• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "비교"에 대한 통합 검색 내용이 2,554개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
엔비디아, 마이크로소프트와 함께 RTX AI PC 생태계 확장 추진
엔비디아가 마이크로소프트와 협력해 RTX AI PC를 위한 다양한 기능과 개발자 도구를 통해 AI 생태계 전반을 확장하고 있다고 밝혔다. RTX AI PC용으로 새롭게 설계된 엔비디아 텐서RT(NVIDIA TensorRT)는 윈도우 ML(Windows ML)을 통해 제공되며, 고성능 AI 실행 환경을 지원한다. 생성형 AI는 디지털 휴먼부터 글쓰기 도우미, 지능형 에이전트, 크리에이티브 도구에 이르기까지 PC 소프트웨어를 획기적인 경험으로 변화시키고 있다. 엔비디아 RTX AI PC는 생성형 AI 실험을 더 쉽게 시작하고, 윈도우 11에서 더 뛰어난 성능을 발휘할 수 있도록 지원하는 기술이다. 엔비디아 텐서RT가 RTX AI PC를 위해 새롭게 설계됐다. 높은 수준의 텐서RT 성능과 함께 적시 온디바이스 엔진 구축과 기존 대비 8배 더 작은 패키지 크기를 통해 1억 대 이상의 RTX AI PC에 AI를 원활하게 배포할 수 있도록 돕는다. ‘마이크로소프트 빌드(Microsoft Bulid)’ 행사에서 발표된 RTX용 텐서RT는 앱 개발자에게 광범위한 하드웨어 호환성과 최첨단 성능을 모두 제공하는 새로운 추론 스택인 윈도우 ML에서 기본적으로 지원된다. 엔비디아는 AI 기능을 통합하려는 개발자를 위해 엔비디아 DLSS부터 엔비디아 RTX 비디오(RTX Video)와 같은 멀티미디어 향상 기능까지 다양한 소프트웨어 개발 키트(software development kits, SDKs) 옵션을 제공한다. 5월 중으로 오토데스크를 비롯해 빌리빌리(Bilibili), 카오스(Chaos), LM 스튜디오(LM Studio), 토파즈 랩스(Topaz Labs)의 인기 소프트웨어 애플리케이션에서 RTX AI 기능과 가속화를 위한 업데이트를 출시할 예정이다.     AI 애호가와 개발자는 엔비디아 NIM을 사용해 AI를 쉽게 시작할 수 있다. 이는 애니띵LLM(AnythingLLM), 마이크로소프트 VS 코드(VS Code), 컴피UI(ComfyUI)와 같은 인기 앱에서 실행 가능한 사전 패키징, 최적화된 AI 모델이다. 곧 출시되는 플럭스.1-쉬넬(FLUX.1-schnell) 이미지 생성 모델은 NIM 마이크로서비스로 제공되며, 인기 있는 플럭스.1-데브(dev) NIM 마이크로서비스는 더 많은 RTX GPU를 지원하도록 업데이트됐다. 엔비디아 앱 내 RTX PC AI 어시스턴트인 프로젝트 G-어시스트(Project G-Assist)는 코딩 없이 간단한 AI 개발을 시작하고자 하는 사용자들을 지원한다. 이를 통해 자연어 기반 AI로 PC 앱과 주변기기를 제어하는 플러그인을 직접 구축할 수 있다. 아울러 구글 제미나이(Google Gemini) 웹 검색, 스포티파이(Spotify), 트위치(Twitch), IFTTT, 시그널RGB(SignalRGB)등 새로운 커뮤니티 플러그인도 현재 제공되고 있다. 윈도우 ML은 ONNX 런타임(ONNX Runtime) 기반으로 구동되며, 각 하드웨어 제조업체에서 제공하고 유지 관리하는 최적화된 AI 실행 레이어에 원활하게 연결된다. 지포스(GeForce) RTX GPU의 경우, 윈도우 ML은 높은 성능과 빠른 배포를 위해 RTX용 텐서RT 추론 라이브러리를 자동으로 사용한다. 다이렉트ML(DirectML)과 비교했을 때, 텐서RT는 PC에서 AI 워크로드를 처리하는 데 50% 이상 빠른 성능을 제공한다. 또한 윈도우 ML은 개발자의 QoL(Quality of Life) 측면에서도 다양한 이점을 제공한다. 각 AI 기능을 실행하는 데 가장 적합한 하드웨어(GPU, CPU, NPU)를 자동으로 선택하고, 해당 하드웨어에 맞는 실행 공급자를 다운로드해 해당 파일을 앱에서 패키징할 필요가 없게 한다. 이로써 최신 텐서RT 성능 최적화가 준비되는 즉시 사용자에게 제공될 수 있다.  텐서RT는 원래 데이터센터용으로 구축된 라이브러리였지만, RTX AI PC를 위해 새롭게 설계됐다. RTX용 텐서RT는 텐서RT 엔진을 사전 생성해 앱과 함께 패키징하는 대신, 적시에 온디바이스 엔진을 구축해 사용자의 특정 RTX GPU에 최적화된 AI 모델 실행을 수 초 내에 처리할 수 있다. 또한 라이브러리 패키징 방식이 간소화돼 파일 크기가 기존 대비 8배까지 줄었다. RTX용 텐서RT는 현재 윈도우 ML 프리뷰를 통해 제공되고 있으며, 6월부터는 엔비디아 개발자(NVIDIA Developer) 포털에서 독립형 SDK로 제공될 예정이다. 한편, AI 기능을 추가하거나 앱 성능을 향상시키려는 개발자는 광범위한 엔비디아 SDK를 활용할 수 있다. 여기에는 GPU 가속화를 위한 엔비디아 쿠다(CUDA)와 텐서RT, 3D 그래픽을 위한 엔비디아 DLSS와 옵틱스(Optix), 멀티미디어를 위한 엔비디아 RTX 비디오와 맥신(Maxine), 생성형 AI를 위한 엔비디아 리바(Riva)와 ACE가 포함된다. 엔비디아는 윈도우 ML과 텐서RT 통합을 통해 마이크로소프트와 주요 AI 앱 개발자들과의 협력을 지속하며 RTX 기반 시스템에서 AI 기능을 가속화하도록 지원할 예정이다.
작성일 : 2025-05-21
마이크로소프트, “비즈니스 전반에서 AI 에이전트가 활약하는 시대가 온다”
마이크로소프트가 ‘마이크로소프트 빌드 2025(Microsoft Build 2025)’를 개최하고 AI 에이전트, 개발자 도구, 오픈 플랫폼 등 신규 기능과 주요 업데이트를 발표했다.   AI는 추론 능력과 메모리 기술의 고도화로 인해 스스로 학습하고 결정을 내리는 에이전트로 진화하고 있다. 이번 행사에서 마이크로소프트는 이러한 AI 에이전트가 개인, 조직, 팀은 물론 전체 비즈니스 전반에 작동하는 인터넷 환경을 ‘오픈 에이전틱 웹(Open Agentic Web)’으로 정의하며, AI가 사용자나 조직을 대신해 결정을 내리고 작업을 수행하는 시대가 도래했다고 강조했다.  전 세계 수십만 조직이 마이크로소프트 365 코파일럿(Microsoft 365 Copilot)을 활용해 리서치, 아이디어 브레인스토밍 등 다양한 업무에 특화된 AI 에이전트를 구축하고 있다. 이 중 포춘 500대 기업 90%를 포함한 23만 개 이상 조직은 코파일럿 스튜디오(Copilot Studio)를 통해 AI 에이전트와 자동화 앱을 개발하고 있다. 또한, 전 세계 약 1500만 명의 개발자가 깃허브 코파일럿(GitHub Copilot)을 통해 코드 작성, 검토, 배포, 디버깅 등 개발 전 과정을 효율화하고 있다.     이번 빌드 2025에서는 AI 에이전트 개발을 돕는 플랫폼과 도구가 집중 소개됐다. 먼저 깃허브(GitHub), 애저 AI 파운드리(Azure AI Foundry), 윈도우(Windows) 등 주요 개발 플랫폼에서 활용할 수 있는 다양한 기능과 업데이트가 발표됐다. 이번 업데이트는 개발 생애 주기의 변화에 따라 개발자가 보다 효율적으로 작업하고, 대규모 개발 환경에서도 유연하게 대응할 수 있도록 설계됐다.  깃허브 코파일럿에는 비동기화(asynchronous) 방식의 코딩 에이전트 기능이 새롭게 도입됐다. 또한, 깃허브 모델(GitHub Models)에는 프롬프트 관리, 경량평가(LightEval), 엔터프라이즈 제어 기능이 추가돼, 개발자는 깃허브 내에서 다양한 AI 모델을 실험할 수 있게 됐다. 이와 함께 깃허브 코파일럿 챗(GitHub Copilot Chat) 또한 비주얼 스튜디오 코드(Visual Studio Code)에서 오픈소스로 공개됐다. 깃허브 코파일럿 확장 기능의 AI 기능은 이제 개발 도구를 구동하는 오픈소스 저장소의 일부가 됐다.  윈도우 AI 파운드리(Windows AI Foundry)도 새롭게 공개됐다. 