그 결과를 컴퓨터를 통해 산출하는 것이다. 컴퓨터 시뮬레이션 활용의 대표적인 예가 워 게임 (War Game)이다. 군에서는 전략전술 교본이나 전술, 그리고 무기 체계 설계를 할 때 컴퓨터를 통한 시뮬레이션을 활용한다. 평가나 실험을 위해 실제 전투나 전쟁을 치를 수 없기에 컴퓨터를 통해 가상의 적군과 전투를 하며 훈련을 하거나 전술 평가에 활용한다. 실제 컴퓨터 시뮬레이션 활용에 대한 연구가 가장 활발히 이뤄지는 분야가 국방 시뮬레이션 분야인 이유다.  우리 일상 생활에서도 이러한 시뮬레이션이 실제 많이 활용된다. 대표적인 예가 바로 자동차 네비게이션이다. 10년전 네비게이션을 떠올리면 전형적인 시뮬레이션 장비라 할 수 있다. 목적지를 입력하면 내 위치에서 목적지까지 수많은 대안 경로 중 최적 경로를 제안해 준다 . 그러나 당시 네비게이션은 실시간 교통정보를 경로 탐색에 담지 않았다. 그러다 보니 출퇴근 교통혼잡이나 사고로 인한 교통 체증과 같은 상황에서도 일반 상황과 동일한 이동경로 시간 산출과 경로를 제시하는 한계가 있었다. 최근 자동차 네비게이션이나 스마트폰 차량 맵은 실시간 교통정보를 포함해 다양한 대안 경로를 제시한다. 즉 실시간 GPS 정보를 통해 내 차량의 위치는 클라우드의 컴퓨터로 전송이 되고 또한 다양한 교통정보를 기반으로 실시간으로 대안경로를 찾고 도착시간을 지속해서 업데이트 한다. 그리고 내차의 이동 경로와 교통 상황은 사용자가 직관적으로 파악할 수 있도록 컴퓨터 그래픽으로 전달된다. 즉 실시간 교통정보를 기반으로 지속적인 업데이트된 경로를 제공하는 스마트폰 네비 앱이 디지털 트윈의 가장 대표적인 사례다. 학문에서는 디지털 트윈의 조건을 아래로 정의한다. 1. 실물과 가상의 시스템이 거의 실시간 (near real-time)으로 연동되어야 한다. 2. 다양한 상황의 시나리오를 검토하고 대안을 제시할 수 있어야 한다. 3. 사용자의 의사결정을 지원하며 사용자가 쉽게 의사결정 상황을 직관적으로 파악할 수 있는 인터페이스를 제공해야 한다.   스마트폰 네비는 위 조건을 모두 만족한다. 실시간으로 차량의 위치가 GPS로 전송되고 교통정보도 활용한다는 점에서 1번 조건을 만족하며, 다양한 대안경로를 검토함으로 2번 조건을 만족하며, 사용자의 최적경로를 제안하며 이러한 경로를 그래픽으로 전달하는 방식으로 3번 조건을 만족한다. 즉 스마트폰 네비가 우리 생활의 디지털 트윈이라 할 수 있다. 이런 의미를 보면 굳이 디지털 트윈이 현실과 매우 흡사한 고퀄리티 네비를 제공해 줄 의무는 없고 3D그래픽을 제공하는 것도 조건은 아니다. 사람의 의사결정을 직관적으로 지원해 줄 수 있는 정도면 기능이 충분하다 할 수 있다. 3. 로봇 기반 제조 운영에서의 디지털 트윈   이러한 디지털 트윈 활용의 가장 대표적인 예가 제조 물류 자동화 시스템 설계 및 운영이다. 최근 제조 시스템의 가장 큰 변화 중의 하나는 컨베이어 벨트가 없는 자동화(Beltless Automation)로 표현되는 군집 로봇 기반 물류 자동화다. 1916년 포드 T모델이 컨베이어 방식으로 생산되며 제조 자동화 혁명을 가져왔다. 이후 컨베이어 벨트 기반 물류 자동화는 공장 자동화의 표준 생산이 되었다. 그러나 이러한 컨베이어 방식은 단일 품종 대량 생산에는 적합하지만 다품종 소량 생산과 같은 현대 소비 시장의 욕구를 충족하는 데는 한계가 있다. 차량 모델이 바뀔 때 마다 공장을 세우고 컨베이어 벨트와 설비 위치를 재 조정해야 하는 등 상당한 재투자가 필요하다. 카이스트 산업 및 시스템 공학과 졸업생들이 2020년에 창업하여 카이스트 및 네이버가 투자한 다임리서치는 디지털 트윈 기술을 기반으로 AGV나 ARM의 이동을 관제하고 제어하는 솔루션을 개발하여 LG전자뿐만 아닌 국내 반도체 및 2차전지 기업에 공급하고 있다.      상세 내용은 PDF로 제공됩니다.    
작성일 : 2025-05-09
디지털 트윈 모델 생성 및 배포 솔루션, Ansys Twin Builder
주요 디지털 트윈 소프트웨어 디지털 트윈 모델 생성 및 배포 솔루션, Ansys Twin Builder 개발 : Ansys, www.ansys.com 자료 제공 : Ansys Korea, 02-6009-0500, www.ansys.com   Ansys Twin Builder는 디지털 트윈(Digital Twin) 기술을 활용하여 실제 물리 시스템을 가상 환경에서 시뮬레이션하고 최적화할 수 있는 솔루션이다. 멀티피직스 시뮬레이션 기술을 기반으로 물리 모델과 실시간 센서 데이터를 결합하여 예측 유지보수 및 성능 최적화를 지원한다. 제조, 자동차, 항공우주, 전자, 에너지, 의료 등 다양한 산업에서 활용된다.   1. 주요 특징 (1) Physics 기반의 디지털 트윈 구축 IoT 데이터 및 시뮬레이션 모델을 결합하여 정밀한 디지털 트윈 모델 생성 (2) 실시간 시뮬레이션 및 예측 유지보수 지원  센서 데이터를 활용하여 장비의 고장 가능성 예측 및 유지보수 최적화 (3) 멀티피직스 통합 분석  전자기, 유체, 구조, 열 해석을 통합하여 복잡한 시스템 성능 분석 가능 (4) AI 및 머신러닝 연계 가능  OptiSLang을 활용한 AI 기반 최적화 및 데이터 분석 지원 (5) IoT 및 클라우드 플랫폼과 연계  AWS, Microsoft Azure, PTC ThingWorx 등 다양한 IoT 플랫폼과의 호환성 제공 2. 주요 기능 (1) 디지털 트윈 생성 및 실행  시뮬레이션 모델을 물리 데이터와 연결하여 실시간 가상 시뮬레이션 수행 (2) Model-Based Systems Engineering(MBSE) 지원  시스템 레벨 설계를 위한 MBSE 기반 시뮬레이션 제공 (3) 고급 시뮬레이션 및 자동화  MATLAB, Simulink, FMI 모델과 통합 가능하여 복잡한 시스템 해석 (4) PLM 및 데이터 관리 통합  Siemens Teamcenter, PTC Windchill 등 주요 PLM 시스템과 연계하여 제품 수명주기 관리 지원 (5) Predictive Maintenance 기능 내장  실시간 데이터 분석을 통해 유지보수 전략 개선 3. 도입 효과 ■ 설비 가동률 향상: 디지털 트윈을 활용한 사전 예측 유지보수로 시스템 다운타임 감소 ■ 제품 개발 기간 단축: 프로토타입 제작 없이 가상 환경에서 제품 설계 검증 가능 ■ 운영 비용 절감: 최적화된 유지보수 전략을 통해 운영 및 유지보수 비용 절감 ■ 설계 품질 향상: 실제 운영 데이터를 기반으로 제품 설계 개선 및 성능 최적화 4. 주요 고객 사이트 ■ 제조업: 두산 그룹, POSCO  ■ 자동차: 현대자동차그룹, LS Automotive Technologies, HL Mando ■ 항공우주: Korea Aerospace Industries (KAI), Hanwha Aerospace ■ 반도체/전자: Samsung Electronics, SK Hynix, LG Electronics, Samsung Electro-Mechanics, Samsung Display, LG Display, LG Innotek, LX Semicon ■ 에너지: LG Energy Solution, SK On, Samsung SDI, Hyundai Electric & Energy Systems, Doosan Enerbility, Hanwha Solutions   상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기
작성일 : 2025-05-04
변화와 흐름의 관찰
