• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "설비"에 대한 통합 검색 내용이 1,901개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
[케이스 스터디] 인더스트리 4.0을 위한 로봇 예측 유지보수의 발전
디지털 트윈과 AI가 시뮬레이션과 현실의 간극을 메우다   제조 시설은 지속적인 문제에 직면해 있다. 정비 일정은 일반적으로 실제 마모와 관계없이 3개월마다 부품을 점검하고 6개월마다 구성 요소를 교체하는 등 엄격한 일정을 따른다. 그 결과 불필요한 점검과 교체로 인한 비효율적인 시간 낭비가 발생하고, 반대로 정비 일정 전에 부품이 고장 나는 일도 생긴다. 센트랄수펠렉-파리 사클레대학교(CentraleSupélec–Université Paris-Saclay)의 지궈 젠(Zhiguo Zeng) 교수와 그의 연구팀은 디지털 트윈 기술과 딥러닝을 결합한 혁신적인 접근 방식을 통해 이 문제를 해결하고 있다. 그들의 목표는 모든 중요 부품에 센서를 배치할 필요 없이 시스템 수준의 모니터링 데이터만으로 로봇 시스템의 구성요소 수준의 고장을 감지하는 것이다. 젠 교수는 “유지보수는 공장에서 매우 큰 문제”라면서, “기계에 유지보수가 필요한 시기를 미리 안다면 주문이 적은 시기에 수리 일정을 잡을 수 있어 생산성 손실을 최소화할 수 있다”고 말했다. 그는 신뢰성 공학과 수명 예측 분야에서 풍부한 경험을 갖고 있지만, 디지털 트윈 기술은 그의 이전 연구와는 결이 다른 새로운 영역이었다. 센트랄수펠렉의 안 바로스(Anne Barros) 교수와 페드로 로드리게스-아예르베(Pedro Rodriguez-Ayerbe) 교수가 주도하는 학제 간 프로젝트인 ‘미래의 산업(Industry of the future)’에 참여하면서, 그는 디지털 트윈이 어떻게 강력한 시뮬레이션 도구를 물리적 시스템에 실시간으로 직접 연결할 수 있는지 깨달았다. 젠 교수는 “디지털 트윈은 결함 진단에 매우 유용하다. 이를 실제 기계의 데이터에 연결하여 그 데이터로 모델을 개선할 수 있다”고 설명했다.  제조업, 자동차, 항공우주 및 기타 분야로 활용 영역이 확대되면서, 디지털 트윈은 인더스트리 4.0에서 유망한 기술 중 하나로 자리잡고 있다. 물리적 객체나 시스템의 가상 복제본인 디지털 트윈(digital twin)을 생성함으로써, 조직은 운영 현황과 유지보수 필요성을 명확하게 파악할 수 있다. 또한 디지털 트윈은 예측 유지 관리 시스템 개발의 어려운 측면 중 하나인 고장 데이터의 부족에 대한 해결책을 제시한다. 젠 교수는 “현실에서는 고장이 자주 발생하는 걸 보기는 어렵다. 그래서 이제는 시뮬레이션을 통해 고장 데이터를 만들어낸다”고 설명했다.   가상과 물리의 가교 역할 디지털 트윈 프로젝트는 물리적 시스템과 가상 시스템 간의 다양한 수준의 통합을 통해 구현 옵션을 제공한다. 젠 교수의 연구팀은 세 가지 서로 다른 수준의 디지털 표현으로 작업했다. 기본 수준에서 디지털 모델은 기존 시뮬레이션처럼 작동하며, 물리적 시스템과 데이터를 교환하지 않는 정적 모델로 오프라인에서 실행된다. 그다음 단계는 디지털 섀도로, 가상 모델이 물리적 시스템의 데이터를 받아 그 행동을 미러링하지만 제어하지는 않는다. 가장 발전된 구현은 데이터와 정보의 양방향 흐름을 갖춘 진정한 디지털 트윈이다. 여기서 모델은 관찰을 바탕으로 스스로 업데이트하고 물리적 시스템을 제어하는 실시간 결정을 내린다. 연구팀은 테스트용으로 ArmPi FPV 교육용 로봇을 선택했다. 이 로봇은 5개의 관절과 하나의 엔드이펙터로 구성되며, 6개의 서보 모터로 제어된다. 결함 진단의 기초가 될 만큼 정확한 디지털 트윈을 만드는 것은 어려운 일이었다. 또한 기존 모니터링 접근 방식의 한계를 해결해야 했다. 젠 교수는 “대부분의 산업 사례에서 베어링을 진단하려면 베어링 수준의 센서가 필요하며, 이는 쉽지 않은 일이다. 내부에 베어링이 있는 큰 기계를 상상해보면 센서를 설치하기 위해서는 기계를 분해해야 하는데 때로는 공간이 충분하지 않을 때도 있다”고 말했다.   그림 1. ArmPi FPV 교육용 로봇(출처 : 센트랄수펠렉)   그들의 접근 방식은 시스템 수준 데이터(로봇 엔드 이펙터의 이동 궤적)를 사용하여 구성 요소 수준의 오류(개별 모터 문제)를 진단하는 것이었다. 또한 디지털 트윈을 사용하여 관찰할 수 있는 것과 감지해야 할 것 사이의 격차를 해소하고자 했다. 연구팀은 시뮬링크(Simulink)와 심스케이프 멀티바디(Simscape Multibody)를 사용하여 디지털 트윈을 구축했으며, 구성요소와 시스템 수준 동작을 모두 나타내는 계층적 모델을 만들었다. 젠 교수는 “모든 것은 시뮬레이션 모델을 설계하는 것으로 시작한다. 동적 시스템과 그 제어기를 모델링하고 싶다면 시뮬링크는 매우 강력하다”고 말했다. 연구팀은 시뮬링크를 사용해 모터 제어기를 PID 제어기로 모델링하면서 실험적으로 조정한 게인 값을 활용했다. 또한, 시뮬링크의 시각화 기능을 적극적으로 활용해 시뮬레이션 데이터와 실제 로봇의 센서 데이터를 연동할 수 있는 인터페이스를 구축하고, 실시간 모니터링 환경을 구성하였다. ROS 툴박스(ROS Toolbox)는 로봇 하드웨어와의 연결에서 유용한 역할을 했다. 젠 교수는 “로봇 운영 체제(Robot Operating System : ROS)를 사용하려면 일반적으로 ROS와 파이썬(Python) 환경을 별도로 구성하고 모든 연결을 직접 처리해야 한다”면서, “ROS 툴박스를 사용하면 이런 설정이 자동으로 관리되기 때문에 많은 노력을 아낄 수 있다”고 설명했다. 연구팀은 AI 모델 학습을 위한 데이터 준비 과정에서는 두 가지 접근 방식을 시도하였다. 먼저, 로봇에 입력되는 모터 명령과 그에 따른 그리퍼(gripper)의 움직임 패턴과 같은 원시 계측값을 기반으로 데이터를 수집하였다. 이후에는 디지털 트윈을 활용한 방식을 도입하였다. 시뮬레이션을 통해 로봇이 명령에 따라 어떻게 움직여야 하는지를 예측하고, 이 결과를 실제 움직임과 비교함으로써 예상과 실제 간의 차이를 도출하였다. 