• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "상호작용"에 대한 통합 검색 내용이 208개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
변화와 흐름의 관찰
시점 – 사물이나 현상을 바라보는 눈 (5)   지난 호에서는 ‘정적 이미지’와 ‘동적 이미지’에 관하여 정의하고 두 이미지의 차이를 살펴보았다. 이미지 센서의 입장에서 바라본 ‘관찰의 시점과 관점’에 관한 몇 가지 사례를 들어가며 구체적으로 생각해 보았다. 또한 정적 이미지에 시간 요소를 비롯한 새로운 차원의 요소를 추가하는 방법의 고안과 활용의 필요성을 강조하였다. 이번 호에서는 정적 이미지와 동적 이미지의 활용이라는 측면에서 ‘변화와 흐름의 관찰’ 방법과 관찰된 결과를 가시화 및 시각화하는 구체적인 사례를 함께 생각해 보기로 한다. 변화와 흐름의 본질부터 응용에 이르기까지 구체적인 사례를 소개한다.   ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com    그림 1. 당구공 움직임 궤적의 가시화   변화와 흐름의 본질‘변화’는 사물의 성질, 모양, 상태 따위가 바뀌어 달라지는 것을 의미하고, ‘흐름’은 흐르는 것, 또는 한 줄기로 잇따라 진행되는 현상을 비유적으로 이르는 말로 일상적으로 사용된다. 두 가지 개념 모두 시간과 관계가 있다. 시간 역시 흐름의 하나이다. 다만 시간은 불가역적으로 과거로 돌아갈 수 없다. 시간이 실재하는 것인가 하는 것은 철학적인 이야기에 가깝다. 다만 시간의 특성을 이해하고 여러 가지 현상을 관찰하면 변화와 흐름을 발견하게 된다. 우리도 시간의 흐름과 더불어 나이를 먹고 늙어 간다. 모든 생명체에게 공통된 현상이다. 눈으로 확인하기도 어려운 현상이나 추상적인 주제에 관해서 설명하기보다는 눈으로 확인할 수 있는 것이 이해하기 쉽다.  당구는 경도가 높은 압축 플라스틱 재질로 만든 공을 사용하는 경기이다. 당구공은 충돌 시의 반발계수가 1에 가까운 완전 탄성체이다. 따라서 당구공끼리 충돌하는 것은 두 물체가 부딪친 후에도 운동 에너지의 합이 변하지 않는 ‘완전 탄성충돌’에 가깝다. 정면에서 충돌할 경우 운동량 보전 법칙이 성립하여 공이 서로의 속도를 교환한다. 물리법칙을 이해하고 공을 치는 방향과 힘을 조절해서 다른 공을 맞히는 게임이다. 공을 치게 되면 공이 움직이게 되니 시시각각으로 위치와 속도가 달라진다. 즉 시간에 따른 위치 변화와 흐름이 발생한다.  <그림 1>은 당구대의 위쪽에 고정된 카메라로 노란 당구공을 쳐서 초록색 당구공을 오른쪽 위 귀퉁이에 넣는 장면을 촬영한 동영상에서 적당한 시간 간격으로 프레임을 발췌하여 합성한 이미지를 소개하였다. 하나의 이미지에서는 같은 시간 간격으로 프레임을 발췌하여 합성한 것이므로, 여러 개의 노란색 공의 위치는 같은 시간 간격으로 촬영된 것이다. 녹색 공 또한 마찬가지이다. 같은 색 공 사이의 간격이 넓은 것은 공의 이동 속도가 빨랐다는 것을 의미하고, 간격이 좁은 것은 그 공의 이동 속도가 빠르지 않았음을 의미한다. 공과 공 사이의 거리를 측정해서 프레임 간의 시차로 나누면 해당 구간의 속도를 구할 수도 있다. 고속으로 촬영해서 이미지를 합성하면 공이 전부 연결되어 공이 지나간 궤적을 그려낼 수 있을 것이다. 이러한 이미지를 합성해서 변화와 흐름을 시각화하는 방법을 포함해서 다양한 방법이 활용되고 있으며, 앞으로도 새로운 개념의 방법도 나타날 것으로 기대한다. 어떤 방법들이 고안되었으며 활용되고 있는지 살펴보도록 한다.   일상적으로 사용되는 흐름을 측정하는 기기 흐름에는 무엇이 있을까? 바람이 불면 공기의 흐름이 있고 강에는 물이 흐른다. 보도에는 사람들의 흐름이 있고 도로에는 차량의 흐름이 있다. 비가 오거나 눈이 내리는 것도 자연스러운 물의 순환(흐름)이다. 일상생활에서도 흐름을 측정하는 기기들이 셀 수 없이 많이 있다. 전류계, 전력량계(적산전력계), 수도 계량기, 도시가스 계량기, 온수 미터 등이다.(그림 2) 실험용 전류계는 실시간으로 흐르는 전하량을 전류로 표시하고 있다. 전체적으로 얼마나 사용했는지는 알 수 없다. 전류가 흐르지 않으면 그 순간 0을 표시하기 때문이다. 전체적인 흐름의 양을 알려고 하면 시시각각의 흐름을 적산해서 표시해야 한다. 전력량계(적산전력계), 수도 계량기, 도시가스 계량기, 온수 미터는 사용량을 적산하는 방식을 채용하여 사용량에 맞춰 요금을 부과하는 방식이다.  흥미롭게도 여기에서 소개한 흐름을 측정하는 모든 기기는 전선이나 배관을 통해서 흐르는 것이다. 전기는 누전되지 않는 한 전선을 벗어나서 흐르는 일이 없다. 물과 가스 또한 누수 또는 가스의 누출이 없는 상태에서 사용한다. 즉 모든 흐름의 측정은 폐쇄회로에서 이루어진다. 그런 의미에서 <그림 1>의 당구대 평면 상의 당구공 위치 변화를 동영상 정보를 바탕으로 추적한 사례는 특이한 경우로 볼 수 있다.    그림 2. 주변에서 흔히 볼 수 있는 흐름을 측정하는 기기     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[케이스 스터디] 미래 모빌리티를 위한 자율주행 시뮬레이터, 모라이 심
실시간 3D 엔진을 활용해 더욱 현실적인 시뮬레이션 구축   시뮬레이션은 어느새 산업에서 반드시 거쳐야 하는 단계로 자리잡았다. 이번 호에서는 자율주행 시뮬레이터 기술을 개발하는 모라이(MORAI)의 모라이 시뮬레이션 플랫폼(MORAI Simulation Platform)을 소개한다. ■ 자료 제공 : 유니티 코리아     모라이 시뮬레이션 플랫폼 모라이는 주로 ‘디지털 트윈’, ‘개발 도구’, ‘검증 도구’로 불리는 시뮬레이션 툴을 통해 자율주행 기술의 안전성과 신뢰성을 검증한다. 실제 도로에서 발생할 수 있는 다양한 돌발 상황을 가상화한 환경에서 테스트하고 개발함으로써, 실제 도로에서의 복잡하고 위험한 테스트를 대신할 수 있다. 이를 통해 개발자는 안전하고 효율적으로 자율주행 시스템을 검증하고 개선할 수 있다. 모라이에서 개발한 모라이 시뮬레이션 플랫폼은 자율주행, 자율 비행 등 자율 이동체를 테스트하고 개발할 수 있는 종합적인 미래 모빌리티 시뮬레이터이다. 이 솔루션은 자율주행 자동차, UAM(도심 항공 모빌리티), 무인 로봇, 무인 선박 등 다양한 차세대 모빌리티 산업에 적용되며, 자율주행 상용화를 가속화하는 핵심 가상 검증 플랫폼으로 주목받고 있다.   유니티를 도입하게 된 이유 유니티의 강력한 기능과 사용자 친화적인 인터페이스 덕분에, 짧은 시간 내에 모라이가 원하는 가상 환경 및 시뮬레이터를 개발할 수 있었다. 이는 특히 프로젝트의 초기 단계에서 도움이 되었다. 