개발자에게 개방적이고 널리 사용되는 플랫폼 중 하나로서 윈도우가 확장성, 유연성, 그리고 성장 기회를 제공함에 따라, 윈도우 AI 파운드리는 학습부터 추론까지 AI 개발자 라이프사이클을 지원하는 통합되고 신뢰할 수 있는 플랫폼을 제공한다. 이를 통해 개발자는 시각 및 언어 작업에 특화된 간단한 모델 API를 활용해 오픈소스 대규모 언어 모델(LLM)을 파운드리 로컬(Foundry Local) 환경에서 실행하거나, 자체 개발한 모델을 가져와 변환·미세조정한 뒤 클라이언트 또는 클라우드 환경에 배포할 수 있다.  애저 AI 파운드리도 주요 업데이트를 진행했다. 애저 AI 파운드리는 개발자가 AI 애플리케이션과 에이전트를 설계·맞춤화·관리할 수 있도록 지원하는 통합 플랫폼으로, 이번 애저 파운드리 모델(Azure Foundry Models) 업데이트를 통해 AI 기업 xAI의 그록3(Grok 3) 및 그록3 미니(Grok 3 Mini) 모델이 마이크로소프트 생태계에 추가됐다. 두 모델은 마이크로소프트가 직접 제공하며 과금한다. 이로써 개발자가 선택할 수 있는 AI 모델의 범위는 파트너사 및 마이크로소프트 제공 모델을 포함해 1900개 이상으로 확대됐다. 이와 함께, 안전한 데이터 통합, 모델 맞춤화, 엔터프라이즈급 관리 기능도 제공돼 보다 정밀한 AI 운영이 가능해졌다.   AI 모델을 항목별로 비교해 순위를 보여주는 모델 리더보드(Model Leaderboard)와 특정 쿼리나 작업에 따라 최적의 모델을 실시간으로 선택할 수 있도록 설계된 모델 라우터(Model Router) 등 신규 도구도 함께 공개됐다.   AI 에이전트 개발과 배포를 보다 안전하고 효율적으로 수행하도록 지원하는 기능도 선보였다. 사전 구축된 에이전트(pre-built agents), 맞춤형 에이전트 설계 도구, 멀티 에이전트 기능, 새로운 모델 등으로 구성된 이번 업데이트는 개발자와 조직이 보다 유연하게 AI 에이전트를 구축하고 생산성을 높이는 데 활용할 수 있도록 지원한다.  애저 AI 파운드리 에이전트 서비스(Azure AI Foundry Agent Service)는 여러 전문 에이전트를 조율해 복잡한 작업을 처리할 수 있도록 지원한다. 이번 업데이트에서는 시맨틱 커널(Semantic Kernel)과 오토젠(AutoGen)을 통합 제공하는 단일 SDK와, 에이전트 간 상호작용을 가능하게 하는 A2A(Agent-to-Agent) 기능 및 모델 컨텍스트 프로토콜(Model Context Protocol, 이하 MCP) 지원 기능도 포함한다.  애저 AI 파운드리 옵저버빌리티(Azure AI Foundry Observability)에는 AI 에이전트의 신뢰도를 높일 수 있도록 성능, 품질, 비용, 안전성 등의 지표들을 모니터링할 수 있는 기능이 탑재됐다. 모든 지표는 통합 대시보드를 통해 시각적으로 추적할 수 있어, 운영 현황을 직관적으로 파악할 수 있다.  보안과 거버넌스 측면에서도 기능이 강화됐다. 프리뷰로 제공되는 엔트라 에이전트 ID(Microsoft Entra Agent ID)를 활용하면, 애저 AI 파운드리나 코파일럿 스튜디오에서 생성한 에이전트에 고유 ID가 자동으로 부여된다. 이를 통해 에이전트를 초기 단계부터 안전하게 관리하고, 무분별한 생성을 방지해 보안 사각지대를 방지할 수 있다. 또한, 애저 AI 파운드리로 구축된 애플리케이션과 에이전트는 퍼뷰(Microsoft Purview)의 데이터 보안 및 컴플라이언스 제어 기능과 통합된다. 여기에 위험 파라미터 설정, 자동 평가 수행, 상세 보고서 제공 등 고도화된 거버넌스 도구도 함께 제공돼 정밀한 보안 및 운영 관리가 가능해졌다.  마이크로소프트 365 코파일럿 튜닝(Microsoft 365 Copilot Tuning)은 기업 고유의 데이터, 워크플로, 업무 프로세스를 기반으로 로코드 방식의 AI 모델 학습과 에이전트 생성을 돕는다. 생성된 에이전트는 마이크로소프트 365 환경 내에서 안전하게 실행되며, 조직별 업무에 특화된 작업을 높은 정확도로 수행할 수 있다. 예를 들어, 로펌은 자사의 전문성과 양식에 맞춰 문서를 작성하는 에이전트를 구축할 수 있다.  멀티 에이전트 오케스트레이션 기능도 코파일럿 스튜디오(Copilot Studio)에 새롭게 도입됐다. 이를 통해 다양한 에이전트를 상호 연결하고 기능을 결합함으로써 복잡하고 광범위한 업무를 처리할 수 있다.  이와 함께 마이크로소프트는 AI 에이전트의 미래를 위해 개방형 표준과 공유 인프라를 발전시키는 MCP 생태계 지원 업데이트와 새로운 개방형 프로젝트인 ‘NLWeb’을 발표했다. 마이크로소프트는 깃허브, 코파일럿 스튜디오, 다이나믹스 365(Dynamics 365), 애저 AI 파운드리, 시맨틱 커널, 윈도우 11 등 자사가 보유한 주요 에이전트 및 프레임워크 전반에서 MCP를 지원한다. 마이크로소프트와 깃허브는 MCP 운영 위원회(MCP Steering Committee)에 새롭게 합류해, 개방형 프로토콜의 보안성과 확장성을 높이기 위한 공동 노력을 이어갈 예정이다.  또한 MCP 생태계 확장을 위한 두 가지 업데이트도 공개했다. 첫 번째는 사용자가 기존 로그인 방식을 그대로 활용해 에이전트 및 LLM 기반 애플리케이션에게 개인 저장소나 구독 서비스와 같은 다양한 데이터에 대한 안전한 접근 권한을 부여할 수 있도록 인증 체계를 개선했다. 두 번째는 MCP 서버 항목을 누구나 최신 공용 또는 사설 저장소에서 중앙화해 관리할 수 있도록 지원하는 MCP 서버 등록 서비스를 설계했다.   NLWeb은 에이전틱 웹 환경을 위한 개방형 프로젝트로, 마이크로소프트는 NLWeb이 에이전틱 웹에서 HTML과 유사한 역할을 할 수 있을 것으로 기대한다. NLWeb은 웹사이트 운영자가 원하는 AI 모델과 자체 데이터를 연결해 대화형 인터페이스를 구축함으로써 사용자가 웹 콘텐츠와 직접 상호작용하며 풍부하고 의미 있는 정보를 얻도록 돕는다. 또한 모든 NLWeb 엔드포인트는 MCP 서버이기도 하기 때문에 웹사이트 운영자는 필요시 AI 에이전트들이 해당 사이트의 콘텐츠를 쉽게 검색하고 접근하도록 설정할 수 있다.  한편, 마이크로소프트는 과학 연구를 가속화하기 위한 AI 에이전트 기반 플랫폼 마이크로소프트 디스커버리(Microsoft Discovery)도 선보였다. 이 플랫폼은 연구자가 AI 에이전트를 활용해 과학적 발견 과정 전반을 혁신할 수 있도록 지원한다. 마이크로소프트는 이를 통해 제약, 환경 등 다양한 산업 분야의 연구개발 부서가 신제품 출시 기간을 단축하고, 연구 전반의 속도와 범위를 확장할 수 있을 것으로 기대하고 있다. 
작성일 : 2025-05-20
[신간] 된다! 하루 5분 아이패드 기록 생활
희나(이효선) 지음 / 18000원 / 이지스퍼블리싱 <된다! 하루 5분 아이패드 기록 생활>은 기록 전문 유튜버 ‘희나’가 일상 속에서 아이패드를 활용해 꾸준히 기록할 수 있는 다양한 앱과 팁을 소개한 책이다. 기본 앱부터 기록에 최적화된 앱까지, 아이패드를 효과적으로 활용하고자 하는 사람들에게 유용한 구성이 인상적이다.  이 책의 저자인 희나는 유튜브 채널을 운영하며 아이패드를 이용한 다이어리 꾸미기, 템플릿 활용, 다양한 앱 비교 및 활용법을 소개하는 콘텐츠로 큰 호응을 얻고 있다. <된다! 하루 5분 아이패드 기록 생활>은 하루 5분이라는 짧은 시간에 집중한 루틴을 통해 꾸준한 기록 습관을 만드는 실질적인 방법을 제시해 눈길을 끈다.​ 굿노트, 노타빌리티, 캘린더 앱 등 다양한 앱의 사용법은 책에 삽입된 QR코드를 통해 동영상 강의로 쉽게 확인할 수 있다. 또한, 저자가 직접 제작한 다이어리 및 플래너 템플릿을 활용하여 ‘나만의 다이어리’를 만들 수 있다. 아이패드를 단순한 콘텐츠 소비 도구로만 사용해왔다면, <된다! 하루 5분 아이패드 기록 생활>을 통해 새로운 활용법을 발견할 수 있을 것이다. 이 책은 아이패드를 활용한 다양한 기록 방법과 앱 활용 팁을 제공하여 일상 속에서 꾸준한 기록 습관을 형성하는 데 도움을 준다.
