• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "보고서"에 대한 통합 검색 내용이 2,091개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
AI 마케팅 시대, ‘실전형 생성형 AI 지형도 3.0’ 공개
PR 및 마케팅 전문가 위한 ‘실전형 생성형 AI 지형도 3.0’ 소개    생성형 AI 지형도 3.0 (이미지 제공 : 함샤우트 글로벌) 함샤우트 글로벌이 급변하는 생성형 AI 시장의 흐름을 반영한 ‘생성형 AI 지형도 3.0’을 새롭게 선보였다. 지난해 3월과 9월에 이은 세 번째 업데이트를 통해 공개된 이번 지형도는 단순한 정보 나열을 넘어, 마케팅 실무자들이 실제 업무에 적용 가능한 ‘실행형 가이드’로서 AI 도구 선택의 기준을 제시하고 AI 시대의 전략적 도구 역할을 할 것으로 보인다. 마케팅 업무 42% 대체 전망…실무 중심 ‘실행형 AI 지형도’로 진화   IDC의 연구에 따르면 2026년까지 생성형 AI가 전통적인 마케팅 업무의 42%를 대체하고, 2029년까지 전체 마케팅 생산성을 40% 향상시킬 것으로 예측된다. 이미 79%의 마케터들이 콘텐츠 제작에 생성형 AI를 활용하고 있으며, 기업들의 30%는 AI 투자에서 2배의 투자수익률(ROI)을, 40%는 3배 이상의 ROI를 기대하고 있는 상황이다. 이러한 변화는 마케터의 업무 방식을 근본적으로 변화시키고 있다. 단순한 보조 도구를 넘어, 생성형 AI는 마케터가 전략 수립부터 실행까지 주도적으로 이끌어갈 수 있도록 돕는 ‘필수 업무 파트너’로 그 중요성이 커지고 있다. 함샤우트 글로벌은 이러한 시장의 흐름을 반영하여 이번 ‘생성형 AI 지형도 3.0’을 단편적인 AI 툴 분류를 넘어 실제 업무에 즉시 활용 가능한 실행형 가이드로 기획했다. 업무 목적별 AI 툴 정보 제공…클릭 한 번으로 상세 정보 확인   함샤우트 글로벌이 공개한 ‘생성형 AI 지형도 3.0’은 마케팅 및 PR 업무에 필수적인 △범용 생성형 AI, △콘텐츠 제작 및 편집, △데이터 분석 및 보고, △마케팅 및 프로모션 자동화, △업무 관리 영역에 특화된 AI 툴 정보를 제공한다. 특히 기존의 AI 지형도들이 단순히 AI 툴의 카테고리만 보여주는 것과 달리, 각 툴에 대한 자세한 정보를 확인할 수 있는 페이지로 연결되도록 제작된 것이 특징이다. PDF 형태로 제공되는 ‘생성형 AI 지형도 3.0’에서 툴 로고를 클릭하면 AI 전문 정보 플랫폼 ‘AI 매터스(AI Matters)’에서 제공하는 상세 정보를 확인하고 실제 업무에 바로 활용할 수 있도록 편의성을 높였다.   웹 탐색 기반 AI 툴 확산, 멀티모달 기능 통합 등 핵심 변화 주목   생성형 AI 시장이 빠르게 변화하는 만큼, 함샤우트 글로벌이 지난해 9월 발표한 2.0 버전과 비교했을 때 이번 ‘생성형 AI 지형도 3.0’에서는 다음과 같은 핵심적인 변화들을 확인할 수 있다. 가장 눈에 띄는 변화는 실시간 정보 검색 기능을 탑재한 웹 탐색 기반 AI 툴의 확산이다. 챗GPT나 퍼플렉시티(Perplexity)와 같이 뉴스 기사, SNS 트렌드, 업계 보고서 등 외부 정보를 실시간으로 검색하고 활용할 수 있는 기능이 적용된 툴이 크게 증가하여, 마케터들은 하나의 도구만으로 정보 조사부터 콘텐츠 제작까지 통합적으로 처리할 수 있게 되었다. 특히 마누스(Manus)나 젠스파크(Genspark)와 같은 AI 에이전트까지 등장하며 더욱 포괄적인 탐색과 심층적인 분석이 가능해졌다. 또한 이미지 생성, 텍스트 작성, 음성 합성, 영상 편집 등 다양한 기능을 하나의 툴에 통합한 ‘올인원 툴’, 즉 멀티모달 기능을 통합한 AI 툴이 급증했다는 점도 중요한 변화다. 전체 AI 툴 중 약 40%가 복합적인 멀티모달 기능을 제공하는 것으로 나타났다. 이와 더불어 한국어를 정식으로 지원하는 AI 툴이 크게 늘어 국내 마케팅 실무자들이 언어 장벽 없이 다양한 글로벌 툴을 활용할 수 있는 기반이 마련되었다. 지형도 2.0 발표 당시보다 한국어 지원 AI 툴이 40% 이상 증가한 것은 국내 사용자들에게 매우 긍정적인 변화라고 할 수 있다. AI 시대, SAO(Search AI Optimization) 전략 중요성 부각   생성형 AI의 대중화로 인해 소비자 행동 양상이 빠르게 변화하면서 함샤우트 글로벌이 연구한 DCA(Desire, Chat, Action) 모델과 같은 새로운 소비자 의사결정 과정이 중요하게 자리 잡고 있다. 소비자들이 AI와의 대화를 통해 정보를 얻고 구매를 결정하는 환경에서는 AI 생성 결과물에 브랜드가 어떻게 노출되는지가 마케팅의 핵심 요소로 떠오르고 있다. 따라서 기업들은 단순한 업무 자동화를 위한 AI 활용뿐만 아니라, SAO(Search AI Optimization), 즉 AI 검색 최적화를 통해 자사의 브랜드가 AI 생성 결과물에 효과적으로 노출될 수 있는 전략 수립에 더욱 심혈을 기울여야 할 것이다. 함샤우트 글로벌 김재희 대표는 “이번 지형도 3.0은 단순한 AI 트렌드 정리를 넘어, 생성형 AI 시대에 마케팅 실무자들에게 실질적으로 필요한 도구와 정보의 길잡이를 제공하는 데 큰 의미가 있다”며 “빠르게 발전하는 AI 생태계 속에서 지형도 3.0은 실전 마케터들의 ‘AI 나침반’이자 전략적 의사결정을 위한 로드맵이 될 것”이라고 강조했다. 이번에 공개된 ‘생성형 AI 지형도 3.0’을 통해 마케터들은 자신의 업무 목적에 따라 필요한 AI 툴을 쉽고 빠르게 선택할 수 있다. 첨부 파일에서 고해상도 파일로 다운 가능하다.