유니티를 통해 현실적이고 정교한 3D 시뮬레이션 환경을 구현함으로써, 자율주행 기술의 테스트와 검증 과정을 더욱 효율적이고 안전하게 수행할 수 있는 기능을 개발할 수 있었다. 이와 함께, 유니티의 커뮤니티와 풍부한 리소스는 문제 해결과 기술 향상에 도움이 되었다. 다양한 예제와 튜토리얼을 통해 개발자들이 빠르게 학습하고, 프로젝트에 필요한 기능을 구현할 수 있었다. 결과적으로, 유니티 도입 이후 모라이는 프로젝트의 개발 속도와 품질을 높였으며, 더 나은 자율주행 시뮬레이션 환경을 제공할 수 있게 되었다.   플랫폼 구성 요소 기본적으로 가상 환경을 렌더링하고 사용자 인터페이스를 제공하는 베이스 플랫폼(Base Platform)이 중심을 이룬다. 이 베이스 플랫폼 위에 다양한 모듈이 결합되어, 정밀하고 현실적인 시뮬레이션 환경을 구현한다. 첫 번째로 정밀 지도 도로 모듈이 있다. 이 모듈은 실제 도로와 동일한 환경을 가상으로 재현하며, 자율주행 차량이 운행할 수 있는 도로 네트워크를 제공한다. 이를 통해 현실적인 도로 상황에서의 테스트와 검증이 가능하다.  두 번째로 차량 동역학(Vehicle Dynamics) 모듈이 있다. 이 모듈은 차량의 물리적 특성과 동역학을 시뮬레이션하여, 다양한 운전 조건에서 차량의 반응을 정확하게 모델링한다. 이를 통해 차량의 주행 성능과 안전성을 평가할 수 있다. 세 번째로 센서 모델(Sensor Model) 모듈이 있다. 이 모듈은 자율주행 차량에 장착된 다양한 센서의 데이터를 시뮬레이션한다. 카메라, 라이다, 레이더 등의 센서가 실제 환경에서 어떻게 작동하는지를 가상으로 재현하여, 센서의 정확도와 신뢰성을 검증할 수 있다. 네 번째로 교통 모델(Traffic Model) 모듈이 있다. 이 모듈은 다양한 교통 상황을 시뮬레이션하여, 자율주행 차량이 실제 도로에서 마주할 수 있는 다양한 교통 상황을 가상으로 재현한다. 이를 통해 교통 혼잡, 돌발 상황, 보행자와의 상호작용 등을 테스트할 수 있다. 마지막으로 인터페이스(Interface) 모듈이 있다. 이 모듈은 외부 시스템과의 연동을 가능하게 하여, 다양한 테스트 시나리오와 데이터를 효율적으로 관리하고 분석할 수 있게 한다. 이를 통해 개발자가 자율주행 시스템을 더 효과적으로 개발하고 검증할 수 있다. 이 모든 구성 요소가 결합되어, 모라이 시뮬레이션 플랫폼은 자율주행 시스템의 개발, 테스트, 검증을 위한 강력한 도구로서의 역할을 수행한다.     가상환경과 현실의 차이를 최소화하기 위한 노력 모라이가 시뮬레이션 플랫폼을 구축하면서 가장 신경 썼던 부분은 현실과의 차이를 최소화하는 것이었다. 이를 위해 고충실도 시뮬레이션 환경을 제공하고, 실제 지도 데이터, 교통 데이터, 센서 데이터를 기반으로 가상과 실제 환경의 갭을 최소화하는 데 집중했다. 이를 위해 자율주행차가 실제 도로에서 맞닥뜨릴 수 있는 거의 모든 상황을 가상 환경에서 묘사할 수 있도록 다양한 요소 기술을 개발하고 있다. 이는 사람이 실제 도로에 나가지 않더라도 최대한 많은 테스트를 할 수 있도록 하기 위한 것이다. 예를 들어, 보행자 충돌 위험성 등 실제 도로에서 검증하기 어려운 시나리오를 수만 번 반복하여 테스트할 수 있다. 이를 통해 자율주행 개발 기업과 연구원들은 더욱 신뢰성과 안전성을 갖춘 검증을 할 수 있다. 또한, 가상과 실제 환경이 직접적으로 연계될 수 있도록 설계했다. 시뮬레이션이 실제 환경의 데이터와 상호작용할 수 있도록 하여, 개발자들이 현실적인 조건에서 자율주행 시스템을 테스트하고 개선할 수 있게 했다. 이와 같은 접근 방식은 실제 도로에서 발생할 수 있는 다양한 상황을 사전에 예측하고 대응하는 데 도움이 된다.   모라이 시뮬레이션 플랫폼에 대한 고객의 니즈 우선 고객사들은 현실적인 그래픽과 정밀한 도로 환경을 원했다. 자율주행 차량은 다양한 도로 상황과 환경에서 운행되므로, 시뮬레이터가 실제 도로와 유사한 환경을 재현해야 한다. 이를 통해 개발자는 도시, 고속도로, 교외 지역 등 다양한 도로 상황에서 자율주행 시스템의 성능을 테스트할 수 있다. 또한 다양한 교통 상황과 돌발 상황을 시뮬레이션할 수 있어야 했다. 교통 혼잡, 보행자와의 상호작용, 돌발적인 장애물 등 실제 도로에서 발생할 수 있는 모든 상황을 가상 환경에서 재현하여, 자율주행 시스템이 어떻게 대응하는지 평가할 수 있어야 한다. 아울러, 고객사들은 다양한 센서 데이터를 필요로 했다. 자율주행 차량은 카메라, 라이다, 레이더 등의 센서를 통해 주변 환경을 인식하기 때문에, 시뮬레이터는 이러한 센서의 데이터를 정확하게 생성하고, 실제 환경에서의 센서 성능을 재현할 수 있어야 한다.   개발 시 어려웠던 점과 해결 방법 자율주행 시뮬레이터를 개발하는 것은 다양한 기술을 통합해야 하기 때문에 많은 어려움이 따른다. 기본적으로 3D 엔진에 대한 이해도가 필요하며, 그 위에 올라가는 센서, 차량 동역학, 통신 등 각각의 모듈에 대한 깊은 이해와 적절한 통합 과정이 필요하다. 이 과정에서 각 개발자의 이해도와 전문 분야가 다르기 때문에, 이를 하나의 시뮬레이터로 통합하는 것이 가장 어려운 부분이었다. 다행히, 유니티는 이러한 다양한 요소들을 모두 통합할 수 있는 개발 환경을 제공했다. 각 모듈 개발자들이 개발할 때마다 바로 결과를 확인할 수 있었고, 다른 모듈에 대한 이해도를 높일 수 있었다. 이를 통해 각 모듈이 전체 시스템에 어떤 영향을 미치는지 파악할 수 있었고, 빠르게 개발을 진행할 수 있었다. 또한, SDV(Software Defined Vehicle : 소프트웨어 정의 차량)와 UAM 등의 복잡한 시뮬레이션 환경을 구축하는 데 있어서도 유니티의 유연한 개발 환경이 도움이 되었다. 유니티의 그래픽 엔진과 실시간 데이터 처리 능력을 활용하여 현실과 유사한 고충실도의 시뮬레이션 환경을 구현할 수 있었고, 이를 통해 다양한 테스트와 검증을 효율적으로 수행할 수 있었다.     모라이의 목표 모라이는 자율주행 시뮬레이션 시장에서 개발뿐만 아니라 검증과 인증까지 가능한 시뮬레이터를 제공하고자 한다. 앞서 설명한 대로 개발자들이 손쉽게 사용할 수 있는 가상 공간과 시뮬레이션 도구를 공급하여, 이 툴을 기반으로 빠르게 기술을 개발하고 정량적으로 시험 평가할 수 있도록 하는 것이 모라이의 목표이다. 또한, 모라이는 고객이 많은 노력을 들이지 않아도 바로 이해하고 현업에 적용할 수 있는 개발 도구를 제공하는 것을 중요하게 생각하고 있다. 이를 통해 고객은 복잡한 설정이나 학습 없이도 자율주행 기술을 개발하고 테스트할 수 있게 된다.  궁극적으로는 자율주행 자동차, UAM, 무인 로봇, 무인 선박 등 모든 무인 이동체의 기술 개발 및 통합 검증에 사용되는 도구가 되는 것이 모라이의 목표이다.  모라이의 공동설립자인 홍준 CTO는 “이 과정에서 유니티는 핵심 개발 도구로서 중요한 역할을 하고 있다. 유니티의 강력한 3D 엔진과 사용자 친화적인 인터페이스 덕분에 우리는 고품질의 시뮬레이션 환경을 빠르게 개발할 수 있다. 또한, 유니티의 지속적인 기술 지원과 업데이트는 우리가 최신 기술을 빠르게 도입하고, 고객의 요구에 맞는 기능을 신속하게 제공하는 데 큰 도움이 된다”고 전했다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