작성일 : 2025-05-19
AI 마케팅 시대, ‘실전형 생성형 AI 지형도 3.0’ 공개
PR 및 마케팅 전문가 위한 ‘실전형 생성형 AI 지형도 3.0’ 소개    생성형 AI 지형도 3.0 (이미지 제공 : 함샤우트 글로벌) 함샤우트 글로벌이 급변하는 생성형 AI 시장의 흐름을 반영한 ‘생성형 AI 지형도 3.0’을 새롭게 선보였다. 지난해 3월과 9월에 이은 세 번째 업데이트를 통해 공개된 이번 지형도는 단순한 정보 나열을 넘어, 마케팅 실무자들이 실제 업무에 적용 가능한 ‘실행형 가이드’로서 AI 도구 선택의 기준을 제시하고 AI 시대의 전략적 도구 역할을 할 것으로 보인다. 마케팅 업무 42% 대체 전망…실무 중심 ‘실행형 AI 지형도’로 진화   IDC의 연구에 따르면 2026년까지 생성형 AI가 전통적인 마케팅 업무의 42%를 대체하고, 2029년까지 전체 마케팅 생산성을 40% 향상시킬 것으로 예측된다. 이미 79%의 마케터들이 콘텐츠 제작에 생성형 AI를 활용하고 있으며, 기업들의 30%는 AI 투자에서 2배의 투자수익률(ROI)을, 40%는 3배 이상의 ROI를 기대하고 있는 상황이다. 이러한 변화는 마케터의 업무 방식을 근본적으로 변화시키고 있다. 단순한 보조 도구를 넘어, 생성형 AI는 마케터가 전략 수립부터 실행까지 주도적으로 이끌어갈 수 있도록 돕는 ‘필수 업무 파트너’로 그 중요성이 커지고 있다. 함샤우트 글로벌은 이러한 시장의 흐름을 반영하여 이번 ‘생성형 AI 지형도 3.0’을 단편적인 AI 툴 분류를 넘어 실제 업무에 즉시 활용 가능한 실행형 가이드로 기획했다. 업무 목적별 AI 툴 정보 제공…클릭 한 번으로 상세 정보 확인   함샤우트 글로벌이 공개한 ‘생성형 AI 지형도 3.0’은 마케팅 및 PR 업무에 필수적인 △범용 생성형 AI, △콘텐츠 제작 및 편집, △데이터 분석 및 보고, △마케팅 및 프로모션 자동화, △업무 관리 영역에 특화된 AI 툴 정보를 제공한다. 특히 기존의 AI 지형도들이 단순히 AI 툴의 카테고리만 보여주는 것과 달리, 각 툴에 대한 자세한 정보를 확인할 수 있는 페이지로 연결되도록 제작된 것이 특징이다. PDF 형태로 제공되는 ‘생성형 AI 지형도 3.0’에서 툴 로고를 클릭하면 AI 전문 정보 플랫폼 ‘AI 매터스(AI Matters)’에서 제공하는 상세 정보를 확인하고 실제 업무에 바로 활용할 수 있도록 편의성을 높였다.   웹 탐색 기반 AI 툴 확산, 멀티모달 기능 통합 등 핵심 변화 주목   생성형 AI 시장이 빠르게 변화하는 만큼, 함샤우트 글로벌이 지난해 9월 발표한 2.0 버전과 비교했을 때 이번 ‘생성형 AI 지형도 3.0’에서는 다음과 같은 핵심적인 변화들을 확인할 수 있다. 가장 눈에 띄는 변화는 실시간 정보 검색 기능을 탑재한 웹 탐색 기반 AI 툴의 확산이다. 챗GPT나 퍼플렉시티(Perplexity)와 같이 뉴스 기사, SNS 트렌드, 업계 보고서 등 외부 정보를 실시간으로 검색하고 활용할 수 있는 기능이 적용된 툴이 크게 증가하여, 마케터들은 하나의 도구만으로 정보 조사부터 콘텐츠 제작까지 통합적으로 처리할 수 있게 되었다. 특히 마누스(Manus)나 젠스파크(Genspark)와 같은 AI 에이전트까지 등장하며 더욱 포괄적인 탐색과 심층적인 분석이 가능해졌다. 또한 이미지 생성, 텍스트 작성, 음성 합성, 영상 편집 등 다양한 기능을 하나의 툴에 통합한 ‘올인원 툴’, 즉 멀티모달 기능을 통합한 AI 툴이 급증했다는 점도 중요한 변화다. 전체 AI 툴 중 약 40%가 복합적인 멀티모달 기능을 제공하는 것으로 나타났다. 이와 더불어 한국어를 정식으로 지원하는 AI 툴이 크게 늘어 국내 마케팅 실무자들이 언어 장벽 없이 다양한 글로벌 툴을 활용할 수 있는 기반이 마련되었다. 지형도 2.0 발표 당시보다 한국어 지원 AI 툴이 40% 이상 증가한 것은 국내 사용자들에게 매우 긍정적인 변화라고 할 수 있다. AI 시대, SAO(Search AI Optimization) 전략 중요성 부각   생성형 AI의 대중화로 인해 소비자 행동 양상이 빠르게 변화하면서 함샤우트 글로벌이 연구한 DCA(Desire, Chat, Action) 모델과 같은 새로운 소비자 의사결정 과정이 중요하게 자리 잡고 있다. 소비자들이 AI와의 대화를 통해 정보를 얻고 구매를 결정하는 환경에서는 AI 생성 결과물에 브랜드가 어떻게 노출되는지가 마케팅의 핵심 요소로 떠오르고 있다. 따라서 기업들은 단순한 업무 자동화를 위한 AI 활용뿐만 아니라, SAO(Search AI Optimization), 즉 AI 검색 최적화를 통해 자사의 브랜드가 AI 생성 결과물에 효과적으로 노출될 수 있는 전략 수립에 더욱 심혈을 기울여야 할 것이다. 함샤우트 글로벌 김재희 대표는 “이번 지형도 3.0은 단순한 AI 트렌드 정리를 넘어, 생성형 AI 시대에 마케팅 실무자들에게 실질적으로 필요한 도구와 정보의 길잡이를 제공하는 데 큰 의미가 있다”며 “빠르게 발전하는 AI 생태계 속에서 지형도 3.0은 실전 마케터들의 ‘AI 나침반’이자 전략적 의사결정을 위한 로드맵이 될 것”이라고 강조했다. 이번에 공개된 ‘생성형 AI 지형도 3.0’을 통해 마케터들은 자신의 업무 목적에 따라 필요한 AI 툴을 쉽고 빠르게 선택할 수 있다. 첨부 파일에서 고해상도 파일로 다운 가능하다.
작성일 : 2025-05-10
수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석
최적화 문제를 통찰하기 위한 심센터 히즈 (3)   이번 호에서는 심센터 히즈(Simcenter HEEDS)를 사용하여 수집된 외부 데이터를 시각화하고 분석하는 데 초점을 맞추고, 데이터 시각화의 중요성과 분석 기법의 활용 방안을 살펴본다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 및 사례 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 및 사례 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 및 사례 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 및 사례 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화 및 사례   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   데이터 분석의 중요성 오늘날 데이터는 우리의 일상과 비즈니스 운영에서 점점 더 중요한 역할을 하고 있다. 수집되고 측정된 데이터의 양이 증가하면서 이를 효과적으로 처리하고 분석하는 방법은 더욱 필요해지고 있다. 이러한 변화 속에서, 지멘스의 심센터 히즈는 강력한 데이터 분석 및 시각화 기능을 제공하여 다양한 산업 분야에서 최적의 해결책을 찾는 데 기여하고 있다. 이번 호에서는 히즈의 기능을 효과적으로 활용하여 어떻게 복잡한 데이터를 이해하고 의미 있는 인사이트를 얻을 수 있는지 살펴볼 것이다.   히즈의 데이터 분석 기능 히즈의 Discover(디스커버) 탭은 사용자가 데이터 사이의 관계 및 최적화 가능성을 탐구할 수 있도록 다양한 도구를 제공한다. Discover 기능은 주요한 데이터 분석 및 이해를 도와주는 여러 방법을 포함하고 있다.    그림 1   다음은 각각의 기능에 대한 설명이다.  Closest : 특정 데이터 포인트에 가장 가까운 변화를 식별한다. 이를 통해 최적화 과정에서의 데이터 민감성을 이해하고 결정에 도움을 줄 수 있다.  Similar : 사용자가 선택한 기준에 따라 유사한 데이터 집합을 찾는 기능이다. 이는 집합의 규칙 또는 모델을 파악하는 데 유용하다. Clusters : 데이터 세트를 서로 연관된 그룹으로 분류한다. 군집화 기법을 통해 데이터의 패턴을 식별하고 알고리즘에 의한 데이터 이해를 개선할 수 있다.  Trade-offs : 다수의 설계 목표 간의 상충 관계를 분석한다. 이를 통해 각각의 설계 대안이 어떻게 특정 목표를 달성하는지에 대해 명확하게 이해할 수 있다.  Patterns : 데이터 내의 반복되는 경향이나 구조를 발견하여 예측 및 모델링에 도움을 주는 기능이다. 패턴 인식은 정보의 신뢰도를 높이는 데 중요하다.  Preview History : 사용자가 수행한 변경이나 실행의 기록을 미리 보면서 데이터 분석의 이력을 관리할 수 있다.  Design Set : 여러 디자인 시나리오를 만들고 비교하여 최적의 설계를 도출하는 데 도움을 준다.  Performance & Plot : 데이터의 성능을 평가하고 시각적으로 플롯하여 분석 결과를 명확하게 표현한다.  Discover 탭의 이러한 기능은 히즈 사용자가 데이터를 깊이 이해하고 시뮬레이션 최적화 과정에서 효과적인 의사 결정을 내리도록 돕는다. 이를 바탕으로 보다 정확하고 신뢰성 있는 설계와 분석 결과를 도출할 수 있다.   데이터 분석을 위한 예제   그림 2    목적함수 외팔보 H빔의 체적을 최소화 제약 조건 최대 굽힘 응력(σ) ≤ 200 MPa  최대 끝단 처짐(δ) ≤ 2 mm  설계 변수 Length : 5,000 mm  Load P : 6,500 N  E : 200 MPa  H : 50 mm ≤ H ≤ 100 mm  h1 : 5 mm ≤ h1 ≤ 30 mm  b1 : 50 mm ≤ b1 ≤ 100 mm  b2 : 5 mm ≤ b2 ≤ 50 mm 히즈의 Discovery Method를 사용하여 분석할 데이터는 우리가 지금까지 계속 예제로 사용한 외팔보의 처짐 문제를 기반으로 Adaptive Sampling Study(어댑티브 샘플링 스터디)에서 500개의 데이터를 생성하여 사용할 것이다. 아니면 독자들이 가지고 있는 데이터를 사용해도 괜찮다.   그림 3     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