이러한 차이는 미세한 고장을 감지하는 데 유용한 지표로 작용하였다.   그림 2. 심스케이프 멀티바디의 로봇 팔에 대한 시뮬링크 모델(출처 : 센트랄수펠렉)   연구팀은 딥 러닝 툴박스(Deep Learning Toolbox)를 사용하여 장단기 메모리(Long Short-Term Memory : LSTM) 신경망을 훈련하여 특정 실패를 나타내는 패턴을 식별했다. 모델 아키텍처에는 각각 100개의 숨겨진 단위가 있는 두 개의 LSTM 계층, 그 사이의 드롭아웃 계층 및 완전히 연결된 분류 계층이 포함된다. 연구팀은 매트랩 앱 디자이너(MATLAB App Designer)를 사용하여 각 모터의 위치, 전압 및 온도를 포함한 실시간 데이터를 수집하는 그래픽 사용자 인터페이스를 설계했다. 이 인터페이스를 통해 로봇의 상태를 모니터링하고 오류 진단 모델의 예측을 검증할 수 있었다. 이러한 통합 도구들이 원활하게 함께 작동하면서, 연구팀은 소프트웨어 호환성 문제와 씨름하기보다는 효율적으로 기술적 과제 해결에 집중할 수 있었다.   현실 격차에 도전하다 연구팀은 실제 로봇에서 훈련된 모델을 테스트했을 때 연구원들이 ‘현실 격차’라고 부르는 시뮬레이션과 현실 세계 간의 불일치에 직면했다. 결함 진단 모델은 시뮬레이션에서 98%의 정확도를 달성하여 모터 고장의 위치와 유형을 모두 정확하게 식별했지만, 실제 로봇에서 테스트했을 때 성능은 약 60%로 떨어졌다. 젠 교수는 “시뮬레이션이 현실과 일치하지 않는 이유를 분석하고 있다”고 말하며, “실제 세계를 시뮬레이션 상에서 표현할 때 고려하지 못한 요소들이 있다”고 설명했다. 젠 교수와 그의 연구팀은 통신 신뢰성 문제, 시뮬레이션에서 고려되지 않은 모터 노이즈, 제어 명령과 모니터링 활동 간의 동기화 문제 등 성능 격차에 기여하는 여러 요인을 확인했다.   그림 3. 정상 상태 오류에서 로봇 팔의 애니메이션 및 관련 혼동 매트릭스(출처 : 센트랄수펠렉)   이러한 과제는 디지털 트윈 애플리케이션의 광범위한 문제를 반영한다. 현실은 가장 정교한 시뮬레이션보다 더 복잡하다. 연구팀은 낙담하기보다는 실제 노이즈 패턴을 시뮬레이션 하는 모듈을 디지털 트윈에 추가하고 전이 학습에 도메인 적응 기술을 적용하는 등 이러한 격차를 해소하기 위한 방법을 개발했다. 젠 교수는 “디지털 트윈 모델을 개발할 때 보정 테스트를 하긴 하지만, 이 역시 통제된 환경에서 이루어진다”고 말했다. 이어서 “하지만 산업 현장에 모델을 실제로 적용하면 훨씬 더 많은 노이즈가 포함된 데이터를 접하게 된다. 이처럼 현실의 노이즈를 알고리즘 관점에서 어떻게 보정할 것인가는 매우 도전적인 연구 주제”라고 설명했다. 이러한 수정을 통해 연구팀은 실제 세계 정확도를 약 85%까지 개선했다. 이는 실용적 구현을 향한 중요한 진전이다.   소규모 실험실에서 스마트 공장으로 연구팀의 작업은 단일 로봇을 넘어서 확장되고 있다. 이들은 다수의 로봇이 협업하며 생산 라인을 구성하는 소규모 스마트 공장 환경을 구축하고 있으며, 이를 통해 고장 진단 알고리즘을 보다 실제에 가까운 조건에서 실험하고자 한다. 젠 교수는 “우리는 미니 스마트 공장을 구축하려고 한다”면서, “생산 설비와 유사한 환경을 만들어 로봇에 알고리즘을 적용해, 실제 생산 스케줄링에 통합될 수 있는지를 실험하고 있다”고 설명했다. 이러한 접근 방식은 교육적 효과도 크다. 센트랄수펠렉의 공학과 학생들은 수업과 프로젝트를 통해 디지털 트윈, 로보틱스, 머신러닝 기술을 실습 기반으로 학습하고 있다. 젠 교수는 “학생들이 처음부터 가상 공간에서 모델을 직접 설계하고 이를 점차 실제 로봇과 연결해가는 과정을 보면, 그들이 이 과정을 진심으로 즐기고 있다는 걸 알 수 있다”고 전했다. 이 연구는 제조업뿐 아니라 물류, 스마트 창고 등 다양한 산업 분야로의 확장이 가능하다. 예를 들어 스마트 창고에서는 로봇이 정해진 경로를 따라 이동하지만, 장애물이 나타나면 이를 인식하고 경로를 유동적으로 조정해야 한다.   그림 4. 여러 로봇이 소규모 스마트 공장 환경의 생산 라인에서 협력하여 작동한다.(출처 : 센트랄수펠렉)   젠 교수는 “스마트 창고에서 로봇은 사전 정의된 규칙을 따르지만, 패키지가 떨어지고 경로가 막히는 등 경로를 리디렉션하고 다시 프로그래밍해야 하는 경우가 있을 수 있다. 이런 경우 로봇을 조정하기 위해 각 로봇의 실시간 위치를 알아야 하기 때문에 디지털 트윈 시스템이 필요하다”고 설명했다. 연구팀은 구성요소가 고장 날 때 로봇의 움직임을 조정하는 것과 같은 내결함성 제어를 포함한 추가 응용 프로그램을 모색하고 있다. 또한 연구자들은 에너지 소비만 고려하는 것이 아니라, 궤적 최적화 모델에서 각 모터의 성능 저하 수준과 잔여 유효 수명도 고려하는 건전성 인식 제어를 개발하고 있다. 그들의 코드, 모델, 데이터 세트를 깃허브 저장소(GitHub repository)를 통해 자유롭게 공개하고 있으며, 다른 연구자들이 이를 바탕으로 연구를 확장해 나가기를 기대하고 있다. 목표는 개선의 출처가 어디든 간에, 보다 나은 고장 진단 시스템을 구축하는 것이다. 젠 교수는 “누군가 우리보다 더 나은 결과를 만들어낸다면 정말 기쁠 것”이라고 전했다. 중국 제조업 현장에서 일하던 부모님의 영향을 받아 공학자의 길을 걷게 된 젠 교수에게 이번 연구는 단순한 학문적 탐구를 넘어선 개인적인 사명이기도 하다. 젠 교수는 “어릴 때 제조업에서 일하는 것이 얼마나 힘든 일인지 직접 보며 자랐다”면서, “내가 그렸던 비전은 그런 육체 노동을 로봇이 대체하게 해 사람들이 보다 나은 삶을 살 수 있도록 하는 것이었다”고 전했다.   ■ 이웅재 매스웍스코리아의 이사로 응용 엔지니어팀을 이끌고 있으며, 인공지능·테크니컬 컴퓨팅과 신호처리·통신 분야를 중심으로 고객의 기술적 성공을 지원하는 데 주력하고 있다. LG이노텍과 LIG넥스원에서 연구개발을 수행하며 신호처리와 통신 분야의 전문성을 쌓아왔다.     ■ 기사 PDF는 추후 제공됩니다.