시점 – 사물이나 현상을 바라보는 눈 (5)   지난 호에서는 ‘정적 이미지’와 ‘동적 이미지’에 관하여 정의하고 두 이미지의 차이를 살펴보았다. 이미지 센서의 입장에서 바라본 ‘관찰의 시점과 관점’에 관한 몇 가지 사례를 들어가며 구체적으로 생각해 보았다. 또한 정적 이미지에 시간 요소를 비롯한 새로운 차원의 요소를 추가하는 방법의 고안과 활용의 필요성을 강조하였다. 이번 호에서는 정적 이미지와 동적 이미지의 활용이라는 측면에서 ‘변화와 흐름의 관찰’ 방법과 관찰된 결과를 가시화 및 시각화하는 구체적인 사례를 함께 생각해 보기로 한다. 변화와 흐름의 본질부터 응용에 이르기까지 구체적인 사례를 소개한다.   ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com    그림 1. 당구공 움직임 궤적의 가시화   변화와 흐름의 본질‘변화’는 사물의 성질, 모양, 상태 따위가 바뀌어 달라지는 것을 의미하고, ‘흐름’은 흐르는 것, 또는 한 줄기로 잇따라 진행되는 현상을 비유적으로 이르는 말로 일상적으로 사용된다. 두 가지 개념 모두 시간과 관계가 있다. 시간 역시 흐름의 하나이다. 다만 시간은 불가역적으로 과거로 돌아갈 수 없다. 시간이 실재하는 것인가 하는 것은 철학적인 이야기에 가깝다. 다만 시간의 특성을 이해하고 여러 가지 현상을 관찰하면 변화와 흐름을 발견하게 된다. 우리도 시간의 흐름과 더불어 나이를 먹고 늙어 간다. 모든 생명체에게 공통된 현상이다. 눈으로 확인하기도 어려운 현상이나 추상적인 주제에 관해서 설명하기보다는 눈으로 확인할 수 있는 것이 이해하기 쉽다.  당구는 경도가 높은 압축 플라스틱 재질로 만든 공을 사용하는 경기이다. 당구공은 충돌 시의 반발계수가 1에 가까운 완전 탄성체이다. 따라서 당구공끼리 충돌하는 것은 두 물체가 부딪친 후에도 운동 에너지의 합이 변하지 않는 ‘완전 탄성충돌’에 가깝다. 정면에서 충돌할 경우 운동량 보전 법칙이 성립하여 공이 서로의 속도를 교환한다. 물리법칙을 이해하고 공을 치는 방향과 힘을 조절해서 다른 공을 맞히는 게임이다. 공을 치게 되면 공이 움직이게 되니 시시각각으로 위치와 속도가 달라진다. 즉 시간에 따른 위치 변화와 흐름이 발생한다.  <그림 1>은 당구대의 위쪽에 고정된 카메라로 노란 당구공을 쳐서 초록색 당구공을 오른쪽 위 귀퉁이에 넣는 장면을 촬영한 동영상에서 적당한 시간 간격으로 프레임을 발췌하여 합성한 이미지를 소개하였다. 하나의 이미지에서는 같은 시간 간격으로 프레임을 발췌하여 합성한 것이므로, 여러 개의 노란색 공의 위치는 같은 시간 간격으로 촬영된 것이다. 녹색 공 또한 마찬가지이다. 같은 색 공 사이의 간격이 넓은 것은 공의 이동 속도가 빨랐다는 것을 의미하고, 간격이 좁은 것은 그 공의 이동 속도가 빠르지 않았음을 의미한다. 공과 공 사이의 거리를 측정해서 프레임 간의 시차로 나누면 해당 구간의 속도를 구할 수도 있다. 고속으로 촬영해서 이미지를 합성하면 공이 전부 연결되어 공이 지나간 궤적을 그려낼 수 있을 것이다. 이러한 이미지를 합성해서 변화와 흐름을 시각화하는 방법을 포함해서 다양한 방법이 활용되고 있으며, 앞으로도 새로운 개념의 방법도 나타날 것으로 기대한다. 어떤 방법들이 고안되었으며 활용되고 있는지 살펴보도록 한다.   일상적으로 사용되는 흐름을 측정하는 기기 흐름에는 무엇이 있을까? 바람이 불면 공기의 흐름이 있고 강에는 물이 흐른다. 보도에는 사람들의 흐름이 있고 도로에는 차량의 흐름이 있다. 비가 오거나 눈이 내리는 것도 자연스러운 물의 순환(흐름)이다. 일상생활에서도 흐름을 측정하는 기기들이 셀 수 없이 많이 있다. 전류계, 전력량계(적산전력계), 수도 계량기, 도시가스 계량기, 온수 미터 등이다.(그림 2) 실험용 전류계는 실시간으로 흐르는 전하량을 전류로 표시하고 있다. 전체적으로 얼마나 사용했는지는 알 수 없다. 전류가 흐르지 않으면 그 순간 0을 표시하기 때문이다. 전체적인 흐름의 양을 알려고 하면 시시각각의 흐름을 적산해서 표시해야 한다. 전력량계(적산전력계), 수도 계량기, 도시가스 계량기, 온수 미터는 사용량을 적산하는 방식을 채용하여 사용량에 맞춰 요금을 부과하는 방식이다.  흥미롭게도 여기에서 소개한 흐름을 측정하는 모든 기기는 전선이나 배관을 통해서 흐르는 것이다. 전기는 누전되지 않는 한 전선을 벗어나서 흐르는 일이 없다. 물과 가스 또한 누수 또는 가스의 누출이 없는 상태에서 사용한다. 즉 모든 흐름의 측정은 폐쇄회로에서 이루어진다. 그런 의미에서 <그림 1>의 당구대 평면 상의 당구공 위치 변화를 동영상 정보를 바탕으로 추적한 사례는 특이한 경우로 볼 수 있다.    그림 2. 주변에서 흔히 볼 수 있는 흐름을 측정하는 기기     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[핫윈도] 디지털 트윈 기대 속에 실질적 도입과 확산 위한 노력 필요
캐드앤그래픽스 디지털 트윈 설문조사 분석   디지털 트윈 기술에 대한 관심이 국내 제조 및 엔지니어링 업계를 중심으로 높아지고 있지만, 실제 산업 현장에서는 여전히 다양한 현실적 제약에 직면해 있는 것으로 나타났다. 캐드앤그래픽스는 국내 디지털 트윈 현황을 집대성한 ‘디지털 트윈 가이드’를 발간하고, 국내 제조 및 엔지니어링 업계 관계자를 대상으로 3월 13일부터 4월 14일까지 ‘국내 디지털 트윈 현황 설문조사’를 실시했다. 총 1212명이 참여한 이번 설문조사에서는 디지털 트윈의 이해도, 적용 분야, 도입 단계, 구축 시 어려움 등 다양한 관점에서 기술의 현주소를 조망했다. 특히 디지털 트윈을 실제로 사용 중인 기업과 종사자를 대상으로 진행한 심층 조사에서는 기술 도입 과정에서의 구체적인 어려움과 향후 투자 계획 등 실질적인 인사이트가 도출됐다. ■ 최경화 국장   설문조사 개요 및 참가자 현황 이번 설문조사는 국내 제조 엔지니어링 업계 관계자 1212명을 대상으로 진행되었다. 설문 참가자들의 배경은 다양한 산업 분야에 걸쳐 있었으며, 이는 디지털 트윈 기술이 단일 산업에 국한되지 않고 여러 분야에서 관심을 받고 있음을 시사한다. 참가자들의 직무 또한 연구개발, 설계, 생산, 관리 등 다양한 영역에 분포하고 있어, 디지털 트윈 기술이 기업 내 여러 부서와 직무에 걸쳐 중요성을 인정받고 있음을 알 수 있었다. 디지털 트윈 관련 업무 분야에서도 다양한 응답이 나타나, 이 기술의 응용 범위가 넓어지고 있음을 확인할 수 있다.   주력 산업 분야 설문 응답자들의 주력 산업 분야는 ‘건축/건설/토목’(22.7%)과 ‘전기전자/하이테크/반도체’(17.9%), ‘시각화/그래픽/디자인’(14.2%) 등이 높은 비중을 차지했으며, 자동차, 플랜트 등 다양한 산업 분야가 분포되어 있음을 알 수 있다.   그림 1. 설문 응답자 현황 - 주력 산업 분야   직무 분야 설문 응답자들의 직무 분포는 ‘엔지니어’(41.2%)가 압도적으로 높은 비율을 보였고, ‘경영진/임원’(15.9%), ‘SW 개발’(14.3%) 순으로 나타나, 기술 및 관리 직무 종사자들의 높은 관심을 반영했다.   그림 2. 설문 응답자 현황 – 직무   디지털 트윈 관련 업무 분야 설문 응답자들의 디지털 트윈 관련 업무 분야에 대해서는 CAD/3D 모델링이 가장 높게 나타났고, AI/머신러닝, CAE/시뮬레이션 순으로 나타났다.    그림 3. 설문 참가자 현황 - 디지털 트윈 관련 업무 분야   국내 디지털 트윈 도입 현황 - 뜨거운 기대감과 더딘 현실 디지털 트윈 이해 수준 기술에 대한 이해 수준은 아직 부족한 것으로 나타났다. 디지털 트윈 이해 수준에 대해서는 ‘대체로 알고 있다’(36.8%)와 ‘조금 알고 있다’(37.2%)가 비슷한 비율을 보였으며, ‘매우 잘 알고 있다’ (10.4%)는 소수에 불과했다. ‘잘 모른다’(15.6%)는 응답도 상당수를 차지했다. 