[포커스] 유니티, “게임을 넘어 다양한 산업으로, 3D 시각화와 AI 통해 혁신 지원”
유니티가 지난 4월 15일 글로벌 개발자 콘퍼런스인 ‘유나이트 서울 2025’를 진행했다. 2900여 명의 국내외 개발자 및 게임 업계 종사자들이 참석한 이번 행사에서 유니티는 자사의 최신 기술과 실제 적용 사례 등을 소개했다. 또한, 콘텐츠 개발을 위한 AI(인공지능) 비전과 비 게임 분야의 산업 시장을 겨냥한 전략도 밝혔다. ■ 정수진 편집장     개발 효율 향상과 커뮤니티 지원에 중점 두고 기능 개발 유니티 코리아 송민석 대표이사는 “지난 몇 년간 개발자 커뮤니티는 기술의 변화, 시장의 변화, 창작 과정의 어려움 등 많은 도전을 겪었지만, 그 과정에서 늘 새로운 가능성을 발견했다. 유니티 역시 그동안 많은 변화가 있었고, 개발자들의 격려와 조언이 큰 힘이 됐다”면서, “이번 유나이트에서는 개발자를 위한 생존 전략, 크리에이터 세션, 국내외 유니티 전문가의 기술 세션 및 다양한 산업에서 적용 가능한 기술과 사례를 제공하면서, 사용자의 프로젝트에 도움이 되고 영감을 주는 기회를 마련하고자 했다”고 전했다. 유나이트 서울 행사를 위해 처음으로 한국을 찾은 유니티의 맷 브롬버그(Matt Bromberg) CEO는 “한국은 유니티의 역사에서 매우 특별한 위치를 차지한다. 한국 개발자들이 만든 혁신적인 게임은 유니티의 가능성을 잘 보여줬다. 모바일뿐 아니라 최근 PC와 콘솔로까지 확대되는 한국 게임 개발자들의 새로운 도전은 전 세계적으로 주목받고 있다”면서 성능, 안정성, 크로스 플랫폼 지원을 더욱 강화하면서 개발자와 커뮤니티의 좋은 파트너가 되고자 한다고 밝혔다. 최신 버전인 유니티 6.1에서는 VRS(가변 레이트 셰이딩), GPU 처리 시간을 단축해 CPU 성능과의 균형을 유지하는 디퍼드+(Deffered+), 벌칸 디바이스 필터링 등의 기능을 통해 퍼포먼스 향상이 이뤄졌다. 한편, 유니티는 올해 다양한 새 기술과 고성능 기능을 제공하는 동시에 엔진의 근본적인 기술도 현대화할 예정이다. 그리고 엔진의 핵심 소스 코드에 닷넷(.NET) 프레임워크와 ECS(Entity Component System)를 적용하여 성능을 극대화하며, 콘텐츠 파이프라인도 현대화하여 개발자들이 더 빠르게 개발하고 반복 작업을 최소화할 수 있도록 지원할 계획이다. 브롬버그 CEO는 향후 개발 방향과 관련해서 새 업데이트를 출시 전 실제 환경에서 테스트한 후 제공할 것이며, 유니티 에디터 내에서 AI를 활용한 게임 개발을 지원하는 등 개발 효율을 높일 계획이라고 소개했다.   ▲ 유니티 맷 브롬버그 CEO   게임 개발 프로젝트에서 기술 검증 후 출시 전략 이와 관련해서 유니티의 애덤 스미스(Adam Smith) 엔진 부문 프로덕트 수석 부사장이 조금 더 자세히 설명했다. 그는 “유니티가 게임 개발자들로부터 가장 많이 받은 피드백은 플레이어의 경험이 더 안정적이고 뛰어나야 한다는 것이었다. 또한 개발 과정이 보다 빠르고 효율적이길 원했고, 복잡한 라이브 게임 개발에서 겪는 여러 문제들을 해결해 달라는 요청이 많았다”고 전했다. 이에 대응하기 위해 유니티는 ‘프로덕션 검증(production verification)’이라는 테스트 방식을 도입했다. 이는 실제 게임 개발 프로젝트에 최신 기술을 적용하여 검증하는 방식인데, 유니티는 몇몇 게임사와 협력해 기술 성능과 빌드 성공률을 높였다. 한편, 유니티는 코나미와 협력해 닌텐도 스위치 2용 게임인 ‘서바이벌 키즈(Survival Kids)’의 개발 과정 전반에 유니티 6 엔진을 적용했으며, 궁극적으로 게임의 기획부터 개발, 광고를 통한 수익화까지 전체 수명주기를 포괄하는 기술을 제공한다는 포부를 밝히기도 했다. 스미스 수석 부사장은 “이러한 협업과 게임 개발 경험은 유니티가 자체 기술과 서비스, 툴을 실제 개발 환경에서 테스트하고, 모든 기능이 철저히 검증되고 안정화된 상태에서 전달될 수 있도록 하는 데 목적이 있었다. 특히 애니메이션 시스템, 물리 엔진, DOTS(Data-Oriented Technology Stack) 기능의 성능과 안정성을 크게 높여 커뮤니티에 제공할 수 있게 되었다”고 전했다.   ▲ 유니티의 임원진이 참가한 기자간담회   개별 설루션 대신 AI 데이터가 모이는 플랫폼 추구 스미스 수석 부사장은 게임 및 시각 콘텐츠 개발에서 빠르게 확산되고 있는 AI와 관련한 로드맵도 소개했다. 2025년 하반기에 출시될 유니티 6.2 버전에서는 에디터 내에 직접 프롬프트 기반의 워크플로(prompt-based workflows)를 통합할 계획이다. 스미스 수석 부사장은 “반복 업무가 자동화되어 개발자들의 작업 시간을 크게 줄일 수 있고, 코드 디버깅과 C# 코드 자동 생성 기능도 추가되어 더욱 효율적인 작업 환경을 제공할 것”이라고 밝혔다. 유니티의 AI 지향점은 개발자가 워크플로의 흐름에서 벗어나지 않고, 유니티 에디터 내에서 곧바로 AI 어시스턴트의 도움을 받을 수 있도록 한다는 것이다. 유니티의 플랫폼이 생성형 AI 데이터를 수집하는 중심이 될 수 있도록 하고, 코드, 텍스처, 애니메이션 등 AI로 생성된 다양한 애셋을 손쉽게 유니티 프로젝트에 통합하고 활용할 수 있는 프레임워크를 구축하고 있다는 것이 유니티의 설명이다. 스미스 수석 부사장은 “유니티의 기존 AI 설루션인 ‘뮤즈’나 ‘센티스’의 이름은 점차 쓰이지 않게 되고, 유니티 에디터 안에 AI를 자연스럽게 통합하는 방향으로 가게 될 것”이라고 전망했다.   산업 분야를 위한 실시간 시각화 및 데이터 활용 비전 소개 유니티는 게임, 비주얼 콘텐츠뿐 아니라 다양한 산업 영역으로 실시간 3D 시각화 기술을 확장하려는 노력을 기울이고 있다. 유니티 코리아의 민경준 인더스트리 사업 본부장은 “그 동안 산업 분야의 많은 기업이 제품 설계, 디자인, 제조부터 마케팅과 운영까지 정적인 3D 모델과 전통적인 워크플로에 의존해왔지만, 기술의 융합과 비즈니스의 디지털화가 빠르게 진행되면서 기업들이 일하는 방식, 클라우드 협업, 고객과의 상호작용 방식이 근본적으로 바뀌고 있다”고 전했다. 