아키텍처 모델과 1D 모델의 전략적 연계
MBSE를 위한 아키텍처-1D 모델 연계의 중요성 및 적용 전략 (1)   제조산업에서 설계 효율 향상과 개발 기간 단축을 위해 모델 기반 개발(MBD)을 적극 도입하고 있지만, 아키텍처 모델과 1D 모델 간의 연계 부족으로 인해 개발 단계에서 모델의 실질적인 활용과 의사결정 지원이 어려운 경우도 많다. 이번 호에서는 MBD의 성과를 높이기 위한 아키텍처 모델과 1D 모델의 체계적인 연계 방안을 제시하고, 이를 통한 설계 효율 및 개발 정확성 향상의 전략적 방향을 살펴본다.   ■ 오재응 한양대학교 명예교수, LG전자 기술고문   최근 제조산업은 제품의 개발 기간 단축과 다품종 생산이라는 트렌드에 대응하기 위해 개발의 효율성을 극대화하고 반복 설계를 최소화하는 방향으로 변화하고 있다. 이러한 흐름 속에서 모델 기반 개발(Model-Based Development : MBD)은 이미 많은 제조업체가 적극 추진하고 있으며, 이를 통해 설계 초기부터 제품의 동작을 예측하고 최적화할 수 있는 기반을 마련하고자 한다. 그러나 모델 기반 개발을 도입하고 실제로 모델을 구축했음에도 불구하고, 현업에서 모델이 제대로 활용되지 못하는 경우가 많다. 이는 구축된 모델이 단지 형식적으로 존재할 뿐, 제품 개발의 맥락 속에서 아키텍처적, 1D적 연결성을 갖추지 못해 실질적인 의사결정과 개발 단계에서 활용되지 못하고 있기 때문이다. 즉, 원래 의도한 목적이나 아키텍처적 요구와 연계되지 않은 모델이기 때문에, 사용자는 해당 모델이 ‘내 일에 어떻게 쓰이는지’를 이해하지 못하고 거리감을 느끼는 것이다. 이러한 문제를 극복하기 위해서는 아키텍처 모델과 1D 모델을 유기적으로 연계하고, 이를 기반으로 아키텍처 요구사항을 구체화할 수 있어야 한다. 아키텍처 모델이란 제품의 구조, 기능, 물리적 메커니즘 등 아키텍처적 개념을 설명하는 모델이며, 1D 모델은 이러한 개념을 수학적으로 해석하고 시뮬레이션 가능한 형태로 정형화한 것이다. 따라서 아키텍처 모델과 1D 모델 간의 연계는 제품 개발의 전체 V자 프로세스에서 핵심 역할을 하며, 상호보완적으로 작용하여 제품 성능 검증 및 요구사항 만족 여부를 평가하는 데 기여한다.   그림 1. 아키텍처 모델 – 1D 모델 연계   <그림 1>은 이러한 개념을 시각적으로 설명한다. 초기의 아키텍처 설계 단계에서 아키텍처 요구와 구조를 정의한 뒤 이를 바탕으로 1D 모델이 생성되고, 시뮬레이션 및 해석을 통해 결과를 도출하며, 이 결과는 다시 상위의 아키텍처 요구사항에 대한 검증으로 이어진다. 이처럼 상향식-하향식 피드백 루프를 통해 아키텍처 모델과 1D 모델이 반복적으로 연계되어야 진정한 의미의 모델 기반 개발이 실현될 수 있다. 특히 설계자와 개발자는 1D 모델은 제품을 해석하고 튜닝하는 강력한 도구라고 인식하지만, ‘왜 이 설계를 했는가’, ‘서브시스템 간 구조는 어떻게 되는가’, ‘요구사항은 어떻게 충족되는가’와 같은 질문에는 답하지 못한다. 그 해답을 주는 것이 바로 아키텍처 모델(MBSE)이며, 이 두 모델을 연결해야만 설계의 정확성, 추적성, 협업성이 동시에 확보된다.   다양한 유형의 아키텍처적 측정 간의 관계   그림 2. ISO/IEC 15288 System Life Cycle Technical Processes & Life Cycle   ISO/IEC 15288(그림 2)은 시스템 수명주기 전반에 걸친 아키텍처 프로세스의 흐름과 체계를 정의한 국제 표준이다. 특히 이 표준은 모델 기반 시스템 엔지니어링(Model-Based Systems Engineering : MBSE) 관점에서 시스템 개발 활동을 구조화한 것으로, 시스템 수명 주기(V 모델)를 기반으로 요구 분석, 설계, 검증 및 확인, 유지보수 등 각 단계의 아키텍처적 활동과 그 상호 관계를 정립한다. 시스템 엔지니어링 활동을 통해 성공적인 시스템을 구축하기 위해서는 다양한 아키텍처적 성과 지표와 측정 지표가 필요하며, 이를 통해 시스템의 목표 달성 여부를 판단할 수 있다. 대표적인 지표로는 다음과 같은 세 가지가 있다. MOE(Measure of Effectiveness, 효과성 측정지표)는 시스템이 실제 운용 환경에서 얼마나 효과적으로 임무를 수행할 수 있는지를 평가하는 지표로, 주로 고객 요구사항이나 운용 목표 달성 여부에 초점을 맞춘다.  MOP(Measure of Performance, 성능 측정지표)는 시스템의 성능 수준을 수치적으로 정량화한 것으로, 설계 명세나 요구된 성능 기준을 얼마나 충족하는지를 평가한다.  TPM(Technical Performance Measure, 아키텍처 성과 측정지표)은 개발 과정 중 아키텍처 적인 목표 도달 여부를 지속적으로 모니터링하고 예측하는 데 사용되는 지표로, 시스템 개발 리스크를 조기에 식별하고 관리하는 데 활용된다. 이러한 측정 지표는 예측 차이나 실측 차이를 바탕으로 비교 분석할 수 있으며, 시스템 개발 단계에서 시스템의 위험 요인에 대한 조기 탐지와 개선 대책의 선제 적용이 가능하도록 지원한다. 이는 곧 사업의 비용 효율성 제고와 일정 준수에 기여하며, 전체 수명주기 동안 긍정적인 영향을 유도할 수 있다.  <그림 2>는 ISO/IEC 15288의 V-모델과 아키텍처적 측정 지표가 어떻게 연계되는지를 보여준다. 요구사항 도출과 검증, 설계와 확인 간의 대응 관계를 통해 아키텍처적 활동이 체계적으로 연결되며, 수명주기 전체에서 MOE, MOP, TPM이 통합적으로 작동하여 아키텍처적 리스크를 관리하고 시스템의 성공적인 구현을 가능하게 한다.      ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
카티아 VMU를 활용한 설계 검증 혁신
산업 디지털 전환을 가속화하는 버추얼 트윈 (2)   이번 호에서는 VMU(가상 목업)의 개념과 기술적 특성, 주요 산업 사례, 그리고 VMU의 혁신적 가치와 향후 확장 가능성에 대해 살펴본다.    ■ 최윤정 다쏘시스템의 기술 컨설턴트로 디자인&엔지니어링 팀에서 3DEXPERIENCE CATIA 제품을 담당하고 있다. 자동차 산업을 위한 고급 서피스 모델링 및 가상 검증 영역을 전문으로 하고 있으며, 제조업의 VMU 도입 효과성 관련 학술연구 또한 수행 중에 있다. 홈페이지 | www.3ds.com/ko   가상 시뮬레이션 기술이 점차 고도화됨에 따라, 제품 개발 전 과정에서 디지털 모델을 활용하여 제품 품질과 개발 효율성을 높이려는 시도가 활발하게 이루어지고 있다. VMU(Virtual Mock-Up, 가상 목업) 기술은 3D익스피리언스 카티아(3DEXPERIENCE CATIA)에 기반한 가상 검증 프로세스로, 설계 오류와 품질 상의 문제점을 조기에 식별·개선하고 개발 비용과 시간을 절감하는 혁신적 방식으로 주목받고 있다. 제품의 실물을 제작하지 않고도 고품질 렌더링을 통해 시각적·감성적 요소를 평가할 수 있기 때문에, 다양한 산업 분야에서 VMU의 필요성이 커지고 있다.   그림 1. 카티아 설계 데이터 화면   그림 2. 카티아에서 재질을 적용한 설계 데이터 화면   VMU의 개념과 기술적 특징 VMU는 고품질 렌더링 기술을 활용해 설계 데이터를 가상 환경에서 실물과 유사하게 재현하여, 설계 오류와 품질 상의 문제점을 조기에 식별·개선하는 기술이다. 