이는 기술에 대한 인지도는 높지만, 깊이 있는 이해와 활용 능력은 아직 부족하다는 점을 시사한다.   그림 4. 디지털 트윈에 대한 이해 수준   디지털 트윈 발전 전망 반면, 디지털 트윈의 미래에 대한 업계의 기대는 매우 컸다. 향후 디지털 트윈 발전 전망에 대한 응답에 따르면 ‘매우 중요하게 성장할 것’(66%)과 ‘다소 성장할 것’(30.5%)이라는 답변이 전체의 압도적인 대다수를 차지했다. 또한 전체 응답자의 96.5%가 기술의 중요성과 잠재력에 대해 폭넓은 공감대를 형성하고 있음을 확인시켜 주었다.   그림 5. 디지털 트윈 향후 발전 전망   디지털 트윈 사용 기업 및 도입 현황 디지털 트윈을 실제로 사용하고 있는 기업 및 유저를 대상으로 한 심층 조사에는 총 385명이 참여했다. 이들 기업의 규모는 매출액과 직원 수를 기준으로 다양하게 분포하고 있어, 디지털 트윈 기술이 대기업뿐 아니라 중소기업에서도 점차 도입되고 있음을 알 수 있다.   디지털 트윈 사용 기업 규모 디지털 트윈 사용 기업의 매출액은 5000억원 이상이 48.8%를 차지해 가장 높은 분포를 보였으며, 1000억원 이상~500억원 미만이 13.2%로 큰 기업들이 주로 관심을 가지고 있었음을 알 수 있었다. 직원 수도 5000명 이상이 32.2%로 가장 높은 수치를 차지했으며, 1000명~5000명 미만이 17.9%, 100명~500명 미만이 11.7% 순으로 나타났다.    그림 6. 디지털 트윈 사용 기업 매출액   디지털 트윈 사용 기업 적용 분야 디지털 트윈 적용 분야는 ‘제품 설계 및 시뮬레이션’(66.8%), ‘생산/제조 운영’(43.9%), 설비 모니터링 및 유지보수(39.2%) 순으로, 제품 개발과 생산 영역에 활용이 집중되는 경향을 보였다. 제조 분야에 비해서는 사용이 적지만 도시, 에너지, 교통, 물류, 의료 등 다양한 영역에서 활용되고 있음을 확인할 수 있다. 특히 제조업 분야에서는 생산 공정 최적화, 품질 관리, 설비 예지 보전 등의 목적으로 활용되고 있을 것으로 추정된다.   그림 7. 디지털 트윈 적용 분야   디지털 트윈 적용 목적 디지털 트윈을 적용하는 주요 목적은 ‘설계 최적화’(61.0%), ‘생산성 향상’(54.5%), ‘운영 효율화’(46.2%) 등 효율성 증대 관련 항목들이 우위를 점했다.   그림 8. 디지털 트윈 적용 목적   디지털 트윈 도입 단계 아직까지 디지털 트윈에 대한 관심은 높지만 실제 사용 보다는 검토 중인 기업이 많은 것으로 나타났다. 디지털 트윈 사용 기업의 도입 단계 관련 답변을 보면, ‘도입 검토 중’(43.6%)이 가장 큰 비중을 차지했다. 이어 ‘일부 시스템 도입 완료’(18.4%), ‘PoC(파일럿) 진행 중’(12.2%), ‘전사 확산 및 활용 중’은 4.2% 순으로, 본격적인 활용 단계에 진입한 기업은 소수임을 알 수 있었다. ‘도입 계획 없음’(17.9%)이라는 응답도 적지 않았다.    그림 9. 디지털 트윈 도입 단계   다양한 상용 디지털 트윈 툴 사용… 자체 개발·검토도 다수 디지털 트윈 기술의 확산과 함께, 국내 기업들이 활용 중인 디지털 트윈 소프트웨어 및 플랫폼은 매우 다양하며, 기업별로 도입 단계나 활용 수준에서도 큰 차이를 보이는 것으로 나타났다. ‘현재 사용 중인 디지털 트윈 툴’에 대한 주관식 응답 결과를 분석해 보면, 국내 산업계는 BIM 기반 플랫폼, CAE 시뮬레이션 도구, PLM 및 협업 플랫폼, 그리고 게임 엔진 기반 시각화 도구를 중심으로 디지털 트윈 기술을 도입하고 있는 것으로 나타났다. 아래 내용은 답변 내용을 중심으로 정리한 것이다.   BIM 및 설계 중심 소프트웨어의 강세 디지털 트윈 구축의 초기 단계에서 가장 두드러지는 분야는 설계 기반 모델링(BIM) 도구다. 응답자 중 상당수가 오토데스크의 레빗(Revit), 오토캐드, 시빌 3D(Civil 3D), 나비스웍스(Navisworks) 등을 사용하고 있다고 응답했다. 벤틀리 시스템즈의 아이트윈(iTwin), 트림블의 테클라(Tekla) 및 트림블 커넥트(Trimble Connect), 아비바의 아비바 E3D(AVEVA E3D) 등도 건설·플랜트 산업에서 활용하고 있다고 답변했다.   정밀 해석 기반의 시뮬레이션 툴 확산 앤시스(Ansys), 아바쿠스(Abaqus), 하이퍼웍스(HyperWorks), LS-DYNA, 시뮬링크(Simulink), 아담스(Adams), GT-스위트(GT-Suite), 플렉스심(FlexSim) 등 해석 전문 툴의 사용도 두드러졌다. 특히 제품 설계나 공정 시뮬레이션에서 정밀한 모델링이 필요한 제조업, 자동차, 중공업 분야에서는 다물리 해석 툴 기반의 디지털 트윈 구현이 주를 이뤘다.   PLM 기반 통합 디지털 플랫폼도 주목 설계-생산-운영 전 주기를 통합 관리하기 위한 PLM 기반 플랫폼도 활발히 사용되고 있다. 다쏘시스템즈의 3D익스피리언스(3DEXPERIENCE), 카티아(CATIA), 에노비아(ENOVIA), 지멘스의 NX, 팀센터(Teamcenter), 플랜트 시뮬레이션(Plant Simulation), PTC의 크레오(Creo), 윈칠(Windchill), 씽웍스(ThingWorx) 외에도 전문 툴인 비주얼컴포넌트 등은 스마트 공정 및 운영 관리까지 연계된 디지털 트윈 구현에 활용되고 있는 것으로 보인다.   게임엔진 기반 실시간 시각화 기술 부상 유니티(Unity), 언리얼 엔진(Unreal Engine), 트윈모션(Twinmotion), 엔비디아 옴니버스(Omniverse) 등 게임엔진 기반 시각화 도구는 실시간 협업과 현장 시뮬레이션에서 각광받고 있다. 특히 언리얼엔진, 유니티와 옴니버스 등은 다른 플랫폼과의 연동성을 강화해 디자인 협업 및 공정 검증에 널리 활용되고 있다.   자체 설루션 및 커스터마이징 비율도 높아 이밖에도 국산 설루션인 이에이트, 소프트힐스, 버넥트, 한국디지털트윈연구소 설루션을 이용하고 있다는 응답도 있었다. 흥미로운 점은 응답자의 상당수가 ‘인하우스 개발’ 또는 ‘자체 플랫폼’, ‘프로젝트마다 요구사항 수렴 방식’ 등의 형태로 독자적인 디지털 트윈 시스템을 운영하고 있다는 것이다. 이는 특정 상용 설루션만으로는 각기 다른 업무 흐름이나 도메인 지식을 완벽히 반영하기 어렵기 때문으로 분석된다. 또한 ‘아직 도입 예정’ 또는 ‘검토 단계’라는 응답도 적지 않아, 디지털 트윈 도입의 확산은 진행 중인 흐름임을 알 수 있다.   넘어야 할 장벽 : 현장의 목소리로 본 핵심 과제 디지털 트윈의 확산이 더딘 배경에는 공통적으로 지적된 여러 장애물이 존재했다. 특히 높은 비용과 불확실한 ROI는 가장 큰 걸림돌로 지목됐다.   디지털 트윈 시스템 구축의 어려움 디지털 트윈 사용 기업이 꼽은 구축 시 가장 큰 어려움으로 ‘초기 투자 비용’(24.4%)과 ‘전문 인력 부족’(20.5%)이 가장 높은 비율을 차지했다. 그 뒤를 이어 ‘ROI 분석의 어려움’(16.6%), ‘경영진의 이해 부족’(15.1%) 순으로 나타났다. 주관식 답변에서는 고비용의 소프트웨어, 외산 설루션 및 3D 프로그램의 높은 라이선스 비용, 디지털 전환(DX) 도입 및 유지보수 비용 과다 등 경제적 부담에 대한 토로가 많았다. 특히 기대효과가 명확해야 한다, 비용 대비 효율이 확보되지 않으면 불가능하다, 실질적인 경영 효과로 어떻게 연결되는지 의문이라며, 투자를 정당화할 명확한 성과 측정과 검증된 성공 사례 부족을 지적했다. 전문 인력 부족 문제는 교육 시스템의 부재와 연계돼 있으며, 현장에서는 관련 교육 기회가 부족하다는 지적이 많았다. 경영진의 이해 부족도 중요한 문제로 나타났다.   그림 10. 디지털 트윈 구축 시 어려움   디지털 트윈 시스템 구축 관련 투자 계획 이러한 어려움에도 불구하고, 향후 디지털 트윈에 대한 투자 의향은 비교적 긍정적이었다. 