작성일 : 2025-10-20
슈나이더 일렉트릭, 실시간 모터 관리 설루션으로 해양산업 효율 향상 지원
슈나이더 일렉트릭이 조선·해양 산업의 설비 운용 효율과 안정성을 높일 수 있는 방법으로 자사의 실시간 모터 관리 설루션인 ‘테시스 테라(TeSys Tera)’를 제시했다. 조선·해양 산업에서 모터는 전기 에너지를 회전 및 기계 에너지로 변환하는 핵심 장비로, 전체 전력 소비의 약 80%를 차지할 만큼 에너지 소모가 큰 설비다. 때문에 모터의 안정적인 운전과 체계적인 유지관리는 산업 전반의 효율과 직결되며, 최근에는 친환경 규제 강화 및 스마트 선박 기술 도입에 따라 더욱 정교한 모터 관리 설루션의 필요성이 부각되고 있다. 슈나이더 일렉트릭의 테시스 테라는 이러한 산업 트렌드에 부합하는 디지털 기반의 고도화된 모터 관리 시스템이다. 테시스 테라는 지정된 통신 버스를 통해 모터의 상태, 운전 전류, 전압, 전력, 역률, 외부 냉각 팬 동작까지 실시간으로 수집·모니터링하며, 인더스트리 4.0 표준을 충족해 중앙 제어 시스템과의 연동을 지원한다. 슈나이더 일렉트릭은 “특히 모터 권선과 베어링, 본체 온도를 측정하는 외부 센서를 통해 과열이나 냉각 이상 등 이상 징후를 사전에 감지할 수 있어 치명적인 고장을 예방하고 유지보수 비용을 절감에도 기여한다. 또한 고조파까지 정밀하게 측정할 수 있는 기능은 슈나이더 일렉트릭의 고도화된 전력 관리 기술력을 잘 보여준다”고 소개했다.     진단 기능과 관련해서는 각 보호 기능별 트립(차단) 횟수를 개별적으로 기록하며, 최대 100개의 이벤트를 시간 정보와 함께 순차적으로 저장하는 FIFO(선입선출) 방식 로그 기능을 지원한다. 더불어 열 메모리, 선 전류, 접지 전류 등 20개의 상세 고장 로그를 기록해 고장 원인 분석과 시스템 개선에 유용한 데이터를 제공한다. 시동 전류 곡선은 최대 250포인트까지 기록할 수 있어, 실제 운전 조건에 따른 보호 설정(Trip Class 등)을 최적화할 수 있으며, 시간 기반의 로그 데이터는 공정 정지나 시스템 장애 발생 시 정확한 사건 순서(SOE)를 파악할 수 있게 해준다. 이는 24시간 가동이 필수적인 조선·해양 현장에서 더욱 높은 신뢰성과 운영 효율성을 확보하는 데 도움이 된다. 아울러 테시스 테라는 온도 센서를 활용해 모터 권선, 베어링, 본체 각각에 대해 개별적인 보호 기능을 제공해 과열로 인한 손상을 사전에 방지한다. 모든 보호 기능은 활성화/비활성화, 경보 및 차단 수준 설정, 자동 또는 원격 리셋 기능(시간 지연 포함) 등 사용자가 공정 환경에 맞춰 완벽하게 구성할 수 있다. 또 외부 디지털·아날로그 입력도 고장 조건으로 인식하도록 설정 가능하다. 사용자 친화적인 소프트웨어 인터페이스도 특징이다. 윈도우 기반의 다국어 지원 소프트웨어는 메뉴와 아이콘 중심의 직관적인 UI를 제공한다. 동일 기능 내 여러 데이터를 한 화면에서 탐색할 수 있도록 안내형 내비게이션을 지원함으로써, 복잡한 설정이나 진단 과정도 간소화했다. 또한 별도의 HMI(Human-Machine Interface)를 통해 현장에서 직접 제어기 구성 및 파라미터 변경이 가능하며, 제어 키패드가 내장된 HMI는 상태 확인과 제어 명령을 로컬에서 즉시 수행할 수 있어 네트워크 연결이 원활하지 않은 환경에서도 독립적인 운용이 가능하다. 슈나이더 일렉트릭 코리아 파워 프로덕트 사업부의 김은지 본부장은 “슈나이더 일렉트릭의 디지털 모터 관리 설루션 테시스 테라는 실시간 디지털 모니터링과 정밀한 보호 기능을 통해 모터의 성능 저하와 고장을 사전에 방지함으로써 조선 및 해양 산업의 안전성과 생산성을 높이는 필수적인 설루션으로 주목받고 있다”고 말했다. 한편 슈나이더 일렉트릭 코리아는 오는 10월 21일부터 부산 벡스코에서 개최되는 조선·해양 산업 전문 전시회인 ‘코마린(KORMARINE) 2025’에 참가해 테시스 테라를 선보일 예정이라고 전했다.
작성일 : 2025-10-16
AI 팩토리 M.AX 얼라이언스, 2030 제조 AI 최강국 향한 혁신 가속화
산업통상부는 10월 1일 AI 팩토리 M.AX 얼라이언스 전략 회의를 개최하고, 대한민국 제조업의 인공지능 전환(M.AX)을 통한 2030 제조 AI 최강국 도약을 위한 성과와 전략을 점검했다. 삼성전자, 현대자동차, LG엔솔, 삼성중공업 등 국내 대표 제조 기업들이 한자리에 모여 제조 혁신의 의지를 다졌다. 김정관 장관은 "AI 시대는 속도와의 전쟁이다. AI 팩토리는 빠르게 세계 1위를 도전할 수 있는 분야"라며, "정책과 자원을 집중해 순풍을 만들겠다"고 밝혔다.   AI 팩토리 선도사업, 2030년까지 500개로 대폭 확대 AI 팩토리 선도사업은 제조 공정에 AI를 접목해 생산성을 획기적으로 높이고 제조 비용과 탄소 배출 등을 감축하는 핵심 프로젝트이다. 이날 회의를 계기로 삼성전자, 현대자동차, LG전자, LG엔솔, SK에너지, HD현대중공업, 농심 등 업종 대표 기업들이 신규 참여를 확정했다. 이에 따라 현재 102개인 AI 팩토리 선도 사업은 2030년까지 500개 이상으로 확대될 계획이다. 주요 기업들은 AI 팩토리를 통해 혁신적인 성과를 목표로 했다. 삼성전자는 AI를 통해 HBM(고대역폭메모리반도체)의 품질을 개선한다. HBM은 ’28년까지 연평균 100% 이상 급성장이 기대될 정도로 각광받는 AI 반도체이다. 