작성일 : 2025-05-10
AutoForm Car Body Planner, 차체 구매 견적 및 비용 산출 프로세스
AutoForm Car Body Planner   개발 : AutoForm, www.autoform.com 자료 제공 : AutoForm, 02-6332-1150, www.autoform.com/kr   AutoForm(오토폼)은 제품 설계부터 차체 조립에 이르기까지 전체 개발 프로세스 체인의 디지털화를 지원하는 통합 플랫폼을 제공한다. 특히, 디지털화 노력이 상대적으로 미진했던 차체 구매 부문의 견적 및 비용 산출 프로세스의 투명성을 확보하기 위해 ‘AutoForm CarBody Planner’를 도입하여 구매 프로세스의 디지털화를 추진하고 있다. 이는 ESG 경영과 맞물려 고객사로부터 큰 주목을 받고 있다. 또한, ESG 경영을 위한 디지털 트랜스포메이션을 통해 지속 가능한 경영을 실현하고, 환경적, 사회적, 거버넌스 측면에서의 책임을 다하기 위해 노력하고 있다. 1. 주요 특징  자동차 차체 개발 프로세스에서 초기 제품 설계 후, OEM 협력사의 구매 부서가 CBP를 통해 자동으로 수율을 검토한다. 이를 통해 빠른 대응과 OEM의 입찰 원가인 수율 보고서 작성이 간소화된다. 또한, OEM 구매 부서는 차종별 수율 이력 관리를 통해 효율성을 높이고, 협력사의 작업 시간을 단축하며, 입찰 정보 계산의 디지털화를 통해 경험에 의한 편차를 줄일 수 있다. 2. 주요 기능 ■ 웹사이트 기반에서 차체 전체 입력 및 각 제품의3D확인 가능 ■ 제품의 소제 및 정보를 차제 제품 입력과 동시에 적용 가능 ■ AutoForm Simulation 기반의 전체 제품 자동 수율 계산   3. 도입 효과 OEM 구매팀의 입찰 결정 시 정합성 확보로 신뢰성이 높아지며, 자동 수율 검토 덕분에 빠르고 효율적인 대응이 가능하다. 입찰 정보 계산의 디지털화로 경험에 의한 편차가 제거되고, 협력사의 업무 효율성 증대와 작업 시간 단축으로 생산성이 향상된다. 마지막으로, 클라우드 기반의 협업 공간 제공으로 부서 간 원활한 협업이 가능하다. 이러한 특징과 효과를 통해 AutoForm의 디지털 트랜스포메이션은 구매 프로세스의 혁신을 이끌고, ESG 경영을 실현하는데 큰 기여를 하고 있다. 4. 주요 고객 사이트 오토폼은 전 세계 50여 개국, 1,000여 개 회사에서 3,500명 이상의 사용자가 주요 엔지니어링 및 제조 공정을 위해 신뢰하고 있다. 주요 고객은 자동차 및 기타 OEM, 금형 및 스탬핑 업체, 철강 및 알루미늄 공급업체이며, 항공 우주 산업뿐만 아니라 의료, 가전 및 백색 가전 산업으로도 점점 더 진출하고 있다.     상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기
작성일 : 2025-05-06
지멘스, 모든 규모의 기업이 PLM을 활용할 수 있도록 팀센터 X 확장
지멘스 디지털 인더스트리 소프트웨어는 모든 규모의 조직이 SaaS(서비스형 소프트웨어) 기반 PLM(제품 수명주기 관리)을 활용하여 제조 산업 전반의 디지털 전환과 혁신을 촉진할 수 있도록 팀센터 X(Teamcenter X) 소프트웨어의 새로운 버전을 출시한다고 발표했다. 새로운 팀센터 X 제품군은 기계, 전기, 전자 개발을 아우르는 프로세스 관리 및 크로스 도메인 기능 등 다양한 고급 기능을 사전 구성된 형태로 제공한다. 팀센터 X는 기존 두 종류의 버전에 새롭게 두 가지를 추가해, 총 네 가지 버전으로 제공된다.     팀센터 X 에센셜즈(Teamcenter X Essentials)는 간편한 배포와 낮은 운영 비용을 고려하여 설계되었으며, 기계 설계에 집중하는 기업을 위한 데이터 관리 기능을 제공한다. CAD 데이터 관리, 제품 구조 및 리비전 관리, 사용 위치 검색, 체크인/체크아웃, 3D 보기 및 마크업 기능이 포함되어 있으며, 기업의 성장에 따라 확장성을 지원한다. 새롭게 출시된 팀센터 X 스탠더드(Teamcenter X Standard)는 에센셜즈 버전을 기반으로 단순 변경 관리, 프로젝트 일정 관리, 문서 관리, 보고서 생성 등 추가적인 PLM 기능을 포함한다. 모든 기능은 사전 구성된 형태로 제공되며, 고객의 요구에 맞게 조정할 수 있다. 역시 새롭게 출시된 팀센터 X 어드밴스드(Teamcenter X Advanced)는 제품 수명 주기 전반에 걸쳐 기계, 전자 및 전기 설계 간의 크로스 도메인 협업이 필요한 기업을 지원한다. 전기 및 전자 설계 통합 및 분류를 위한 데이터 관리 기능이 추가되었으며, 마찬가지로 사전 구성된 상태로 제공되고 필요 시 맞춤화할 수 있다. 팀센터 X 프리미엄(Teamcenter X Premium)은 클라우드 공급자를 선택할 수 있으며, 팀센터의 전체 기능을 활용하고자 하는 기업을 위한 포괄적 PLM 설루션이다. 엔터프라이즈 BOM, 비즈니스 시스템 통합, 모델 기반 시스템 엔지니어링(MBSE), 제조 계획, 품질 및 컴플라이언스 관리, 제품 비용 및 서비스 수명 주기 관리까지 포함한다. 또한 산업용 기계, 의료기기, 반도체 등 특정 산업군을 위한 사전 구성 설루션도 제공된다. 지멘스 디지털 인더스트리 소프트웨어의 프랜시스 에반스(Frances Evans) 라이프사이클 협업 소프트웨어 수석 부사장은 “팀센터 X의 이번 확장은 SaaS PLM을 모든 규모의 기업이 보다 쉽게 접근할 수 있도록 하려는 지멘스의 사명을 이어가는 것”이라면서, “새로운 팀센터 X의 기능은 더 많은 고객이 빠르게 PLM 도입을 시작하고, 이후 팀센터 포트폴리오 전반을 통해 비즈니스 과제를 확장해 나갈 수 있도록 돕는다”고 말했다.