사용 기업의 향후 투자 계획을 보여주는 그래프를 보면, ‘2년 이내’(31.4%), ‘1년 이내’(19.0%), ‘6개월 이내’(11.4%) 등 2년 내 투자 계획이 있다는 응답이 전체의 61.8%를 차지했다. 반면에 ‘도입 계획 없음’(26.2%)도 상당수 있었다.   그림 11. 향후 투자 계획   미래 투자 방향과 나아갈 길 전체 응답자가 디지털 트윈 확산을 위해 가장 필요하다고 꼽은 요소를 가중치 순으로 나타낸 그래프를 보면, ‘경영진의 의지와 디지털 트윈에 대한 이해’가 다른 항목을 큰 차이로 앞서며 압도적인 1위를 차지하고 있음을 확인할 수 있다. 또한 실제 사용 기업이 겪는 어려움에서도 ‘경영진의 이해 부족’이 중요한 요인으로 드러났다. 주관식 답변에서는 ROI 증명의 어려움과 맞물려 경영진 설득의 어려움을 토로하거나, 심지어 “실제 시험을 안 해도 된다고 생각하는 경영진이 많다”는 언급까지 나와, 리더십의 인식 개선이 시급함을 알 수 있었다. 표준화의 부재 역시 반복적으로 지적되었다. 응답자들은 데이터 표준화, 3D CAD 포맷 변환, 시스템 간 호환성 부족 등을 구체적인 문제로 언급했다.   그림 12. 디지털 트윈 시스템 구축과 확대를 위해 가장 필요한 것   구체적 정보와 성공 사례의 부족 또한 큰 장벽이다. 응답자들은 산업별 사례, 성공 및 실패 경험 등을 통한 실질적 정보 공유를 절실히 요구하고 있다. 이 밖에도 데이터 확보의 어려움, 외산 소프트웨어 의존도, 기술 복잡성, 국산 소프트웨어 개발의 필요성 등이 복합적으로 언급되며, 생태계 전반에 대한 개선이 필요함을 시사했다. 따라서 성공적인 디지털 트윈 도입과 확산을 위해서는 산적한 과제를 해결하기 위한 다각적인 노력이 필요하다. 현장의 목소리와 설문 데이터는 다음과 같은 방향을 제시하고 있다. 정부의 적극적인 역할 : 중소기업 지원 확대 , R&D 지원 및 국산 소프트웨어 육성, 산업 표준화 주도, 선도적인 인프라 투자 및 정책 지원 등 정부의 체계적이고 일관성 있는 지원 정책이 요구된다. 실질적 가치 증명 및 정보 공유 : 명확한 ROI 산정 모델 개발, 산업별 성공/실패 사례 발굴 및 투명한 공유, 기술 효용성에 대한 적극적인 홍보와 교육 강화가 필요하다. 표준화 및 기술 개발 : 데이터 형식 통일, 호환성 확보 등 산업 표준을 조속히 마련하고, 사용자 편의성을 높인 기술 및 플랫폼 개발 노력이 필요하다. 인력 양성 및 생태계 조성 : 실무 중심의 교육 프로그램 개발발 및 전문가 양성 시스템 구축, 산학연관 협력 시스템 강화가 필요하다.   맺음말 : 잠재력 현실화 위한 협력과 실질적 노력 시급 이번 설문조사는 디지털 트윈에 대한 국내 산업계의 높은 관심과 함께, 도입을 가로막는 다양한 현실적 장애 요인을 통계와 목소리로 생생하게 보여준 것이라고 할 수 있다. 이 같은 결과는 국내 산업계에서 디지털 트윈 도입이 활발히 이루어지고 있으나, 여전히 도입 도구의 표준화, 조직 내 전사적 활용, 실제 업무 흐름과의 통합 등에서 과제가 많다는 점을 보여준다. 향후에는 상용 툴과 자체 개발 플랫폼 간의 융합 전략, 그리고 데이터 연동성과 유지관리 측면에서의 체계적인 접근이 더욱 중요해질 것으로 보인다. 또한 디지털 트윈이 제조업 혁신의 핵심 동력으로 자리매김하기 위해서는 산업계, 정부, 학계가 함께 협력해 실질적인 해결책을 모색하고, 지속 가능한 생태계를 조성하려는 노력이 절실하다고 할 것이다.     ■ 기사 상세 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[칼럼] 실용형 AI, 제조의 미래를 바꾸다
트렌드에서 얻은 것 No. 23   “AI는 모든 산업에 새로운 가능성을 열어 준다. 중요한 것은 기술이 아니라, 그것을 어떻게 활용하느냐이다.” – 사티아 나델라(Satya Nadella), 마이크로소프트 CEO 마이크로소프트는 생성형 AI를 다양한 산업에 통합하며, 기술의 활용 방식에 중점을 두고 있고,  나델라의 말은 기술 도입보다 전략적 활용이 중요하다는 점을 강조한다.   생성형 AI와 함께 설계하고, 시뮬레이션하고, 개선하라 지금 이 이야기를 한국의 제조기업에 가서 한다면, 이상한 사람 취급을 받을 수 있다. 당장, 어떻게 할 수 있는지 이야기할 수 있느냐? 우리도 그렇게 하고 싶은데, 어떻게 할 수 있는지 제대로 나온 것도 없고, 사례가 있는지 등의 얘기가 자연스럽게 나온다. 맞는 말이다. 하지만, 지금은 레이스의 출발선에서 모두 같은 상황일 것이다. 다만, 전체를 제어하고 미래를 설계하는 혜안이 있는 사람이나 조직 유무에 따라 회사들의 달리기 속도는 분명 차이가 날 것이다.  우리는 그런 시대를 살아가고 또 지나가고 있다. 뉴스에서 다른 회사의 소식을 들으면서 탄식을 하고 있을 것인가, 아니면 고통스럽더라도 뭔가 해 보는 것이 낫지 않느냐의 갈림길에 있다. “그럼에도 불구하고, 우리는 설계할 수 있다.” 그렇다. ‘생성형 AI로 설계하고, 시뮬레이션하고, 개선하라’는 말은 지금의 제조 현장에선 거대한 간극처럼 느껴진다. 공장의 열기와 노하우 속에서 살아온 실무자에게는 뜬구름 잡는 이야기처럼 들릴 수 있다. “AI가 좋다는데, 어디까지 해봤나?”, “누가 이걸 설계에 실제로 썼대?” 이런 질문은 당연한 것이고, 오히려 현실을 잘 아는 사람일 수록 더 조심스러운 반응을 보인다. 그러나 지금, 우리는 모두 레이스의 출발선에 서 있다. 완성된 길도, 검증된 답도 아직 없다. 그러니 이 때 필요한 건 기술보다 먼저 혜안을 가진 사람, 구조를 설계할 수 있는 리더다. 단 한 줄의 프로토타입이라도 그려보려는 엔지니어, 익숙한 보고서보다 새로운 질문을 고민하는 팀장, 시행착오를 감수하고 방향을 잡으려는 임원이 지금 이 시대의 속도를 결정짓는다. 그리고 그 ‘혜안’은 거창한 청사진이 아닐 수도 있다. 단 하나의 설계 데이터를 기반으로 AI에게 첫 도면을 그리게 해보는 실험, 실시간 현장 일지에서 이상 징후를 요약하게 해 보는 시도, 현장의 사진 데이터로 품질 검사 자동화를 위한 검출 모델을 훈련해 보는 도전 등이 현 시점에서 예상해 볼 수 있는 가까운 미래 모습일 것 같다. “우리는 예상치 못한 상황을 목격하고, 예상된 상황을 보고하며, 결국 승리할 것입니다.” – 알렉스 카프, 팔란티어 CEO 카프는 AI를 활용한 제조업의 혁신이 불확실성을 극복하고 성공으로 이끄는 열쇠라고 보고 있으며, 이는 생성형 AI를 통한 제조업의 미래를 긍정적으로 전망한다.    그림 1. 실용형 AI 맵 ‘제조 미래를 바꾸다’(Map by 류용효) (클릭하면 큰 이미지로 볼 수 있습니다.)   제조, AI를 다시 만나다 “설계는 끝났지만, 고객은 원하지 않는다.”  “시뮬레이션은 끝났지만, 현장은 여전히 오류를 반복한다.”  “보고서는 쌓이지만, 문제는 여전히 현재진행형이다.” 이 문장들은 지금도 수많은 제조 현장에서 반복되고 있다. 전통적인 제조 프로세스는 분업과 효율을 중심으로 설계되었지만, 급변하는 고객의 요구와 복잡해진 제품 환경은 기존 체계의 민첩성과 창의성에 한계를 드러낸다. 이제 제조기업은 하나의 질문 앞에 서 있다. “우리는 더 빠르고 똑똑한 공장을 가질 준비가 되었는가?” 생성형 AI는 단순한 자동화 기술이 아니다. 설계자의 의도를 읽고 CAD 모델을 생성하며, 수십 개의 시뮬레이션으로 프로세스 병목을 알려주고, 품질 이상을 예측할 뿐 아니라 원인을 유추해주는 ‘설계적 사고를 하는 AI’가 등장하고 있다. 이는 기술의 도입이 아니라 제조기업의 ‘운영 철학’ 자체가 전환되는 순간이다. 제조기업이 생성형 AI와 함께 앞으로 어떻게 설계하고, 시뮬레이션하고, 개선할 수 있을지를 구체적으로 조망한다. “AI는 인류가 만든 가장 중요한 기술이다. 