• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "부재"에 대한 통합 검색 내용이 376개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
[포커스] 넥스트콘 2025에서 만난 건설 디지털 전환의 미래
건설 융복합 혁신 기술을 한자리에 선보인 ‘넥스트콘 2025(NextCon 2025)’ 전시회가 7월 30일부터 8월 2일까지 코엑스 B홀에서 진행됐다. ‘코리아 빌드 위크’의 일부로 마련된 넥스트콘 2025는 ‘MOMENTUM : New Wave - 디지털 가속화, 새로운 건설 시대로의 전환’을 주제로 나흘간 진행됐는데, 건설 산업의 디지털 전환을 위한 고민과 돌파구를 엿볼 수 있는 기회가 되었다. ■ 정수진 편집장   ▲ 코엑스에서 진행된 넥스트콘 2025 전시회   모든 산업 분야에서 디지털 전환(DX)이 중요한 화두로 떠오르는 가운데, 건설산업에서도 디지털 전환의 필요성을 절감하고 있다. 건설 산업은 다른 산업에 비해 디지털화 수준이 낮다는 지적이 나오고 있으며, 낮은 노동 생산성과 고령화 및  젊은 인력의 유입 감소에 따른 인력 부족도 문제가 되고 있다. 문제 해결을 위해 정부에서는 디지털화 및 스마트 건설의 활성화를 촉진하기 위한 정책을 마련하고 있으며, 업계에서도 시공–설계–유지관리에 이르는 전반의 과정에서 디지털 전환을 실현하기 위한 기술의 활용에 더 많은 관심을 보이고 있다. 이번 넥스트콘 2025 전시회에서는 스마트 건설&OSC(OffSite Construction), 건설 자동화&로보틱스, 스마트 홈&빌딩, 탄소중립&건설 신공법·신기술, 스마트 안전 등 분야의 다양한 기술이 소개됐다. 또한 ▲건설 자동화 및 로보틱스 관련 정책을 설명하고 현장 적용 사례 및 기술을 소개한 ‘건설자동화&로보틱스 콘퍼런스’ ▲최신 콘테크(contech) 트렌드 및 중대재해처벌법 대응 방안을 소개한 ‘C-Insight Con(건설산업 인사이트 콘퍼런스)’, ▲ 스마트 건설·건축 및 스마트 빌딩 분야의 기술 비전을 공유하고, 빌딩 자동화 및 통합 관리 설루션 기술과 현장 적용 사례를 소개한 ‘스마트+빌딩 콘퍼런스’ 등이 함께 진행되었다.   스마트 건설 & OSC BIM(건설 정보 모델링)은 건설 산업 디지털 전환의 핵심 요소로 여겨지고 있다. 설계 BIM은 모델링, IFC 파일 활용, 도면 자동 생성, 공간 데이터 구축을 통해 효율을 높이고, 시공 BIM은 사전 설계 검토, 물량 산출, 공정 시뮬레이션, 시각 자료 생성에 기여한다. 유지관리 BIM은 3D 스캔 및 데이터 통합을 통해 시설물의 실시간 통합 관리 환경을 조성하며, 리모델링 BIM은 3D 스캔을 통한 현황 파악 및 안전 관리에 활용된다. 공장에서 구조물이나 부재 등을 생산하고 이를 시공 현장에서 조립·설치하는 방식을 뜻하는 OSC는 건축 분야에서 기술 개발이 활발히 진행 중이며, 향후 더욱 확산되어 스마트 건설의 중요한 축을 이룰 것으로 전망된다.   ▲ 메이사는 드론, 360도 카메라, CCTV, 모바일 GPS 데이터를 통해 원격 현장관리를 실시간으로 할 수 있는 클라우드 플랫폼을 선보였다.   ▲ 비전스페이스는 로보틱스/AI/디지털 트윈 기반으로 산업용 로봇의 설계·운영·최적화를 지원하는 자동화 설루션을 소개했다.   건설 자동화 & 로보틱스 드론 기술은 건설 현장의 데이터를 수집하고 가상화하는 리얼리티 캡처의 주요 도구이다. 드론은 수백에서 수천 장의 사진을 찍어 사진 측량학 기술을 통해 3차원 모델을 재구성하며, 이를 통해 현장 측량, 토공 물량 산출, 시간 경과에 따른 물량 변화 추적, 시뮬레이션 및 현장 검사에 활용된다. 드론 기술은 자율 비행이 진전되고 GPS 외에 비전 인식 기술이 업그레이드고 있다, 또한, 사람의 개입 없이 데이터를 수집하고 전송하는 드론 스테이션/독 연동 기술이 발전하면서 현장의 번거로움을 해소하고 있다. 드론 외에도 건설 공정을 자동화하고, 원격 시공에도 활용될 수 있는 다양한 로보틱스 기술에 대한 연구 개발도 활발히 진행 중이다. 공간 데이터와 LLM(대형 언어 모델), 비전 데이터, 딥러닝 기술을 접목한 AI 서비스가 속속 등장하면서 현장 활용이 시도되고 있는 상황이다. 이런 서비스는 3D BIM 도면, 측량 데이터, CCTV 영상 등 다양한 데이터를 취합·비교해 공정 진행 상황 확인 및 보고서 작성 등 자동화된 분석을 가능하게 한다.   ▲ 마션케이는 비정형 건축물의 시공에 활용할 수 있는 건설용 3D 프린터 기술을 선보였다.   ▲ 딥인사이트는 BIM 설계뿐 아니라 다양한 분야에서 활용 가능한 3D 스캐너 및 스마트 비전 설루션을 소개했다.   스마트홈 & 빌딩 및 탄소중립 건설 프로세스뿐 아니라 스마트 기술을 건물 자체에 적용하면 에너지 효율, 거주 편의성, 안전성 등을 높이는 방향으로 디지털 전환을 실현할 수 있을 것으로 여겨지고 있다. 한편, 탄소중립은 건설 산업의 지속가능성을 위해 중요한 과제이며, 디지털 기술은 자원 효율의 증대와 폐기물 감소를 통해 이에 기여할 수 있을 것으로 보인다.   스마트 안전 건설 현장의 안전 관리 또한 디지털 전환의 중요한 부분으로 꼽힌다. BIM은 현장 정보를 반영한 안전 계획 수립 및 시각화 정보를 제공하여 작업자의 안전을 높이고, 드론은 시설물 점검, 이슈 탐지 및 안전 관리에 활용된다. 최근에는 스마트 안전 교육 과정 개발도 추진 중에 있다.   ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
[칼럼] AI 시대 제조업 생존 전략 : ‘듀얼 브레인’을 장착하라
현장에서 얻은 것 No. 21   “데이터의 양이 아니라 활용이다. 우리는 쌀을 먹지 않고 밥을 먹는다.” – 최재홍 교수(가천대)   거대한 전환점에 선 제조업 21세기, 우리는 산업 혁명의 물결이 AI(인공지능)라는 이름으로 다시금 거세게 밀려오는 시대를 살고 있다. 제조업은 그 최전선에 서 있다. 과거 증기기관, 전기, 컴퓨터가 생산 방식을 송두리째 바꿔놓았듯이, 이제 AI는 우리가 제품을 설계하고, 생산하고, 유통하며, 심지어 소비자와 소통하는 방식까지 근본적으로 재편하고 있다. 많은 제조업체는 이 변화의 물결 속에서 생존과 번영을 위한 새로운 전략을 모색하고 있다. 기존의 방식만으로는 더 이상 지속 가능한 성장을 기대하기 어렵다는 냉정한 현실에 직면하게 된 것이다. 이 거대한 전환점에서 우리는 AI를 어떻게 받아들이고 활용해야 할까? 단순히 자동화를 위한 도구로만 생각할 것인가, 아니면 그 이상의 잠재력을 가진 파트너로 인식할 것인가? 이선 몰릭 교수의 저서 ‘듀얼 브레인’은 이러한 질문에 대한 명쾌한 해답을 제시한다. 바로 AI를 인간의 ‘두 번째 뇌’로 활용하여 시너지를 창출하는 ‘듀얼 브레인’ 개념이다. 이번 호 칼럼은 ‘듀얼 브레인’의 핵심 인사이트를 바탕으로, AI 시대 제조업이 나아가야 할 생존 전략을 제시하고자 한다.   ▲ ‘듀얼 브레인’ 서평 맵(Map by 류용효컨셉맵연구소) (클릭하면 큰 이미지로 볼 수 있습니다.)   AI, 단순한 도구에서 두 번째 뇌로 “인간의 마음은 한계가 없으며, 그것은 스스로를 확장하는 방법을 끊임없이 찾아낸다.” – 이선 몰릭(‘듀얼 브레인’ 저자) 오랜 시간동안 제조업 현장에서 자동화는 주로 육체 노동의 효율을 높이는 데 초점을 맞추었다. 로봇 팔이 정밀하게 부품을 조립하고, 자동화된 설비가 제품을 대량 생산하였다. AI 역시 이러한 자동화의 연장선상에서 ‘똑똑한 도구’로 인식되는 경향이 강하였다. 그러나 ‘듀얼 브레인’이 강조하는 바는 AI가 단순한 도구를 넘어, 인간의 지적 활동을 확장하고 보완하는 ‘두 번째 뇌’가 될 수 있다는 점이다. 