민경준 본부장은 이런 변화의 핵심 키워드로 ‘상호작용(interactive)’과 ‘몰입(immersive)’의 두 가지를 꼽았다. 두 가지 핵심 경험을 제공하는 기업만이 디지털 전환을 성공시킬 수 있다는 것이다. 그리고 이런 혁신이 가져올 수 있는 성과로 ▲고품질의 현실감 있는 3D 모델을 활용한 디자인과 프로토타이핑 과정의 간소화 ▲복잡한 3D 애셋과 설계 파일의 효율적인 최적화 및 생산 일정과 비용의 절감 ▲현실감 있는 시뮬레이션을 통해 위험도가 높은 산업군의 직원 교육의 빠르고 안전하며 효과적인 진행 ▲마케팅부터 판매까지 전 과정에서 인터랙티브 제품 구성 도구와 가상 경험으로 고객 전환율 향상 ▲모든 고객 접점에서 인터랙티브한 3D 경험을 적용해 참여도 향상 및 브랜드 차별화 실현 등을 소개했다.   ▲ 산업 분야에서 유니티의 혁신 성과   “몰입형 혁신은 리얼타임 3D를 기반으로 실현할 수 있다”고 짚은 민경준 본부장은 “연결(Connect), 개발(Create), 배포(Deploy) 등 세 가지 핵심 기능을 중심으로 하는 유니티의 산업용 설루션은 뛰어난 시각적 인터페이스를 제공하며, 많은 기업이 유니티를 활용하여 VR, AR, XR 애플리케이션, 제조 환경의 디지털 트윈, 고품질 프로덕트 컨피규레이터 등 다양한 핵심 애플리케이션을 개발하고 있다”고 전했다. 유니티는 차량용 인포테인먼트 시스템, 디지털 클러스터, 몰입형 UX(사용자 경험) 기반의 계기판, 디지털 미디어 시스템 등이 유니티로 제작되고 있다고 소개했다. 또한 현대자동차는 유니티 기반의 디지털 트윈 기술을 물류 및 스마트 공장 프로젝트에 적용하고 있으며, LG전자는 차량용 HMI 시스템을 유니티 기반으로 개발 중이다. 산업 분야의 데이터 활용에 대해 스미스 수석 부사장은 ‘애셋 매니저(Asset Manager)’라는 클라우드 기반 툴을 통해 다양한 산업용 데이터를 워크플로에 통합할 수 있도록 지원한다. 애셋 매니저는 데이터를 시각적으로 프리뷰하는 한편, 성능을 떨어뜨리지 않고 유니티 엔진에 적합한 형태로 변환할 수 있다. 이외에도 산업 시장을 위해 꾸준한 기술 개선 및 실무에 바로 적용 가능한 설루션을 선보일 것”이라고 밝혔다.       ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
엔비디아, 기업 생산성 강화하는 ‘네모 마이크로서비스’ 정식 출시
엔비디아가 에이전트 기반 AI 플랫폼 개발을 가속화하고 기업의 생산성을 높이는 ‘엔비디아 네모 마이크로서비스(NVIDIA NeMo microservices)’를 정식 출시했다고 밝혔다. 이번에 정식 출시된 엔비디아 네모 마이크로서비스는 기업 IT 부서가 데이터 플라이휠(flywheel)을 활용해 직원 생산성을 높일 수 있는 AI 팀원을 빠르게 구축하도록 지원한다. 이 마이크로서비스는 엔드 투 엔드 개발자 플랫폼을 제공한다. 이 플랫폼은 최첨단 에이전틱 AI(Agentic AI) 시스템의 개발을 가능하게 하고, 추론 결과, 비즈니스 데이터, 사용자 선호도에 기반한 데이터 플라이휠을 통해 지속적인 최적화를 지원한다. 데이터 플라이휠을 통해 기업 IT 부서는 AI 에이전트를 디지털 팀원으로 온보딩할 수 있다. 이러한 에이전트는 사용자 상호작용과 AI 추론 과정에서 생성된 데이터를 활용해 모델 성능을 지속적으로 개선할 수 있다. 이를 통해 ‘사용’을 ‘인사이트’로, ‘인사이트’를 ‘실행’으로 전환할 수 있다.     데이터베이스, 사용자 상호작용, 현실 세계의 신호 등의 고품질 입력이 지속적으로 제공되지 않으면 에이전트의 이해력은 약화된다. 그 결과, 응답의 신뢰성은 떨어지고 에이전트의 생산성도 저하될 수 있다. 운영 환경에서 AI 에이전트를 구동하는 모델을 유지하고 개선하기 위해서는 세 가지 유형의 데이터가 필요하다. 인사이트를 수집하고 변화하는 데이터 패턴에 적응하기 위한 추론 데이터, 인텔리전스를 제공하기 위한 최신 비즈니스 데이터, 모델과 애플리케이션이 예상대로 작동하는지를 판단하기 위한 사용자 피드백 데이터가 그것이다. 네모 마이크로서비스는 개발자가 이 세 가지 유형의 데이터를 효율적으로 활용할 수 있도록 지원한다. 또한, 네모 마이크로서비스는 에이전트를 구동하는 모델을 선별하고, 맞춤화하며, 평가하고, 안전장치를 적용하는 데 필요한 엔드 투 엔드 툴을 제공함으로써 AI 에이전트 개발 속도를 높인다. 엔비디아 네모 마이크로서비스는 ▲대규모 언어 모델(LLM) 미세 조정을 가속화해 최대 1.8배 높은 훈련 처리량을 제공하는 네모 커스터마이저(Customizer) ▲개인과 산업 벤치마크에서 AI 모델과 워크플로의 평가를 단 5번의 API 호출로 간소화하는 네모 이밸류에이터(Evaluator) ▲ 0.5초의 추가 지연 시간만으로 규정 준수 보호 기능을 최대 1.4배까지 향상시키는 네모 가드레일(Guardrails)을 포함한다. 이는 네모 리트리버(Retreiver), 네모 큐레이터(Curator)와 함께 사용돼, 맞춤형 엔터프라이즈 데이터 플라이휠을 통해 AI 에이전트를 구축하고, 최적화하며, 확장하는 과정을 기업이 보다 수월하게 수행할 수 있도록 지원한다. 개발자는 네모 마이크로서비스를 통해 AI 에이전트의 정확성과 효율성을 높이는 데이터 플라이휠을 구축할 수 있다. 엔비디아 AI 엔터프라이즈(Enterprise) 소프트웨어 플랫폼을 통해 배포되는 네모 마이크로서비스는 온프레미스 또는 클라우드의 모든 가속 컴퓨팅 인프라에서 엔터프라이즈급 보안, 안정성, 지원과 함께 손쉽게 운영할 수 있다. 이 마이크로서비스는 기업들이 수백 개의 전문화된 에이전트를 협업시키는 대규모 멀티 에이전트 시스템을 구축하고 있는 현재 정식 출시됐다. 각 에이전트는 고유의 목표와 워크플로를 가지고 있으며, 디지털 팀원으로서 복잡한 업무를 함께 해결하며 직원들의 업무를 보조하고, 강화하며, 가속화한다. 엔비디아 네모 마이크로서비스로 구축된 데이터 플라이휠은 사람의 개입을 최소화하고 자율성을 극대화하면서 데이터를 지속적으로 선별하고, 모델을 재훈련하며, 성능을 평가한다. 네모 마이크로서비스는 라마(Llama), 마이크로소프트 파이(Microsoft Phi) 소형 언어 모델 제품군, 구글 젬마(Google Gemma), 미스트랄 등 폭넓은 인기 오픈 모델을 지원한다. 또한, 기업은 엔비디아 가속 인프라, 네트워킹, 그리고 시스코, 델, HPE, 레노버(Lenovo) 등 주요 시스템 제공업체의 소프트웨어를 기반으로 AI 에이전트를 실행할 수 있다. 액센츄어(Accenture), 딜로이트(Deloitte), EY를 비롯한 거대 컨설팅 기업들 역시 네모 마이크로서비스를 기반으로 기업용 AI 에이전트 플랫폼을 구축하고 있다.