삼성전자는 현재 전반적으로 사람이 수행중인 HBM 불량 식별 공정에 AI를 도입할 계획이다. AI가 발열검사 영상, CT 이미지 등을 분석해 품질검사의 정확도를 99% 이상 높이고, 영상·이미지 등의 비파괴 검사를 통해 검사시간도 25% 이상 단축할 것으로 기대된다. HD현대중공업은 함정 MRO용(Maintain 유지보수, Repair 수리, Overhaul 정비) 로봇 개발을 추진한다. 보통 선체의 10% 면적에 따개비·해조류 등의 오염물질이 부착되면 연료소비가 최대 40%까지 증가한다. HD현대중공업은 숙련공에 의존하던 해양생물 제거, 재도장 등의 작업을 AI 로봇에 맡겨, MRO효율을 80% 이상 향상시키고 작업자 안전사고 등을 방지할 계획이다. 현대자동차는 셀방식 생산방식에 핵심이 되는 AI 다기능 로봇팔을 개발한다. 자동차산업은 소품종 대량생산의 컨베이어벨트 방식에서, 제품별로 공정을 다르게 적용해 유연생산이 가능한 셀기반 방식으로 전환되고 있다. 현대차는 힌지·도어 조립, 용접품질 검사 등 다양한 공정을 자율적으로 수행가능한 AI 로봇팔을 공정에 도입하여, 시장수요 변화에 신속히 대응하고 생산성을 30% 이상 높일 계획이다. 농심은 라면 제조설비에 AI 기반 자율정비 시스템을 도입한다. 원료공급, 제면, 포장 등의 라면 제조공정은 연속작동 설비가 많아 한 부분의 예기치 못한 고장으로 생산라인 전체가 중단될 수 있다. 이에 각 공정별로 다양한 이상 징후를 조기에 탐지하는 자율정비 시스템을 도입해 설비 효율성을 10% 이상 제고하고, 유지보수 비용은 10% 이상 절감할 계획이다. 현재까지 AI 팩토리 선도사업에 참여중인 업종별 주요기업 자동차 반도체 전자(가전 등) 철강 조선 현대차, LG이노텍, 한국타이어, 기아 삼성전자, 케이씨텍, 이수페타시스 LG전자, 쿠첸, LS전선 포스코, KG스틸, 대한제강 삼성중공업, HD현대삼호 항공·방산 식품·바이오 이차전지 석유화학·섬유 기계·건설 대한항공, KAI. 한화시스템 농심, 삼양식품, 한국콜마 LG에너지솔루션, 삼성SDI SK에너지, GS칼텍스, 코오롱 HD현대건설기계, 코넥 휴머노이드 로봇, 금년부터 제조 현장 실증 본격 투입 AI 팩토리 전략의 한 축으로, 제조 현장 휴머노이드 로봇 투입을 위한 실증 계획도 공개되었다. 금년에는 디스플레이, 조선, 물류 등 6개 현장에 휴머노이드가 투입된다. 분야 수요기업 공급기업 휴머노이드 주요 과업 디플 삼성디스플레이 레인보우로보틱스 레이저 장비내 렌즈교체, 검사 JIG 교체 작업 등 조선 HD현대미포 에이로봇 각종 상황과 이음 형태에 맞는 용접 작업 수행   삼성중공업 에이로봇 다양한 장애물, 협소 공간, 비평탄면 등 극복을 통해 자율 이동하며 용접·청소 등 가전 LG전자 로브로스 인간 수준 핸들링 작업 및 보행을 바탕으로 가전제품 공장 내 조립·운송 화학 SK에너지 홀리데이로보틱스 석유화학 제품 검사, 유압/가스 밸브 등 조작, 시료 제조, 검사 시료 운송 등 수행 유통 CJ대한통운 레인보우로보틱스 피킹·분류·검수·포장 등 복잡한 물류 작업 동작을 다양한 상품에 맞게 자율적으로 수행 산업부는 올해부터 2027년까지 100개 이상 휴머노이드 실증 사업을 통해 핵심 데이터와 기술을 확보하고, 2028년부터는 본격적인 양산 체계에 돌입할 계획이다. 선도사업 성과 가시화, 세계 최고 업종별 제조 AI 모델 개발 착수 현재까지 진행된 AI 팩토리 선도 사업에서는 이미 가시적인 성과가 도출되고 있다. GS칼텍스는 AI를 통해 정유 공정 데이터를 분석해 연료 비용을 20%가량 감축했으며, 온실가스 배출 저감 효과도 달성했다. HD현대미포는 AI 로봇을 투입해 용접 검사·조립 작업시간을 12.5% 단축했다. 반도체 기업인 대덕전자와 신한다이아몬드는 AI 도입으로 기존 육안 품질 검사 시간을 각각 90%, 30% 단축하는 성과를 보였다. 이러한 성과를 바탕으로 AI 팩토리 M.AX 얼라이언스는 세계 최고 수준을 목표로 하는 업종별 특화 제조 AI 모델 개발에 착수했다. 제조 AI에 특화된 전문가를 비롯해 뉴욕대 조경현 교수, 멜버른대 한소연 교수 등 초거대 AI 모델 전문가 23명이 공동으로 참여한다. 개발된 모델은 2028년 완료를 목표로 하며, 제조 현장 배포 시 기업들은 개발 비용 50%, 개발 시간 40%를 줄일 수 있을 것으로 기대했다. '다크 팩토리' 구현 위한 AI 팩토리 사업 확대 전략 산업부는 AI 팩토리 사업을 확대·개편해 내년부터 완전 자율형 AI 공장인 AI 팩토리(다크 팩토리) 건설에 필요한 기술 개발과 실증 사업을 추진한다. 제조 공정뿐 아니라 공장 설계, 시생산, 공급망 관리, 물류, A/S 등 제조 전 단계를 아우르는 AI 모델을 개발·확산할 계획이다. 특히 엔비디아 CEO 젠슨 황이 강조한 디지털 트윈을 활용한 '가상공장(Virtual Factory)' 구현을 전략의 한 축으로 삼았다. 가상공장을 통해 기업은 시스템 변경, 설비 고장, 공급망 변동 등 다양한 상황에서 공정 가동을 미리 테스트하고, 실제 공장과 연동해 모니터링, 예지 보전, 원격 제어 등에 활용할 수 있게 된다. 이러한 기술을 바탕으로 2030년까지 우리나라가 세계 최고의 AI 팩토리 수출국으로 발돋움하는 것을 목표로 관련 전략을 수립했다.
작성일 : 2025-10-11
무엇을 볼 것인가?