제조업 현장에서 AI는 더 이상 데이터를 수집하고 분석하여 보고서를 제공하는 수동적인 역할에 머무르지 않는다. AI는 설계 단계에서 수많은 변수를 고려하여 최적의 디자인을 제안하고, 생산 공정에서 예측 불가능한 오류를 사전에 감지하며, 품질 검사에서 인간이 놓칠 수 있는 미세한 결함을 찾아낸다. 이는 AI가 인간의 인지적 한계, 즉 방대한 데이터 처리 능력의 부재나 고정관념에서 벗어나지 못하는 사고의 경직성을 보완해 주기 때문에 가능한 일이다. 예를 들어, 신제품 개발에 있어 인간 디자이너는 오랜 경험과 직관으로 디자인을 구상한다. 하지만 AI는 방대한 고객 데이터, 시장 트렌드, 과거 성공 사례 등을 학습하여 인간이 상상하기 어려웠던 수십, 수백 가지의 디자인 대안을 즉시 제시할 수 있다. 또한, 각 디자인의 생산성, 재료비, 잠재적 소비자 반응까지 예측하여 제공함으로써 인간 디자이너의 의사결정을 획기적으로 개선한다. 이는 인간의 창의성과 AI의 분석 능력이 결합된 진정한 듀얼 브레인의 작동 방식이라 할 수 있다. 따라서 제조업은 AI를 단순히 공정을 자동화하는 기계로 볼 것이 아니라 R&D, 설계, 생산 관리, 품질 관리, 마케팅 등 모든 분야에서 인간의 지적 파트너이자 두 번째 뇌로 장착해야 한다. 이러한 관점의 전환이야말로 AI 시대 제조업이 생존하고 번영할 첫 걸음이 될 것이다.   듀얼 브레인 활용법 : 질문, 실험, 그리고 인간의 역할 “중요한 것은 질문하는 것을 멈추지 않는 것이다. 호기심은 그 자체로 존재 이유가 있다.” – 알베르트 아인슈타인 듀얼 브레인을 제조업에 효과적으로 장착하기 위해서는 몇 가지 핵심적인 활용법을 숙지해야 한다. 단순히 최신 AI 기술을 도입하는 것만으로는 충분하지 않다. 중요한 것은 ‘어떻게 AI와 협업할 것인가’이다. 첫째, ‘질문하는 기술’의 중요성이다. AI, 특히 생성형 AI는 우리가 던지는 질문(프롬프트)에 따라 전혀 다른 결과물을 내놓는다. 제조업에서는 AI에게 ‘현재 생산 라인의 병목 현상을 파악하고 개선 방안을 제시하라’, ‘신소재 개발을 위해 특정 물성을 가진 분자 구조를 추천하라’, ‘고객 불만 데이터에서 제품 개선에 필요한 핵심 인사이트를 도출하라’와 같이 구체적이고 명확한 질문을 던질 수 있어야 한다. 추상적인 질문은 모호한 답변을 낳고, 결국 AI 활용의 효율을 떨어뜨릴 것이다. 질문의 질이 곧 AI 활용의 질을 결정한다는 사실을 명심해야 한다. 둘째, ‘실험적 사고’와 ‘빠른 반복’이다. AI는 완벽하지 않다. 때로는 잘못된 정보(환각 현상)를 생성하거나, 우리가 의도한 바와 다른 결과를 내놓기도 한다. 제조업에서는 이러한 AI의 특성을 이해하고, 두려워하지 않고 다양한 가설을 세워 AI와 함께 실험하는 태도가 중요하다. AI가 제시한 생산 최적화 방안이 실제로 효과가 있는지 소규모 테스트를 거치고, AI가 제안한 디자인을 프로토타입으로 제작하여 시장 반응을 살피는 등의 빠른 반복 과정이 필수이다. 실패를 통해 배우고, 그 학습을 바탕으로 다음 실험을 진행하는 애자일(agile) 방식이 듀얼 브레인 시대의 핵심 역량인 것이다. 셋째, ‘인간의 개입과 검증’이다. AI는 방대한 데이터를 기반으로 통계적인 결론을 도출하지만, 그 결과가 항상 현실의 복잡한 맥락이나 윤리적 판단에 부합하지는 않는다. 제조업에서는 AI가 제시한 생산 계획이 과연 현장의 인력 운용이나 안전 규정에 부합하는지, AI가 추천한 신소재가 환경 규제를 만족하는지 등을 인간 전문가가 반드시 검토하고 최종 결정해야 한다. AI의 결과물을 맹목적으로 신뢰하기보다는, 비판적인 시각으로 검증하고 인간의 경험과 지혜를 더하는 것이 듀얼 브레인을 완성하는 핵심 단계이다. AI는 강력한 보조 도구이지만, 최종적인 책임과 판단은 결국 인간의 몫인 것이다.   창의성과 생산성 증대 : 제조업의 새로운 경쟁력 “생산성은 우연이 아니다. 그것은 항상 탁월함에 대한 헌신, 지능적인 계획, 집중된 노력의 결과이다.” – 폴 마이어 듀얼 브레인 개념을 제조업에 적용함으로써 얻을 수 있는 가장 큰 이점은 바로 창의성과 생산성의 비약적인 증대이다. 이는 AI 시대 제조업의 새로운 경쟁력이 될 것이다. 창의성 증대 측면에서 제조업은 전통적으로 ‘효율’과 ‘정확성’을 강조해왔다. 그러나 AI는 이제 제조업의 ‘창의성’을 자극하는 촉매제가 되고 있다. 예를 들어, 제품 디자인 과정에서 AI는 기존 데이터를 기반으로 전혀 새로운 형태나 기능을 제안할 수 있다. 이는 인간 디자이너의 고정관념을 깨고 상상력을 자극하여 혁신적인 제품 개발로 이어진다. 또한, AI는 제조 공정 자체의 혁신에도 기여한다. AI 시뮬레이션을 통해 기존에는 불가능하다고 여겼던 새로운 생산 방식을 탐색하고, 재료의 낭비를 최소화하며, 에너지 효율을 극대화하는 창의적인 해결책을 찾아낼 수 있다. 이는 인간의 직관과 AI의 방대한 계산 능력이 결합되어 가능해지는 결과이다. 생산성 증대 측면은 더욱 명확하다. 제조업의 생산성 증대는 곧 비용 절감과 납기 단축으로 이어져 기업의 수익성에 직접 영향을 미친다. 듀얼 브레인 시스템은 다음과 같은 방식으로 생산성을 극대화할 것이다. 예측 유지보수 : AI가 설비의 미세한 진동, 온도 변화, 전력 소비량 등을 실시간으로 분석하여 고장을 예측하고 사전 유지보수를 가능하게 함으로써, 예기치 않은 생산 중단 시간을 획기적으로 줄일 것이다. 생산 공정 최적화 : AI는 복잡한 생산 라인에서 각 단계의 효율성을 분석하고, 병목 현상을 식별하며, 재고 관리와 물류 흐름을 최적화하여 생산 리드 타임을 단축시키고 생산량을 증대시킬 것이다. 품질 관리 혁신 : AI 기반의 비전 검사 시스템은 인간의 눈으로 감지하기 어려운 미세한 불량까지 정확하게 찾아내어 불량률을 낮추고 제품 품질을 일관되게 유지할 것이다. 데이터 기반 의사결정 : AI는 시장 동향, 고객 피드백, 공급망 데이터 등 방대한 정보를 분석하여 경영진의 전략적 의사결정을 지원하고, 이는 곧 더 빠르고 정확한 시장 대응으로 이어질 것이다. 이처럼 듀얼 브레인은 제조업의 고질적인 문제를 해결하고 나아가 새로운 가치를 창출하는 핵심 동력이 될 것이다.   AI 시대, 제조업 인간의 역할 재정립 “기계는 인간의 일을 대신할 수 있지만, 인간의 마음을 대신할 수는 없다.” – 스티븐 호킹 AI가 제조업 현장에 깊숙이 들어올수록, 많은 이들이 인간의 역할에 대한 불안감을 느끼는 것이 사실이다. 하지만 ‘듀얼 브레인’은 AI가 인간의 일자리를 완전히 대체하는 것이 아니라, 오히려 인간 고유의 역량을 더욱 빛나게 하고 그 역할을 재정립할 기회를 제공한다고 역설한다. 제조업 현장에서 AI는 반복적이고 위험하며, 데이터 기반의 정량적 분석에 특화된 업무를 수행하게 될 것이다. 그렇다면 인간은 어떤 역할을 해야 할까? 문제 정의 및 비판적 사고 : AI는 주어진 문제를 해결하는 데 유능하지만, 무엇이 진정한 문제인지 파악하고 AI가 도출한 결과에 대해 비판적으로 질문하며, 맥락을 이해하여 의미를 부여하는 것은 여전히 인간의 몫이다. 예를 들어, AI가 불량률 감소를 위한 수치적 해답을 제시할 수는 있지만, ‘이 불량이 고객에게 미치는 정서적 영향’이나 ‘기업의 장기적인 브랜드 이미지’와 같은 비정량적인 가치를 판단하고 정책을 결정하는 것은 인간 경영자의 역할인 것이다. 창의적 기획 및 혁신 : AI는 기존 데이터를 기반으로 새로운 조합을 만들 수는 있지만, 완전히 새로운 개념을 무에서 유로 창조하거나, AI의 한계를 뛰어넘는 파격적인 아이디어를 제안하는 것은 인간의 고유 영역이다. 제조업에서 다음 세대 먹거리를 기획하고 시장 판도를 바꿀 기술을 상상하는 것은 AI가 아닌 인간 전문가의 몫인 것이다. 감성 지능 및 공감 : 협상, 팀 빌딩, 고객과의 관계 형성 등 인간 상호작용이 필요한 부분에서는 AI가 인간의 감성을 이해하고 공감하는 데 한계가 있다. 