이 프로세스는 실물 목업을 제작하지 않고도 제품 외관을 정확히 시뮬레이션함으로써 제품 개발 시간과 비용을 단축한다. 기존의 DMU(Digital Mock-up, 디지털 목업)는 주로 설계 과정에서 형상과 구조 검증에 초점을 둔다. 즉, 3D 설계 데이터 상에서 간섭 검사, 조립 순서·공정 시뮬레이션, 각 부품의 형상 적합성 등을 확인하는 용도로 사용된다. 한편, VMU는 DMU에서 한발 더 나아가, 광학 특성(반사·굴절), 질감, 점등 이미지 등 외관 품질을 실사 수준으로 구현하며, 인체공학 기반의 휴먼 모델(human model)을 연계해 실제 사용 환경에서의 조작성, 시야 확보성 등을 종합적으로 검토할 수 있다. XR(확장현실) 기술과의 융합을 통해 몰입형 품평 환경도 제공된다. 자동차 외장 램프처럼 미세한 빛의 반사·굴절을 예측 및 검증해야 하는 제품은 VMU를 활용할 경우 실물 목업 없이 외관 이미지를 높은 정확도로 검토함으로써 개발 리스크를 크게 줄일 수 있다. 기존에 카티아를 기반으로 제품 설계를 하고 있는 다양한 산업군에서 VMU는 이미 필수 프로세스로 자리매김하고 있다. 설계, 렌더링, 검증 및 품평을 하나의 일관된 프로세스로 결합함으로써 제품 개발 방식에 혁신적인 변화를 가져올 수 있다. 데이터 변환이나 별도 인터페이스가 필요 없이 동일 플랫폼에서 모든 단계가 이뤄지므로, 데이터 손실이나 형상 왜곡을 최소화하고 기존에 없던 빠르고 유연한 협업 환경을 구축할 수 있다. 이를 통해 제품의 완성도와 품질을 높이는 긍정적 효과가 입증되었다.    표 1. 실물 목업 및 기존 렌더링 툴과의 비교   3D익스피리언스 카티아 기반의 VMU 프로세스 적용 사례 자동차 외장 램프 품질 검증 사례 자동차 외장 램프는 외관과 점등 이미지가 모두 중요하여, 시각적 품질 검증이 설계 단계에서 핵심 과제로 부각된다. 기존에는 정확도를 높이기 위해 실물 금형과 목업을 제작했으나, 이 방식은 과도한 시간과 비용 투자를 요구했다. 대체 방법으로 3D 프린팅 등의 기술을 이용하기도 했지만, 정밀도가 부족하다는 한계가 있었다. 이 문제를 해결하기 위해 최근 카티아 기반 VMU 프로세스를 적용한 디지털 선행 검증이 주목을 받고 있다. 미세 광학 요소와 복잡한 반사·굴절 특성을 지닌 램프를 고정밀 시뮬레이션할 수 있어, 점등·비점등 시의 실제 이미지를 실물 목업 수준으로 재현한다. 특히 스캔을 통해 확보한 시편 데이터의 정확한 물성을 설계 데이터에 적용함으로써 곡률에 따른 왜곡이나 광원으로 인한 반사를 사실적으로 재현하고, 실차에 장착했을 때 예상되는 품질 이슈까지 가상 환경에서 검토할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
비즈니스 프로세스 모델링을 배워보자
BPMN을 활용하여 제품 개발의 소통과 협업 극대화하기 (3)   지난 호에서는 BPMN(Business Process Modeling Notation)의 구성 요소를 살펴보고, 간단한 예제를 통해 주요 기능과 특징을 개괄적으로 파악해 보았다. 이번 호에서는 BPMN을 작성하기 위한 모델링 툴을 살펴보고, 이를 활용하여 비교적 간단한 비즈니스 프로세스 모델을 작성하는 방법을 소개하도록 하겠다.   ■ 연재순서 제1회 비즈니스 프로세스 모델링이 필요한 이유 제2회 BPMN은 무엇일까? 제3회 비즈니스 프로세스 모델링을 배워보자 제4회 간단한 제품 개발 프로세스를 디자인해보기 제5회 클라우드 서버 환경에서 BPMN을 연결하는 설루션 탐구   ■ 윤경렬 현대자동차 연구개발본부 책임연구원 ■ 가브리엘 데그라시 이탈리아 Esteco사의 프로젝트 매니저   우리는 지난 호에서 BPMN이 무엇인지에 대해 알아보았다. 우선 BPMN의 구성 요소를 살펴보았고 아주 간단한 BPMN 예제를 통해 주요 기능과 특징을 개괄적으로 파악해 보았다. 또한 BPMN을 활용하여 리프 스프링 개발 프로세스를 모델링하는 사례를 통해, 일반적인 WBS와 비교해 보았을 때 개발에 참여한 이해관계자들이 어떻게 협업을 해야 하는지 명확하게 파악할 수 있다는 것을 알게 되었다.   BPMN 웹사이트에서 모델러 확인 및 다운로드받기 BPMN을 작성하기 위한 모델링 툴을 알아보기에 앞서, 지난 호에서 소개한 바 있는 OMG 그룹에서 운영하고 있는 BPMN 웹사이트를 우선 찾아가 보도록 하겠다. OMG의 웹사이트(www.bpmn.org)에서는 기본적인 BPMN 개념 정의부터 새로운 BPMN 표준에 대한 연구까지 자세하게 소개하고 있으며, BPMN의 개념, 문서, 예제, 표준화 진행 등에 대한 내용이 자세하게 기술되어 있어서 BPMN을 이해하고 활용하는데 많은 도움을 받을 수 있다.   그림 1. OMG 그룹에서 운영하는 BPMN 웹사이트   우리는 여기서 세 가지 정도를 간단하게 살펴보고자 한다. 우선 ‘Examples’에는 BPMN을 보다 쉽게 이해할 수 있도록 다양한 분야의 예제를 템플릿 형태로 제공하고 있어, 사용자가 이를 활용하여 빠르게 BPMN을 적용해 볼 수 있도록 도움을 주고 있다. 다음은 ‘Implementers’로 현재 BPMN을 지원하고 활용하는 산업과 사례를 소개하고 있는데, 생각보다 다양하고 유명한 회사에서 어떻게 활용되고 있는지 확인할 수 있다.   그림 2. 다양한 예제를 보여주는 Examples   그림 3. 사례를 보여주는 Implementers   마지막으로 ‘BPMN MIWG’에서는 BPMN 표준을 준수하고 상호 모델을 교환하고 위한 목적으로 다양한 툴(소프트웨어)을 소개하고 비교 분석을 수행하고 있다. 우리가 여기서 관심 있게 살펴보려고 하는 것은 ‘View current test results on various tools’의 내용이다. 개인적 취향 및 선호도에 따라 모델링을 하기 위한 툴을 선택할 수 있지만, 대부분 표준을 잘 준수하고 있어서 표준 모델링의 경우 선택의 차이는 크지 않을 것으로 생각된다. 그래서 BPMN 모델을 작성하기 위해 우리는 상대적인 차이가 크지 않지만 인지도가 높은 ‘Camunda Modeler’를 선택하였다.   그림 4. 다양한 모델러에 대한 표준 및 상호 모델 교환 수준에 대한 정리     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[핫윈도] 디지털 트윈 기대 속에 실질적 도입과 확산 위한 노력 필요
캐드앤그래픽스 디지털 트윈 설문조사 분석   디지털 트윈 기술에 대한 관심이 국내 제조 및 엔지니어링 업계를 중심으로 높아지고 있지만, 실제 산업 현장에서는 여전히 다양한 현실적 제약에 직면해 있는 것으로 나타났다. 캐드앤그래픽스는 국내 디지털 트윈 현황을 집대성한 ‘디지털 트윈 가이드’를 발간하고, 국내 제조 및 엔지니어링 업계 관계자를 대상으로 3월 13일부터 4월 14일까지 ‘국내 디지털 트윈 현황 설문조사’를 실시했다. 총 1212명이 참여한 이번 설문조사에서는 디지털 트윈의 이해도, 적용 분야, 도입 단계, 구축 시 어려움 등 다양한 관점에서 기술의 현주소를 조망했다. 특히 디지털 트윈을 실제로 사용 중인 기업과 종사자를 대상으로 진행한 심층 조사에서는 기술 도입 과정에서의 구체적인 어려움과 향후 투자 계획 등 실질적인 인사이트가 도출됐다. ■ 최경화 국장   설문조사 개요 및 참가자 현황 이번 설문조사는 국내 제조 엔지니어링 업계 관계자 1212명을 대상으로 진행되었다. 설문 참가자들의 배경은 다양한 산업 분야에 걸쳐 있었으며, 이는 디지털 트윈 기술이 단일 산업에 국한되지 않고 여러 분야에서 관심을 받고 있음을 시사한다. 참가자들의 직무 또한 연구개발, 설계, 생산, 관리 등 다양한 영역에 분포하고 있어, 디지털 트윈 기술이 기업 내 여러 부서와 직무에 걸쳐 중요성을 인정받고 있음을 알 수 있었다. 디지털 트윈 관련 업무 분야에서도 다양한 응답이 나타나, 이 기술의 응용 범위가 넓어지고 있음을 확인할 수 있다.   주력 산업 분야 설문 응답자들의 주력 산업 분야는 ‘건축/건설/토목’(22.7%)과 ‘전기전자/하이테크/반도체’(17.9%), ‘시각화/그래픽/디자인’(14.2%) 등이 높은 비중을 차지했으며, 자동차, 플랜트 등 다양한 산업 분야가 분포되어 있음을 알 수 있다.   그림 1. 설문 응답자 현황 - 주력 산업 분야   직무 분야 설문 응답자들의 직무 분포는 ‘엔지니어’(41.2%)가 압도적으로 높은 비율을 보였고, ‘경영진/임원’(15.9%), ‘SW 개발’(14.3%) 순으로 나타나, 기술 및 관리 직무 종사자들의 높은 관심을 반영했다.   그림 2. 설문 응답자 현황 – 직무   디지털 트윈 관련 업무 분야 설문 응답자들의 디지털 트윈 관련 업무 분야에 대해서는 CAD/3D 모델링이 가장 높게 나타났고, AI/머신러닝, CAE/시뮬레이션 순으로 나타났다.    