작성일 : 2025-05-02
[칼럼] 실용형 AI, 제조의 미래를 바꾸다
트렌드에서 얻은 것 No. 23   “AI는 모든 산업에 새로운 가능성을 열어 준다. 중요한 것은 기술이 아니라, 그것을 어떻게 활용하느냐이다.” – 사티아 나델라(Satya Nadella), 마이크로소프트 CEO 마이크로소프트는 생성형 AI를 다양한 산업에 통합하며, 기술의 활용 방식에 중점을 두고 있고,  나델라의 말은 기술 도입보다 전략적 활용이 중요하다는 점을 강조한다.   생성형 AI와 함께 설계하고, 시뮬레이션하고, 개선하라 지금 이 이야기를 한국의 제조기업에 가서 한다면, 이상한 사람 취급을 받을 수 있다. 당장, 어떻게 할 수 있는지 이야기할 수 있느냐? 우리도 그렇게 하고 싶은데, 어떻게 할 수 있는지 제대로 나온 것도 없고, 사례가 있는지 등의 얘기가 자연스럽게 나온다. 맞는 말이다. 하지만, 지금은 레이스의 출발선에서 모두 같은 상황일 것이다. 다만, 전체를 제어하고 미래를 설계하는 혜안이 있는 사람이나 조직 유무에 따라 회사들의 달리기 속도는 분명 차이가 날 것이다.  우리는 그런 시대를 살아가고 또 지나가고 있다. 뉴스에서 다른 회사의 소식을 들으면서 탄식을 하고 있을 것인가, 아니면 고통스럽더라도 뭔가 해 보는 것이 낫지 않느냐의 갈림길에 있다. “그럼에도 불구하고, 우리는 설계할 수 있다.” 그렇다. ‘생성형 AI로 설계하고, 시뮬레이션하고, 개선하라’는 말은 지금의 제조 현장에선 거대한 간극처럼 느껴진다. 공장의 열기와 노하우 속에서 살아온 실무자에게는 뜬구름 잡는 이야기처럼 들릴 수 있다. “AI가 좋다는데, 어디까지 해봤나?”, “누가 이걸 설계에 실제로 썼대?” 이런 질문은 당연한 것이고, 오히려 현실을 잘 아는 사람일 수록 더 조심스러운 반응을 보인다. 그러나 지금, 우리는 모두 레이스의 출발선에 서 있다. 완성된 길도, 검증된 답도 아직 없다. 그러니 이 때 필요한 건 기술보다 먼저 혜안을 가진 사람, 구조를 설계할 수 있는 리더다. 단 한 줄의 프로토타입이라도 그려보려는 엔지니어, 익숙한 보고서보다 새로운 질문을 고민하는 팀장, 시행착오를 감수하고 방향을 잡으려는 임원이 지금 이 시대의 속도를 결정짓는다. 그리고 그 ‘혜안’은 거창한 청사진이 아닐 수도 있다. 단 하나의 설계 데이터를 기반으로 AI에게 첫 도면을 그리게 해보는 실험, 실시간 현장 일지에서 이상 징후를 요약하게 해 보는 시도, 현장의 사진 데이터로 품질 검사 자동화를 위한 검출 모델을 훈련해 보는 도전 등이 현 시점에서 예상해 볼 수 있는 가까운 미래 모습일 것 같다. “우리는 예상치 못한 상황을 목격하고, 예상된 상황을 보고하며, 결국 승리할 것입니다.” – 알렉스 카프, 팔란티어 CEO 카프는 AI를 활용한 제조업의 혁신이 불확실성을 극복하고 성공으로 이끄는 열쇠라고 보고 있으며, 이는 생성형 AI를 통한 제조업의 미래를 긍정적으로 전망한다.    그림 1. 실용형 AI 맵 ‘제조 미래를 바꾸다’(Map by 류용효) (클릭하면 큰 이미지로 볼 수 있습니다.)   제조, AI를 다시 만나다 “설계는 끝났지만, 고객은 원하지 않는다.”  “시뮬레이션은 끝났지만, 현장은 여전히 오류를 반복한다.”  “보고서는 쌓이지만, 문제는 여전히 현재진행형이다.” 이 문장들은 지금도 수많은 제조 현장에서 반복되고 있다. 전통적인 제조 프로세스는 분업과 효율을 중심으로 설계되었지만, 급변하는 고객의 요구와 복잡해진 제품 환경은 기존 체계의 민첩성과 창의성에 한계를 드러낸다. 이제 제조기업은 하나의 질문 앞에 서 있다. “우리는 더 빠르고 똑똑한 공장을 가질 준비가 되었는가?” 생성형 AI는 단순한 자동화 기술이 아니다. 설계자의 의도를 읽고 CAD 모델을 생성하며, 수십 개의 시뮬레이션으로 프로세스 병목을 알려주고, 품질 이상을 예측할 뿐 아니라 원인을 유추해주는 ‘설계적 사고를 하는 AI’가 등장하고 있다. 이는 기술의 도입이 아니라 제조기업의 ‘운영 철학’ 자체가 전환되는 순간이다. 제조기업이 생성형 AI와 함께 앞으로 어떻게 설계하고, 시뮬레이션하고, 개선할 수 있을지를 구체적으로 조망한다. “AI는 인류가 만든 가장 중요한 기술이다. 우리는 그것을 책임감 있게 개발하고 활용해야 한다.” – 순다르 피차이(Sundar Pichai), 구글 CEO 구글은 AI 개발에 있어 윤리적 책임과 사회적 영향을 고려하고 있으며, 피차이의 말은 기술 발전과 함께 그에 따른 책임도 중요하다는 점을 상기시켜 준다.   디자인의 재정의 - AI는 창의적인 엔지니어인가? 전통적인 제조 설계 과정은 복잡한 조건 설정, 반복적인 수정, 협업 간의 커뮤니케이션 비용 등으로 인해 수많은 시간과 리소스를 요구해왔다. 하지만 이제, 생성형 AI는 텍스트 한 줄로 설계를 시작하게 한다. “3개의 모듈로 구성된 소형 드론 프레임을 설계해 줘. 탄소 섬유 기반으로 무게는 150g 이하로.” 이 한 문장으로 AI는 초기 설계안을 생성하고, 다양한 대안 모델을 제공하며, 사용자 요구조건에 따라 자동 최적화를 제안한다. AI는 도면을 '그리는 도구'가 아니라, '제안하고 비교하는 동료 엔지니어'로 진화하고 있다. 예를 들어, 오토데스크의 퓨전 360(Fusion 360), 엔톱(nTop), 다쏘시스템의 3D익스피리언스 웍스(3DEXPERIENCE Works)는 이미 생성형 디자인 기능을 내장하고 있다.  디자이너는 아이디어를 제공하고, AI는 그에 기반한 설계 패턴을 도출한다. 이는 ‘무에서 유를 만드는’ 것이 아니라, 수많은 설계 데이터를 학습한 AI가 새로운 패턴과 조합을 도출해내는 방식이다. 결과적으로 설계자는 더 이상 반복적인 CAD 작업자가 아니다. 이제 디자이너는 ‘기획자’이자 ‘비평가’, 그리고 ‘AI와 협력하는 설계 전략가’가 된다. 또한, 이러한 생성형 설계는 대량 맞춤형 생산(mass customization)과의 결합으로 그 진가를 발휘한다. 기존에는 옵션이 제한된 범용 제품만이 경제성이 있었지만, 생성형 AI는 고객의 요구사항을 빠르게 읽고 즉시 설계에 반영할 수 있다. 이는 ‘고객이 참여하는 설계’, 즉 코디자인(co-design) 시대의 도래를 가능하게 한다. 기업은 더 빠르게 시장에 대응하고, 고객은 더 높은 만족도를 경험한다. 이처럼 생성형 AI는 설계를 단순히 ‘빠르게’ 만드는 기술이 아니라, 설계의 개념 자체를 ‘재정의’하는 도구이자 기업의 창의성과 기민함을 확장하는 전략 자산이 되고 있다. “퍼플렉시티(Perplexity)는 단순한 답변 엔진에서 행동 엔진으로 전환하고 있다. 이제는 단순히 질문에 답하는 것을 넘어, 사용자에게 행동을 제안하고 실행하는 단계로 나아가고 있다.” – 아라빈드 스리니바스(Aravind Srinivas), 퍼플렉시티 AI CEO 아라빈드의 말은 AI 기술이 단순한 정보 제공을 넘어, 사용자와의 상호작용을 통해 실제 행동을 유도하고 실행하는 방향으로 발전하고 있음을 의미한다.   시뮬레이션의 혁신 - 빠른 판단과 적은 비용 과거의 시뮬레이션은 전문 소프트웨어와 고성능 컴퓨팅 자원, 그리고 숙련된 엔지니어의 직관과 경험에 크게 의존해 왔다. CAE는 분명 설계 검증과 최적화의 핵심이었지만, 조건 설정 → 모델링 → 결과 해석 → 반복이라는 고비용 순환은 여전히 제품 개발의 병목으로 작용해왔다. 