작성일 : 2025-04-25
에픽게임즈 코리아, ‘시작해요 트윈모션 & 언리얼 2025’ 웨비나 진행
에픽게임즈 코리아는 ‘시작해요 트윈모션 & 언리얼 2025’를 4월 23일부터 시작한다고 밝혔다. ‘시작해요 트윈모션 & 언리얼 2025’는 트윈모션과 언리얼 엔진을 사용하는 것이 처음이거나 아직 익숙하게 다루지 못하는 초심자를 위한 튜토리얼 형식의 웨비나로, 4월 23일부터 5월 28일까지 6주간 매주 수요일 오후 2시에 에픽 라운지에서 진행된다. 이번 ‘시작해요 트윈모션 & 언리얼 2025’는 트윈모션과 언리얼 엔진을 활용한 고퀄리티 인터랙티브 3D 콘텐츠 제작을 목표로 기초 개념과 워크플로 전반에 대해 배우고, 결과물까지 제작하는 과정으로 강연이 진행된다.     웨비나의 1~3주 차에는 트윈모션을 활용한 모델링 파일 임포트부터 환경 구성, 인터랙션 구현을 위한 내용으로 진행된다. ▲1주 차에는 ‘트윈모션 시작하기’를 주제로, 트윈모션 및 기본 UI에 대해 알아보고, 전시공간 샘플 모델링 파일 임포트와 전시공간 익스테리어 환경 구성에 대해 설명한다. ▲2주 차에는 ‘트윈모션에서 전시공간 구성하기’를 통해 전시공간 인테리어 라이팅 및 맵핑, 루멘과 패스트레이서를 활용한 렌더링, 제품 모델링 파일을 임포트해 장면을 구성하는 방법에 대해 설명한다. ▲3주 차 '트윈모션에서 시각화 및 인터랙션 고도화하기' 시간에는 컨피규레이션 기능을 통한 상호작용 구현, HDRI 백드롭 시각화 툴을 활용한 신속한 시각화, 이미지, 영상, 로컬 프레젠테이션 실행파일 등으로 결과물을 출력하는 방법에 대한 학습이 진행된다. 웨비나 4~6주 차에는 언리얼 엔진에서 트윈모션 프로젝트를 활용해 메타휴먼, 언리얼 모션그래픽(Unreal Motion Graphics : UMG)을 적용하는 요소를 소개한다. ▲4주 차에는 '언리얼 엔진으로 트윈모션 프로젝트 가져오기'를 주제로 언리얼 엔진에 대해 알아보고, 데이터스미스 임포트, 데이터프랩으로 머티리얼을 자동 변환하는 방법에 대해 설명한다. ▲5주 차에는 '언리얼 엔진에서 리얼타임으로 제품 전시하기'를 통해 메타휴먼을 제작해 전시공간을 둘러보고, 리얼타임으로 제품 및 공간과 상호작용하는 방법을 설명한다. 마지막 ▲6주 차 ‘언리얼 엔진에서 인터랙티브 컨피규레이터 구성하기’ 시간에는 UMG로 제품 정보 표시, 제품의 머티리얼 교체, 시퀸서로 제품의 애니메이션 연출을 추가하는 방법에 대해 배운다. 고퀄리티 인터랙티브 3D 콘텐츠를 제작하고 싶은 사람이라면 전공 여부와 무관하게 학생, 직장인 등 누구나 무료로 등록할 수 있다. 에픽게임즈는 참가자들의 학습에 대한 이해도를 돕고자 매주 도전과제를 출제해 강좌 내용을 완전히 습득할 수 있도록 지원하며, 참가자들은 라이브 Q&A와 채팅을 통해 연사 및 커뮤니티와 실시간 소통할 수 있다. 또한, 매주 웨비나를 끝까지 시청하면 트윈모션과 언리얼 엔진 굿즈를 증정하는 '시청 이벤트'에 자동응모 되며, 출제되는 도전과제를 수행한 참석자에게 한정판 굿즈를 제공하는 '도전과제 이벤트'도 매주 진행된다. 이 밖에도 ‘도전과제 위클리픽’, ‘도전과제 완주 이벤트’ 등의 다양한 이벤트가 진행될 예정이다.