그림 3. 설문 참가자 현황 - 디지털 트윈 관련 업무 분야   국내 디지털 트윈 도입 현황 - 뜨거운 기대감과 더딘 현실 디지털 트윈 이해 수준 기술에 대한 이해 수준은 아직 부족한 것으로 나타났다. 디지털 트윈 이해 수준에 대해서는 ‘대체로 알고 있다’(36.8%)와 ‘조금 알고 있다’(37.2%)가 비슷한 비율을 보였으며, ‘매우 잘 알고 있다’ (10.4%)는 소수에 불과했다. ‘잘 모른다’(15.6%)는 응답도 상당수를 차지했다. 이는 기술에 대한 인지도는 높지만, 깊이 있는 이해와 활용 능력은 아직 부족하다는 점을 시사한다.   그림 4. 디지털 트윈에 대한 이해 수준   디지털 트윈 발전 전망 반면, 디지털 트윈의 미래에 대한 업계의 기대는 매우 컸다. 향후 디지털 트윈 발전 전망에 대한 응답에 따르면 ‘매우 중요하게 성장할 것’(66%)과 ‘다소 성장할 것’(30.5%)이라는 답변이 전체의 압도적인 대다수를 차지했다. 또한 전체 응답자의 96.5%가 기술의 중요성과 잠재력에 대해 폭넓은 공감대를 형성하고 있음을 확인시켜 주었다.   그림 5. 디지털 트윈 향후 발전 전망   디지털 트윈 사용 기업 및 도입 현황 디지털 트윈을 실제로 사용하고 있는 기업 및 유저를 대상으로 한 심층 조사에는 총 385명이 참여했다. 이들 기업의 규모는 매출액과 직원 수를 기준으로 다양하게 분포하고 있어, 디지털 트윈 기술이 대기업뿐 아니라 중소기업에서도 점차 도입되고 있음을 알 수 있다.   디지털 트윈 사용 기업 규모 디지털 트윈 사용 기업의 매출액은 5000억원 이상이 48.8%를 차지해 가장 높은 분포를 보였으며, 1000억원 이상~500억원 미만이 13.2%로 큰 기업들이 주로 관심을 가지고 있었음을 알 수 있었다. 직원 수도 5000명 이상이 32.2%로 가장 높은 수치를 차지했으며, 1000명~5000명 미만이 17.9%, 100명~500명 미만이 11.7% 순으로 나타났다.    그림 6. 디지털 트윈 사용 기업 매출액   디지털 트윈 사용 기업 적용 분야 디지털 트윈 적용 분야는 ‘제품 설계 및 시뮬레이션’(66.8%), ‘생산/제조 운영’(43.9%), 설비 모니터링 및 유지보수(39.2%) 순으로, 제품 개발과 생산 영역에 활용이 집중되는 경향을 보였다. 제조 분야에 비해서는 사용이 적지만 도시, 에너지, 교통, 물류, 의료 등 다양한 영역에서 활용되고 있음을 확인할 수 있다. 특히 제조업 분야에서는 생산 공정 최적화, 품질 관리, 설비 예지 보전 등의 목적으로 활용되고 있을 것으로 추정된다.   그림 7. 디지털 트윈 적용 분야   디지털 트윈 적용 목적 디지털 트윈을 적용하는 주요 목적은 ‘설계 최적화’(61.0%), ‘생산성 향상’(54.5%), ‘운영 효율화’(46.2%) 등 효율성 증대 관련 항목들이 우위를 점했다.   그림 8. 디지털 트윈 적용 목적   디지털 트윈 도입 단계 아직까지 디지털 트윈에 대한 관심은 높지만 실제 사용 보다는 검토 중인 기업이 많은 것으로 나타났다. 디지털 트윈 사용 기업의 도입 단계 관련 답변을 보면, ‘도입 검토 중’(43.6%)이 가장 큰 비중을 차지했다. 이어 ‘일부 시스템 도입 완료’(18.4%), ‘PoC(파일럿) 진행 중’(12.2%), ‘전사 확산 및 활용 중’은 4.2% 순으로, 본격적인 활용 단계에 진입한 기업은 소수임을 알 수 있었다. ‘도입 계획 없음’(17.9%)이라는 응답도 적지 않았다.    그림 9. 디지털 트윈 도입 단계   다양한 상용 디지털 트윈 툴 사용… 자체 개발·검토도 다수 디지털 트윈 기술의 확산과 함께, 국내 기업들이 활용 중인 디지털 트윈 소프트웨어 및 플랫폼은 매우 다양하며, 기업별로 도입 단계나 활용 수준에서도 큰 차이를 보이는 것으로 나타났다. ‘현재 사용 중인 디지털 트윈 툴’에 대한 주관식 응답 결과를 분석해 보면, 국내 산업계는 BIM 기반 플랫폼, CAE 시뮬레이션 도구, PLM 및 협업 플랫폼, 그리고 게임 엔진 기반 시각화 도구를 중심으로 디지털 트윈 기술을 도입하고 있는 것으로 나타났다. 아래 내용은 답변 내용을 중심으로 정리한 것이다.   BIM 및 설계 중심 소프트웨어의 강세 디지털 트윈 구축의 초기 단계에서 가장 두드러지는 분야는 설계 기반 모델링(BIM) 도구다. 응답자 중 상당수가 오토데스크의 레빗(Revit), 오토캐드, 시빌 3D(Civil 3D), 나비스웍스(Navisworks) 등을 사용하고 있다고 응답했다. 벤틀리 시스템즈의 아이트윈(iTwin), 트림블의 테클라(Tekla) 및 트림블 커넥트(Trimble Connect), 아비바의 아비바 E3D(AVEVA E3D) 등도 건설·플랜트 산업에서 활용하고 있다고 답변했다.   정밀 해석 기반의 시뮬레이션 툴 확산 앤시스(Ansys), 아바쿠스(Abaqus), 하이퍼웍스(HyperWorks), LS-DYNA, 시뮬링크(Simulink), 아담스(Adams), GT-스위트(GT-Suite), 플렉스심(FlexSim) 등 해석 전문 툴의 사용도 두드러졌다. 특히 제품 설계나 공정 시뮬레이션에서 정밀한 모델링이 필요한 제조업, 자동차, 중공업 분야에서는 다물리 해석 툴 기반의 디지털 트윈 구현이 주를 이뤘다.   PLM 기반 통합 디지털 플랫폼도 주목 설계-생산-운영 전 주기를 통합 관리하기 위한 PLM 기반 플랫폼도 활발히 사용되고 있다. 다쏘시스템즈의 3D익스피리언스(3DEXPERIENCE), 카티아(CATIA), 에노비아(ENOVIA), 지멘스의 NX, 팀센터(Teamcenter), 플랜트 시뮬레이션(Plant Simulation), PTC의 크레오(Creo), 윈칠(Windchill), 씽웍스(ThingWorx) 외에도 전문 툴인 비주얼컴포넌트 등은 스마트 공정 및 운영 관리까지 연계된 디지털 트윈 구현에 활용되고 있는 것으로 보인다.   게임엔진 기반 실시간 시각화 기술 부상 유니티(Unity), 언리얼 엔진(Unreal Engine), 트윈모션(Twinmotion), 엔비디아 옴니버스(Omniverse) 등 게임엔진 기반 시각화 도구는 실시간 협업과 현장 시뮬레이션에서 각광받고 있다. 특히 언리얼엔진, 유니티와 옴니버스 등은 다른 플랫폼과의 연동성을 강화해 디자인 협업 및 공정 검증에 널리 활용되고 있다.   자체 설루션 및 커스터마이징 비율도 높아 이밖에도 국산 설루션인 이에이트, 소프트힐스, 버넥트, 한국디지털트윈연구소 설루션을 이용하고 있다는 응답도 있었다. 흥미로운 점은 응답자의 상당수가 ‘인하우스 개발’ 또는 ‘자체 플랫폼’, ‘프로젝트마다 요구사항 수렴 방식’ 등의 형태로 독자적인 디지털 트윈 시스템을 운영하고 있다는 것이다. 이는 특정 상용 설루션만으로는 각기 다른 업무 흐름이나 도메인 지식을 완벽히 반영하기 어렵기 때문으로 분석된다. 또한 ‘아직 도입 예정’ 또는 ‘검토 단계’라는 응답도 적지 않아, 디지털 트윈 도입의 확산은 진행 중인 흐름임을 알 수 있다.   넘어야 할 장벽 : 현장의 목소리로 본 핵심 과제 디지털 트윈의 확산이 더딘 배경에는 공통적으로 지적된 여러 장애물이 존재했다. 특히 높은 비용과 불확실한 ROI는 가장 큰 걸림돌로 지목됐다.   디지털 트윈 시스템 구축의 어려움 디지털 트윈 사용 기업이 꼽은 구축 시 가장 큰 어려움으로 ‘초기 투자 비용’(24.4%)과 ‘전문 인력 부족’(20.5%)이 가장 높은 비율을 차지했다. 그 뒤를 이어 ‘ROI 분석의 어려움’(16.6%), ‘경영진의 이해 부족’(15.1%) 순으로 나타났다. 주관식 답변에서는 고비용의 소프트웨어, 외산 설루션 및 3D 프로그램의 높은 라이선스 비용, 디지털 전환(DX) 도입 및 유지보수 비용 과다 등 경제적 부담에 대한 토로가 많았다. 특히 기대효과가 명확해야 한다, 비용 대비 효율이 확보되지 않으면 불가능하다, 실질적인 경영 효과로 어떻게 연결되는지 의문이라며, 투자를 정당화할 명확한 성과 측정과 검증된 성공 사례 부족을 지적했다. 전문 인력 부족 문제는 교육 시스템의 부재와 연계돼 있으며, 현장에서는 관련 교육 기회가 부족하다는 지적이 많았다. 경영진의 이해 부족도 중요한 문제로 나타났다.   그림 10. 디지털 트윈 구축 시 어려움   디지털 트윈 시스템 구축 관련 투자 계획 이러한 어려움에도 불구하고, 향후 디지털 트윈에 대한 투자 의향은 비교적 긍정적이었다. 사용 기업의 향후 투자 계획을 보여주는 그래프를 보면, ‘2년 이내’(31.4%), ‘1년 이내’(19.0%), ‘6개월 이내’(11.4%) 등 2년 내 투자 계획이 있다는 응답이 전체의 61.8%를 차지했다. 