그러나 생성형 AI는 이 병목을 타파하는 새로운 접근을 제시한다. 자연어로 “강풍 조건에서 뒤틀림이 가장 적은 하우징 구조를 찾아줘”라고 지시하면, AI는 자동으로 물리 조건을 추론하고, 유사 데이터 기반의 시뮬레이션 템플릿을 구성하며, 수십 개의 대안 시나리오를 병렬 생성해 ‘예측 – 설명 – 추천’이라는 삼중 루프를 빠르게 수행한다. 이러한 기술은 시뮬레이션의 대중화(simulation democratization)를 이끈다. 기술 전공자가 아니어도, 제품 매니저나 품질 담당자가 AI의 도움으로 설계안의 응력 분포나 유동 조건에 대해 인사이트를 얻을 수 있다. 이는 실무자가 더 빠르게 결정을 내릴 수 있도록 돕고, 의사결정의 지연 대신, 다중 시나리오 기반의 ‘실험적 사고’를 가능하게 만든다. 대표적인 사례로는 알테어의 AI 기반 인스파이어 플랫폼(AI-driven Inspire Platform), 앤시스의 AI 기반 시뮬레이션 자동화, 그리고 다쏘시스템의 솔리드웍스 생성형 시뮬레이션(Generative Simulation for SOLIDWORKS)이 있다. 이들은 기존 FEM/CFD 분석의 시간과 비용을 줄이는 동시에, 경험 기반 의사결정에서 데이터 기반 최적화로의 전환을 이끌고 있다. 궁극적으로 생성형 AI는 단순히 ‘더 빠른 계산’을 넘어서, “어떤 시나리오를 먼저 고려해야 하는가?”, “이 조건에서 실패할 가능성은 무엇인가?”라는 전략적 질문에 답하는 보조 엔진이 되어 준다. 이는 시뮬레이션을 단지 제품 검증의 도구가 아니라, 경영 의사결정과 R&D 전략 수립의 인공지능 파트너로 진화시키는 변화의 시작점이다.  “AI는 우리가 상상하는 것보다 훨씬 더 빠르게 발전하고 있다. 자율주행차는 그저 시작일 뿐이다.” – 일론 머스크(Elon Musk), 테슬라 CEO 테슬라는 자율주행 기술 개발에 AGI 수준의 AI를 활용하고 있으며, 이는 단순한 기능 향상을 넘어 차량 설계와 운행 방식 전반을 재정의하는 접근이다.   업무 분석과 프로세스 개선 - 데이터는 말하고 AI는 듣는다 제조 현장의 데이터는 언제나 풍부했다. 작업자 일지, 설비 로그, 유지보수 메모, 품질검사 리포트, 현장 사진과 동영상, 고객 클레임 이메일… 하지만 이들 대부분은 정형화되지 않은 ‘텍스트’와 ‘문서’ 형태로 존재하며, 기존 시스템은 이를 ‘기록’하는 데에만 집중했고, 의미를 해석하고 연결하는 능력은 인간의 몫이었다. 이제 생성형 AI는 이 방대한 비정형 데이터의 숲에서 맥락을 이해하는 나무를 찾는다. 작업자가 남긴 “라인 3에서 어제도 제품 정렬이 안 맞았고, 자동 이젝터가 두 번 멈췄다”는 기록은, AI에겐 단순한 텍스트가 아니라 ‘패턴’과 ‘이상’의 시그널이다. LLM은 이런 문장을 분석해 작업 단계별 이벤트를 분해하고, 관련된 설비 로그와 품질 데이터를 연결하여 문제 지점을 도출한다. 이제 업무는 ‘기록하고 보고하는 일’이 아니라, ‘데이터가 스스로 분석하고 말하는 환경’으로 바뀌고 있다. 대표적인 활용 사례는 다음과 같다. 업무 요약 자동화 : 업무 일지를 요약해 경영진에게 핵심 이슈를 전달 프로세스 병목 식별 : 여러 부서의 텍스트 기반 보고서에서 공통 키워드와 불만 분석 문서 자동 생성 : SOP(표준작업지침서), 회의록, 개선안 보고서 등의 자동 초안 작성 협업 인텔리전스 : 여러 팀 간의 커뮤니케이션 데이터를 분석해 협업 지연 포인트 도출 실제로 지멘스는 AI 기반 자연어 처리 기술(Natural Language Processing : NLP)을 통해 디지털 작업지시서와 실시간 현장 대응 리포트를 자동 생성하는 기능을 도입했고, 보쉬는 AI를 통해 품질 클레임 문서에서 반복 출현하는 원인 유형을 추출하여 품질 개선의 단초로 활용하고 있다. 핵심은 이것이다. 현장의 수많은 대화와 기록이 AI에게 ‘말을 거는 데이터’가 되었고, AI는 그 말을 듣고, 요약하고, 통찰을 제시하며, 업무 개선을 스스로 제안하는 존재가 되었다는 점이다. 이제 우리는 묻지 않을 수 없다. 우리는 AI에게 말 걸 준비가 되어 있는가? 그리고 그 대답을 조직이 들을 준비는 되었는가? “가장 큰 위험은 아무런 위험도 감수하지 않는 것이다. 모든 것이 급변하는 시대에서 위험을 회피하는 전략은 반드시 실패로 이어진다.” — 마크 저커버그, 메타 CEO 저커버그는 변화와 혁신의 시대에 기존의 방식을 고수하며 위험을 회피하려는 태도가 오히려 더 큰 실패를 초래할 수 있음을 경고한다.   품질 관리의 진화 - AI는 예지적 감각을 가질 수 있는가 품질 관리는 제조업의 마지막 방어선이자, 가장 정교한 신경망이다. 그러나 지금까지의 품질 관리는 주로 사후 대응(postdefect 대응)에 집중되어 있었다. 불량이 발생한 후 원인을 찾고, 재발 방지책을 수립하고, 문서를 정리하는 ‘후행적 품질 관리’가 일반적이었다. 이제 생성형 AI는 이 전통적 프레임을 근본부터 흔들고 있다. AI는 ‘불량을 감지’하는 것이 아니라, ‘불량을 설명하고 예측’하려 한다. 예를 들어, 제품 표면의 이미지를 기반으로 한 비전 검사 시스템은 단순히 OK/NG를 판단하는 데서 그치지 않고, “이 영역의 텍스처 패턴은 온도 편차에 의한 수축 변형일 가능성이 높습니다”라고 말할 수 있는 설명형 모델로 진화하고 있다. 나아가, 생성형 AI는 텍스트, 이미지, 센서 데이터를 통합적으로 분석해 복합적인 이상 징후를 감지하고, 불량의 '가능성'과 '잠재 원인'을 추론해낸다. 예를 들어 다음과 같은 조합이 가능해진다. 작업자 일지 : “이틀 전부터 용접기압이 다소 약한 것 같다.” 센서 로그 : 오전 9~11시에 기압 편차 발생 불량 이미지 : 비드 형성 불균형 AI는 이를 연결해 “용접 조건의 경미한 변화가 반복 불량의 근본 원인일 수 있다”고 보고한다. 이는 단순한 예측모델이 아니다. ‘설명 가능한 품질 관리(Explainable Quality)’, 즉 AI가 품질 이슈에 대해 왜 그런 판단을 했는지를 근거와 함께 제시함으로써, 품질팀은 더 이상 직감이나 경험에만 의존하지 않고 데이터 기반의 합리적 개선 프로세스를 수립할 수 있다. 이미 보쉬, 토요타, GE 항공 등은 ▲AI 기반 비전 검사 시스템에서 ‘불량 예측 + 원인 설명’을 제공하는 모델을 구축 중이고 ▲ISO 9001과 연동되는 AI 품질 리포트 자동화 시스템을 테스트하고 있다. 이는 곧 ‘AI가 품질 시스템의 일원으로 공식 포함되는 시대’가 오고 있음을 뜻한다. 품질의 정의는 바뀌고 있다. 과거의 품질은 발견과 수정의 문제였지만, 앞으로의 품질은 예지와 설득의 문제다. AI는 이제 불량을 찾아내는 것이 아니라, 불량이 만들어지지 않도록 ‘생산 과정 그 자체를 개선하자’고 제안하는 동료가 되어가고 있다. “AI는 전기를 발견한 것과 같은 혁신이다. 모든 산업에 스며들 것이며, 그 영향을 무시할 수 없다.” – 앤드류 응(Andrew Ng), AI 전문가 앤드류 응은 AI의 보편성과 산업 전반에 미치는 영향을 강조하고 있다. 그의 말은 제조업에서도 AI의 통합이 필수임을 시사한다.   경고와 제언 - 생성형 AI는 도입이 아니라 전환이다 많은 제조기업이 생성형 AI에 주목하고 있다. 설계 자동화, 시뮬레이션 최적화, 업무 요약, 품질 예측… 도입 사례는 늘고 있지만, 도입이 곧 성공을 의미하진 않는다. 