시점 – 사물이나 현상을 바라보는 눈 (10)   지난 호에서는 ‘작용, 반작용, 상호작용’을 주제로 주변에서 일어나는 일을 다양한 사례를 들어가며 조금 특별한 시각으로 바라보았다. 뉴턴의 운동법칙, 작용, 반작용, 상호작용의 사전적 의미, 다양한 물리현상, 생태계의 상호작용, 사회적 상호작용, 관점의 차이, 상관관계를 통해서 세상을 알아가는 방법 등에 관해서 소개했다. 이번 호부터는 3회에 걸쳐서 ‘무엇을 볼 것인가?’, ‘무엇을 믿을 것인가?’, ‘가설, 모델, 이론의 설득력의 시대성’의 이야기를 다룰 예정이다. 이번 호에서는 그 첫 번째 이야기로 ‘무엇을 볼 것인가?’에 관해서 생각해 보고자 한다.   ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com   그림 1. 일제 강점기에 촬영된 청계천의 수위를 관찰하던 수표교의 모습   하천의 수위 측정 수표교는 하천의 수위를 측정할 수 있도록 눈금(수표)이 새겨져 있는 청계천에 있던 다리이다.(그림 1) 세종 2년(1420년)에 만들어질 당시는 그곳에 마전(馬廛)이 있어 마전교라 불렸다. 세종 23년(1441년) 다리 밑을 지나는 개천(청계천)에 흐르는 수위를 측정하기 위해서 수표를 세웠다. 이후부터 수표교로 부르게 되었으며, 주변에 있는 마을은 수표동이라고 부르게 되었다. 수표는 하천의 수위를 과학적, 계량적으로 측정할 수 있는 기구로, 측우기와 함께 세종 때 만들어진 대표적인 과학 기기의 하나로 꼽힌다. 수표교는 현재의 서울특별시 종로구 수표동에 있었으나, 1958년 청계천 복개 공사로 장충단공원에 옮겨졌다. 2005년 청계천 복원 당시 원래 자리에 다시 놓으려고 했으나, 복원된 청계천의 폭과 수표교의 길이가 맞지 않아 옮겨지지 못했다.(그림 2) 대신 그 자리에는 임시 다리가 설치되어 있다. 원래의 수표교는 동대문구 청량리동에 있는 세종대왕기념관으로 이전되었다. 수표교에서 오른쪽으로 다섯 번째 다리의 이름이 오늘날의 마전교로 되어 있다. 초기의 수표는 청계천의 마전교 서쪽과 한강변에 세워졌다. 물속에 기둥을 꽂을 수 있도록 구멍을 판 받침돌을 놓고 그 구멍에 나무 기둥을 세웠다. 나무 기둥에는 눈금을 새겨 수위를 알아볼 수 있도록 하였으나, 나무로 만든 수표는 쉽게 망가져 15세기 성종 때 돌기둥으로 교체하였다. 아마도 물이 차면 부력으로 떠내려가기도 쉽고 물에 젖었다가 마르기를 반복하는 부분은 쉽게 썩지 않았을까 싶다. 돌기둥으로 만들어진 수표 양면에는 1척에서 10척까지 눈금을 새겼으며, 3, 6, 9척의 위치에는 ○표를 새겨서 각각 갈수(渴水), 평수(平水), 대수(大水)를 판단하는 기준으로 삼았다. 6척 안팎의 물이 흐르면 보통의 수위이고, 9척 이상이 되면 위험 수위로 개천의 범람 징후를 미리 헤아릴 수 있도록 한 것이다. 영조 36년(1760년)에 다리를 수리하면서 돌기둥에 ‘庚(경)·辰(진)·地(지)·平(평)’이라는 글씨를 새겨 물 높이를 4단계로 측정하였다. 순조 때 개천을 다시 준설할 때 새로운 수표를 세웠으며, 지금 남아 있는 수표는 이때 만들어진 것이다.   그림 2. 복원된 청계천의 22개 다리 중에서 옛 모습을 찾지 못한 수표교(빨간 별표로 표시된 다리)   강우량을 측정하는 측우기 현존하는 세계 최고의 강우량 측정기구도 우리나라가 가지고 있다. 국보로 지정된 ‘공주 충청감영 측우기’이다.(그림 3) 헌종 3년(1837년)에 제작된 공주 충청감영(금영) 측우기는 농업을 위한 조상의 과학적 발명과 구체적 실행을 증명해주는 유물로 매우 가치가 크다. 금영 측우기는 조선 시대 충남지역 감독관청이었던 충청감영에 설치되었던 것으로, 1915년경 일본인 기상학자 와다 유지가 국외로 반출한 것을 1971년 일본으로부터 환수한 것이다. 현재 서울 기상청 박물관에 보관되어 있다. 조선 시대에는 중앙정부에서 규격이 같은 측우기를 제작해 전국의 감영에 보냈기 때문에, 여러 점이 만들어졌을 것으로 추정된다. 다만 지금까지 남아 있는 것은 금영 측우기가 유일하다. 빗물을 그릇에 받아 강우량을 재는 측우기는 조선 세종 때에 처음 만들어진 후 여러 차례 다시 만들어졌다는 기록은 남아 있으나, 현재 실물로 남아 있는 것은 헌종 3년(1837년)에 만들어진 이 측우기뿐이다. ‘조선왕조실록’ 세종 23년(1441년) 8월 18일의 기록에는 서운관(기상관측 기관)에 대(臺)를 설치해 빗물을 받아 강우량을 측정했으며, 이듬해인 1442년 5월 8일에는 측정방식이 미진해 다시 원칙을 세웠다고 한다. 이때 세운 원칙대로 만들어진 것이 금영 측우기이다. 강우량 측정의 표준이 필요함을 절감하고 표준을 정해서 시행한 셈이다. 오늘날의 표준화 작업과 품질관리가 실행된 구체적인 사례이다. 도량형 표준이 측우기에도 적용된 셈이다. 금영 측우기의 제작 시기와 크기 등은 바깥 면 가운데쯤에 새겨진 명문(銘文)을 통해 알 수 있다. 명문에 따르면 이 측우기는 헌종 3년(1837년)에 만들었으며 높이는 1자(尺) 5치(寸), 지름 7치, 무게 11근으로 제작되었다. 상·중·하단의 3개의 금속 부품으로 구성되었으며, 상부가 약간 넓고 하부가 약간 좁게 만들어져 서로 끼워서 조립하는 형태의 구조이다. 금속 부품을 끼우는 접합부는 대나무 마디처럼 두껍게 만들어 부품의 모양이 변형되지 않도록 고안된 형태이다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
[무료 다운로드] 제조 혁신의 열쇠, 4M2E 생산자원 데이터 표준화
자율제조를 위한 데이터 표준화와 사이버 보안 강화 전략 (1)   글로벌 제조 환경은 자율제조 AI(인공지능) 및 SDM(소프트웨어 정의 제조)로 전환하고 있다. 그러나 시시각각 급변하는 생산자원(4M2E) 메타 데이터와 OT 사이버 보안에 대한 국제 표준 준수 없이는 사상누각이 될 수 있다. 앞으로 2회에 걸쳐 이에 대응하기 위한 방법을 소개하고자 한다.이번 호에서는 자율제조 AI 및 SDM 환경에서 4M2E 생산자원 데이터 표준화와 관련된 도전과 기회를 종합적으로 분석한다.   ■ 연재순서 제1회 제조 혁신의 열쇠, 4M2E 생산자원 데이터 표준화 제2회 산업 사이버 위협을 돌파하기 위한 IEC 62443   ■ 차석근 에이시에스의 부사장이며 산업부 국표원 첨단제조 표준화 포럼 의장 및 산업부 산업융합 옴부즈만 위원을 맡고 있다.   글로벌 제조 환경은 인공지능(AI) 기반의 자율제조와 소프트웨어 정의 제조(SDM : Software Defined Manufacturing)로의 전환을 통해 전례 없는 혁신을 경험하고 있다. 