작성일 : 2025-04-21
정적 이미지와 동적 이미지
시점 – 사물이나 현상을 바라보는 눈 (4)   지난 호에서는 ‘관찰의 시점과 관점’이라는 주제로 사물을 바라볼 때 바라보는 위치, 방향, 각도에 따라서 우리 눈에 비치는 사물의 모습이 어떻게 달라지는지를 시점(視點)과 시각(視角)의 차이로 설명해 보았다. 보이는 것 자체는 아무런 의미나 의도가 없지만 보는 이의 관점(觀點)의 차이에서 다양한 해석이 나타날 뿐임을 이야기하였다. 이번 호에서는 ‘정적 이미지와 동적 이미지’의 차이를 살펴볼 예정이다. 정적 이미지와 동적 이미지에서 이미지 센서의 입장에서 바라본 ‘관찰의 시점과 관점’에 관한 몇 가지 사례를 들어가며 구체적으로 생각해 보도록 한다.   ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com   정적 이미지와 동적 이미지 시간이 지나더라도 변화하지 않는다면 정물이다. 시간의 흐름에 따라서 모양이 변화하는 것은 정물이 아니다. 촬영된 이미지는 모두 촬영된 순간의 촬영 조건에서 기록된 정적 이미지이다. 시간에 따라서 변화하는 어떤 사물의 이미지를 촬영하면 언제 어떤 모습을 하고 있을 때 촬영했는지가 중요하다. 빠르게 변화하는 사물을 변화에 비해서 느린 속도로 촬영하게 되면 변화 전과 변화 후의 모습이 중첩되어 보인다. 사물이 변화하더라도 그 변화 속도가 촬영 시간 내에서 거의 변화가 없다면 정물처럼 촬영될 것이다. 촬영 대상의 성질을 고려해서 촬영 조건을 선택해야 한다. 여기에서 말하는 변화는 사물 자체의 변화에 한정되지 않는다. 사물과 촬영 기기의 상대적인 위치, 각도, 조명 조건, 촬영 조건의 변화를 포함한다.   그림 1. 고드름이 생기는 속도는 늦고 녹는 속도는 빠르게 느껴진다.   변화의 속도가 느린 것 지난 겨울은 유난히 눈도 많이 내렸고 강추위도 여러 번 찾아왔다. 눈 내린 지붕에서 햇볕으로 녹은 눈이 물방울이 되어 처마로 떨어지며 차가운 공기로 얼음이 되어 고드름이 형성된다. 고드름 또한 기온이 올라가면 조금씩 녹으면서 고드름 끝에서 물방울이 떨어진다.(그림 1) 고드름의 형성과 소멸 과정은 비교적 천천히 진행된다. 물론 기온이 많이 올라가면 눈이 녹더라도 고드름은 형성되지 않는다. 이미 고드름이 만들어진 경우에도 기온이 올라가면 고드름이 녹는 속도도 빨라져, 고드름 끝에서 떨어지는 물방울의 숫자도 속도도 늘어난다. 그 결과 눈과 고드름은 사라진다. 물이 고체–액체–기체로 변화하면서 물의 순환이 이루어지는 것이다. 고드름은 겨울철에나 볼 수 있는 현상이지만 불과 몇 달 만에 반복되는 과정이다. 이것에 비해서 석회암 동굴에서 볼 수 있는 종유석, 석순, 석주는 석회암이 지하수에 녹아 조금씩 동굴에 스며들어 동굴 천장에서 떨어지면서 생겨나는 매우 속도가 느린 반응이다. 종유석은 동굴의 천장부터 아래 방향으로 자라는 것이고, 석순은 위에서 떨어지는 물방울에 포함된 석회 성분이 석출되어 동굴 바닥에서 위로 자라는 것이다. 종유석과 석순은 서로 마주 보고 자란다. 종유석과 석순이 서로 닿게 되면 석주가 만들어진다.(그림 2)   그림 2. 석회암 동굴에서 오랜 시간에 걸쳐 생성되는 종유석, 석순, 석주   종유석, 석순, 석주는 지하수에 녹아있던 석회 성분이 고체 상태로 석출되면서 수백 년, 수천 년 이상의 오랜 기간에 걸쳐 형성되는 것이다. 이렇게 서서히 일어나는 변화라면 거의 정적 이미지라고 보아도 무방하다. 오늘 촬영하거나 내일 촬영하거나 그 모양이 크게 변화하지 않기 때문이다. 다만 고드름 끝에 달린 물방울처럼 종유석 끝에 달린 석회 성분을 포함한 당장이라도 떨어질 듯한 지하수 방울을 촬영하는 경우라면 다른 이야기가 될 수도 있다.   변화의 속도가 빠른 것 이번에는 변화의 속도가 고드름이나 종유석보다 조금 빠른 것을 살펴보자. 잔잔한 수면에 작은 물방울이 떨어지는 경우를 관찰해보자. 물방울이 떨어지는 속도는 눈 깜짝할 사이에 일어나는 일이어서, 어떤 현상이 생기는지 육안으로는 자세하게 관찰할 수 없다. 고속으로 사진을 촬영할 수 있는 장비의 힘을 빌어야 비로소 어떤 현상이 일어났는지를 알 수 있다. 작은 물방울이 잔잔한 수면에 떨어진 후에 나타나는 물방울과 수면의 변화를 시계열로 정리하면 <그림 3>과 같다.    그림 3. 고속 촬영으로 포착한 ‘물방울과 수면의 힘겨루기’     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-04-02
오픈소스 LLM 기반 블렌더 모델링 AI 에이전트 개발하기
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 올라마(Ollama)와 오픈AI(OpenAI) GPT가 지원하는 오픈 소스 AI 모델을 블렌더(Blender)와 연결해 프롬프트 입력에 의한 자동 모델링 에이전트를 개발하는 방법을 설명한다. 이 연결을 통해 3D 모델링 작업 흐름을 간소화하고, 간단한 텍스트 프롬프트만으로 3D 장면을 생성하고 수정할 수 있다. 이번 호의 내용을 통해 이 프로세스를 직접 구현하는 방법을 이해하고, AI 에이전트 도구로서 LLM 모델의 역량을 평가할 수 있다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   그림 1. 프롬프트 : ‘Generate 100 cubes along the line of a circle with a radius of 30. The color and size of each cube are random.’   개념 : 텍스트 기반 3D 모델링 ‘텍스트 기반 3D 모델링’이란, 사용자가 입력한 텍스트를 AI 모델이 분석하여 블렌더에서 실행할 수 있는 코드를 생성하고 이를 통해 3D 그래픽을 구현하는 방식이다. 텍스트 토큰을 조건으로 설정하여 메시 모델을 생성하는 방법도 존재하며, 이는 스테이블 디퓨전(Stable Diffusion : SD) 계열의 기술을 활용하는 경우가 많다. 그러나 SD 기반 모델은 정확한 크기와 위치를 지정하는 데 근본적인 한계를 가진다. 이번 호에서는 정확한 치수를 가진 모델을 생성하는 것에 초점을 맞추고 있으므로, SD 기반 모델에 대한 자세한 설명은 생략한다. 텍스트를 3D 모델로 변환하는 에이전트 도구는 CAD 툴과의 상호작용 방식을 개선할 가능성이 있으며, 그래픽 모델링의 진입 장벽을 낮추고 신속한 프로토타이핑이 가능할 수 있다.   실행 가능한 코드 다운로드 이번 호의 내용과 관련된 실행 가능한 코드는 깃허브(GitHub)에서 다운로드할 수 있으니 참고한다. GitHub 링크 : https://github.com/mac999/blender-llm-addin   라이브러리 설치 블렌더와 올라마를 설치해야 한다.   1. 블렌더 다운로드 : blender.org   2. 윈도우에서 올라마 다운로드 : https://ollama.com/download   3. 오픈 소스 LLM 모델 설치(터미널에서 실행) ollama pull llama3.2 ollama pull gemma2 ollama pull codellama ollama pull qwen2.5-coder:3b ollama pull vanilj/Phi-4   4. 필요한 라이브러리 설치 pip install pandas numpy openai ollama   블렌더의 파이썬(Python) 환경에서 라이브러리를 설치하려면, 블렌더 설치 경로에 맞게 다음을 실행해야 한다. cd "C:/Program Files/Blender Foundation/Blender /python/bin" ./python.exe -m ensurepip ./python.exe -m pip install pandas numpy openai ollama   코드 설명 블렌더 UI 패널 생성 사용자가 블렌더에서 직접 모델을 선택하고 텍스트 프롬프트를 입력할 수 있도록 커스텀 UI를 생성한다. class OBJECT_PT_CustomPanel(bpy.types.Panel):  bl_label = "AI Model Selector"  bl_idname = "OBJECT_PT_custom_panel"  bl_space_type = 'VIEW_3D'  bl_region_type = 'UI'  bl_category = "Gen AI 3D Graphics Model"  def draw(self, context):   layout = self.layout   layout.label(text="Select Model:")   layout.prop(context.scene, "ai_model", text="")   layout.label(text="User Prompt:")   layout.prop(context.scene, "user_prompt", text="")   layout.operator("object.submit_prompt", text="Submit")     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-04-02