우리는 그것을 책임감 있게 개발하고 활용해야 한다.” – 순다르 피차이(Sundar Pichai), 구글 CEO 구글은 AI 개발에 있어 윤리적 책임과 사회적 영향을 고려하고 있으며, 피차이의 말은 기술 발전과 함께 그에 따른 책임도 중요하다는 점을 상기시켜 준다.   디자인의 재정의 - AI는 창의적인 엔지니어인가? 전통적인 제조 설계 과정은 복잡한 조건 설정, 반복적인 수정, 협업 간의 커뮤니케이션 비용 등으로 인해 수많은 시간과 리소스를 요구해왔다. 하지만 이제, 생성형 AI는 텍스트 한 줄로 설계를 시작하게 한다. “3개의 모듈로 구성된 소형 드론 프레임을 설계해 줘. 탄소 섬유 기반으로 무게는 150g 이하로.” 이 한 문장으로 AI는 초기 설계안을 생성하고, 다양한 대안 모델을 제공하며, 사용자 요구조건에 따라 자동 최적화를 제안한다. AI는 도면을 '그리는 도구'가 아니라, '제안하고 비교하는 동료 엔지니어'로 진화하고 있다. 예를 들어, 오토데스크의 퓨전 360(Fusion 360), 엔톱(nTop), 다쏘시스템의 3D익스피리언스 웍스(3DEXPERIENCE Works)는 이미 생성형 디자인 기능을 내장하고 있다.  디자이너는 아이디어를 제공하고, AI는 그에 기반한 설계 패턴을 도출한다. 이는 ‘무에서 유를 만드는’ 것이 아니라, 수많은 설계 데이터를 학습한 AI가 새로운 패턴과 조합을 도출해내는 방식이다. 결과적으로 설계자는 더 이상 반복적인 CAD 작업자가 아니다. 이제 디자이너는 ‘기획자’이자 ‘비평가’, 그리고 ‘AI와 협력하는 설계 전략가’가 된다. 또한, 이러한 생성형 설계는 대량 맞춤형 생산(mass customization)과의 결합으로 그 진가를 발휘한다. 기존에는 옵션이 제한된 범용 제품만이 경제성이 있었지만, 생성형 AI는 고객의 요구사항을 빠르게 읽고 즉시 설계에 반영할 수 있다. 이는 ‘고객이 참여하는 설계’, 즉 코디자인(co-design) 시대의 도래를 가능하게 한다. 기업은 더 빠르게 시장에 대응하고, 고객은 더 높은 만족도를 경험한다. 이처럼 생성형 AI는 설계를 단순히 ‘빠르게’ 만드는 기술이 아니라, 설계의 개념 자체를 ‘재정의’하는 도구이자 기업의 창의성과 기민함을 확장하는 전략 자산이 되고 있다. “퍼플렉시티(Perplexity)는 단순한 답변 엔진에서 행동 엔진으로 전환하고 있다. 이제는 단순히 질문에 답하는 것을 넘어, 사용자에게 행동을 제안하고 실행하는 단계로 나아가고 있다.” – 아라빈드 스리니바스(Aravind Srinivas), 퍼플렉시티 AI CEO 아라빈드의 말은 AI 기술이 단순한 정보 제공을 넘어, 사용자와의 상호작용을 통해 실제 행동을 유도하고 실행하는 방향으로 발전하고 있음을 의미한다.   시뮬레이션의 혁신 - 빠른 판단과 적은 비용 과거의 시뮬레이션은 전문 소프트웨어와 고성능 컴퓨팅 자원, 그리고 숙련된 엔지니어의 직관과 경험에 크게 의존해 왔다. CAE는 분명 설계 검증과 최적화의 핵심이었지만, 조건 설정 → 모델링 → 결과 해석 → 반복이라는 고비용 순환은 여전히 제품 개발의 병목으로 작용해왔다. 그러나 생성형 AI는 이 병목을 타파하는 새로운 접근을 제시한다. 자연어로 “강풍 조건에서 뒤틀림이 가장 적은 하우징 구조를 찾아줘”라고 지시하면, AI는 자동으로 물리 조건을 추론하고, 유사 데이터 기반의 시뮬레이션 템플릿을 구성하며, 수십 개의 대안 시나리오를 병렬 생성해 ‘예측 – 설명 – 추천’이라는 삼중 루프를 빠르게 수행한다. 이러한 기술은 시뮬레이션의 대중화(simulation democratization)를 이끈다. 기술 전공자가 아니어도, 제품 매니저나 품질 담당자가 AI의 도움으로 설계안의 응력 분포나 유동 조건에 대해 인사이트를 얻을 수 있다. 이는 실무자가 더 빠르게 결정을 내릴 수 있도록 돕고, 의사결정의 지연 대신, 다중 시나리오 기반의 ‘실험적 사고’를 가능하게 만든다. 대표적인 사례로는 알테어의 AI 기반 인스파이어 플랫폼(AI-driven Inspire Platform), 앤시스의 AI 기반 시뮬레이션 자동화, 그리고 다쏘시스템의 솔리드웍스 생성형 시뮬레이션(Generative Simulation for SOLIDWORKS)이 있다. 이들은 기존 FEM/CFD 분석의 시간과 비용을 줄이는 동시에, 경험 기반 의사결정에서 데이터 기반 최적화로의 전환을 이끌고 있다. 궁극적으로 생성형 AI는 단순히 ‘더 빠른 계산’을 넘어서, “어떤 시나리오를 먼저 고려해야 하는가?”, “이 조건에서 실패할 가능성은 무엇인가?”라는 전략적 질문에 답하는 보조 엔진이 되어 준다. 이는 시뮬레이션을 단지 제품 검증의 도구가 아니라, 경영 의사결정과 R&D 전략 수립의 인공지능 파트너로 진화시키는 변화의 시작점이다.  “AI는 우리가 상상하는 것보다 훨씬 더 빠르게 발전하고 있다. 자율주행차는 그저 시작일 뿐이다.” – 일론 머스크(Elon Musk), 테슬라 CEO 테슬라는 자율주행 기술 개발에 AGI 수준의 AI를 활용하고 있으며, 이는 단순한 기능 향상을 넘어 차량 설계와 운행 방식 전반을 재정의하는 접근이다.   업무 분석과 프로세스 개선 - 데이터는 말하고 AI는 듣는다 제조 현장의 데이터는 언제나 풍부했다. 작업자 일지, 설비 로그, 유지보수 메모, 품질검사 리포트, 현장 사진과 동영상, 고객 클레임 이메일… 하지만 이들 대부분은 정형화되지 않은 ‘텍스트’와 ‘문서’ 형태로 존재하며, 기존 시스템은 이를 ‘기록’하는 데에만 집중했고, 의미를 해석하고 연결하는 능력은 인간의 몫이었다. 이제 생성형 AI는 이 방대한 비정형 데이터의 숲에서 맥락을 이해하는 나무를 찾는다. 작업자가 남긴 “라인 3에서 어제도 제품 정렬이 안 맞았고, 자동 이젝터가 두 번 멈췄다”는 기록은, AI에겐 단순한 텍스트가 아니라 ‘패턴’과 ‘이상’의 시그널이다. LLM은 이런 문장을 분석해 작업 단계별 이벤트를 분해하고, 관련된 설비 로그와 품질 데이터를 연결하여 문제 지점을 도출한다. 이제 업무는 ‘기록하고 보고하는 일’이 아니라, ‘데이터가 스스로 분석하고 말하는 환경’으로 바뀌고 있다. 대표적인 활용 사례는 다음과 같다. 업무 요약 자동화 : 업무 일지를 요약해 경영진에게 핵심 이슈를 전달 프로세스 병목 식별 : 여러 부서의 텍스트 기반 보고서에서 공통 키워드와 불만 분석 문서 자동 생성 : SOP(표준작업지침서), 회의록, 개선안 보고서 등의 자동 초안 작성 협업 인텔리전스 : 여러 팀 간의 커뮤니케이션 데이터를 분석해 협업 지연 포인트 도출 실제로 지멘스는 AI 기반 자연어 처리 기술(Natural Language Processing : NLP)을 통해 디지털 작업지시서와 실시간 현장 대응 리포트를 자동 생성하는 기능을 도입했고, 보쉬는 AI를 통해 품질 클레임 문서에서 반복 출현하는 원인 유형을 추출하여 품질 개선의 단초로 활용하고 있다. 핵심은 이것이다. 현장의 수많은 대화와 기록이 AI에게 ‘말을 거는 데이터’가 되었고, AI는 그 말을 듣고, 요약하고, 통찰을 제시하며, 업무 개선을 스스로 제안하는 존재가 되었다는 점이다. 이제 우리는 묻지 않을 수 없다. 우리는 AI에게 말 걸 준비가 되어 있는가? 그리고 그 대답을 조직이 들을 준비는 되었는가? “가장 큰 위험은 아무런 위험도 감수하지 않는 것이다. 모든 것이 급변하는 시대에서 위험을 회피하는 전략은 반드시 실패로 이어진다.” — 마크 저커버그, 메타 CEO 저커버그는 변화와 혁신의 시대에 기존의 방식을 고수하며 위험을 회피하려는 태도가 오히려 더 큰 실패를 초래할 수 있음을 경고한다.   품질 관리의 진화 - AI는 예지적 감각을 가질 수 있는가 품질 관리는 제조업의 마지막 방어선이자, 가장 정교한 신경망이다. 