이러한 변화는 생산성, 효율성, 그리고 경쟁력 향상이라는 막대한 잠재력을 내포하고 있다. 그러나 이러한 혁신의 완전한 실현은 방대한 제조 데이터의 효과적인 관리 및 활용, 특히 4M2E(Man, Machine, Material, Method, Environment, Energy) 생산자원 데이터의 표준화에 달려 있다. 동시에, IT(정보 기술)와 OT(운영 기술) 시스템의 융합이 가속화되면서 산업 제어 시스템(IACS)은 사이버 위협에 더욱 노출되고 있으며, 이는 IEC 62443과 같은 국제 산업용 사이버 보안 표준 준수의 중요성을 증대시키고 있다. 이번 연재에서는 자율제조 및 SDM 환경에서 4M2E 생산자원 데이터 표준화의 필요성과 기술 동향을 심층 분석하고, 대한민국 수출 제품의 IEC 62443 산업용 사이버 보안 준비 현황과 당면 과제를 짚어보고자 한다. 특히 국내 중소기업이 겪는 인력, 예산, 노후 설비 등의 애로사항과 공급망 보안의 중요성을 강조한다. 이러한 분석을 바탕으로, 데이터 표준화와 사이버 보안 역량을 동시에 강화하여 국가 경쟁력을 제고하고 안전한 글로벌 시장 참여를 보장하기 위한 구체적인 정책적 및 전략적 대응 방안을 제안한다. 이는 기술 개발 지원, 인력 양성, 중소기업 맞춤형 프로그램 확대, 그리고 국제 협력 강화를 포함하는 포괄적인 접근 방식을 제시한다.   자율제조 및 SDM 시대의 도래와 산업 혁신 글로벌 제조 산업은 인공지능(AI)과 소프트웨어 정의 제조(SDM)의 발전으로 심오한 변화를 겪고 있다. 이러한 변화는 생산성, 효율성, 그리고 전반적인 경쟁력의 향상을 약속한다. 미국 국립과학재단(NSF)의 지원을 받아 개발된 마빌라(MaVila)와 같은 새로운 AI 모델은 공장 내부를 ‘보고’ ‘대화’할 수 있도록 설계되었다. 이 모델은 부품 이미지를 분석하고, 결함을 평이한 언어로 설명하며, 해결책을 제안하고, 심지어 기계와 통신하여 자동 조정을 수행할 수 있다. 이러한 역량은 지능적이고 적응력 있는 제조 시스템으로의 중요한 도약을 의미한다. 한편, SDM은 경직된 하드웨어 중심의 자동화를 유연한 소프트웨어 중심 아키텍처, AI 기반 지능, 그리고 제어 및 데이터 흐름을 최적화하는 모듈형 산업 플랫폼으로 대체하고 있다. 이러한 운영 기술 인프라의 현대화는 제조 부문의 전반적인 경쟁력을 향상시키는 데 필수이다. SDM의 핵심은 하드웨어, 연결성, 스토리지, 보안 및 IT와 OT 환경 전반에 걸쳐 내장된 지능을 포함한 제조의 모든 측면을 체계적으로 최적화하고 현대화하는 데 있다.   생산자원 데이터 표준화 및 산업용 사이버 보안의 핵심 과제 자율제조 및 SDM의 완전한 구현은 방대한 제조 데이터의 효과적인 관리 및 활용에 크게 의존한다. 그러나 수많은 센서, 기계 및 시스템에서 생성되는 파편화된 데이터는 종종 표준화가 부족하여 관리, 통합 및 분석이 어렵다. 이러한 데이터 파편화는 생산성을 높이고 효율성을 개선하며 비용을 절감하기 위한 산업 데이터의 완전한 활용을 방해한다. 특히 다양한 세대의 기계에서 발생하는 광범위하고 이질적인 데이터 소스를 가진 기업의 경우, 표준화된 라벨링의 부재는 데이터 관리 및 활용을 더욱 복잡하게 만든다. 동시에, 이러한 첨단 제조 환경에서 IT 및 OT 시스템이 융합되면서 산업 제어 시스템(IACS)은 사이버 위협에 점점 더 노출되고 있으며, IEC 62443과 같은 국제 표준 준수를 통한 강력한 사이버 보안은 필수이다. 사용자 질의는 특히 대한민국 수출 제품의 이 분야에서의 잠재적인 ‘준비 미비’를 강조하며, 이는 국가 산업 전략에 있어 중요한 과제를 부각시킨다.   자율제조 및 SDM의 개념과 데이터의 중요성 AI 기반 자율제조의 발전과 데이터 활용 인공지능은 다양한 분야를 근본적으로 변화시키고 있으며, 제새로운 AI 모델은 공장 환경에 특화되어 개발되고 있다. 이 모델들은 공장 내 시각 및 언어 기반 데이터로부터 직접 학습하여 부품 이미지를 분석하고, 결함을 평이한 언어로 설명하며, 해결책을 제안하고, 심지어 기계와 통신하여 자동 조정을 수행할 수 있다. 이렇게 내부적이고 제조 특화된 데이터 중심 접근 방식은 더욱 스마트하고 적응력 있는 제조 시스템을 구축하여 경제 부문을 더욱 효과적으로 지원하는 데 매우 중요하다. 궁극적인 목표는 작업자의 역량을 강화하고, 생산성을 높이며, 치열한 글로벌 시장에서 국가의 입지를 강화하는 것이다. AI가 진정한 자율제조를 가능하게 하려면 일반적이거나 파편화된 데이터에 의존할 수 없다. 복잡한 시스템, 장비 및 워크플로에 대한 깊이 있는 실시간 이해가 요구된다. 이는 데이터가 단순히 수집되는 것을 넘어, AI가 기계가 읽을 수 있고 실행 가능한 형태로 맥락화되고 표준화되어야 함을 의미한다. 만약 AI 모델이 파편화되고 비표준화된 데이터로 학습된다면, 정확하고 관련성 높은 정보를 제공하고 자율적인 조정을 수행하는 능력이 심각하게 제한되어 자율제조의 본질적인 약속을 저해할 수 있다. 따라서 제조 분야에서 AI의 성공과 신뢰성은 입력 데이터의 품질, 일관성 및 표준화에 직접적으로 비례하며, 이는 AI 기반 자율성을 위한 데이터 표준화의 근본적인 중요성을 강조한다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
슈나이더 일렉트릭, 선박의 안정적인 전력 공급을 위한 무정전 전원 공급 장치 제안
슈나이더 일렉트릭이 자사의 무정전 전원 공급 장치(UPS)인 ‘갤럭시 VS(Galaxy VS)’를 통해 조선·해양 산업의 안전성과 지속가능성 강화의 중요성을 강조했다. 오늘날 선박은 항해 장비, 통신 시스템, 안전 설비 등 모든 운영이 전력에 의존하는 환경에 놓여 있어 전력 공급의 연속성이 무엇보다 중요하다. 특히 선박의 운항 환경에서는 한순간의 정전이나 전력 불안정도 항해 차질, 통신 두절, 심각한 안전사고로 직결될 수 있다. 이처럼 선박 운영에서 전력 공급의 연속성은 단순한 효율의 문제가 아니라 인명 보호와 직결된 필수 요건으로 인식되고 있다. 이를 대응하기 위해 슈나이더 일렉트릭은 해양 산업의 특수한 요구에 부합하는 3상 무정전 전원 공급 장치인 ‘갤럭시 VS’를 제안하고 있다. 갤럭시 VS는 IT 시설뿐만 아니라 조선·해양 환경에서 요구되는 고가용성과 공간 효율성을 충족하며, 선박의 전력 안정성을 보장할 수 있는 설루션이다.     