제조업의 영업, 마케팅, 인력 관리 등에서는 여전히 인간의 감성 지능과 공감 능력이 필수인 것이다. 윤리적 판단과 책임 : AI는 데이터를 기반으로 작동하므로 윤리적 가치 판단이나 사회적 책임을 스스로 질 수 없다. 제조업 공정에서 발생할 수 있는 환경 문제, 노동자의 안전, 제품의 사회적 영향 등 윤리적 딜레마에 대한 최종 판단과 책임은 전적으로 인간에게 달려 있는 것이다. 따라서 AI 시대 제조업의 인재는 AI를 활용하는 ‘도구적 능력’을 넘어, AI가 할 수 없는 ‘인간 고유의 역량’을 더욱 갈고 닦아야 한다. 이는 AI를 두려워할 것이 아니라, 오히려 AI의 도움을 받아 자신만의 강점을 극대화하는 길을 모색해야 함을 의미한다.   미래를 위한 제언 : 제조업의 듀얼 브레인 로드맵 “미래를 예측하는 가장 좋은 방법은 미래를 창조하는 것이다.” – 피터 드러커 AI 시대 제조업의 생존과 번영은 듀얼 브레인을 얼마나 성공적으로 장착하느냐에 달려 있다. 이를 위한 몇 가지 제언을 하고자 한다. 첫째, CEO를 포함한 경영진의 인식 전환과 비전 공유가 필수이다. 듀얼 브레인 전략은 단순히 기술팀만의 과제가 아니다. 최고 의사결정권자가 AI를 기업의 핵심 전략 자산이자 ‘두 번째 뇌’로 인식하고, 전사적인 변화의 비전을 제시해야 한다. 기술 투자뿐만 아니라 인력 재교육 및 문화 변화를 위한 투자를 아끼지 않아야 한다. 둘째, 지속적인 학습과 실험 문화를 정착시켜야 한다. AI 기술은 빠르게 진화하고 있다. 어제의 최적해가 오늘의 최적해가 아닐 수 있다. 제조업체는 AI 기술 트렌드를 주시하고, 새로운 AI 도구를 끊임없이 실험하며, 실패를 두려워하지 않고 거기서 배우는 문화를 구축해야 한다. 작은 규모의 파일럿 프로젝트를 통해 AI 활용의 성공 경험을 쌓고, 이를 점차 확대해 나가는 방식이 효과적일 것이다. 셋째, 인력 재교육 및 역량 강화에 적극적으로 투자해야 한다. 기존 인력들이 AI를 두 번째 뇌로 활용할 수 있도록 AI 기초 교육, 데이터 리터러시, 프롬프트 엔지니어링 교육 등을 제공해야 한다. 동시에 AI가 대체하기 어려운 인간 고유의 역량 즉 비판적 사고, 창의성, 문제 해결 능력, 협업 능력 등을 강화하는 교육 프로그램도 병행해야 한다. 넷째, 데이터 기반의 의사결정 체계를 확립해야 한다. 듀얼 브레인은 결국 데이터에 기반한다. 제조업 현장의 모든 데이터(생산, 품질, 재고, 고객, 시장 등)를 통합적으로 수집하고 분석할 수 있는 인프라를 구축해야 한다. 이를 통해 AI가 더 정확하고 깊이 있는 통찰력을 제공할 수 있으며, 인간의 의사결정 역시 데이터에 기반하여 더욱 합리적으로 이루어질 수 있을 것이다. 다섯째, 외부 AI 전문 기업과의 협력을 고려해야 한다. 모든 AI 역량을 자체적으로 구축하는 것은 현실적으로 어렵고 비효율적일 수 있다. AI 설루션 제공 기업, 컨설팅 회사, 학계 등 외부 전문가 그룹과의 협력을 통해 필요한 AI 기술과 노하우를 빠르게 도입하고 내재화하는 전략도 필요할 것이다.   결론 : 듀얼 브레인, 제조업의 새로운 항해를 위한 나침반 “완벽한 계획을 기다리기보다 빠르게 실행하고(선지랄 후수습), 시장과 고객의 피드백을 통해 방향을 수정해 나가는 것이 중요하다.” – 최재홍 교수(가천대) AI 시대는 제조업에 거대한 도전인 동시에 전례 없는 기회이다. 이 기회를 잡기 위해서는 AI를 단순한 생산성 향상 도구로 여기는 구시대적 관점을 벗어나, 인간의 지적 능력을 확장하고 협력하는 듀얼 브레인으로 장착해야 한다. 인간의 비판적 사고와 창의성, 그리고 AI의 방대한 처리 능력이 결합될 때 제조업은 새로운 차원의 혁신과 경쟁력을 확보할 수 있을 것이다. 이제 제조업은 단순히 물건을 만드는 것을 넘어, 지능형 시스템과 인간 지능이 함께 작동하는 ‘코인텔리전스 제조(co-intelligence manufacturing)’의 시대로 진입하고 있다. 듀얼 브레인을 장착하고, AI와 함께 배우고 실험하며, 인간 고유의 가치를 더욱 빛내 나간다면, AI 시대의 제조업은 더욱 강력하고 지속 가능한 미래를 향해 성공적으로 항해할 수 있을 것이다. 이는 선택이 아닌 필수 생존 전략이 될 것이다. 최재홍 교수는 2025년 7월 9일 미모세(미래모빌리티세미나) 2025 키노트에서 이런 말을 남겼다. “오너는 될 때까지 하기 때문에 실패가 없다.” 이 말은 강연장에 모인 스타트업 그리고 상장사 CEO들에게 큰 영감과 감동을 주었다.   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다. (블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-08-04
파수, SaaS로 데이터 보안 체계 구축하는 ‘DSP 클라우드’ 출시
파수가 ‘파수 데이터 보안 플랫폼 클라우드(Fasoo Data Security Platform Cloud, 이하 파수 DSP 클라우드)’를 출시했다. 파수의 대표 데이터 보안 제품을 SaaS 형태로 제공하는 파수 DSP 클라우드는 보다 다양한 규모와 환경의 조직들이 강력한 데이터 보안 설루션을 빠르고 쉽게 도입할 수 있도록 지원한다. 파수는 연간 반복 매출 기반(ARR)의 파수 DSP 클라우드의 출시를 통해 수익 구조의 안정성과 예측 가능성을 높이고, 고객의 진입장벽을 낮춰 매출 확대를 가속화한다는 전략이다. 파수 DSP 클라우드는 별도 인프라 구축없이 파수의 대표 데이터 보안 설루션을 합리적으로 빠르게 도입할 수 있게 해 준다. 파수는 운영 편의성이 높고 영구 라이선스에 비해 도입 비용이 적어, 인력 및 예산 고민을 가진 조직들이 강력한 데이터 보안 체계를 구축할 수 있도록 돕는다는 점을 내세운다. 파수는 “ DSP 클라우드를 통해 설루션을 구매할 경우 해당 서버와 클라이언트가 자동으로 생성되고, 기본 보안정책이 설정돼 제공되므로 단 10분만에 사내적용이 가능하다. 또한 원하는 규모만큼 유연하고 경제적으로 데이터 보안 체계를 구축할 수 있는 것은 물론, 운영 과정에서도 자동 업데이트와 패치, 파수 전담 보안 정책 및 인프라 관리를 제공해 관리 편의성이 뛰어나다”고 설명했다.     파수 DSP 클라우드로 도입이 가능한 주요 설루션으로는 ▲데이터 보안 설루션 ‘파수 엔터프라이즈 디알엠(Fasoo Enterprise DRM : FED)’ ▲ 출력물 보안 설루션 ‘파수 스마트 프린트(Fasoo Smart Print : FSP) ▲화면 보안 설루션 ‘파수 스마트 스크린(Fasoo Smart Screen : FSS), ▲데이터 백업 설루션 ‘FC-BR(Fasoo Content Backup and Recovery)’ ▲개인정보 보호 설루션 '파수 데이터 레이더(Fasoo Data Radar : FDR)' 등이 있다. 이 중 FED는 문서가 로컬과 클라우드 환경 그 어디에 있든, 철저한 보호와 일원화된 정책 관리가 가능한 하이퍼 DRM(Hyper DRM)을 지향한다. 파일의 생성부터 폐기까지 전 과정에 걸친 지속적인 암호화를 적용하며, 설정된 권한에 따라 열람, 편집, 인쇄 등을 제한하고 문서의 생성부터 폐기까지 모든 과정을 추적, 관리할 수 있다. 클라우드 보안 및 타사 DRM 제품의 정책을 통합 관리할 수 있는 기능을 제공해, 로컬과 클라우드에서 일원화된 보안 관리가 가능하다. 사용 로그 또한 통합 제공해 문서 사용 내역을 직관적으로 모니터링할 수 있다. 파수의 강봉호 서비스사업본부장은 “파수 DSP 클라우드는 인프라 구축과 도입 예산의 부담, 전문인력 부재로 인한 관리 등의 어려움 없이 빠르고 합리적으로 강력한 데이터 보안 역량을 갖출 수 있도록 지원한다”면서, “SaaS에 대한 시장 수요가 급증하고 생성형 AI 등 다양한 기업 IT환경에서의 데이터 보안 중요성이 더욱 강조되고 있는 만큼, DSP 클라우드가 신규 고객 확대를 가속화해 줄 것”이라고 말했다.