그러나 지금까지의 품질 관리는 주로 사후 대응(postdefect 대응)에 집중되어 있었다. 불량이 발생한 후 원인을 찾고, 재발 방지책을 수립하고, 문서를 정리하는 ‘후행적 품질 관리’가 일반적이었다. 이제 생성형 AI는 이 전통적 프레임을 근본부터 흔들고 있다. AI는 ‘불량을 감지’하는 것이 아니라, ‘불량을 설명하고 예측’하려 한다. 예를 들어, 제품 표면의 이미지를 기반으로 한 비전 검사 시스템은 단순히 OK/NG를 판단하는 데서 그치지 않고, “이 영역의 텍스처 패턴은 온도 편차에 의한 수축 변형일 가능성이 높습니다”라고 말할 수 있는 설명형 모델로 진화하고 있다. 나아가, 생성형 AI는 텍스트, 이미지, 센서 데이터를 통합적으로 분석해 복합적인 이상 징후를 감지하고, 불량의 '가능성'과 '잠재 원인'을 추론해낸다. 예를 들어 다음과 같은 조합이 가능해진다. 작업자 일지 : “이틀 전부터 용접기압이 다소 약한 것 같다.” 센서 로그 : 오전 9~11시에 기압 편차 발생 불량 이미지 : 비드 형성 불균형 AI는 이를 연결해 “용접 조건의 경미한 변화가 반복 불량의 근본 원인일 수 있다”고 보고한다. 이는 단순한 예측모델이 아니다. ‘설명 가능한 품질 관리(Explainable Quality)’, 즉 AI가 품질 이슈에 대해 왜 그런 판단을 했는지를 근거와 함께 제시함으로써, 품질팀은 더 이상 직감이나 경험에만 의존하지 않고 데이터 기반의 합리적 개선 프로세스를 수립할 수 있다. 이미 보쉬, 토요타, GE 항공 등은 ▲AI 기반 비전 검사 시스템에서 ‘불량 예측 + 원인 설명’을 제공하는 모델을 구축 중이고 ▲ISO 9001과 연동되는 AI 품질 리포트 자동화 시스템을 테스트하고 있다. 이는 곧 ‘AI가 품질 시스템의 일원으로 공식 포함되는 시대’가 오고 있음을 뜻한다. 품질의 정의는 바뀌고 있다. 과거의 품질은 발견과 수정의 문제였지만, 앞으로의 품질은 예지와 설득의 문제다. AI는 이제 불량을 찾아내는 것이 아니라, 불량이 만들어지지 않도록 ‘생산 과정 그 자체를 개선하자’고 제안하는 동료가 되어가고 있다. “AI는 전기를 발견한 것과 같은 혁신이다. 모든 산업에 스며들 것이며, 그 영향을 무시할 수 없다.” – 앤드류 응(Andrew Ng), AI 전문가 앤드류 응은 AI의 보편성과 산업 전반에 미치는 영향을 강조하고 있다. 그의 말은 제조업에서도 AI의 통합이 필수임을 시사한다.   경고와 제언 - 생성형 AI는 도입이 아니라 전환이다 많은 제조기업이 생성형 AI에 주목하고 있다. 설계 자동화, 시뮬레이션 최적화, 업무 요약, 품질 예측… 도입 사례는 늘고 있지만, 도입이 곧 성공을 의미하진 않는다. 생성형 AI는 단순한 툴이 아니라, 운영 철학의 변화를 요구한다. 기존의 프로세스는 ‘정해진 절차와 역할’ 속에서 최적화를 추구해왔지만, 생성형 AI는 ‘질문을 던지고 시나리오를 비교하며 판단을 내리는 유연한 사고방식’을 요구한다. 즉, 기술만 바꾸는 것이 아니라 조직의 사고 체계와 역할 구조 자체를 재설계해야 하는 것이다. 예를 들어 <표 1>과 같은 전환이 필요하다.   표 1   하지만 문제는 기술이 아니다. 가장 큰 장벽은 조직이 AI를 받아들일 준비가 되어 있느냐는 것이다. 임원은 AI를 단순히 ‘자동화 툴’로 간주하는 경향이 많고, 현장은 여전히 ‘내 일을 뺏는 존재’로 AI를 경계한다. 이 간극을 메우지 않으면, AI는 시연 단계에서 멈추고, 조직은 변화의 본질을 놓친다. 따라서 다음과 같은 전환 전략이 필요하다. 파일럿이 아닌 전환 설계 특정 부서에서 테스트하는 것이 아니라, 조직 전체의 프로세스 전환 시나리오를 기획해야 한다. ‘도입 교육’이 아닌 ‘공감 설계’ 기술 사용법이 아니라, 왜 이 기술이 필요한지에 대한 비즈니스 관점에서의 스토리텔링이 필요하다. AI Co-Worker 관점 전환 AI는 도구가 아니라, 함께 판단하고 실험하는 동료로 봐야 한다. 이를 위해 직무 정의서(JD)도 다시 써야 한다. 성과 기준의 재정립 AI 도입 이후에는 ‘정확도’보다 ‘학습 속도’와 ‘적응력’이 핵심 성과 지표가 된다. 결국, 생성형 AI는 ‘도입해야 할 기술’이 아니라 ‘다르게 일하고, 다르게 생각하고, 다르게 운영하는 기업’으로 전환하기 위한 촉매제다. 이제 경영진에게 남은 질문은 단 하나다. “우리는 기술을 도입할 준비가 되었는가?”가 아니라, “우리는 조직을 전환할 용기를 가졌는가?”이다. “지금은 스타트업의 시대… 세상은 여전히 변화의 가능성에 잠들어 있다.” – 샘 올트먼, 오픈에이아이 CEO 올트먼은 기술 혁신의 시기에 기존 기업들이 변화에 둔감해질 수 있음을 경고하며, 새로운 도전과 변화를 추구하는 조직만이 미래를 선도할 수 있다는 메시지를 담고 있다.   맺음말 : 생성형 AI 시대의 제조 기업, 당신은 어떤 그림을 그리고 있는가 미래의 공장은 단지 더 정교하고, 더 빠르며, 더 자동화된 곳이 아니다. 그곳은 데이터를 읽고, 상황을 이해하고, 사람과 함께 결정하는 공장이다. 문제를 발견하기 전에 감지하고, 작업자를 지원하며, 스스로 최적의 방식을 제안하는 공장이다. 그리고 그 공장의 핵심 파트너는 인간의 상상력을 확장하는 생성형 AI다. 이제 중요한 질문은 이것이다. “우리는 어떤 그림을 그리고 있는가?” 기술은 빠르게 진화한다. 생성형 AI는 설계와 시뮬레이션, 업무 분석과 품질 관리까지 제조의 전 과정을 유기적으로 연결하며 ‘스마트’를 넘어 ‘지능적’으로 만들고 있다. 하지만 진정한 경쟁력은 기술의 채택이 아닌, 기술과 함께 일하는 방식의 변화에서 비롯된다. 아직 많은 제조기업은 ‘가능성 탐색’ 단계에 머물러 있다. 하지만 머뭇거릴 시간이 없다. AI는 이미 조직 구조, 업무 정의, 리더십의 방식까지 영향을 미치기 시작했다. 이제는 기술을 배우는 것이 아니라, 기술과 함께 일할 조직을 설계해야 할 때다. 생성형 AI 시대의 제조 기업은 세 가지 질문에 답할 수 있어야 한다. 우리는 상상할 수 있는가? 생성형 AI는 ‘주어진 문제를 해결’하는 것이 아니라 ‘가능성을 확장’한다. 제조기업의 조직은 아직도 문제만 찾고 있는가, 아니면 새로운 기회를 그리고 있는가? 우리는 받아들일 수 있는가? AI는 사람의 영역을 침범하지 않는다. 다만 그 옆에 선다. 우리는 전환할 수 있는가? 우리는 그것을 파트너로 받아들일 준비가 되어 있는가? AI 도입은 기술의 문제가 아니라, 사고방식과 리더십의 전환이다. 과연 지금의 조직은 그 전환을 감당할 수 있는가? 미래의 공장은 말하고 있다. “나는 설계하고, 시뮬레이션하고, 개선할 준비가 되어 있다. 너는 나와 함께 걸을 준비가 되어 있는가?”   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다.(블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
[기업탐방] DX Accelerator 디엑셀, 지능형 공장 서비스로 제조업을 바꾸다