생성형 AI는 단순한 툴이 아니라, 운영 철학의 변화를 요구한다. 기존의 프로세스는 ‘정해진 절차와 역할’ 속에서 최적화를 추구해왔지만, 생성형 AI는 ‘질문을 던지고 시나리오를 비교하며 판단을 내리는 유연한 사고방식’을 요구한다. 즉, 기술만 바꾸는 것이 아니라 조직의 사고 체계와 역할 구조 자체를 재설계해야 하는 것이다. 예를 들어 <표 1>과 같은 전환이 필요하다.   표 1   하지만 문제는 기술이 아니다. 가장 큰 장벽은 조직이 AI를 받아들일 준비가 되어 있느냐는 것이다. 임원은 AI를 단순히 ‘자동화 툴’로 간주하는 경향이 많고, 현장은 여전히 ‘내 일을 뺏는 존재’로 AI를 경계한다. 이 간극을 메우지 않으면, AI는 시연 단계에서 멈추고, 조직은 변화의 본질을 놓친다. 따라서 다음과 같은 전환 전략이 필요하다. 파일럿이 아닌 전환 설계 특정 부서에서 테스트하는 것이 아니라, 조직 전체의 프로세스 전환 시나리오를 기획해야 한다. ‘도입 교육’이 아닌 ‘공감 설계’ 기술 사용법이 아니라, 왜 이 기술이 필요한지에 대한 비즈니스 관점에서의 스토리텔링이 필요하다. AI Co-Worker 관점 전환 AI는 도구가 아니라, 함께 판단하고 실험하는 동료로 봐야 한다. 이를 위해 직무 정의서(JD)도 다시 써야 한다. 성과 기준의 재정립 AI 도입 이후에는 ‘정확도’보다 ‘학습 속도’와 ‘적응력’이 핵심 성과 지표가 된다. 결국, 생성형 AI는 ‘도입해야 할 기술’이 아니라 ‘다르게 일하고, 다르게 생각하고, 다르게 운영하는 기업’으로 전환하기 위한 촉매제다. 이제 경영진에게 남은 질문은 단 하나다. “우리는 기술을 도입할 준비가 되었는가?”가 아니라, “우리는 조직을 전환할 용기를 가졌는가?”이다. “지금은 스타트업의 시대… 세상은 여전히 변화의 가능성에 잠들어 있다.” – 샘 올트먼, 오픈에이아이 CEO 올트먼은 기술 혁신의 시기에 기존 기업들이 변화에 둔감해질 수 있음을 경고하며, 새로운 도전과 변화를 추구하는 조직만이 미래를 선도할 수 있다는 메시지를 담고 있다.   맺음말 : 생성형 AI 시대의 제조 기업, 당신은 어떤 그림을 그리고 있는가 미래의 공장은 단지 더 정교하고, 더 빠르며, 더 자동화된 곳이 아니다. 그곳은 데이터를 읽고, 상황을 이해하고, 사람과 함께 결정하는 공장이다. 문제를 발견하기 전에 감지하고, 작업자를 지원하며, 스스로 최적의 방식을 제안하는 공장이다. 그리고 그 공장의 핵심 파트너는 인간의 상상력을 확장하는 생성형 AI다. 이제 중요한 질문은 이것이다. “우리는 어떤 그림을 그리고 있는가?” 기술은 빠르게 진화한다. 생성형 AI는 설계와 시뮬레이션, 업무 분석과 품질 관리까지 제조의 전 과정을 유기적으로 연결하며 ‘스마트’를 넘어 ‘지능적’으로 만들고 있다. 하지만 진정한 경쟁력은 기술의 채택이 아닌, 기술과 함께 일하는 방식의 변화에서 비롯된다. 아직 많은 제조기업은 ‘가능성 탐색’ 단계에 머물러 있다. 하지만 머뭇거릴 시간이 없다. AI는 이미 조직 구조, 업무 정의, 리더십의 방식까지 영향을 미치기 시작했다. 이제는 기술을 배우는 것이 아니라, 기술과 함께 일할 조직을 설계해야 할 때다. 생성형 AI 시대의 제조 기업은 세 가지 질문에 답할 수 있어야 한다. 우리는 상상할 수 있는가? 생성형 AI는 ‘주어진 문제를 해결’하는 것이 아니라 ‘가능성을 확장’한다. 제조기업의 조직은 아직도 문제만 찾고 있는가, 아니면 새로운 기회를 그리고 있는가? 우리는 받아들일 수 있는가? AI는 사람의 영역을 침범하지 않는다. 다만 그 옆에 선다. 우리는 전환할 수 있는가? 우리는 그것을 파트너로 받아들일 준비가 되어 있는가? AI 도입은 기술의 문제가 아니라, 사고방식과 리더십의 전환이다. 과연 지금의 조직은 그 전환을 감당할 수 있는가? 미래의 공장은 말하고 있다. “나는 설계하고, 시뮬레이션하고, 개선할 준비가 되어 있다. 너는 나와 함께 걸을 준비가 되어 있는가?”   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다.(블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
로크웰 오토메이션, OT 사이버 위협 대응 위한 신규 보안 모니터링 서비스 출시
로크웰 오토메이션이 운영 기술(OT) 환경을 위한 신규 보안 모니터링 및 대응(Security Monitoring & Response) 서비스를 출시했다고 밝혔다. 이 서비스는 산업 조직이 점점 정교해지는 사이버 위협에 효과적으로 대응하고, 복원력 있는 운영 체계를 구축할 수 있도록 설계됐다. 이번 신규 서비스는 로크웰 오토메이션의 OT 보안 운영 센터(Security Operations Center : SOC)와 경험이 풍부한 사이버 보안 분석가로 구성된 전담팀이 실시간으로 위협을 탐지하고 대응함으로써, OT 보안의 복잡성을 해소하고 기술 격차 및 운영 비효율성을 최소화할 수 있도록 지원한다. 산업 사이버 보안 사고, 시스템 취약성, 그리고 숙련된 보안 인력의 부족으로 인해 OT 환경의 보안은 점점 복잡해지고 있다. 실제로 최근 발표된 스마트 제조 현황 보고서에 따르면, 사이버 보안 위협과 인력 부족은 모두 제조 산업에 영향을 미치는 중요 상위 5대 외부 장애 요인으로 지목되었다. 이번 설루션의 주요 기능으로는 ▲지속적인 보안 모니터링 및 대응 서비스 ▲신속한 사고 대응 및 문제 해결 ▲포괄적인 보고 체계 및 유연한 확장성이 있다.     보안 모니터링 및 대응 서비스는 OT 환경에 대한 연중무휴 24시간 실시간 모니터링 기능을 통해 잠재적 위협을 신속하게 탐지하고, 고급 분석 기법을 통해 원시 데이터를 실행 가능한 인사이트로 전환함으로써 대응의 정확성과 속도를 높인다. 또한, 사고 발생 시 축적된 노하우와 검증된 절차를 기반으로 한 단계별 대응 가이드를 통해 사고를 효율적으로 관리하고, 운영 중단을 최소화한다. 로크웰 오토메이션의 SOC 분석가는 고객의 보안팀을 보완하며 신속한 대응을 제공한다. 보고 체계와 확장성 측면에서도 강점을 갖추고 있다. 로크웰 오토메이션은 고객이 조직 차원에서 보안 상태를 체계적으로 점검하고 개선할 수 있도록 월간 경영진 요약 보고서와 분기별 비즈니스 리뷰를 제공하며, 주요 이해관계자들의 전략적 참여를 유도한다. 또한 모듈형 구조로 설계된 본 서비스는 각 고객의 고유한 요건에 맞춰 유연하게 확장 및 맞춤화가 가능하다. 이번 서비스를 통해 고객은 위협을 조기에 탐지하고 신속히 완화하여 운영 중단 및 재정적 손실을 줄일 수 있으며, 반복적인 보안 작업을 자동화함으로써 전반적인 운영 효율성을 높일 수 있다. 로크웰 오토메이션은 특히 실시간 보안 가시성을 기반으로 데이터 기반의 의사결정이 가능하며, 전문 인력이 부족한 환경에서도 효과적인 보안 체계를 유지할 수 있는 대안으로 작용할 것으로 기대하고 있다. 로크웰 오토메이션의 닉 크리스(Nick Creath) 사이버 보안 서비스 수석 제품 관리자는 “사이버 위협이 갈수록 정교해지는 상황에서 제조업체는 상시적인 경계와 전문 대응 역량이 필요하지만, 이를 위한 내부 리소스가 부족한 경우가 많다”며, “자사의 보안 모니터링 및 대응 서비스는 연중무휴 실시간 위협 감지와 전문가 주도 대응을 통해 고객의 보안 태세를 강화하고 기술 격차를 해소할 수 있도록 돕는다”고 밝혔다.