작성일 : 2025-07-23
KCIM, 미국 AI 기반 설계 스타트업 D.TO와 전략적 협약 체결… 국내 건축설계 자동화 본격화
KCIM(케이씨아이엠)은 건축설계 자동화를 위해 미국 AI 기반 건축설계 스타트업 D.TO와 전략적 협약을 체결했다.   KCIM(케이씨아이엠)은 6월 26일 미국 보스턴에 본사를 둔 건축설계 스타트업 D.TO(디.티오)와 전략적 업무협약(MOU)을 체결하고, AI 기반 설계 지원 솔루션 ‘D.TO’(이하 디티오)를 국내 최초로 선보였다. 이번 협약을 통해 양사는 국내 건축설계사무소를 대상으로 한 실사용 환경 기술 실증(PoC)에 착수하고, AI 기반 설계 자동화와 협업 플랫폼 구축을 공동 추진한다. D.TO는 미국 보스턴에 본사를 둔 한국인 건축가 이영진, 이주헌 공동대표가 설립한 AI 설계 솔루션 전문기업으로, ‘Design Together’라는 철학 아래 AEC(건축·엔지니어링·건설) 산업을 위한 플랫폼을 개발해왔다. ‘D.TO Solution Showcase with KCIM’ 행사에서 소개된  디티오 솔루션은 오토데스크 BIM 소프트웨어인 레빗(Revit) 기반의 클라우드 환경 및 웹 환경에서 구동되는 설계 자동화 및 협업 도구이다. 특히 ▲AI를 활용한 설계 이슈 분석 ▲구성 요소 자동 분류 ▲협업 리뷰 시각화 등 고도화된 기능을 제공하며, 디지털 혁신이 부재한 건축설계 중후반 단계를 지원하는 솔루션이다. KCIM은 이번 행사에 참석한 국내 설계사무소를 대상으로 1차 기술 실증 프로젝트를 시작했으며, 향후 희망 업체를 대상으로 추가 PoC 모집도 확대에 나설 계획이다. 이번 기술 실증은 실무 데이터 기반 테스트 및 기술 피드백을 중심으로 운영되며, 참여사에는 향후 솔루션 도입 우선권 및 교육 연계 지원 혜택 등이 제공될 예정이다. 오토데스크 골드 파트너이자 BIM 전문 기업 KCIM은 이번 협력을 계기로, 자체 BIM 컨설팅 서비스 ‘BIMlize Consulting’에 디티오 솔루션을 결합하여 실제 프로젝트 기반의 설계 생산성 향상과 업무 방식 전환을 위한 융합형 컨설팅 서비스를 제공할 예정이다. KCIM 사업부문 전준호 사장은 “건축 산업의 디지털 전환은 선택이 아닌 필수”라며, “고객과 함께 건축업무 혁신을 실행하는 파트너로서, 플랫폼 기반 컨설팅 서비스 모델을 확대해 나갈 것"이라고 밝혔다. D.TO 공동 창업자 이영진 대표는 “전략적 파트너인 KCIM과의 협력을 통해 국내 설계 환경이 요구하는 디지털 전환 기술을 실제 실무 환경에 적용할 수 있게 된 점을 뜻깊게 생각한다"며, "설계 업무 전반에 깊이 스며드는 실질적인 도구로 발전시킬 수 있을 것으로 기대한다”고 밝혔다.
작성일 : 2025-07-01
'AI 신뢰성' 검증 민간 공인 자격 과정 개설, 미래 일자리 창출 기대
씽크포비엘은 6월 25일 국립군산대에서 ‘AI 신뢰성’ 검증 기술 다루는비교과 교육과정을 운영했다.   'AI 신뢰성' 검증 기술 관련 민간 공인 자격을 취득한 전문가가 배출되어 미래 일자리 창출에 기여할 것으로 기대된다. AI 신뢰성 전문기업 씽크포비엘은 6월 25일(수)부터 27일(금)까지 국립군산대학교 IT융합통신공학과 재학생을 대상으로 ‘AI 신뢰성’ 검증 기술 교육을 실시했다고 밝혔다. 이번 교육은 전북특별자치도와 전북테크노파크의 지원을 받아 국립군산대 ICT특성화취업연계형사업단이 마련한 비교과 프로그램으로, 실무 교육은 씽크포비엘에서 맡아 진행했다. 교육 과정은 농생명 분야의 AI 데이터 활용에 필요한 다양성‧편향성 진단 시나리오 설계, 신뢰할 수 있는 AI 개발 개론, 검증 프로세스 적용 방법 등 이론 강의와 실습, 토론으로 구성됐다. 마지막 날에는 수강생을 대상으로 한 자격 시험도 진행됐다. 교육을 수료하고 자격 기준을 충족한 수강생에게는 한국산업지능화협회(KOIIA)가 발급하는 ‘산업인공지능데이터검증전문가’ 2급 자격증이 주어진다. 이 자격은 씽크포비엘이 준비 중인 ‘AI 신뢰성 검증전문가’ 자격과는 별개로, AI 신뢰성 검증 기술 중 ‘데이터 밸런스’ 기법에 초점을 맞춘 것이다. 해당 자격은 2024년 2월, 한국직업능력연구원에 정식 등록됐다. 씽크포비엘과 국립군산대는 산업부 산하 인가 단체의 공인 자격을 취득할 수 있는 교육 과정이 처음 마련됐다는 점에 의미를 두고 있다. 씽크포비엘에서는 2020년부터 국립군산대와 함께 동일한 교육과정을 6년째 운영 중이며, 지난해에는 자격증을 시범 발급한 바 있다. 그러나 공인 자격이 부재했던 과거에는 교육 이수자들의 취업에 실질적인 도움이 되지 못했다는 평가도 있었다. 국립군산대 관계자는 “AI 신뢰성 관련 기술을 배우고 자격까지 취득함으로써 학생들의 실무 역량과 현장 이해도가 높아질 것으로 기대된다”고 밝혔다. 한편, 한국산업지능화협회는 향후 ‘산업디지털전환촉진법’에 따른 디지털전환(DX) 전문기업 인증 기준에 ‘산업인공지능데이터검증전문가’ 보유 인력 여부를 포함하는 방안을 검토 중이다. 기업 수요 확대와 전문 인력 양성을 동시에 꾀한다는 전략이다. 이 자격과 교육은 특히 지방대 출신 구직자에게 새로운 기회가 될 전망이다. 씽크포비엘은 “AI 신뢰성 분야는 아직 초기 단계로, 수도권 대학 출신과의 경쟁에서 대등한 조건을 만들 수 있는 영역”이라고 강조했다. 또한 AI 신뢰성 교육은 해외에서도 주목받고 있다. 씽크포비엘에 따르면 태국 정부에서는 지난해부터 관련 아카데미 설립을 준비 중이며, 우즈베키스탄도 정부 주도의 교육 기관 설립을 검토하고 있다. 이 같은 글로벌 관심 속에서 국내 전문 인력 양성이 본격화되면 AI 신뢰성 분야의 세계적 성장 가능성도 높아질 것으로 보고 있다. 박지환 씽크포비엘 대표는 “AI 기반 바이브 코딩이 부상하면서 기존 SW 개발자 직무에 변화가 생기고 있는 상황에서, AI 신뢰성 분야는 새로운 일자리로 주목받고 있다”며, “국립군산대에 데이터 취급 전문가 역량을 파악할 자격 과정을 최초 개설된 것은 의미가 크다. 하반기에는 AI 신뢰성 전문가 자격도 공인 민간자격으로 등록해 전문 인력 양성에 속도를 낼 계획”이라고 밝혔다.  