[칼럼] 이제는 인공지능과 디지털 트윈의 만남이 필요하다
디지털 지식전문가 조형식의 지식마당   지난 2월호 칼럼에서 필자는 현재 인공지능의 약점으로 현실의 물리적 특성에 대한 이해도가 떨어진다고 짚었다. 그래서 물리적 AI(physical AI)가 필요하다고 이야기한 적이 있다. 물리적 AI란 현실의 물리적 현상을 이해하는 인공지능을 의미한다. 최근의 발전된 대규모 언어 모델(LLM)과 지속적으로 발전하고 있는 인공지능 멀티모달이 우리를 놀라게 하고 있다. 그러나 인공지능 기술(AI technology)과 디지털 트윈 기술(digital twin technology)이 넘어야 할 큰 산이 있다. 인간들은 현실의 물리적 현상에 대해서 경험치가 풍부하다. 하지만 이 두 기술은 현실 세계에 대한 물리적 경험치가 많이 부족하다. 그래서 어떤 대답이나 결정이 현실 세계와 동떨어져서 사람들을 실망시키거나 놀라게 한다. 그래서 사전학습(pretraining)을 하기도 한다. 그러므로 물리적 AI와 물리적 디지털 트윈(physical digital twin)의 기술 결합이 필요하다. 최근에는 인공지능 분야에서 세계 기반 모델(world foundation model)에 관한 연구가 주목 받고 있다. 세계 기반 모델은 대규모 멀티모달 AI 모델로, 텍스트, 이미지, 음성, 영상, 코드 및 시뮬레이션 데이터를 학습한 모델로, 현실의 물리적인 특성은 물론 사회적과 경험적, 문화적 특성을 이해할 수 있는 인공지능 모델이라고 할 수 있다. 이 기반 모델(foundation model)은 인공지능 분야에서 최근 관심을 받고 있는 개념으로, 다양한 물리적 환경과 현실 세계의 데이터를 기반으로 학습하여 세계를 이해하고 예측하는 대규모 AI 모델을 의미한다. 이 모델은 현실 세계의 물리 법칙, 사회적 상호작용, 환경적 요소 등을 통합적으로 이해하고 시뮬레이션할 수 있도록 설계된다. 물리적 디지털 트윈은 디지털 트윈을 세계 기반 모델로 학습시킨 디지털 트윈이라고 할 수 있다. 현재 디지털 디지털 트윈의 의사결정이 빅데이터나 기계 학습 수준이라면 이것은 딥러닝이라고 할 수 있다. 딥러닝은 전이학습(transfer learning)이나 추론(reasoning)이 가능하다. 현재의 디지털 트윈 개발 환경은 몇 년 전의 챗GPT같은 인공지능 기반 모델이 나오기 전과 비슷하다. 산업 분야 별로 표준화도 없고, 각각의 필요에 따라서 매번 개발해야 하고, 다시 재사용하는 부분도 상대적으로 적어서 개발 비용이 사용자의 기대감에 비해서 매우 비싸고, 저렴한 것은 범용성이 거의 없는 편이다. 그리고 디지털 트윈 내부의 의사결정 법칙을 만들거나 인공지능에 필요한 빅 데이터와 학습 데이터 비용이 많이 필요하다.   그림 1. 물리적 인공지능과 물리적 디지털 트윈의 결합(출처 : 챗GPT로 생성)   제품 개발과 생산과 유지보수 분야에서 디지털 트윈과 AI의 결합은 많은 장점이 있다. 디지털 트윈과 AI를 결합하면 각 기술의 장점을 극대화할 수 있다. 향상된 예측 및 분석 : AI는 디지털 트윈이 수집한 데이터를 분석하여 더 정확한 예측을 제공할 수 있다. 예를 들어, AI는 장비의 장애를 예측하거나, 성능 저하를 조기에 감지하는 데 사용될 수 있다. 자동화된 의사결정 : AI는 디지털 트윈 데이터를 기반으로 더 효율적이고 자동화된 의사결정을 가능하게 한다. 이를 통해 프로세스를 최적화하고 운영 효율성을 향상시킬 수 있다. 연속적인 학습 및 개선 : 디지털 트윈은 지속적으로 데이터를 수집하고, AI는 이 데이터로부터 지속적으로 학습하며, 시스템의 성능을 개선한다. 사용자 맞춤형 경험 : AI는 디지털 트윈을 통해 수집된 사용자 데이터를 분석하여 맞춤형 사용자 경험을 제공할 수 있다. 만약에 이것이 가능하다면 제품 개발에 필요한 수많은 도면과 CAD 파일과 CAE 작업이 혁신적으로 줄 수 있을 것이다. 물리적 디지털 트윈과 물리적 AI의 추론과 시뮬레이션으로 대체할 수 있다. 그리고 다양한 시나리오가 적용된 결과물은 동영상으로 생성해서 볼 수 있다. 물리적 인공지능과 물리적 디지털 트윈의 기술 통합은 제조 산업 분야에 엄청난 게임 체인저가 될 수 있다. 요즘 각광을 받고 있는 딥시크(DeepSeek)처럼 일반 PC에서 사용할 수 있는 오픈소스의 AI에 물리적인 특성을 이해하는 디지털 멀티모달 AI 모델과 디지털 트윈이 중소기업과 개인 엔지니어가 사용할 수 있는 수준이 된다면, 진정한 인공지능 중심의 5차 산업혁명이 올 수 있다. 이것은 모든 엔지니어에게 새로운 경험이 될 수 있다.    ■ 조형식 항공 유체해석(CFD) 엔지니어로 출발하여 프로젝트 관리자 및 컨설턴트를 걸쳐서 디지털 지식 전문가로 활동하고 있다. 현재 디지털지식연구소 대표와 인더스트리 4.0, MES 강의, 캐드앤그래픽스 CNG 지식교육 방송 사회자 및 컬럼니스트로 활동하고 있다. 보잉, 삼성항공우주연구소, 한국항공(KAI), 지멘스에서 근무했다. 저서로는 ‘PLM 지식’, ‘서비스공학’, ‘스마트 엔지니어링’, ‘MES’, ‘인더스트리 4.0’ 등이 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-04-02
매스웍스, '매트랩 엑스포 2025 코리아’ 개최
매스웍스가 4월 8일 ‘매트랩 엑스포 2025 코리아(MATLAB EXPO 2025 Korea)’를 코엑스 그랜드 볼룸 및 아셈볼룸에서 개최한다고 밝혔다. 매트랩 엑스포는 매스웍스 설루션 사용 고객과 기술 전문가들이 과학 및 엔지니어링 분야의 최신 트렌드와 성공 사례를 공유하는 연례 행사다. 이번 매트랩 엑스포의 기조연설에서는 한화로보틱스 정병찬 대표이사가 ‘로봇, 혁신으로 일상과 산업을 재창조하다’를 주제로, 매스웍스의 아비 네헤미아(Avi Nehemiah) 설계 자동화 소프트웨어 부문 총괄 디렉터가 ‘소프트웨어 정의 제품이 가져올 혁신’을 주제로 발표를 진행한다. 이어서, 알고리즘 개발 및 AI, 전동화, 모델 기반 설계, AI 응용 엔지니어링, 모빌리티, 무선 및 위성 등 6개 트랙의 36개의 기술 세션에 전문 연사가 참여해 매스웍스 제품군의 신기능과 고객 성공 사례를 발표한다. 기술 세션에는 삼성전자, 현대자동차, SK텔레콤, 한국전력연구원 등 국내 첨단 기술 기업이 참가해 각 산업군에서 적용 중인 매트랩(MATLAB) 및 시뮬링크(Simulink)의 활용 방안을 소개할 예정이다. 삼성전자의 한상민 수석은 ‘매트랩을 활용한 오픈 무선 장치(RU) 테스트 플랫폼 구축 방법’을 소개하며, 현대자동차의 우민수 글로벌 R&D 마스터와 SK텔레콤의 김장면 매니저는 각각 자동차 성능 예측 및 분석 시스템과 인공지능 기반 위성 통신 최적화 기술에 대해 발표한다.     한편, 이번 행사에는 벡터코리아, 이노엑스, 위드비어, 모라이, NI, 백호프, 알테라, 팝콘사, PTC 등 매스웍스의 파트너사가 참여해 기술 데모 부스를 운영할 예정이며, 세션에서 소개된 매스웍스 설루션의 신기능을 직접 체험할 수 있는 9개의 데모 부스도 운영된다. 데모가 진행되는 전시 공간에서는 다양한 산업군에 적용할 수 있는 모델 기반 설계(MBD)와 인더스트리 트렌드를 반영한 AI 관련 기술, 그리고 전동화와 무선에 관한 최신 기술이 중점적으로 선보이게 된다. 특히 올해는 국내 대학에서 이공계열 학생들을 가르치는 교수 및 강사를 대상으로 매트랩, 시뮬링크, 심스케이프(Simscape)를 활용한 시각화 및 상호작용 기반 엔지니어링 교육 세션이 마련된다. 이 세션에서는 학생들이 질량, 운동량, 에너지 보존과 같은 핵심 공학 원리를 넘어 전체 시스템을 이해하고 설계할 수 있는 시스템 레벨 역량을 키울 수 있도록 풍부한 시각화와 상호작용 경험을 제공하는 방법을 소개한다. 또한 매스웍스 설루션을 교육 현장에 도입해 학생들의 실무 역량을 성공적으로 향상시킨 사례도 함께 소개될 예정이다. 매스웍스코리아의 이종민 대표는 “매트랩 엑스포는 지난 수 년간 국내 공학 시스템 관련한 엔지니어, 과학자, 연구원, 교육자들이 기술 동향과 연구 성과를 나누고 교류하는 대표적인 행사로 자리매김했다”면서, “이번 행사에서 매스웍스가 엄선한 세계 유수 기업의 기술 전문가 발표와 다양한 체험형 데모를 통해 참가자들이 매트랩과 시뮬링크를 활용한 혁신적인 연구 방안을 발견하는 의미 있는 자리가 되길 바란다”고 말했다.