작성일 : 2025-04-29
마이크로소프트, ‘2025 업무동향지표’ 통해 AI-인간 협업 시대 예고
마이크로소프트가 연례 보고서인 ‘2025 Work Trend Index(업무동향지표)’를 발표하면서, AI가 재편하는 업무 환경과 프론티어 기업의 등장을 조명하는 한편 AI 시대의 변화에 대응할 로드맵을 제시했다. AI는 단순한 기술을 넘어 사고하고 추론하며 복잡한 문제를 해결하는 동반자로 진화하고 있다. 이에 마이크로소프트는 ‘2025 업무동향지표’를 통해 AI가 조직 경영과 비즈니스에 미치는 영향에 대한 주요 트렌드를 공개했다. 이번 보고서는 한국을 포함한 31개국 3만 1000 명의 근로자 대상 설문조사 결과와 함께, 마이크로소프트 365에서 수집된 수 조 건의 생산성 신호, 링크드인의 노동·채용 트렌드, 그리고 AI 스타트업, 학계 전문가, 경제학자 등과의 협업을 통해 도출됐다.     이번 보고서는 ‘프론티어 기업(Frontier Firm)’이라는 새로운 기업 유형이 등장하고 있으며, 향후 2-5년 안에 대부분의 조직이 이 방향으로 전환을 시작할 것으로 전망했다. 프론티어 기업은 인간과 AI 에이전트가 함께 일하는 하이브리드 팀을 중심으로 유연하게 운영되며, 빠르게 성장하고 성과를 만들어내는 것이 특징이다. 기업 리더의 81%는 향후 12~18개월 내 자사 AI 전략에 AI 에이전트가 광범위하게 통합될 것으로 기대하고 있으며, 실제로 AI 도입 속도도 빠르게 가속화되고 있다. 전체 리더 중 24%는 자사에 이미 전사 차원의 AI 도입이 이뤄졌다고 응답했으며, 시험 운영(pilot) 단계에 머무르고 있다고 답한 리더는 12%에 불과했다. 프론티어 기업은 인간과 AI의 협업 수준에 따라 세 단계로 진화한다. 1단계에서는 AI가 반복적인 업무를 보조해 인간의 효율을 높인다. 2단계에서는 에이전트가 팀의 디지털 동료로 합류해, 사람의 지시에 따라 구체적인 업무를 수행한다. 마지막 3단계에서는 인간이 방향을 제시하면, 에이전트가 전체 업무 흐름을 주도해 업무를 실행하고 인간은 필요할 때만 개입한다. 또한, 보고서는 AI의 급속한 발전으로, 인간의 시간·에너지·비용에 의존하던 지능이 이제는 언제든지 사용할 수 있는 ‘언제든지 사용할 수 있는 지능(Intelligence on tap)’으로 변화하고 있다고 분석했다. 합리적 사고, 계획, 행동이 가능한 AI와 에이전트의 등장으로 인해 이제 기업은 필요에 따라 팀과 개인의 역량을 확장할 수 있다. 실제로 글로벌 리더의 82%(한국 77%)는 2025년을 전략과 운영상의 주요 사항들을 재고해야 할 전환점으로 보고 있으며, 82%의 리더(한국 77%)는 향후 12~18개월 내에 디지털 노동력을 활용해 인력의 역량을 확대할 수 있을 것으로 기대하고 있다. 이 같은 변화의 배경에는 비즈니스 수요와 인간의 역량 간의 간극, 즉 역량 격차(Capacity Gap)가 있다. 리더의 53%(한국 65%)는 지금보다 더 높은 생산성이 필요하다고 답했지만, 리더를 포함한 근로자 80%(한국 81%)는 업무에 집중할 시간이나 에너지가 부족하다고 느꼈다. 마이크로소프트 365 사용자 행동 데이터에 따르면, 직원들은 회의, 이메일, 알림 등으로 하루 평균 275번 업무 방해를 받고 있으며, 10건의 회의 중 6건은 별다른 예고 없이 갑작스럽게 열리는 것으로 나타났다. 이 가운데, 일부 기업은 AI를 기반으로 조직 경영 전략을 새롭게 설계하고 있으며, 마이크로소프트는 이들을 ‘프론티어 기업’으로 정의했다. 31개국 3만 1000명 가운데 프론티어 기업에 근무하는 844명의 직원 71%는 자사가 빠르게 성장하고 있다고 답했으며, 이는 글로벌 평균(37%)의 약 두 배에 해당한다. 또 이들 중 55%(글로벌 20%)는 더 많은 업무를 감당할 여력이 있다고 응답했으며, 93%(글로벌 77%)는 향후 커리어 전망에 자신감을 보였다.     산업과 직무의 진화에 따른 다면적인 변화도 예고됐다. 리더의 45%(한국 44%)는 향후 12~18개월 안에 디지털 노동력을 통해 팀 역량을 확대하는 것을 최우선 과제로 꼽았다. 한편 링크드인에 따르면 유망 스타트업의 고용 증가율은 전년 대비 20.6%로, 빅테크(10.6%)의 약 두 배에 육박했다. 이어서, 보고서는 전통적인 조직 구조를 보완할 새로운 모델로 워크 차트(Work Chart)를 제시했다. 기존 조직이 재무, 마케팅, 엔지니어링 등 기능 중심으로 팀을 구성해왔다면, 워크 차트는 부서가 아닌 달성해야 할 목표를 기준으로 팀을 유연하게 구성하는 방식이다. 이 과정에서 AI 에이전트는 팀원으로서 분석, 지원, 제안 등 다양한 역할을 수행하며 인간의 역량을 확장한다. AI 에이전트의 역할이 모든 업무 영역에서 동일한 속도로 발전하지는 않을 것으로 예상됐다. 향후 일부 업무는 에이전트가 대부분을 수행하고, 인간은 고위험·고정밀 업무를 감독하는 방식으로 역할이 조정될 것으로 내다봤다. 판단, 공감, 사고력이 요구되는 업무는 인간의 개입이 필요하다는 분석이다. 인간과 에이전트 간 역할 분담을 측정할 수 있는 운영 지표인 인간-에이전트 비율(Human-agent ratio)의 필요성도 제시했다. 