작성일 : 2025-07-01
[포커스] 가상제품개발연구회, 춘계 심포지엄에서AI 전환 시대의 제품 개발 방향 논의
대한기계학회 가상제품개발연구회가 지난 6월 12일 2025년 춘계 심포지엄을 개최했다. ‘AI와 VPD의 만남 : Journey to the Digital Transformation’을 주제로 한 이번 심포지엄에서는 제조업 분야의 인공지능 전환(AX) 시대에 발맞춘 가상 제품 개발(VPD) 기술 및 디지털 전환 사례가 소개됐다. ■ 정수진 편집장     디지털 전환에서 AI 전환으로, 새로운 시대가 열린다 지난 2020년 출범한 가상제품개발연구회는 제조업 분야의 가상 제품 개발 기술과 디지털 전환 사례를 공유하고 기술 교류를 통해 산업 분야의 글로벌 경쟁력을 높이는 것을 목표로 삼았다. 2021년부터는 매년 봄·가을 심포지엄과 특별 세션을 열고 있다. 가상제품개발연구회의 오세기 회장은 개회사에서 “빅데이터와 딥러닝으로 시작된 디지털 전환(DX)은 생성형 AI(generative AI)가 등장하면서 기업의 문화, 전략, 비즈니스 모델까지 인공지능 중심으로 재설계하는 인공지능 전환(AX) 시대로 진화하고 있다”면서, 그 동안 연구회 심포지엄의 모토였던 ‘디지털 전환으로의 여정’이 이제는 ‘인공지능 전환으로의 여정’으로 바뀌어야 할 시점이라고 밝혔다. 대한기계학회의 배중면 회장은 축사를 통해 “챗GPT (ChatGPT)나 생성형 AI로 대표되는 현대 인공지능 시대의 개막은 기계공학 분야에서도 예외가 아니며, 물리기반 모델과 인공지능의 융합, 시뮬레이션의 자동화, 그리고 설계 최적화의 지능화가 실현 가능한 시대가 되었다”고 짚었다. 그리고 “가상제품개발연구회는 디지털 기반 제품 개발의 혁신을 선도해 왔으며, 대한기계학회 역시 이 분야의 발전을 적극 뒷받침하겠다”고 전했다.   물리지식 기반 AI와 생성형 AI를 활용한 VPD KAIST의 이승철 교수는 ‘제품 개발 가상화를 위한 물리지식 기반 인공지능의 역할’을 주제로 기조연설을 진행했다. 생성형 AI를 활용한 제품 가상화 설계 및 공학 문제 해결 방법에 대한 고민을 전한 이승철 교수는 “생성형 AI의 출현 이후 디지털 전환에서 인공지능 전환의 시대로 진화했으며, 기계공학 분야에서도 물리기반 모델과 AI의 융합, 시뮬레이션 자동화, 설계 최적화의 지능화가 가능해졌다”고 강조했다. 생성형 AI는 하나의 입력값에서 많은 수의 결과를 생성하여 설계의 다양성을 확보하는 데에 유용하다. 특히, 위상 최적화에서 문제를 ‘불량 설정(ill-posed)’하여 다양한 최적화 설루션을 생성하고, 이를 전통적인 최적화 방법의 초기 조건으로 활용하여 설계 시간을 줄일 수 있다. 이승철 교수는 “생성형 AI를 제품 설계에 적용하는 과정에서는 정밀도와 다양성의 절충점을 찾는 것이 중요하다”고 짚었다. 또한, 이승철 교수는 VPD에 AI 신경망 학습을 접목하기 위한 방법론을 소개했다. 물리지식 기반 인공지능(PINN)은 물리 지식을 데이터 프레임워크에 결합하여 인공지능 학습에 활용하는 방식으로, 특히 알려지지 않은 물리적 특성을 예측하는 ‘역방향 문제 해결’에 장점이 있다. 딥 오퍼레이터 네트워크(DeepONet)는 입력 매개변수나 형상이 바뀌어도 재학습 없이 거의 실시간으로 해석 결과를 예측할 수 있어서, 입력 파라미터의 변경이 예측 결과에 곧바로 반영되지 못하는 PINN의 단점을 극복할 수 있을 것으로 보인다. 이승철 교수는 “물리지식 기반의 DeepONet은 유동장 및 압력 분포를 실시간으로 예측하고, 복잡한 형상 변화에 따른 유동, 압력, 온도장 등을 실시간으로 예측할 수 있음을 입증했다”면서, “인공지능 기반의 새로운 도구들이 공학 문제를 해결하고 설계 분야를 혁신하는 데에 기여할 것”이라고 전망했다.   ▲ KAIST의 이승철 교수는 물리지식 기반의 AI를 제품 개발에 적용하기 위한 방법론을 소개했다.   AI/ML 기반 가상 검증 사례와 활용 전략 이번 심포지엄을 가상제품개발연구회와 공동 주관한 다쏘시스템코리아의 김문성 파트너는 ‘AI/ML 기반 가상 검증 사례와 활용 전략’에 대해 소개했다. 그는 인공지능 기반의 생성형 경험(generative experience)이 창의적이고 자동화된 설계를 가능하게 하며, 인공지능/머신러닝이 제품 개발 과정에서 반복 작업을 줄이고 비용과 시간을 절감하는 데 기여한다고 전했다. 이번 발표에서는 시뮬레이션에 적용할 수 있는 다양한 머신러닝 기법이 소개됐다. 합성곱 신경망(CNN)은 이미지 특징 추출에, 순환 신경망(RNN)과 장단기 메모리(LSTM)는 시계열 데이터 예측에, 딥러닝은 복잡한 3차원 필드 데이터 예측에, 그리고 그래프 신경망(GNN)은 유한요소모델(FEM)과 같은 그래프 구조 데이터 처리에 유용하다는 것이 김문성 파트너의 설명이다. 또한, 김문성 파트너는 문제 정의 − 학습 데이터 준비(실험 계획법 및 자동화 스크립트 활용) − 모델 학습 − 신뢰도 검증 − 예측 모델 구축까지 다쏘시스템의 아바쿠스(Abaqus)와 아이사이트(Isight)를 활용하는 머신러닝 프로세스 구현 단계를 소개했다. 김문성 파트너는 AI/ML 기법의 시뮬레이션 적용 사례로 LSTM을 활용한 하중-변위 선도 예측, 디스플레이 스트레인 예측, 전자기 성능 예측 등을 소개했으며, GNN을 사용해 빔과 항공기 랜딩기어 부재의 3차원 응력/변형량 예측이 가능하다고 전했다. 그는 “머신러닝 기술이 시뮬레이션 작업의 효율을 높이고, 데이터 기반의 정확한 의사 결정을 지원하는 강력한 도구가 될 것”이라고 전망했다.   ▲ 다쏘시스템코리아 김문성 파트너는 AI/ML 기반의 가상 검증 전략과 사례를 소개했다.   VPD와 AI의 융합, R&D 혁신을 이끈다 이외에도 이번 심포지엄에서는 물리지식 기반 인공지능과 생성형 AI를 활용한 제품 가상화 설계 방안, AI/머신러닝 기반 가상 검증 사례와 활용 전략 등에 관한 논의를 통해 미래 제품 개발의 방향을 짚어보는 기회가 마련됐다. 주제 발표로는 ▲히타치 야마자키 미키 박사의 ‘AI가 주도하는 MBSE·MBD와 VPD의 융합 : 가상화를 통한 차세대 제품 개발 가속 및 DX 추진’ ▲피도텍 대표인 한양대 최동훈 교수의 ‘VPD 대중화로 가는 길 : Al-Aided Design Optimization’ ▲현대모비스 송준영 팀장의 ‘AI를 이용한 R&D Shift’ ▲LG전자 백영진 팀장의 ‘AI와 VPD 연계를 통한 효율적 제어 시스템 개발 프레임워크’ ▲한화에어로스페이스 윤용상 상무의 ‘디지털 해석 기술을 활용한 항공엔진 개발과 국내 항공엔진의 미래’ 등이 진행됐다. 또한 패널토론에서는 VPD와 AI의 융합을 통해 R&D 혁신을 이끌어낼 수 있는 가능성과 미래 방향에 대해 논의했다.      ■ 기사 내용은 PDF로도 제공됩니다. 