고객맞춤 제조 IT시스템 솔루션 코디네이션 전문기업 지능형 공장 서비스·DX Accelerator, 디엑셀   디지털 기술의 발전으로 글로벌 제조업계는 더 높은 효율성, 맞춤 생산, 그리고 지속 가능성 확대를 위한 혁신기술 개발에 대한 니즈를 키우고 있다. 이러한 트렌드에 맞춘 디지털 기술과 로보틱스를 활용한 제조 시스템이 구현되고 있으며, 개인화·맞춤화를 위한 기능과 프로세스의 진화 속도도 빨라지고 있다. 본지에서는 지능형 공장 서비스와 고객이 필요한 솔루션을 활용하여 기업의 시스템을 코디네이션 하는 ‘디엑셀(DXel, www.dxel.co.kr)을 만났다.   ▲ 디엑셀 김남웅 대표       고객이 필요로 하는 솔루션을 찾아주는 기업 2022년 4월 설립된 디엑셀은 회사명에서도 알 수 있듯 산업계의 디지털 전환을 돕는 ’Digital Transformation Accelerator‘ 기업이다. “당사는 고객이 필요한 솔루션을 코디네이션 하는 제조 시스템 전문기업”이라고 소개하는 김남웅 대표는 “당사 가장 큰 경쟁력은 20여 년간 다양한 산업별 제조 현장을 경험한 전문적인 노하우를 가지고 기업 맞춤 제조 서비스를 제공하고 있는 임직원”이라고 소개하며, 검증된 솔루션을 통해 고객의 업무 효율성을 높이고, 제조산업 시스템의 혁신을 이루고 있다고 부연했다. 2~3년 전의 제조 IT시스템은 생산량, 업무감시, 원가절감 등 관리직 위주로 구축되었다. 그러나 생산성 향상과 품질력 제고에 직접적으로 성과를 내기 위해서는 좀 더 직관적이고, 직원 참여가 가능한 시스템을 구축해야 한다. 이러한 환경 변화에 맞춰 디엑셀은 직원의 감시보다 직원의 참여를 확대할 수 있는 시스템, 제조 현장에 맞춘 MES와 UWB 기반의 실시간 제품 위치 추적시스템을 사업의 모토로 창업하게 되었다. “과거 제조 IT시스템이 ‘관리적 관점’에서 구축되었다면, 이제는 사람을 중심으로 사회적 가치까지 창출할 수 있는 역할로 확대되고 있다”라고 말하는 디엑셀 김남웅 대표는 “우리는 전 직원이 참여할 수 있는 ‘지속 가능한 실천적 제조 IT시스템’을 구축하고 있다”라고 소개한다. 제조산업에 특화된 스마트 플랫폼 서비스 제공 디엑셀은 제조산업에 특화된 스마트 플랫폼을 통해 제조 현장 시스템 개발, UI/UX 프로비저닝 및 대시보드를 구현하기 위한 다양한 레어어를 제공하고 있다. 이 회사 솔루션의 핵심적인 기능인 기준정보 구축과 환경정보 및 시스템을 컨트롤하는 파운데이션 레이어, 제조현장시스템인 공정 정보와 Lot 정보, BOM 정보 등 프로세스 전반을 관할하는 시스템인 프로세스 레이어가 있다. 이와 더불어 사용자 데이터 수집 및 편의성을 제공하는 UI/UX 오퍼레이션 레이어와 수집된 데이터를 각종 디바이스를 통해 사용자에게 제공하는 디스플레이 레이어를 통해 최적의 제조시스템을 제공하고 있다.  디엑셀 김남웅 대표는 “이러한 기술력을 토대로 스마트한 공장 운용을 위한 ‘디지털팩토리 서비스’, 협력사/딜러사 등의 파트너사들과의 ‘디지털 협업공장 공급망 벨류체인 서비스’, 그리고 초광대역통신(Ultra-Wideband, UWB) 기술을 활용한 ‘실시간 고정밀 측위 관리 서비스’ 등 3가지 영역에서 솔루션 코디네이션 서비스를 제공하고 있다”라고 부연했다.   (1) 디지털 팩토리 서비스 이중 디지털 팩토리는 다양한 설비 및 공장 내 장치와의 인터페이스를 통한 실시간 데이터 수집 및 모니터링을 적용하여 디지털 생산 공정 정보를 제공하고 있다. 휴먼 에러를 원천 차단하고, 품질 결과를 학습하여 피드백함으로써 선제 예방 품질 역량을 강화하고 있다. 또한 핵심 생산 및 유관 정보를 표준화하고 디지털화하여, 모든 제조 현장의 데이터 연계로 통합적인 디지털 관리를 실현하고 있다. 특히 생산 현장 정보의 디지털화와 실시간 가시성 확보로 경영 목표 관점의 새로운 영감을 제시하고 있으며, 데이터 분석 기반의 생산 및 품질을 위한 최적화된 제조 운영과 QCD 즉 품질, 원가, 납기의 가치를 극대화하여 최고의 생산 능력을 창출할 기회를 제공하고 있다. (2) 디지털 협업공장 공급망 벨류체인 서비스 디엑셀의 또 다른 서비스는 협력사와 제조 현장, 판매딜러 간의 공급망 디지털 협업공장을 구축하여 클라우드를 기반으로 고객사와 협력사, 그리고 판매딜러의 실시간 재고 데이터를 SaaS(서비스형 소프트웨어) 형태의 애플리케이션으로 제공하는 서비스이다. 이를 통해 고객의 주문을 받은 판매딜러는 제조 공장의 재고 수량 및 위치 데이터를, 제조 공장은 협력사의 재고 수량 및 위치 데이터를 실시간으로 확인할 수 있다. 이는 결과적으로, 불필요한 발주와 재고를 현저히 줄여 원가절감 및 협력사와의 상생을 도모할 수 있다. 이를 기반으로 디엑셀의 시스템은 고객사의 생산계획과 입고 검사, 공정관리를 지원하여 생산실적을 더욱 극대화해하고 있으며, 협력사에는 생산관리, 출하관리, 품질관리의 혁신을 이루어 나가고 있다.  (3) 실시간 고정밀 측위 관리 서비스 차세대 무선 통신 기술인 UWB의 정확한 위치감지 기술은 디지털 공장을 구축하는 데 많은 도움이 된다. 디엑셀의 스마트팩토리 고정밀 측위 관리 솔루션은 국제적인 첨단 UWB 기술을 바탕으로 제조현장의 제품, 부품 및 차량 등의 움직임을 센티미터 수준의 고정밀 측위 서비스로 제공한다. 0차원 존재 감지, 1차원 선형 궤적 측위 및 2차원 지역 평면 측위를 통합한 다차원 측위 모드를 채택하여 사람, 차량, 사물의 실시간 위치를 정확하게 파악할 수 있다. 이러한 기술은 궤적 추적, 작업 시간 통계, 면적 수, 전자 울타리 및 기타 서비스 기능과 결합하여 제조 운영의 효율성을 높이고 공장의 자재 관리 개선, 원가절감 및 공정 흐름 최적화를 제공한다. 김남웅 대표는 “위치 관리시스템과 결합된 저희 솔루션은 스마트팩토리의 관리 수준을 한 단계 높였다고 자부할 수 있다”라고 덧붙였다.  AI 제조 분야 앵커기업으로 부상 최근 디엑셀은 AI 자율제조 선도프로젝트의 일환으로 농기계 다품종 유연생산을 위한 AI 자율제조 국책과제의 공동연구기관으로 선정되어 참여하고 있다. 디엑셀의 실시간 고정밀 측위 관리 기술이 성공적인 AI 자율제조 실현에 필수적인 핵심기술임을 인정받았기 때문이다. “당사는 전라북도 농기계 산업 및 동종업계의 AI 자율제조 선도 표준모델을 구축하는데 무거운 책임감과 사명감을 느끼고 있다”라고 말하는 이 회사 김남웅 대표는 “디엑셀이 보유한 기술을 더욱 강화하고 발전시켜 AI 자율제조 분야의 앵커기업으로 성장하고자 한다”라고 프로젝트 참여에 대한 포부를 밝혔다. 사람이 기업 성장의 답 “아무리 기술이 뛰어나도 그 기술을 용도와 상황, 목적과 요구에 맞게 구현해 낼 사람이 없다면 그 기술은 가지고 있는 능력을 발휘할 수 없다”라고 말하는 디엑셀 김남웅 대표는 “앞서 소개한 바와 같이 우리의 가장 큰 장점은 고객이 요구하는 디지털 전환의 미션을 제대로 수행하기 위해 20년 넘게 많은 산업별 제조환경을 경험한 전문가들이 각자의 노하우를 기반으로 기업 맞춤 제조 서비스를 제공하며, 검증된 솔루션을 통해 업무 효율과 고객 서비스의 혁신을 높인다는 것”이라며, “특히 고객의 니즈를 먼저 파악하고, 선제적으로 솔루션을 제안할 수 있도록 임직원의 역량을 지속적으로 강화하고 있다”라고 부연했다. 이는 디엑셀이 인재 양성에 집중하고 우수한 경험을 가진 전문가를 끊임없이 발굴해 오는 이유기도 하다.  디지털과 인간이 상생하는 시스템을 만들다! 디엑셀은 제조물류산업의 다양한 고객을 만족시키기 위해 유연한 비즈니스 플랫폼을 선보이고 있다. 현재는 제조분야에서 전문역량을 발휘하고 있지만, 디지털 전환이 전 산업에서 일어나듯이 이 회사가 가진 지능형공장 서비스와 위치관리 기술 기반의 혁신 솔루션은 전 산업에 적용될 수 있다.  오늘보다 나은 내일을 꿈꾼다는 김남웅 대표는 “제조 현장에 특화된 디지털팩토리와 더불어 UWB 측위 기술을 기반으로 개발된 실내외 무선 위치 추적 장치, 이 두 개의 솔루션을 융합한 위치관리 기반 디지털팩토리 솔루션을 제공하여 시스템 인프라가 약한 중소기업, 관리의 단계를 높여야 하는 대기업들의 애로를 해결해 주는 것이 우리의 역할”이라며, “우리는 앞으로도 우리나라 산업의 디지털 역량 강화를 넘어 국가 기술 경쟁력 제고에 기여하고, 디지털과 인간이 상생하는 시스템, 새로운 기술이 인정받는 변화된 세상에서 저의 기술이 고객의 성공적인 비즈니스가 되도록 최선을 다하겠다”라고 덧붙였다.