하이브리드 팀의 생산성을 극대화하기 위해서는 에이전트의 수뿐만 아니라, 이들을 효과적으로 조율하고 관리할 수 있는 인간의 수 역시 함께 고려해야 한다는 설명이다.  실제로 리더의 46%(한국 48%)는 자사에서 에이전트를 활용해 업무 절차나 프로세스를 완전히 자동화하고 있다고 답했다. AI 투자와 관련해서는, 향후 12~18개월 내 고객 서비스, 마케팅, 제품 개발 분야에서 확대가 빠르게 이뤄질 것으로 예상하는 리더가 많았다. AI에 대한 인식 차이도 주목된다. 직원의 52%(한국 52%)는 AI를 명령형 도구로 여기고 단순 지시 수행에 활용하고 있었고, 46%(한국 45%)는 조력자로 받아들여 아이디어를 구상하거나 창의적 사고를 확장하는 데 사용하는 것으로 나타났다. 이에 따라, 마이크로소프트는 조직이 향후 디지털 노동력 관리를 전담하는 지능 자원(intelligence resources) 부서나, 인간과 디지털 노동력의 균형을 조율하는 자원 최고 책임자(Chief Resources Officer)와 같은 새로운 리더십 역할 도입도 검토할 수 있다고 제언했다. 이러한 흐름 속에서, AI는 인간을 대체하기보다 협업을 통해 가치를 높이는 도구로 인식되고 있다. AI를 활용한 개인의 성과는 AI 없이 팀을 구성한 경우보다 높게 나타났으며, 직원들이 AI를 선호하는 이유로 ▲24시간 이용 가능성(42%)(한국 27%) ▲일정한 속도와 품질(30%)(한국 33%) ▲무제한 아이디어 제공(28%)(한국 25%)이 꼽혔다. 보고서는 AI 에이전트의 활용이 본격화되며, 에이전트 보스(Agent Boss) 시대가 도래할 것으로 전망했다. 이는 모든 근로자가 에이전트를 만들고 위임하고 관리하며, 에이전트 기반 스타트업의 CEO와 같은 사고방식을 갖춰야 한다는 의미다. 28%의 관리자는 인간과 AI로 구성된 하이브리드 팀을 이끌 담당자를 채용할 계획이며, 32%는 에이전트 설계·개발·최적화를 위해 12~18개월 내 AI 에이전트 전문가를 채용할 의향이 있다고 밝혔다. AI 전략 수립과 실행에서 리더의 역할도 더욱 강조되고 있다. 에이전트에 대한 친숙도, 사용 빈도, 신뢰 수준, 시간 절감 효과, 관리 역할, 사고 파트너로서 활용, 경력 기여 가능성 등 7가지 항목으로 에이전트 보스 마인드셋을 조사한 결과, 모든 지표에서 리더가 직원보다 높은 수치를 기록했다. 특히 리더들은 향후 5년 이내에 팀의 업무 범위에 ▲ AI를 활용한 비즈니스 프로세스 재설계(38%)(한국 35%) ▲복잡한 업무 자동화를 위한 멀티 에이전트 시스템 구축(42%)(한국 39%) ▲에이전트 훈련(41%)(한국 34%) ▲에이전트 관리(36%)(한국 38%) 등이 포함될 것으로 내다봤다. 에이전트에 익숙하다고 답한 리더는 67%(한국 70%)였지만 직원은 40%(한국 32%)에 그쳤고, 리더의 약 3분의 1이 AI를 통해 하루 1시간 이상을 절약한다고 응답했으나, 직원은 이보다 낮았다. AI가 커리어에 도움이 될 것이라고 본 비율도 리더는 79%, 직원은 67%로 조사됐다. 또한 51%의 관리자(한국 39%)는 향후 5년 안에, 직원의 AI 교육과 역량 강화가 자신의 업무 범위에 포함될 것으로 내다봤다. AI의 확산과 함께 조직 전반의 직무 변화가 가속화될 것으로도 전망했다. 실제로 현재 링크드인을 통해 채용된 직원 중 10% 이상은 2000년에는 존재하지 않았던 직무를 맡고 있으며, 링크드인은 2030년까지 대부분의 직무에서 요구되는 기술의 70%가 바뀔 것으로 예상했다. 한편, 83%의 리더는 AI가 신입 직원들이 더 빠르게 전략적이고 복잡한 업무에 적응하도록 도와줄 것이라고 내다봤다. 보고서는 직원들이 AI 기술을 학습하고 실무 경험을 쌓을 기회를 확보해야 하며, 기업은 이를 위한 교육과 도구를 적극 제공해야 한다고 제언했다. 직원의 52%, 리더의 57%는 자신이 속한 산업의 직업 안정성이 보장되지 않는다고 여기고 있으며, 81%의 직원이 지난 1년간 이직하지 않은 것으로 나타났다. 링크드인은 2025년 가장 주목받는 역량으로 AI 리터러시를 꼽았으며, AI 역량과 더불어 갈등 해결, 적응력, 프로세스 자동화, 혁신적 사고 등 기계가 대체할 수 없는 인간의 강점 또한 더욱 중요해질 것으로 전망했다. 마이크로소프트는 AI 시대에 유연하게 대응하기 위해 지금이 기업의 결정적 행동 시점이라고 강조하며 세 가지 실행 로드맵을 제시했다. 마이크로소프트는 ▲AI 에이전트를 디지털 직원으로 채용해 명확한 역할을 정의하고, 온보딩·책임 배분·성과 측정 등 실제 팀원처럼 관리할 것을 권고했으며 ▲고객 응대나 고위험 판단 등 인간의 개입이 필요한 영역과 자동화가 가능한 업무를 구분해, 인간과 AI의 협업 구조를 정립해야 한다고 제안하면서 ▲AI 도입을 기술 과제가 아닌 조직 혁신 과제로 보고, 시범 운영에 그치지 않고 전사적으로 빠르게 확산할 필요가 있다고 강조했다. 마이크로소프트의 자레드 스파타로(Jared Spataro) AI 기업 부문 부사장은 “AI는 조직의 경영 전략은 물론, 우리가 인식하는 지식 노동의 개념을 바꾸고 있다”며, “2025년은 프론티어 기업이 탄생한 해로, 앞으로 몇 년 안에는 AI를 통해 대부분의 산업과 조직에서 직원의 역할 경계가 새롭게 정의될 것”이라고 말했다.