작성일 : 2025-07-01
[에디토리얼] AI로 국가를 다시 짜는 시대
2025년, AI는 단순한 기술을 넘어 국가 시스템의 설계 도구로 진화하고 있다. ‘AI가 인간을 대체할 것인가’라는 질문은 더 이상 중요하지 않다. 이제는 ‘AI를 국가가 어떻게 작동하게 만들고, 체제를 어떻게 다시 쓰는가’가 핵심 의제가 되었다. 중국과 미국은 이미 이 싸움에 돌입했고, 한국도 새 정부가 들어서면서 ‘AI 세계 3대 강국’을 1호 공약으로 내세우며 AI를 국가 전략으로 삼겠다는 의지를 보이고 있다. 그러나 지금의 준비와 방향이 충분한지는 냉정히 따져봐야 한다.   AI 통치 실험을 가속하는 중국과 미국 중국은 2025년 1월 말, 자국 스타트업 딥시크(DeepSeek)가 공개한 추론 모델 R1을 통해 세계적으로 주목을 받았다. 고성능 GPU 없이 오픈AI의 챗GPT 대비 95% 낮은 비용으로 구현된 이 모델은 기술력보다 시스템 설계 전략의 힘을 입증한 사례다. 중국은 이미 ‘차세대 AI 발전계획’과 ‘중국제조 2025’를 통해 AI를 중심으로 한 통치 구조를 설계해왔다. 초·중등 AI 교육 의무화, 칭화대·베이징대 AI 인재 트랙, 4700개 기업의 테스트베드 구조는 그 일환이다. AI는 기술이 아닌 국가의 신경망으로 작동하고 있다. 미국은 이와 다른 방식으로 움직이고 있다. 민간이 기술 혁신을 주도하고 정부는 방향을 잡는다. 챗GPT, 클로드, 제미나이, 소라 등 세계 최고 AI는 모두 미국 기업의 손에서 나왔다. 정부는 AI 규제와 윤리 가이드라인을 빠르게 마련하며, AI를 국가 안보의 핵심 요소로 인식하고 있다. DARPA를 통한 국방 R&D, 스탠퍼드 AI 인덱스 같은 연구 생태계, 그리고 엔비디아 중심의 반도체 인프라까지, 미국은 민간·정부·산업이 유기적으로 연결된 AI 생태계를 보유하고 있다.   한국, 산업 중심을 넘어 체제 설계로 갈 수 있을까? 이재명 대통령은 100조원 규모의 민관 공동 투자를 통한 AI 산업 육성을 주요 어젠다로 삼고 있다. ‘AI 인프라와 R&D 투자 확대’, ‘법·제도 정비를 통한 규제 기반 마련’, ‘산업 현장 중심의 AI 인재 양성’이라는 세 축의 균형 있는 추진을 강조하고 있다. 그러나 지금까지 공개된 전략은 산업 성장을 중심으로 한 기술·시장 중심 접근에 머물러 있다. 문제는 이 방향으로는 중국이나 미국을 따라잡기 어렵다는 데 있다. 중국은 국가 전체를 실험실 삼아 정책-교육-산업이 정렬되어 있고, 미국은 민간의 창의성과 국가 전략이 분리 없이 흘러간다. 반면 한국은 산업과 정부, 교육과 규제 간 연결 고리가 느슨하다. 정부는 정책을 던지고, 산업은 기술을 개발하며, 교육은 아직 뒤처져 있는 구조다. 또 AI 윤리, 노동시장 변화, 데이터 주권 등 민감한 사회적 이슈에 대한 국가적 프레임도 부재하다. 기술은 지금도 진화 중이다. 그러나 국가 전략은 선택이다. 한국이 AI 시대에 주도권을 가지려면 ‘기술’이 아니라 ‘방향’을 고민해야 한다. 이제는 ‘AI가 어디까지 갈 수 있을까’라는 물음 대신, 이렇게 물어야 한다. “우리는 AI로 어디까지 갈 준비가 되어 있는가?”   ■ 박경수 캐드앤그래픽스 기획사업부 이사로, 캐드앤그래픽스가 주최 또는 주관하는 행사의 진행자 겸 사회자를 맡고 있다. ‘플랜트 조선 컨퍼런스’, ‘PLM/DX 베스트 프랙티스 컨퍼런스’, ‘CAE 컨퍼런스’, ‘코리아 그래픽스’, ‘SIMTOS 컨퍼런스’ 등 다수의 콘퍼런스 기획에 참여했고,행사의 전반적인 진행을 담당해 왔다. CNG TV 웨비나의 진행자 겸 사회자로, IT 분야의 취재기자로도 활동 중이다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-07-01
[포커스] PLM/DX 베스트 프랙티스 컨퍼런스 2025, 제조 혁신을 위한 PLM과 AI 전략을 짚다
‘PLM/DX 베스트 프랙티스 컨퍼런스 2025’가 지난 6월 20일 서울 코엑스에서 열렸다. ‘제조의 미래를 위한 PLM 혁신과 AX 전략’을 주제로 한 이번 행사에서는 제조산업에서 불확실한 외부 환경에 대응하고 기술 및 비용 경쟁력을 확보하기 위한 통합 PLM(제품 수명주기 관리) 설루션과 인공지능 전환(AX)의 중요성을 강조했다. ■ 정수진 편집장     한국산업지능화협회 PLM 기술위원회 위원장인 KAIST 서효원 명예교수는 개회사에서 AI와 결합하여 다시 중요해진 PLM의 미래를 강조했다. 그는 “AI 혁신이 전 세계를 휩쓰는 가운데 특히 제조 산업에서 GPT와 같은 LLM(대규모 언어 모델)을 어떻게 적용할지가 핵심 과제”라면서, “제조 특유의 반구조화된 데이터, 환각(hallucination) 문제, 막대한 학습 데이터 구축 비용 등의 난관을 극복하고 1~2년 내에 현업에서 성과를 내야 한다”고 강조했다. 또한, “이번 콘퍼런스가 PLM을 넘어 생성형 AI, 디지털 트윈 등 폭넓은 미래 지향적 주제를 다루며, 산업 전문가들이 디지털 혁신의 본질적 가치와 방향성을 논의하고 상호 인사이트를 얻는 교류의 장이 되기를 바란다”고 전했다.   ▲ 서효원 한국산업지능화협회 PLM 기술위원회 위원장   한국CDE학회의 회장인 충남대학교 정현 교수는 격려사를 통해 “이번 행사에서 PLM의 AI 전환을 위해 생성형 AI, 디지털 트윈 등 폭넓은 미래 지향적 논의가 이뤄지기를 바란다”면서, 다양한 산업 전문가들의 교류를 통해 디지털 혁신의 본질적 가치와 방향성을 점검하고 상호 인사이트를 얻는 것이 중요하다고 짚었다. 그는 또한 기술 확산을 넘어 회사의 전략, 내부 문화, 조직 혁신이 동반되어야 진정한 디지털 AI 전환이 완성될 것이라고 강조하면서, “이번 PLX/DX 베스트 프랙티스 콘퍼런스가 새로운 협업과 혁신의 출발점이 되기를 바라며, 한국CDE학회 또한 산학연 협력의 구심점 역할을 이어나갈 것”이라고 전했다.   ▲ 한국CDE학회 정현 회장   이번 행사의 오전 시간에는 세 편의 기조연설이 진행됐다. 기조연설에서는 제조 산업의 미래를 위한 PLM 기반의 통합적 디지털/ AI 전환 전략을 통해 경쟁력을 강화하고 새로운 가치를 창출해야 한다는 메시지와 함께, 단순한 기술 도입을 넘어 데이터 통합과 표준화 그리고 궁극적으로 일하는 방식과 조직 문화의 근본적인 변화가 필요하다는 지적이 있었다.   PLM과 산업 AI, 미래 제조 산업의 핵심 동력이 되다 가천대학교의 조영임 교수는 ‘제조 산업의 미래, 산업 AI 트렌드와 과제’를 주제로 한 기조연설에서 전 세계적으로 AI 기술 개발이 빠르게 추진되고 있으며, 제조 기업이 AI에 몰입하지 않으면 경쟁력을 유지하기 어렵다고 짚었다. 그리고 AI를 통한 제조 산업의 미래 활성화 방안을 제시하면서, AI 기술 발전과 함께 제조업이 갖춰야 할 기술/전략/인프라/인재 양성의 중요성을 언급했다. PLM은 제품의 전체 생애 주기에 걸친 프로세스와 데이터를 통합 관리하는 개념으로 설명된다. 최근에는 단순한 제품 관리를 넘어 순환 경제(circular economy)의 핵심 개념으로 정의되고 있으며, 데이터 중심의 관리 및 전략적 최적화를 추구하고 있다. 조영임 교수는 “최근 PLM이 다시 중요하게 부각되는 이유는 디지털 전환에 있어 PLM이 디지털 스레드(digital Thread)와 디지털 트윈(digital Twin)을 포괄하는 상위 관리 체계로서 중요한 역할을 하며, 디지털 전환에 AI가 결합되는 구조가 글로벌 제조 산업 AI의 기본 모델이기 때문”이라고 짚었다.   ▲ 가천대학교 조영임 교수   한편, AI 기술은 현재 클라우드 중심의 LLM(대규모 언어 모델)에서 미래에는 온디바이스 기반의 SLM(소규모 언어 모델)로 변화하며 효율성과 협업, 그리고 지속가능성을 강조할 것으로 보인다. 특히 에이전틱 AI(agentic AI)는 LLM을 넘어 사용자의 복잡한 작업을 스스로 처리하는 비서 역할을 수행할 것으로 기대를 모으고 있다. 조영임 교수는 “국내 제조업의 AI 도입률은 아직 낮고, 대기업이 중소기업보다 도입률이 높다. 또한, 한국 기업은 핵심 기술 영역보다는 재무 관리 등 주변 인프라에 AI를 집중하는 경향이 있다”고 지적했다. 