작성일 : 2025-03-11
관찰의 시점과 관점
시점 – 사물이나 현상을 바라보는 눈 (3)   지난 호에서는 우리가 암흑세계와 같은 바깥세상에 대한 정보를 어떠한 방식으로 얻고 어떻게 이해의 폭을 넓혀가고 그렇게 얻은 정보를 어떻게 활용하는지를 ‘암중모색’이라는 단어를 통해서 살펴보았다. 이번 호에서는 ‘관찰의 시점과 관점’에 관해서 살펴보고자 한다. 사물을 바라볼 때 바라보는 위치, 방향, 각도에 따라서 사물 자체에 변함은 없지만 우리 눈에 비치는 사물의 모습은 달라진다. 시점(視點)과 시각(視角)의 차이에서 오는 현상이다. 같은 사물이나 현상을 보면서 보는 이의 입장에 따라서 해석이 달라지는 일도 많다. 보는 이의 생각이 의미를 부여하게 되고 그 의미의 해석에 따라서 옳고 그름, 좋고 나쁨, 유리 또는 불리로 구별하면서 생기는 것이다. 보는 이의 관점(觀點)의 차이에서 비롯되는 것이다. 구체적인 사례를 통해서 살펴보자.    ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com    그림 1. 광화문 앞 세종대왕 동상을 다양한 위치와 각도에서 촬영한 이미지 모음(촬영자의 시각과 의도가 담겨있다.)    광화문 앞 세종대왕 동상 광화문 앞 광장에는 충무공 이순신 장군의 동상에 뒤이어 조선시대 과학기술을 보여주는 밤하늘을 관측하는 혼천의, 강우량을 측정하는 측우기, 그림자를 통해서 시간을 알 수 있는 해시계인 앙부일구가 전시되어 있다. 그 뒤를 이어 높이 6.2m, 폭 5m 크기의 세종대왕 대형 동상이 지상으로부터 3m의 기단 위에 조성되어 있다.(그림 1) 그 뒤로 광화문, 경복궁, 북악산이 일렬로 늘어서 있다. 같은 세종대왕 동상이지만 보는 이의 위치, 거리, 방향, 각도에 따라서 다양한 모습으로 비친다. 사진을 촬영하면서도 동상만을 촬영하기도 하고, 주변 경관까지 함께 촬영하기도 하며, 주변의 사람을 피해서 촬영하기도 한다. 사진을 촬영하는 사람의 의도와 시시각각으로 변화하는 관람객의 동선과 상황에 맞춰 자신만의 추억을 담게 된다. 같은 동상을 보고 있는 듯하지만 모두 관심을 두는 대상이 같다는 보장은 없다. 동상은 불투명하므로 자신의 위치에서 보이는 겉모습만을 보게 된다. 만약 동상이 투명하다면 동상의 존재 자체를 인식할 수 없을 것이다. 이순신 장군 동상 뒤에 있는 세종대왕 동상의 시각에서 바라본 광화문 광장은 어떤 모습일까? 뒤편의 광화문, 경복궁, 북악산의 모습은 보이지 않고 앞에 서 있는 이순신 장군 동상의 뒷모습과 세종대로 양옆의 건물이 보일 것이다.(그림 2) 같은 위치에 있더라도 바라보는 방향과 각도, 즉 ‘시점’ 또는 ‘시각’에 따라서 보이는 것도 달라진다. 같은 것을 보더라도 그에 대한 의미는 각자의 ‘관점’에 따라서 다르게 해석하기 마련이다.    그림 2. 광화문 앞 이순신 장군 동상의 앞모습과 (세종대왕 동상의 시선에서 바라본) 뒷모습    시점에 따른 대상의 외관 변화 풍경이나 인물을 화폭에 담으려면, 시각에 따라서 대상이 어떻게 변형되어 보이는지를 이해하고 작업을 시작해야 실물과 비슷한 느낌의 위화감 없는 그림을 완성할 수 있다. 이것은 새로운 건물을 짓기 전인 설계 단계에서 건물이 완성된 후의 외관과 주변의 환경을 보여주기 위한 조감도를 그리는 데에도 필요하다. 미술과 건축 분야에서는 기초 단계에서부터 이런 훈련 과정을 거치게 된다.  <그림 3>에 한 변의 길이가 a인 정육면체를 모서리의 약간 오른쪽에서 보았을 때, 보는 이의 눈높이에 따라서 어떻게 달라지는지를 두 개의 소실점(VP : vanishing point)을 사용하여 투영한 것을 정리하였다. 새가 보는 듯한 조감도부터 서서 보았을 때, 앉아서 보았을 때, 지면에서 보았을 때, 지하에서 바라보았을 때를 가정하여 그린 도면이다.    그림 3. 같은 사물을 바라보는 위치에 따른 외관 변화    같은 원리를 외형이 복잡한 세종대왕의 동상에 적용한다면, 시점에 따른 관찰 대상의 외관 변화를 정확하게 표현하기는 쉽지 않다. 외형의 돌출 부위나 굴곡에 따라서 가려져서 시야에서 사라지는 부분도 있기 때문이다. 보이는 것을 보이는 대로 그리는 것도 쉽지 않은 일이지만, 본 적도 없고 아직 만들어지지도 않은 것을 머릿속으로 시뮬레이션해서 마치 실물을 보고 그린 것처럼 위화감 없이 그려낸다는 것은 대단한 능력이다. 바라보는 사물과의 거리와 각도, 광선에 따라서 우리 눈에 어떻게 비치는지, 우리가 사물을 어떻게 인식하는지를 잘 이해해야만 감각적으로 자연스럽게 표현할 수 있기 때문이다.      ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-03-06