작성일 : 2025-04-30
슈나이더 일렉트릭, “설비 전 주기 통합 서비스 설루션으로 선제적 자산관리”
슈나이더 일렉트릭이 설비의 성능과 수명을 극대화하고, 예기치 못한 장애를 사전에 방지하는 선제적 자산관리를 지원한다고 소개했다. 최근 산업 현장에서는 설비의 복잡성 증가와 함께 에너지 사용 최적화, 탄소 배출 저감, 운영 안정성 확보가 핵심 과제로 부상하고 있다. 이러한 변화 속에서 설비의 전체 수명 주기를 고려한 관리 체계의 중요성이 커지고 있으며, 이를 실현하기 위한 디지털 기반의 통합 설루션에 대한 수요도 높아지고 있다. 슈나이더 일렉트릭은 이러한 흐름에 맞춰 자산의 설계부터 유지보수, 현대화에 이르기까지 설비 운영의 전 주기를 아우르는 통합 서비스 설루션 포트폴리오를 선보이고 있다. 이는 에너지 진단부터 상태 기반 유지보수, 노후 설비의 디지털 리노베이션까지 전 과정에 걸쳐 고객의 운영 효율성과 지속가능성을 향상시키는 데 초점을 맞추고 있다. 대표적인 설루션인 에코케어(EcoCare)는 에코스트럭처(EcoStruxure) 플랫폼의 기능과 원격 컨설팅 및 현장 유지보수를 결합한 맞춤형 서비스 계약이다. 이 중 에코스트럭처 서비스 플랜은 데이터 중심의 상태 기반 유지보수 접근 방식을 통해 현장 유지보수 활동을 최적화하여 비용 및 다운타임을 줄일 수 있다.  에코스트럭처 서비스 플랜은 다양한 설비에 대한 설루션을 지원한다. 이 중에서도 모터를 위한 모니터링 설루션인 ESP 로테이팅(EcoStruxure Service Plan Rotating)과 변압기를 위한 모니터링 설루션 ETE(EcoStruxure Transformer Expert)가 대표 사례로 꼽힌다. ESP 로테이팅 설루션은 산업 현장에서 필수인 전기 모터의 고장을 미연에 방지하고 운영 리스크를 낮추는 데 초점을 둔다. 이를 통해 타 유지보수 옵션 대비 10년간 총 소유비용(TCO)을 최대 30% 절감할 수 있으며, 설비의 이상 징후를 90% 이상의 정확도로 최대 4개월 전에 사전 예측할 수 있어 다운타임을 줄이고 생산성을 극대화할 수 있다. ETE 설루션은 전력 설비의 핵심 구성 요소이지만 관리가 어려웠던 변압기의 상태를 실시간으로 예측·진단할 수 있는 디지털 설루션이다. 지능형 IoT 센서를 통해 변압기의 주요 센서 및 계기 신호를 수집하고, 오일 내 수분, 온도, 진동, 음향 및 RF 노이즈 등 다양한 운영 지표를 지속적으로 모니터링하여 변압기를 효율적으로 관리할 수 있게 한다.     에코컨설트(EcoConsult)는 전기 및 자동화 시스템에 대한 전문 컨설팅을 통해 설비를 보다 안전하고 효율적으로 운영할 수 있도록 지원한다. 디지털 트윈을 기반으로 한 전기 설비 진단, 보호 계전기 협조 분석, 아크 플래시 위험도 분석 등으로 시스템의 신뢰성과 규정 준수 수준을 강화하며, 신규 설비 및 리뉴얼 설계 시 최적의 전략을 수립할 수 있다. 마지막으로, 에코핏(EcoFit)은 전력 설비 및 자동화 자산의 노후화 문제를 해결하기 위한 현대화 설루션이다. 기존 장비의 주요 기능은 유지하면서도 최신 기술을 반영한 설비로 업그레이드함으로써 안정성과 디지털 연결성을 강화할 수 있다. 슈나이더 일렉트릭은 각기 다른 목적을 가지고 설계된 슈나이더 일렉트릭의 세 가지 설루션을 함께 활용할 경우 설비 관리의 시너지를 극대화할 수 있다고 설명했다. 에코컨설트를 통해 도출된 진단 결과를 바탕으로 에코케어의 모니터링 체계를 구축하고, 필요 시 에코핏을 통해 설비를 업그레이드함으로써 운영 효율성과 지속가능성을 동시에 확보할 수 있다는 것이다. 슈나이더 일렉트릭 코리아 서비스 사업부의 최성환 본부장은 “산업계의 디지털 전환이 가속화됨에 따라, 설비를 단순히 관리하는 것을 넘어 전 주기에 걸쳐 운영을 최적화할 수 있는 전략이 요구된다”며 “슈나이더 일렉트릭의 에코컨설트, 에코케어, 에코핏은 단일 설루션이 아닌, 기업의 운영 전반을 아우르는 통합적이고 지속 가능한 자산 관리 실현에 중요한 역할을 한다”라고 설명했다.
작성일 : 2025-04-30
AWS 파트너 클라우드 솔루션 컨퍼런스, 클라우드와 AI 기반 제조 혁신의 현재와 미래 조망
클라우드와 AI가 이끄는 제조 혁신의 현장, AWS 파트너 클라우드 솔루션 컨퍼런스 개최   ‘2025 제조 고객을 위한 AWS 파트너 클라우드 솔루션 컨퍼런스’가 3월 25일, 서울 잠실 롯데호텔월드에서 성황리에 개최됐다. 이번 행사는 통합 IT 솔루션 기업 에티버스(ETEVERS)와 AWS(아마존웹서비스)가 공동 주최한 행사로, 제조 산업의 디지털 전환과 클라우드 기반 혁신 전략을 공유하는 뜻깊은 자리였다. 올해로 두 번째를 맞은 이번 컨퍼런스에는 SK C&C, 메가존클라우드, LG CNS 등 디지털 트랜스포메이션을 이끄는 주요 기업들이 대거 참여해 클라우드와 AI 기반 제조 혁신의 현재와 미래를 조망했다.   ■ 최경화 캐드앤그래픽스 국장 kwchoi@cadgraphics.co.kr 제조 산업, 클라우드로 날개를 달다 이번 컨퍼런스는 ‘AI 기반 스마트팩토리 혁신’, ‘데이터 기반 제조업 혁신’, ‘생성형 AI가 이끄는 제조 혁신’ 등 세 가지 주요 트랙으로 구성되어 참가자들이 각자의 관심사에 맞춰 깊이 있는 세션을 선택할 수 있도록 기획됐다. 오프닝을 맡은 AWS 김윤식 한국 엔터프라이즈 총괄은 디지털 전환이 더 이상 선택이 아닌, 생존을 위한 전략이라고 강조했다.  첫 번째 키노트를 진행한 AWS 정승희 제조 부문 총괄은 클라우드 기반 제조 기술이 어떻게 제품 설계, 수요 예측, 공급망 최적화 등 제조 전반의 효율성과 유연성을 높이고 있는지를 소개했다. 실제 사례를 통해 빅데이터, AI, IoT, 생성형 AI의 적용 효과가 증명되고 있음을 제시했다. 제조 현장에 스며든 생성형 AI와 실용적 혁신 전략 LG CNS 박재원 화학사업담당은 생성형 AI를 중심으로 한 AX(AI Transformation)를 통해 제조기업이 경쟁력을 확보해 나가는 전략을 설명했다. 그는 데이터 기반 의사결정, 품질 예측, 설비 진단 등에서 이미 다양한 실증 사례가 존재하며, 향후 이러한 AI 도입이 더욱 가속화될 것이라고 내다봤다. 에티버스 김준성 전무는 "클라우드와 AI, 그리고 파트너의 역할"이라는 주제로 강연을 펼치며, 제조 기업들이 클라우드로 진입할 수 있도록 파트너가 제공할 수 있는 지원 방안과 생태계 확장의 중요성을 역설했다. 에티버스는 2021년 AWS와 국내 최초 총판 계약을 체결한 이후 300개 이상의 파트너를 보유하며 국내 AWS 클라우드 확산에 핵심 역할을 하고 있다. SK C&C 허민회 본부장은 AI Cloud Infra Provider로서 SK C&C의 전략과 서비스를 소개했다. GPUaaS, AI 관리 플랫폼 등 실제 적용 가능한 인프라 기반 서비스를 통해 제조업의 AI 도입을 현실화하고 있다는 점에서 많은 관심을 끌었다.  이어 메가존클라우드 공혁 그룹장은 ‘2025 제조업 혁신 전략’을 발표하며 생성형 AI 기반의 비용 절감 및 생산성 향상 사례를 공개했다. 이날 행사장에는 기술 전시 부스도 함께 마련되어 각 파트너사들이 자사의 첨단 솔루션을 직접 소개하고, 방문자들과 1:1 컨설팅을 진행하는 시간도 있었다. 플래티넘 스폰서로 참가한 에티버스는 고객 맞춤형 파트너 매칭 및 솔루션 추천 이벤트를 통해 현장 분위기를 한층 뜨겁게 만들었다. 디지털 전환, 제조업의 새로운 기회 이번 컨퍼런스는 디지털 전환이 단순한 IT 이슈가 아닌 제조업 경쟁력의 핵심 전략임을 다시 한번 확인시켜주는 자리였다. 클라우드와 AI, 그리고 이를 연결하는 파트너들의 생태계가 더욱 조밀해질수록, 제조업의 혁신 속도도 함께 가속화될 것으로 기대된다. 에티버스 김준성 전무는 “제조 기업들이 지속적으로 성장할 수 있도록 혁신적인 솔루션을 제안하고, 다양한 지원 프로그램을 통해 성공적인 디지털 전환을 돕겠다”고 밝혔다.     2025 제조 고객을 위한 AWS 파트너 클라우드 솔루션 컨퍼런스(파트너 부스 - 에티버스)  / 사진 제공 : 에티버스 2025 제조 고객을 위한 AWS 파트너 클라우드 솔루션 컨퍼런스(파트너 부스 : 씨이랩)   / 사진제공 : 씨이랩   2025 제조 고객을 위한 AWS 파트너 클라우드 솔루션 컨퍼런스(파트너 부스 : 지멘스)    
작성일 : 2025-04-25