향후 산업 AI의 과제로는 핵심 기술에 대한 고도화된 도입과 전략 및 데이터 연결의 표준화가 꼽힌다. 조영임 교수는 “산업 AI는 제조 디지털 전환의 핵심 기술로서, PLM과 AI의 공동 연계, 통합 패키지 개발, 산업 AI 표준 반영, 제조 DX 가이드라인 개발 및 공공 조달 지침 마련 등이 정부가 기업과 함께 추진해야 할 과제”라고 전했다.   AI 시대 제조 경쟁력 향상을 위한 통합형 PLM 전략 SAP 코리아의 고건 파트너는 ‘AI 혁신을 기회로! 제조 경쟁력을 높이는 통합형 PLM 전략’이라는 주제로 기조연설을 진행하면서, SAP의 PLM과 ERP(전사 자원 관리) 통합 전략을 소개했다. SAP는 예측 불가능한 외부 환경에 대응하고 내부 역량을 강화하기 위해 애플리케이션 레벨의 수평적 통합과 데이터 및 AI 레이어를 통한 수직적 통합을 동시에 추구하고 있다. SAP가 추진하는 수평적 PLM 통합은 디지털 스레드를 통해 데이터 사일로를 해소하고, 사내뿐 아니라 협력사 및 고객사를 포함한 전체 가치사슬(value chain)의 데이터를 실시간으로 통합하는 것을 목표로 한다. 고건 파트너는 “SAP는 이를 위해 별도의 비즈니스 네트워크를 운영하며, 설계 단계의 산출물이 제조 및 설비 관리까지 원활하게 연동되어 정보 재활용이 극대화되는 환경을 제공한다”고 소개했다.   ▲ SAP 코리아 고건 파트너   수직적 PLM 통합은 애플리케이션 위에 AI 레이어를 두어 정형 및 비정형 데이터를 활용하고 AI가 비즈니스를 이해하도록 하는 전략이다. 고건 파트너는 국내 기업의 AI 도입 시 가장 큰 문제점으로 데이터 부재와 품질 문제를 꼽으면서, AI와 함께 지식 그래프(knowledge graph)를 PLM에 적용하여 예지 정비 및 설계 변경 영향도 분석 등이 가능한 데이터 플랫폼을 제안했다. 고건 파트너는 “SAP는 PLM에 AI 코파일럿인 쥴(Joule)을 적용해 협업 및 문서 요약 기능을 제공하고 있으며, 오픈 AI, 엔비디아, 메타 등 30개 이상의 파운데이션 모델과 협력하여 제조 현장의 로봇 제어까지 확장하고 있다”고 전했다. 또한 “현재 기업들이 직면한 불확실성에 대응하기 위해서는 제품 정보 관리의 고도화가 필수이며, 통합형 PLM 전략이 그 해답이 될 것”이라고 강조했다.   조선산업의 미래를 위한 차세대 설계/생산 통합 플랫폼 HD현대의 이태진 전무는 ‘조선업의 미래를 위한 차세대 설계/생산 통합 플랫폼’을 주제로 한 기조연설에서 조선산업의 현황과 디지털 전환 전략의 필요성을 짚었다. 국내 조선산업은 탈탄소 정책, 에너지 무기화, 군사력 강화 등으로 호황을 맞고 있지만, 한편으로 중국 조선소의 추격, 높은 원가와 인건비, 친환경 선박 생산의 어려움, 숙련 인력의 이탈, 그리고 신사업 발굴 필요성 등으로 인해 위기감을 갖고 있기도 하다. 이태진 전무는 이러한 상황에서 디지털 전환은 조선산업의 미래를 위한 필수 요소라고 진단하면서, 2020년부터 2030년까지 10년간 디지털로 최적 운영되는 초일류 조선소 구현을 목표로 하는 HD현대의 디지털 전환 전략을 소개했다. HD현대의 ‘FOS(Future of Shipyard)’ 프로젝트는 조선소 데이터의 디지털화, 데이터 연결 및 최적화, 지능형 조선소 구축 등 세 3단계로 진행되며, 그 핵심은 차세대 CAD와 PLM을 근간으로 하는 차세대 설계/생산 통합 플랫폼 구축에 있다.   ▲ HD현대 이태진 전무   HD현대의 차세대 설계/생산 통합 플랫폼은 연결성, 일하는 방식의 변화, 전체 업무 효율 극대화, 디지털 제조 기반 구축 등 네 가지 핵심 목표를 지향한다. 이를 실현할 수 있는 차세대 CAD/PLM 구축을 위해 HD현대는 올해 말 최종 설루션을 선정하고 2026년부터 구축에 들어갈 예정이며, 설루션 선정뿐만 아니라 업무 프로세스 변화를 함께 추진할 계획이다. 이태진 전무는 “PLM/DX는 제조업 경쟁력 강화의 핵심 구현 수단이며, 디지털 스레드는 생산, SCM(공급망 관리), MRO(유지보수, 수리, 운영) 사업까지 연결하여 새로운 부가가치를 창출할 기회가 될 것”이라고 전망하면서, “이러한 설계/생산 디지털 전환이 장기적으로 제조산업의 경쟁력 강화에 크게 기여할 것이며, ERP, SCM, 데이터 플랫폼, AI 등 모든 연관 시스템과의 연결이 중요하다”고 덧붙였다.   기술 트렌드부터 사례까지, PLM·DX의 현재와 미래 짚다 ‘PLM/DX 베스트 프랙티스 컨퍼런스 2025’의 기조연설에 이어 오후 시간에는 ▲베스트 프랙티스 ▲트렌드/신기술/설루션 ▲ SDM(MES/MOM) 등 세 개의 트랙에서 18편의 발표가 진행됐다.   ■ 같이 보기 : [포커스] 기술 트렌드부터 사례까지, PLM·DX의 현재와 미래 짚다   또한, 부스 전시에서는 제조 혁신을 실현하기 위한 디지털 전환 및 인공지능 전환 설루션 기술이 다양하게 소개되어 참가자들의 눈길을 끌었다.   ▲ 다쏘시스템 부스   ▲ 마이링크 부스   ▲ 세원에스텍 부스   ▲ 쓰리피체인 부스   ▲ 씨이랩 부스   ▲ 아이지피넷 부스   ▲ 인코스 부스   ▲ 한화시스템 부스     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-07-01
캐디안, “AI 기반 전통 목조 건축 CAD 세계국가유산산업전서 첫 공개”
캐디안은 오는 6월 12일~14일 경주 화백컨벤션센터(HICO)에서 열리는 ‘2025 세계국가유산산업전’에서 AI 이미지 인식 기술을 활용한 전통 목조 건축 설계 CAD ‘TWArch Pro’를 최초로 공개한다고 밝혔다. 이와 함께, 해당 프로그램을 이용해 복원 설계한 불국사 법화전의 3D 프린팅 미니어처도 함께 전시할 예정이다. TWArch Pro는 캐디안이 ETRI(한국전자통신연구원)와 공동 개발한 AAD(AI Aided Design) 기반 전통 목조 건축 복원/신축을 위한 설계 도구로, 복잡한 구조인 공포를 포함한 가구부까지 정밀하게 자동/수동/변형할 수 있는 것이 큰 특징이다. 전통 건축 도면 이미지를 AI가 자동으로 인지/추론해 3차원 모델링이 가능한 부재 정보를 추출하고, 이를 바탕으로 3D 모델을 생성하는 설계 기능을 제공한다. 이번 행사에서 캐디안은 TWArch의 차세대 버전인 TWArch Pro의 실시간 시연, 관련 영상 콘텐츠, 그리고 이 프로그램으로 복원 설계한 법화전의 3D 프린팅 미니어처를 선보일 예정이다. 법화전은 경전 등 서적을 보관하던 전각으로, 과거 불국사 내 나한전과 극락전 사이에 있었던 것으로 추정되며, 현재는 초석 일부만 남아 있는 상태다. 고고학적 검토를 통해 복원의 필요성이 꾸준히 제기되어 왔다.     캐디안 관계자는 “이번에 전시되는 법화전 3D 미니어처는 새로 개발한 TWArch Pro의 전통 목조 건축 목구조 복원 설계 기능을 이용하여 3D 모델링을 진행하였다” 면서, “발굴된 주춧돌의 배치와 위치의 사진 및 실측 자료와 동시대 참조 건물을 기반으로 설계한 후, 설계된 데이터를 기반으로 3D 프린팅을 이용하여 제작된 것으로서, AI 기반 3D 모델링 기술을 활용해 최초로 복원 설계 및 제작한 산출물”이라고 설명했다. TWArch는 오토캐드 DWG 포맷과 호환되는 국산 CAD 설루션인 캐디안(CADian) 기반에서 구동된다. 캐디안은 데스크톱뿐만 아니라 웹 및 모바일 환경에서도 작동하며, 기존 오토캐드 사용자들이 별도의 학습 없이도 빠르게 사용할 수 있도록 명령어 체계와 인터페이스를 동일하게 유지하고 있다. 또한 한글, 영어, 일본어, 중국어(간체/번체), 헝가리어 등 다양한 언어를 지원한다. 캐디안의 한명기 상무는 “이번 전시는 AI 기반 CAD 기술의 실제 적용 사례를 대중에 소개하는 기회로, 특히 한국을 비롯한 일본, 대만, 중국, 태국, 미얀마 등 동아시아 지역의 전통 목조 건축 설계 시장에서 TWArch Pro에 대한 관심이 높을 것으로 기대된다”면서, “동일 기술을 현대 건축 평면도에 적용한 BOM 산출 및 도면 재생성 설루션 ‘CADian AI-CE’도 올해 안에 출시할 계획이며, 캐디안이 AI-CAD 분야에서 글로벌 기술 리더로 자리 매김할 수 있을 것”이라고 덧붙였다.