반면에 ‘도입 계획 없음’(26.2%)도 상당수 있었다.   그림 11. 향후 투자 계획   미래 투자 방향과 나아갈 길 전체 응답자가 디지털 트윈 확산을 위해 가장 필요하다고 꼽은 요소를 가중치 순으로 나타낸 그래프를 보면, ‘경영진의 의지와 디지털 트윈에 대한 이해’가 다른 항목을 큰 차이로 앞서며 압도적인 1위를 차지하고 있음을 확인할 수 있다. 또한 실제 사용 기업이 겪는 어려움에서도 ‘경영진의 이해 부족’이 중요한 요인으로 드러났다. 주관식 답변에서는 ROI 증명의 어려움과 맞물려 경영진 설득의 어려움을 토로하거나, 심지어 “실제 시험을 안 해도 된다고 생각하는 경영진이 많다”는 언급까지 나와, 리더십의 인식 개선이 시급함을 알 수 있었다. 표준화의 부재 역시 반복적으로 지적되었다. 응답자들은 데이터 표준화, 3D CAD 포맷 변환, 시스템 간 호환성 부족 등을 구체적인 문제로 언급했다.   그림 12. 디지털 트윈 시스템 구축과 확대를 위해 가장 필요한 것   구체적 정보와 성공 사례의 부족 또한 큰 장벽이다. 응답자들은 산업별 사례, 성공 및 실패 경험 등을 통한 실질적 정보 공유를 절실히 요구하고 있다. 이 밖에도 데이터 확보의 어려움, 외산 소프트웨어 의존도, 기술 복잡성, 국산 소프트웨어 개발의 필요성 등이 복합적으로 언급되며, 생태계 전반에 대한 개선이 필요함을 시사했다. 따라서 성공적인 디지털 트윈 도입과 확산을 위해서는 산적한 과제를 해결하기 위한 다각적인 노력이 필요하다. 현장의 목소리와 설문 데이터는 다음과 같은 방향을 제시하고 있다. 정부의 적극적인 역할 : 중소기업 지원 확대 , R&D 지원 및 국산 소프트웨어 육성, 산업 표준화 주도, 선도적인 인프라 투자 및 정책 지원 등 정부의 체계적이고 일관성 있는 지원 정책이 요구된다. 실질적 가치 증명 및 정보 공유 : 명확한 ROI 산정 모델 개발, 산업별 성공/실패 사례 발굴 및 투명한 공유, 기술 효용성에 대한 적극적인 홍보와 교육 강화가 필요하다. 표준화 및 기술 개발 : 데이터 형식 통일, 호환성 확보 등 산업 표준을 조속히 마련하고, 사용자 편의성을 높인 기술 및 플랫폼 개발 노력이 필요하다. 인력 양성 및 생태계 조성 : 실무 중심의 교육 프로그램 개발발 및 전문가 양성 시스템 구축, 산학연관 협력 시스템 강화가 필요하다.   맺음말 : 잠재력 현실화 위한 협력과 실질적 노력 시급 이번 설문조사는 디지털 트윈에 대한 국내 산업계의 높은 관심과 함께, 도입을 가로막는 다양한 현실적 장애 요인을 통계와 목소리로 생생하게 보여준 것이라고 할 수 있다. 이 같은 결과는 국내 산업계에서 디지털 트윈 도입이 활발히 이루어지고 있으나, 여전히 도입 도구의 표준화, 조직 내 전사적 활용, 실제 업무 흐름과의 통합 등에서 과제가 많다는 점을 보여준다. 향후에는 상용 툴과 자체 개발 플랫폼 간의 융합 전략, 그리고 데이터 연동성과 유지관리 측면에서의 체계적인 접근이 더욱 중요해질 것으로 보인다. 또한 디지털 트윈이 제조업 혁신의 핵심 동력으로 자리매김하기 위해서는 산업계, 정부, 학계가 함께 협력해 실질적인 해결책을 모색하고, 지속 가능한 생태계를 조성하려는 노력이 절실하다고 할 것이다.     ■ 기사 상세 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[피플&컴퍼니] AWS 황민선 파트너 세일즈 매니저, 에티버스 김준성 전무
AI와 산업 전문성 결합해 클라우드 기반 제조 혁신 도울 것   여러 산업에서 확산되고 있는 클라우드 컴퓨팅이 제조 산업에서도 본격화될 것으로 보인다. 이를 겨냥해 아마존웹서비스(AWS)는 제조 산업의 클라우드 가치 제공을 본격화하고 있다. 한편, 에티버스는 지난 3월 25일 ‘2025 제조 고객을 위한 AWS 파트너 클라우드 설루션 콘퍼런스’를 주최했다. 이 콘퍼런스에서는 AWS를 비롯해 국내 파트너사들이 참가해 국내 제조 산업을 대상으로 클라우드 기술이 어떤 가치를 제공할 수 있는지와 구체적인 적용 방안 등이 소개됐다. AWS의 황민선 ENT-MFG&SNE(서비스 앤 에너지) 산업 담당 파트너 세일즈 매니저와 에티버스의 김준성 클라우드플랫폼 사업본부 전무로부터 국내 클라우드 시장의 동향 및 전망부터 제조 산업을 겨냥한 클라우드 전략까지 들어보았다. ■ 정수진 편집장    ▲ AWS 황민선 ENT-MFG&SNE 산업 담당 파트너 세일즈 매니저   ▲ 에티버스 김준성 클라우드플랫폼 사업본부 전무   에티버스는 어떤 기업인지 소개한다면 ■ 김준성 : 에티버스는 지난 1993년 영우컴퓨터라는 사명으로 설립되어 30여년간 글로벌 IT 공급사와의 협업을 통해 IT 토털 설루션 공급사로서 영업을 지속해 왔으며, 시스템 구축, 유지보수, 설루션 개발은 물론 빅데이터, AI, 클라우드 등 4차 산업혁명의 핵심 기술에 집중하여 미래의 IT 비즈니스의 중심이 되고자 노력하고 있다. 또한, 에티버스는 2022년 한국에서 유일하게 AWS와 디스트리뷰터 계약을 맺고 다양한 파트너와 고객들의 클라우드 여정을 돕고 있으며, 이를 위해 400개가 넘는 파트너와 협업 관계를 구축하여 각 산업 전반에 걸쳐 클라우드와 AI 생태계 확산을 돕고 있다.   클라우드 기술 기업으로서 AWS가 최근 중점을 두고 있는 부분이 있다면 어떤 것인지 ■ 황민선 : AWS는 제조 산업에 대한 다양한 지원을 통해 고객사의 디지털 혁신을 가속화하는 데에 중점을 두고 있다. 특히 주력하는 부분은 생성형 AI를 실제 현장에 적용해 비즈니스 성과를 만들어 내는 것이다. 이번 클라우드 설루션 콘퍼런스에서도 확인했듯이, 제조 기업들은 생성형 AI에 가장 높은 관심을 보이고 있으며, 실제로 품질 관리, 예측 정비, 공정 최적화 등 다양한 영역에서 활용하고 있다. 또한 AWS 기반의 전문 파트너사 설루션을 통한 산업 전문성 강화도 중요한 부분이다. AWS는 제조 산업에 특화된 전문 파트너들과 협력하여, 고객들이 현장에서 즉시 활용할 수 있는 설루션을 제공하고 있다. 더불어 스마트 매뉴팩처링의 확산도 핵심적인 중점 분야이다. 데이터 기반의 의사결정, IoT 기술을 활용한 실시간 모니터링, AI/머신러닝을 통한 공정 최적화 등을 통해 제조 현장의 디지털 전환과 혁신을 지원하고 있다. 이러한 노력의 실효성은 이번 콘퍼런스 결과를 통해서도 확인할 수 있었다. 88건의 현장 고객 미팅과 설문에서 31%의 고객이 1년 내 클라우드 도입 계획을 밝혔는데, 이는 AWS의 제조 산업 혁신 전략이 시장의 니즈와 정확히 일치한다는 것을 보여준다.   다른 산업과 비교할 때, 클라우드가 제조 산업에 제공할 수 있는 핵심 가치는 무엇이라고 보는지 ■ 김준성 : 클라우드는 기본적으로 비용 절감, 신속함, 유연성과 확장성을 핵심 가치로 보고 있는데, 제조 산업이야 말로 앞에서 얘기하는 세 가지 부분이 가장 중요하게 고려되어야 하는 산업 영역이라고 생각한다. 우선, 생산과 비용 절감은 뗄 수 없는 부분이다. 가장 효율적인 공정을 통해 생산 단가를 낮춰야 고객에게 판매할 수 있는 기본적인 경쟁력을 제공할 수 있다. 두 번째로, 고객의 요구가 급변하는 지금의 현대 사회에서 신속하고 경제적인 생산 공정이야 말로 제조업에서 가장 중요시하는 혁신 가치 중 하나라고 생각한다. 마지막으로 유연성과 확장성 역시 설명할 필요도 없이 클라우드와 제조 산업이 공유하고 있는 핵심 가치로서, 시장의 요구에 발 빠르게 대응하고 적재적소에 필요한 제화를 공급하기 위해 반드시 이루어야 하는 중요 포인트라고 할 수 있다. ■ 황민선 : 제조 산업에서 클라우드의 핵심 가치는 기업의 규모와 관계 없이 혁신을 빠르고 대규모로 가속화할 수 있다는 것이다. 과거에는 대기업만이 도입할 수 있었던 첨단 기술을 이제는 중소 제조기업도 클라우드를 통해 손쉽게 활용할 수 있게 되었다. 특히 생성형 AI나 디지털 트윈과 같은 첨단 기술을 필요한 만큼만 사용할 수 있게 된 것이 큰 변화이다. 주목할 만한 점은 비즈니스 리더들의 참여가 크게 늘어났다는 것이다. 얼리 어댑터와 IT 전문가를 넘어, 이제는 제조 현장의 비즈니스 리더들이 클라우드 기술을 활용하기 시작했다. 공장과 연구소의 현업 전문가들이 직접 클라우드 기술을 산업 현장에 적용하면서, 더욱 실질적인 혁신이 가능해졌다. 특히 글로벌 경쟁력 강화 측면에서 클라우드의 가치가 더욱 부각되고 있다. 클라우드를 통해 제조기업들은 설계와 생산 단계에서 글로벌 협업을 강화하고, 글로벌 공급망에 더욱 유연하게 대응할 수 있게 되었으며, 불확실한 경영 환경에서 민첩성과 회복력을 높이는 핵심 요소가 되고 있다.   