갤럭시 VS는 해양 장비의 안전과 성능을 평가하는 선급 회사인 DNV(Det Norske Veritas)와 BV(Bureau Veritas)로부터 해양 타입 승인(Marine-type approval)을 받았다. 특히 고온·저온·습기·진동 등 다양한 해양 환경 조건을 모사한 시험과 전자파 적합성(EMC level C2) 기준을 포함한 해양 표준 테스트를 통과했다. 슈나이더 일렉트릭은 “이는 갤럭시 VS가 선박 운항 및 해양 설비의 안전 규정을 충족하는 것은 물론, 극한 환경에서도 안정적인 전력 공급이 가능하다는 점을 공식적으로 입증한 것”이라고 전했다.  갤럭시 VS는 20~150kW 용량 범위에서 400/440V 전압을 지원하는 것은 물론 현장 여건에 따라 조정이 가능하다. 기본 제공되는 IP22 키트 외에도 옵션으로 IP52 방진·방수 등급을 선택할 수 있어 다양한 설치 환경에 대응할 수 있다. 모듈형 UPS 구조와 내부 N+1 이중화 설계는 전력 연속성을 극대화하며, 손쉽게 모듈을 교체할 수 있어 유지보수 효율 또한 높다는 것이 슈나이더 일렉트릭의 설명이다. 특히, 갤럭시VS는 옵션으로 제공되는 모듈형 배터리 캐비닛(Modular Battery Cabinet)을 통해 배터리 운영의 유연성과 안정성을 강화했다. 이 캐비닛은 스마트 모듈형 배터리를 탑재해 자동 감지(Self-detection), 이중화(Redundancy), 실시간 모니터링, 사용자 교체(User-swappable)가 모두 가능하도록 설계되었다. 사용 환경과 수명 요구에 따라 표준형(Standard, 3~5년)과 장수명형(Long Life, 10년) 두 가지 옵션이 제공된다. 해양 전용 설계도 특징이다. 할로겐 프리 케이블(Halogen-free cables)을 채택하여 화재 시 유독가스 발생을 최소화했다. 선박 용접용 마린 스키드(Marine Skid) 옵션을 제공하여 해양 환경의 안전 규격도 충족한다. 아울러 갤럭시VS는 이컨버전(eConversion) 모드에서 최대 99%, 이중변환 모드에서 최대 97%의 높은 에너지 효율을 제공하며, 총 소유 비용 절감이 가능한 리튬 이온 배터리 옵션도 지원한다. 이외에도 ▲공간 제약이 큰 선박 및 해양 시설에도 적합한 컴팩트 모듈형 설계 ▲라이브 스왑(Live Swap) 옵션을 통한 모듈 교체 ▲슈나이더 일렉트릭의 통합 아키텍처 플랫폼인 에코스트럭처(EcoStruxure) 지원 등 원격 모니터링과 유지보수를 간소화할 수 있는 강점을 지니고 있다. 슈나이더 일렉트릭 코리아 시큐어파워 사업부의 최성환 본부장은 “조선·해양 산업은 전 세계 물류와 에너지 공급의 중추적 역할을 수행하는 동시에, 안전성과 지속가능성 확보가 무엇보다 중요한 산업”이라며, “갤럭시 VS는 단순한 UPS를 넘어 선박 운영의 안전성을 보장하고, 해양 산업 전반의 친환경 전환에도 기여할 수 있는 최적의 설루션”이라고 강조했다. 한편 슈나이더 일렉트릭 코리아는 10월 21일부터 부산 벡스코에서 개최되는 조선·해양 산업 전문 전시회인 ‘코마린(KORMARINE) 2025’에 참가해 선박의 안정적인 전력 공급을 위한 무정전 전원 공급 장치 갤럭시 VS를 선보일 예정이라고 전했다.
작성일 : 2025-10-02
[포커스] 헥사곤, 스마트 제조의 미래 비전 제시… “DX를 넘어 AX로”
헥사곤 매뉴팩처링 인텔리전스는 9월 3일 진행한 ‘헥사곤 라이브 이노베이션 서밋 코리아 2025’를 통해 정밀 측정과 스마트 디지털 트윈의 미래에 대한 비전 및 전략을 소개했다. 헥사곤은 디지털 전환(DX)과 AI 전환(AX)을 통해 제조업의 생산성, 품질, 민첩성을 높이는 데에 주력하면서, 이를 위해 리얼리티 캡처 센서와 데이터 기반의 소프트웨어 설루션을 강조했다. ■ 정수진 편집장     제조 혁신의 미래, 디지털 트윈 헥사곤 매뉴팩처링 인텔리전스의 림분춘(Boon Choon Lim) 아세안·태평양·인도 지역 사장은 헥사곤이 포레스터 컨설팅과 함께 발간한 ‘2025 첨단 제조 산업 보고서’의 내용을 인용해, 제조업이 직면한 비즈니스 과제를 해결할 핵심 동력으로 ‘스마트 디지털 트윈’을 꼽았다. 보고서에서는 응답자의 71%가 디지털 트윈을 가장 중요한 투자 분야로 선택했으며, 90%는 AI 투자를 통해 경쟁 우위를 확보할 수 있을 것으로 기대했다. 림 사장은 “디지털 트윈은 물리적 현실과 가상 세계를 연결하며, 이를 통해 시뮬레이션, 실시간 데이터 업데이트, 분석 및 예측이 가능해진다”고 설명했다. 림 사장은 프로세스와 데이터를 연결하고 자동화하여 더 큰 가치를 창출하는 스마트 워크플로를 강조하면서, “헥사곤은 설계, 생산, 검사, 유지보수 등 제조 전 과정에 걸쳐 통합된 설루션을 제공하고 있다”고 강조했다. 디지털 트윈은 제조 공정 전반에 걸쳐 물리적 세계와 가상 세계를 연결하여 혁신을 가속화하고 지속 가능한 미래를 구현하기 위한 핵심 투자 영역으로 제시되고 있다. 헥사곤은 현실과 가상을 연결하는 정밀 측정 기술과 데이터 기반 설루션을 통해 산업 디지털 전환을 지원한다는 전략을 내세운다. 자사의 기술을 활용하면 현실 세계의 실시간 데이터와 몰입형 시뮬레이션을 결합한 디지털 트윈을 구축할 수 있다는 것이다.     리얼리티 캡처와 스마트 제조의 만남 라이카지오시스템즈의 칸 파힘(Khan Faheem) 아시아 사장은 현실 공간 데이터를 활용한 비즈니스 인사이트와 스마트 제조의 접목 가능성을 소개했다. 파힘 사장은 AI(인공지능)를 이용하여 산업군의 워크플로, 센서, 플랫폼을 강화하고 데이터를 결과로 전환하는 것이 중요하다고 짚었다. 특히 기계가 시각 데이터를 처리하고 이를 바탕으로 예측 및 행동함으로써 실제 세계를 이해하고 상호작용하는 ‘공간 지능(spatial intelligence)’을 강조했다. 라이카 지오시스템즈는 항공 매핑, 지하 매핑, 고성능 스캐닝, 모바일 매핑 등 현실 세계의 데이터를 얻는 리얼리티 캡처(reality capture)를 위한 센서 포트폴리오를 폭넓게 갖추고 있으며, 현장에서 클라우드 업로드, 포인트 클라우드 처리, 스트리밍 시각화 등을 지원하는 설루션을 제공한다. 파힘 사장은 “라이카 지오시스템즈의 리얼리티 캡처 기술은 공급망 조정, 설치 및 경로 계획, 레이아웃 및 생산 라인 변경, 자산 태깅 및 관리, 몰입형 운영 관리, 디지털 검사 및 준공 등 스마트 제조의 다양한 영역에서 활용할 수 있다”고 소개했다.     