작성일 : 2025-06-09
[포커스] 트림블코리아, AI와 기술 혁신으로 건설 산업의 디지털 전환 제시
트림블코리아는 지난 5월 15일 ‘테클라 유저 데이 2025(Tekla User Day 2025)’를 진행했다. 이번 콘퍼런스에서는 트림블의 테클라(Tekla) 설루션을 활용한 건설 산업의 생산성 향상 및 협업 효율 증대 방안이 중점적으로 다뤄졌으며, 특히 철골 제작 분야의 선진화 기법 도입에 대한 논의가 이루어졌다. ■ 정수진 편집장   ▲ 트림블코리아 이훈녕 프로가 제작 도면의 스마트 생성 기능을 소개했다.   혁신적인 기능으로 생산성 높이는 테클라 스트럭처스 2025 이번 행사에서는 테클라 스트럭처스(Tekla Structures 2025)의 향상된 기능이 소개됐다. 트림블코리아의 기술지원팀장인 이훈녕 프로는 “테클라 스트럭처스 2025는 ‘도면’에 초점을 맞추고 사용자가 원하는 품질의 도면을 더 빠르게 생성하도록 돕는 업데이트를 중점적으로 진행했다”고 소개했다. 이를 위해 테클라 스트럭처스 2025는 도면 생성 및 편집에 AI 기술을 접목했다. 제작 도면 복제 기능이 향상되어 뷰 배치 및 뷰 겹침 개선을 통해 작업 효율을 높일 수 있게 했고, 부재의 형상이나 이름을 인식해 최적의 세팅 파일을 추천하는 스마트 생성 기능은 도면 생성 과정을 간소화하고 어셈블리/단품 도면 생성까지 지원한다. 또한, 도면 속성창의 속도를 높여 사용자 경험을 개선했고, 도면 부재 선 옵션이 추가돼 도면 표현의 유연성이 높아졌다. 새로운 넘버링 미리보기 기능은 넘버링 결과를 사전에 확인하고 검증하여 오류를 방지할 수 있도록 돕는다. 한편, 트림블은 테클라 스트럭처스 2025에서 ‘AI 클라우드 제작 도면 서비스’를 선보였다. 이는 과거 프로젝트의 도면 정보를 클라우드에서 수집하여 새로운 모델에 자동 적용하는 기능이다. 도면 정보를 수집하면서 속성 정보를 한 곳에 모음으로써 최적 샘플링 및 매칭 자동화가 가능하며, 도면을 기업의 자산으로서 지속 관리할 수 있게 한다. 이훈녕 프로는 “이 기능은 도면 생성 및 수정 시간을 줄이고 도면 생성 기술의 습득 시간을 단축하여 생산성을 높이는 데 기여한다”고 설명했다. ‘AI 클라우드 제작 도면 서비스는 테클라 스트럭처스 2025의 다이아몬드 구독 라이선스에서 무료로 사용 가능하다. BIM(건설 정보 모델링) 데이터의 효율적인 저장과 교환을 위한 경량 파일 형식인 트림빔(TrimBIM)은 선택한 부재와 속성만 공유할 수 있도록 개선되어 파일 용량을 효율적으로 관리하고 데이터 공유의 유연성을 높였다. 테클라 스트럭처스 2025는 스테이터스 셰어링(Status Sharing) 기능이 향상되어 실시간 협업 및 프로젝트 추적이 더욱 손쉬워졌으며, 트림블 커넥트(Trimble Connect)와 테클라 스트럭처스에서 같은 뷰를 보면서 협업할 수 있는 라이브 협업 기능도 제공된다. 이 외에도 실시간 모델 기반 연결 환경 개선을 위해 3D 스캔 측량 정보 인터페이스가 향상되었으며, 트림블 리얼리티 캡처 플랫폼 서비스를 통해 클라우드 기반으로 대용량 점군(포인트 클라우드) 파일을 공유하고 작업할 수 있게 되었다.   ▲ 테클라 파워팹은 사무실과 공장 작업자, 프로젝트 관리자를 포괄하는 설루션이다.   테클라 파워팹, 철골 제작 프로세서의 통합 관리 지원 트림블코리아의 전성민 프로는 철골 제작 업체가 3D 모델 기반으로 견적, 자재 관리, 생산, 출하, 설치까지 전 과정을 하나의 플랫폼에서 통합 관리할 수 있는 테클라 파워팹(Tekla PowerFab)을 소개했다. 테클라 파워팹은 수작업 견적, 재고 오류, 정보 단절 등으로 인한 생산성 및 품질 저하 문제를 해결하고, 모델 기반 견적, 실시간 자재 추적, 프로세스 자동화 등 디지털 제작 관리의 필요성에 대응하기 위해 개발됐다. 전성민 프로는 “사무실, 공장, 현장을 실시간으로 연결하여 변경 사항 및 일정 지연을 빠르게 공유하고 대응할 수 있다는 것이 장점”이라고 소개했다. 테클라 파워팹의 주요 기능으로는 ▲3D 모델 기반의 빠르고 정확한 견적 산출 ▲체계적인 프로젝트 관리 ▲BIM 모델을 활용한 정확한 자재 관리 및 최적화된 구매 ▲공장 작업량 균형 조정 및 디지털 작업 지시를 통한 생산 관리 ▲변경 사항 자동 비교 검토 ▲실시간 재고 추적 관리 등이 있다.   건설 산업의 디지털 전환 가속화를 이끈다 이번 행사에서는 생산성을 높이고 스마트 건설을 구현하기 위한 테클라 스트럭처스와 트림블 커넥트 등의 설루션 활용 방안과 함께 건설 산업에서의 기술 활용 사례가 발표됐다. 그리고 한국BIM학회와 한국디지털교육원이 준비 중인 테클라 자격 검증 시험에 대한 내용도 소개됐다. 트림블은 AI 기술, 통합 철골 제작 관리, BIM 기반의 협업 등 자사의 최신 기술이 건설 산업의 디지털 전환과 생산성 향상에 기여할 수 있다는 점을 내세웠다. 트림블코리아의 박완순 사장은 “트림블은 건설 산업의 여러 고객이 겪는 어려움을 극복하기 위한 노력을 이어가고 있다. 이를 위해 최고의 서비스와 가치를 제공할 수 있도록 할 것”이라고 전했다. 이런 움직임의 일환으로 트림블은 용접 정보를 포함하는 ‘한국형 철골 컴포넌트’를 오는 7월 출시할 예정이다. 이 컴포넌트는 용접량을 산출하거나 도면에 용접 정보를 자동으로 표현하는 것이 가능하며, 로봇 용접 가공도 지원할 계획이다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-06-04