제조 산업에서 클라우드의 가치를 실현하기 위해서 필요한 방법론 또는 접근방법은 무엇인지 ■ 황민선 : 제조 산업의 클라우드 가치 실현을 위해서는 ‘산업 전문성’과 ‘기술 혁신’이 조화를 이루는 것이 핵심이다. AWS는 이를 위해 크게 세 가지의 차별화된 접근 방식을 제시하고 있다. 첫째, 산업 데이터 패브릭(Industry Data Fabric : IDF) 접근 방식이다. 제조 기업들이 직면한 가장 큰 과제 중 하나는 데이터의 통합과 활용이다. AWS의 IDF는 제조 현장의 OT 데이터부터 엔터프라이즈 IT 데이터까지 통합하여, 실시간 분석과 의사결정을 가능하게 한다. 둘째, 강력한 파트너 생태계 기반의 산업 특화 설루션이다. AWS는 제조 산업의 다양한 워크로드에 특화된 파트너들과 협력하여 검증된 설루션을 제공한다. 셋째, 실질적인 구현을 위한 단계별 접근 방식이다. AWS는 고객들이 작은 시작부터 큰 성과까지 달성할 수 있도록 체계적인 지원을 제공한다. 앞으로도 AWS는 고객들이 작은 시작부터 큰 성과까지 달성할 수 있도록 체계적인 지원을 제공할 것이다. PoC(개념 증명)를 통한 기술 검증, 전문가 1:1 상담, 다양한 교육 프로그램 등을 통해 고객들의 성공적인 클라우드 여정을 지원할 계획이다. ■ 김준성 : 단순히 클라우드로 IT 자원을 마이그레이션하는 것보다 여러 가지 현재 상황에 대한 분석을 통해 보다 효율적이고 효과적인 전환이 필요하다고 생각한다. 몇 가지 단계를 생각해 본다면, 첫 번째로 명확한 목표에 대한 설정이 필요하다. 비용 절감, 생산성 향상, 시장 경쟁력 강화, 혁신 가속화 등 클라우드 도입을 통해 달성하고자 하는 구체적인 비즈니스 목표를 명확히 설정해야 한다. 정확한 목표가 정해지면 현재 가지고 있는 자원에 대한 분석이 필요하다. 현재 IT 인프라, 애플리케이션, 데이터, 보안 현황 등등을 정확하게 파악하여 클라우드 마이그레이션 전략을 수립해야 한다. 이를 통해 클라우드 마이그레이션을 어떤 설루션을 써서 할 것인지, 기간은 어느 정도 할 것인지 등을 특정해야 한다. 정확한 파악이 끝났다면 이번 일을 가장 잘 수행할 수 있다고 판단되는 클라우드 서비스 제공업체의 클라우드 도입 지원을 받는 것이 중요하다. 이를 통해 클라우드 마이그레이션, 관리, 보안 등 다양한 서비스를 제공 받고, 처음에 설정했던 목표와 어느정도 부합하는지에 대해 상호 검증을 통해 클라우드 전환을 성공적으로 마무리 할 수 있다고 생각한다. 에티버스는 AWS의 유일한 디스트리뷰터 파트너로서 현재 AWS 클라우드 마이그레이션 관련 협업을 하고 있는 IT 파트너가 400곳이 넘는다. 또한, 각 파트너들이 공공, 의료, 유통, 제조 등 산업 전 분야에 걸쳐 전문성을 가지고 사업을 영위하고 있으며 특히, 제조 분야에 AI를 접목하여 고객의 요구를 반영하여 클라우드 전환을 이루고 있다.   국내 제조 산업의 클라우드 활용과 관련한 주요한 흐름은 어떤지 ■ 황민선 : 국내 제조 산업의 클라우드 활용은 매우 중요한 전환점을 맞이하고 있다. 특히 세 가지 주목할 만한 트렌드가 나타나고 있다. 첫째, 생성형 AI를 중심으로 한 혁신 가속화이다. 산업통상자원부의 ‘AI 자율제조 전략’에서도 볼 수 있듯이, 2030년까지 AI 자율제조 30% 확산과 제조 생산성 20% 향상을 목표로 하고 있다. 실제로 두산로보틱스나 HL만도와 같은 기업은 이미 생성형 AI를 활용해 실질적인 성과를 창출하고 있다. 둘째, 비즈니스 리더 주도의 클라우드 도입이다. 과거 IT 인프라 담당자나 개발자 중심의 클라우드 도입에서, 이제는 현업 부서장과 경영진이 직접 클라우드 기술 도입을 주도하는 방향으로 변화하고 있다. 특히 제조 현장의 실무 전문가들이 클라우드 기술을 활용하여 혁신을 이끌어내고 있다. 셋째, 산업 특화 설루션의 확산이다. AWS는 제조 산업에 특화된 파트너 설루션 맵을 구축하고, 다섯 가지 핵심 영역(스마트 제조, 엔지니어링 & 설계, 스마트 제품 & 서비스, 공급망, 지속가능성)에서 전문 파트너들과 협력하고 있다. ■ 김준성 : 많은 고객들, 특히 제조 산업 분야에서의 클라우드 활용은 초기 단계를 넘어 본격적인 확산기에 접어들었다고 판단되나, 여전히 여러 문제로 인해 어려움을 겪고 있다. 특히 보안 관련 문제나, 오래된 레거시 시스템의 마이그레이션 및 이를 수행할 인력 부족 등의 문제로 인해 아직도 클라우드 전환을 망설이거나 시간이 오래 걸리는 고객이 적지 않은 것이 현실이다. 그럼에도 불구하고 제조 현장에서도 AI를 접목해서 생산 현장을 혁신하고 클라우드를 활용하여 신속성을 높이는 노력을 많은 곳에서 진행 중이다. 에티버스는 산업에 유익하고 필요한 AWS 파트너를 발굴하고, 그들이 고객과의 협업을 통해 빠르고 효과적인 클라우드 전환을 지원하게끔 돕는 역할을 해 나가고 있다. 또한, AI를 활용한 클라우드 서비스의 확산이 일어나고 있는데, 고객의 다양한 요구를 수용하기 위해 클라우드 생태계의 지속 확장을 통해 이를 뒷받침할 수 있는 여러 설루션의 소개와 구축에 최선을 다할 예정이다.   제조 산업의 클라우드 활용 사례에 대해서 소개한다면 ■ 김준성 : 구체적인 사례를 소개하자면, 생산 현장에서 여러 IoT 센서를 활용해 데이터를 클라우드로 수집, 분석하여 예지 보전, 생산 최적화, 품질 관리 향상 등을 추진함으로써 스마트 공장으로 전환하거나, 제조 공정을 가상화하여 시뮬레이션하고 최적화하는 디지털 트윈 기술을 통해 새로운 공정 도입 전에 시뮬레이션을 통해 위험을 최소화하고, 운영 효율을 높이는 사례가 있다. 또한, 클라우드 기반 SaaS(서비스형 소프트웨어)를 활용하여 ERP, CRM 등의 시스템을 도입하고, 비용 효율적인 IT 운영을 추구함으로써 생산성 향상 및 비용 절감 효과를 얻는 사례가 늘고 있다. ■ 황민선 : 예를 들어, 두산로보틱스는 생성형 AI를 활용해 로봇 제조 과정을 최적화했으며, HL만도는 소프트웨어 엔지니어링 효율을 30% 개선한 사례가 있다. 또한 BMW는 아마존Q 인 퀵사이트(Amazon Q in QuickSight)를 도입해 공급망 분석 시간을 대폭 단축하고 의사결정을 가속화했다. 이러한 사례는 AWS의 기술력과 파트너의 산업 전문성이 결합될 때 실질적인 성과를 창출할 수 있다는 것을 보여준다. 한국 제조 기업들도 이러한 접근 방식을 통해 클라우드를 활용한 실질적인 혁신을 실현하고 있으며, AWS는 앞으로도 파트너 생태계와 함께 국내 제조 산업의 디지털 전환과 글로벌 경쟁력 강화를 적극 지원하고자 한다.   최근 진행한 ‘AWS 파트너 클라우드 설루션 콘퍼런스’는 어떤 행사이고, 이를 통해 기대하는 효과는 무엇인지 ■ 황민선 : 이번 ‘AWS 파트너 클라우드 설루션 콘퍼런스’는 제조 산업의 새로운 도약을 위한 실질적인 설루션과 고객 사례를 제공하고자 마련되었다. 특히 주목할 점은, 제조 현장의 실무 전문가들이 IT나 클라우드 전문 인력의 도움 없이도 신기술을 빠르게 도입하고 활용할 수 있도록 지원하는 데 중점을 두었다는 것이다. 행사는 크게 세 가지의 차별화된 프로그램으로 구성했다. 먼저 C-레벨 조찬 세미나를 통해 경영진이 클라우드 전환의 비전과 전략을 공유할 수 있는 기회를 제공했다. 또한 스마트 제조, 엔지니어링 & 설계, 데이터 분석 & 생성형 AI 등 세 개의 전문 트랙을 통해 각 영역별로 심도 있는 기술 및 구현 사례를 공유했다. 특히 1:1 비즈니스 미팅을 통해 개별 고객별 맞춤 설루션을 AWS 및 AWS 파트너사와 함께 상담 받을 수 있는 기회도 마련했다. 행사를 통해 제조 기업이 클라우드를 통한 혁신의 구체적인 청사진을 그릴 수 있게 되었다고 본다. 특히 실제 구현 사례와 전문가 상담을 통해 자사에 맞는 최적의 설루션을 찾고, AWS의 다양한 파트너 프로그램, 예를 들어 PoC 지원 프로그램을 통해 실제 검증 단계로 신속하게 진입할 수 있는 기회를 제공하고자 했다. ■ 김준성 : ‘AWS 파트너 클라우드 설루션 콘퍼런스’는 아직 클라우드로 전환하지 못한 제조 현장의 고객이나, 클라우드 도입은 하였지만 아직 AI 관련 서비스라든지 클라우드의 활용도가 떨어지는 분들을 위해 보다 더 많은 정보를 제공하기 위해 마련되었다. 이번 콘퍼런스에서는 기술적인 발전은 물론 여러 도입 사례에 대한 발표와 더불어 향후 기대되는 발전 방향에 대해서도 고객들에게 알리는 자리를 마련했다. 정보 획득과 더불어 아직 클라우드 전환이 안된 고객들은 빠르고 효과적인 전환을, 새로운 AI 서비스 도입을 통해 더 나은 혁신이 필요한 고객에게는 그에 맞는 시스템을 구축하는데 도움이 되었기를 바란다.      ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02