DX를 넘어 AX를 위한 스마트 제조 설루션 헥사곤 매뉴팩처링 인텔리전스 코리아의 홍석관 사장은 “DX를 넘어 AX 가치 사슬을 만드는 핵심 자원은 데이터”라면서, 데이터 수집, 통합/저장, 분석, 가치 창출의 과정을 통해 생산성 향상, 품질 개선, 신규 비즈니스 창출이 가능하다고 설명했다. 특히, 디지털 트윈 및 DX 기반의 자동화가 중심이 되는 스마트 공장에서 AX 기반의 자율화를 구현하는 ‘소프트웨어 기반 공장(Software Defined Factory : SDF)’으로 전환되는 흐름에 주목했다. SDF는 AI 기반의 자율적 의사 결정을 통해 사람의 개입을 최소화하는 자율형 무인 공장을 목표로 한다. 이를 위해 헥사곤은 3D 제품 설계/해석/시각화(DX), 실시간 모니터링/제어(디지털 트윈), 분석/예측/최적화/자율화 제어(AX)의 3단계 지원 전략을 통해 생산 자산의 디지털화, 생산 설비의 디지털 트윈화, 생산 공법의 AI 전환을 지원한다는 전략을 내세운다. 홍석관 사장은 “헥사곤은 로봇 캘리브레이션, 적층제조/금형 가공을 위한 로봇 툴패스 생성, 로봇 정밀 제어 등 DX+디지털 트윈 기반의 로봇 설루션을 선보였다. 또한, ‘넥서스(Nexus)’를 기반으로 한 조선 기자재 협업 플랫폼에 클라우드 기반의 데이터 공유 및 협업 환경을 구축하여 산업의 생산성과 효율성을 높인 사례도 있다”고 소개했다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
브라더코리아, AMXPO 2025서 PLC 연동형 라벨링 설루션 공개
브라더인터내셔널코리아가 9월 23일~26일 일산 킨텍스에서 열린 ‘2025 아시아 기계&제조 산업전(AMXPO 2025)’에 참가해 스마트 제조 환경에 최적화된 라벨링 설루션을 선보였다고 밝혔다. 브라더코리아는 이번 전시에서 전문가용 산업용 라벨 프린터(PT-E560BTVP)와 전기기사용 튜브 넘버링기(PT-E850TKW) 등 대표 제품군을 전시했다. E560BTVP는 전선·스위치·패널 등 주요 설비 라벨링에 적합하며, PT-E850TKW는 PVC 튜브와 라벨을 모두 지원해 케이블·배선 넘버링 작업 효율을 높일 수 있다. 두 제품은 빠른 출력 속도와 다양한 매체 지원, 높은 내구성을 갖춰 전기·제조 현장에서 생산성과 작업 편의를 높이는 설루션으로 소개됐다. 또한 PLC(프로그래머블 로직 컨트롤러) 연동 시연 장비를 통해 자동화 라벨링 설루션을 시연했다. 이 시스템은 일정한 품질 유지, 원가 절감, 작업 환경의 효율 개선이라는 세 가지 핵심 이점을 제공하며 브라더 PT 시리즈, QL 시리즈, TD-4D 시리즈 등 주요 라벨 프린터 라인업에 적용 가능하다. 브라더코리아의 ‘P-touch Editor’ 소프트웨어도 선보였다. 이 프로그램은 직관적인 인터페이스로 산업용 라벨을 손쉽게 제작 및 출력할 수 있으며, 다양한 기호·바코드·심벌 지원으로 현장 표준에 맞춘 라벨링을 가능하게 한다. 이번 산업전을 통해 브라더코리아는 자사 산업용 라벨링 설루션의 기능과 효과를 업계 관계자들에게 직접 알리며, 스마트 제조 현장의 생산성과 효율성을 높일 수 있는 다양한 설루션을 지속적으로 제공할 계획이다. 브라더코리아 관계자는 “AMXPO 2025를 통해 브라더 라벨링 설루션이 다양한 현장에서 활용될 수 있는 가능성을 소개했다”며, “앞으로도 산업 현장을 더욱 편리하고 효율적으로 만드는 설루션을 지속 제공하겠다”고 말했다.  
작성일 : 2025-09-29
미라콤아이앤씨, 제조 AX 핵심 '넥스피어 AI' 공개하며 제조 혁신 로드맵 제시
미라콤 솔루션 페어   미라콤아이앤씨가 9월 25일 '미라콤 솔루션 페어 2025(MSF 2025)'를 개최하고, 핵심 주제인 '제조 AX(인공지능 전환)'를 중심으로 제조 특화 AI 솔루션인 'Nexphere AI(넥스피어 AI)'와 구체적인 AX 로드맵을 공개했다. 미라콤아이앤씨가 매년 하반기에 주최하는 이 전문 행사는 서울 드래곤시티 호텔에서 열렸다. 제조 AX를 이끌 최신 기술 트렌드 총망라 이번 MSF 2025에서는 제조 혁신을 이끌 최신 인사이트가 대거 공개된다. 행사의 첫 순서인 키노트 세션에서는 삼성SDS 김긍환 그룹장이 연사로 나서 'AI Agent 시대, 제조업의 새로운 가능성'이라는 주제로 발표했다. 김 그룹장은 사람의 개입 없이 AI 시스템이 스스로 작업을 수행하는 'Agentic AI'와 데이터 간 관계와 맥락을 부여해 AI의 정교한 추론을 돕는 '데이터 온톨로지' 등 최신 기술 트렌드를 언급하며 AI 시대에 국내 제조 기업들이 나아가야 할 방향을 제시할 예정이다. 제조 현장에서는 이 기술들을 활용해 고도화된 설비 파라미터 설정과 불량 원인 분석 등의 작업을 수행할 수 있을 것으로 전망된다. Agentic AI를 IT 리소스와 연결하면 제조 현장에 자율 지능형 AI 도입이 가능해진다. Nexphere AI로 실현하는 제조 AX 로드맵 키노트 이후에는 △Track1(Connect) △Track2(Activate) △Track3(Realize) 3개 트랙에서 총 12개의 세션이 이어진다. 특히, 미라콤아이앤씨 이송완 랩장은 Track1 'Connect'에서 'AX로 여는 자율제조의 미래: SDF 완성을 위한 플랫폼 핵심전략'을 주제로 발표한다. 이 랩장은 미라콤아이앤씨의 제조 AI인 Nexphere AI와 자체 플랫폼인 'Nexphere Platform'을 중심으로 구체적인 제조 AX 실현 로드맵을 제시한다. Nexphere Platform 위에서 제공되는 핵심 솔루션은 'Nexphere Analytics'와 'Nexphere Chat'이다. Nexphere Analytics는 데이터 전처리와 머신러닝, 딥러닝 기반의 예측 및 분석을 통해 제조 현장에서 활용할 수 있는 인사이트를 제공한다. Nexphere Chat은 제조 데이터를 실시간으로 조회하거나 기업의 문서와 자료를 지식화하여 자연어로 질의응답을 할 수 있도록 만든 협업 솔루션이다. 미라콤아이앤씨는 Nexphere Platform 내 학습 및 운영을 통해 AI Agent를 확보하고, 궁극적으로 이를 제조 특화 Agentic AI로 발전시키겠다는 로드맵을 가지고 있다. 행사 현장에는 Nexphere AI를 비롯해 6개의 제조 혁신 솔루션 데모가 마련되어 있어 관람객들이 직접 체험해볼 수 있다. 미라콤아이앤씨 강석립 대표이사는 "2025년은 제조 AX가 본격적으로 시작되는 원년"이라며 "올해 MSF 2025에서 제조 AX의 구체적인 전략과 방향성을 확인하길 바란다"고 말했다. 상세 내용은 홈페이지에서 확인 가능하다.
작성일 : 2025-09-27