작성일 : 2025-04-28
HS효성인포메이션시스템, 차세대 스토리지 플랫폼의 새로운 기능 공개
AI∙데이터 인프라 설루션 전문 기업 HS효성인포메이션시스템이 차세대 스토리지 플랫폼인 ‘VSP(Virtual Storage Platform) One’의 새로운 기능을 공개했다. 이번 업데이트는 복잡해지는 기업 환경 속에서 요구되는 보안 강화, 에너지 효율 제고, 지속가능한 IT 운영까지, 폭넓은 과제를 해결하도록 설계됐다. 최근 IT 인프라 관리와 운영이 복잡해지면서 많은 기업이 보안 위협, ESG(환경∙사회∙지배구조) 경영 등 다양한 과제에 직면해 있다. 특히 랜섬웨어 공격, 데이터 유출 등 보안 문제에 대응하는 사이버 복원력 확보가 IT 운영의 핵심 요소로 떠올랐다. 스플렁크와 영국 경제 분석기관 옥스퍼드 이코노믹스가 공동 발표한 글로벌 보고서 ‘다운타임의 숨겨진 비용(The Hidden Costs of Downtime)’에 따르면, 글로벌 2000대 기업은 사이버 사고로 인한 다운타임으로 연간 수익의 약 9%에 해당하는 비용을 지출하는 것으로 나타났다. 이에 따라 에너지 소비 최적화, 탄소 발자국 추적 및 비용 절감을 위한 지속가능한 IT 설루션 수요가 증가하고 있다.     VSP One의 새로운 기능은 보안성, 운영 효율, 지속가능성을 동시에 충족한다. 사이버 복원력과 지속가능성 측면 모두 서비스수준협약(SLA)을 보장하며, 기업이 IT 운영을 간소화하고 사이버 위협에 빠르게 대응하며 에너지 효율까지 높일 수 있도록 지원한다. 특히 VSP One Block 스토리지는 랜섬웨어를 비롯한 사이버 공격이 원천적으로 차단된 변경 불가 스냅샷을 이용해 공격 발생 전 백업된 스냅샷 데이터를 통한 즉각적인 데이터 복구를 보증한다. 이를 통해 데이터 손실과 시스템 다운타임을 획기적으로 줄여 비즈니스 연속성을 확보할 수 있다. 또한, 에너지 효율적인 아키텍처와 정밀한 보고 기능을 기반으로 전력 사용량과 탄소 배출량을 최대 40%까지 줄이고, 전력 효율 SLA를 통해 지속가능성과 비용 절감이라는 두 가지 목표를 동시에 달성할 수 있다. 이외에도 ▲중단 없는 데이터 접근을 보장하는 100% 데이터 가용성 보증 ▲4:1 비율의 데이터 절감 보증으로 저장 효율성 향상 ▲무중단 업그레이드가 가능한 최신 스토리지 환경 등의 기능이 함께 제공된다. 특히 단일하고 직관적인 통합 플랫폼 기반 설계로 데이터 관리의 복잡성을 최소화하고 운영 부담을 줄일 수 있다. HS효성인포메이션시스템의 양정규 대표는 “VSP One의 새로운 기능은 사이버 복원력과 지속가능성 확보라는 두 과제를 함께 해결하도록 설계됐다”며 “앞으로도 혁신적인 엔터프라이즈 설루션을 제공해 고객이 안정적이고 유연한 인프라 위에 비즈니스를 효율적으로 운영할 수 있도록 도울 것”이라고 밝혔다.
작성일 : 2025-04-28
IBM 엑스포스 보고서, “정보 탈취형 악성코드 이메일 작년 대비 84% 증가”
IBM이 발표한 ‘2025 엑스포스 위협 인텔리전스 인덱스 보고서(2025 X-Force Threat Intelligence Index)’에 따르면, 사이버 공격자들이 더 교묘한 수법을 사용하며 기업에 대한 랜섬웨어 공격은 감소한 반면, 눈에 띄지 않는(lower-profile) 자격 증명 도용은 급증했다. IBM 엑스포스는 사이버 공격자들이 신원 탈취 공격을 확대하는 수단으로 인포스틸러 악성코드를 포함한 이메일을 주로 활용하고 있으며, 2024년 이러한 유형의 이메일이 전년 대비 84% 증가했다고 밝혔다. 2025 보고서는 IBM 엑스포스에서 관찰한 신규 및 기존 트렌드와 공격 패턴을 추적하고 침해 사고 대응, 다크 웹 및 기타 위협 인텔리전스 소스에서 얻은 정보를 바탕으로 작성했다. 2023년은 생성형 인공지능(Gen AI)의 본격적인 확산이 시작된 한 해였다. 예견되었던 대로, 사이버 공격자들은 AI를 활용해 웹사이트를 제작하거나, 딥페이크 기술을 피싱 공격에 접목시키기 시작했다. IBM 엑스포스는 공격자들이 생성형 AI를 활용해 피싱 이메일을 작성하거나 악성 코드를 제작하는 사례를 포착하기도 했다. IBM 엑스포스는 과거 보고서에서 하나의 AI 설루션 시장 점유율 50%에 가까워지거나 시장이 소수의 3개 이하 설루션으로 재편되면, 공격자 입장에서는 특정 AI 모델이나 설루션을 노리기가 더 쉬워지고 그만큼 공격할 유인도 커진다고 밝혔다. 아직 그 시점에 도달하지는 않았지만, 도입 속도는 빠르게 증가하고 있다. 실제로, 2024년 기준 최소 하나 이상의 비즈니스에 AI를 도입한 기업의 비율은 72%로, 전년 대비 55% 이상 증가한 것으로 나타났다. 2024년에는 AI를 겨냥한 대규모 공격이 발생하지는 않았다. 보안 전문가들은 사이버 공격자들이 악용하기 전에 취약점을 선제적으로 식별하고 보완하기 위한 대응에 속도를 내고 있다. IBM 엑스포스가 AI 에이전트 구축 프레임워크에서 원격 코드 실행 취약점을 발견한 사례처럼, 이와 같은 문제는 앞으로 더욱 빈번해질 것으로 보인다. 2025년 AI 도입이 확대될 것으로 예상됨에 따라, 공격자들이 AI를 겨냥한 특화된 공격 도구를 개발할 유인도 커지고 있다. 이에 따라 기업들은 데이터, 모델, 활용 방식, 인프라 등 AI 전반에 걸친 보안을 초기 단계부터 강화하는 것이 필수이다.     지난해 가장 많은 공격은 주요 기반시설 조직을 대상으로 감행됐다. IBM 엑스포스가 대응한 2024년 전체 공격 중 70%가 주요 인프라 조직에서 발생했으며, 이 중 4분의 1 이상이 취약점 악용으로 인한 공격이었다. 주요 인프라 조직들은 기존 기술에 대한 의존과 느린 보안 패치 적용으로 인해 여전히 보안 위협에 직면해 있는 것이다. 다크웹 포럼에서 자주 언급된 공통 취약점 및 노출(CVEs)을 분석한 결과, 상위 10개 중 4개가 국가 차원의 지원을 받는 공격자를 포함한 정교한 위협 그룹과 연관된 것으로 나타났다. 해당 취약점들의 악용 코드는 여러 포럼에서 공개적으로 유통되고 있었으며, 이는 전력망, 의료 시스템, 산업 설비 등을 노린 공격의 확산으로 이어지고 있다. 이처럼 금전적 목적의 공격자와 국가 차원의 위협 세력이 정보를 공유하는 흐름은, 패치 관리 전략 수립과 위협 사전 탐지를 위한 다크웹 감시의 중요성을 더욱 부각시키고 있다. 또 다른 주목할 만한 공격은 인포스틸러(infostealer, 정보 탈취형 악성코드)를 활용한 공격이다. 2024년에 인포스틸러를 활용한 이메일은 전년 대비 84% 증가했으며, 2025년 초기 데이터에 따르면 이는 더욱 급증하는데, 주간 발생 건수가 2023년 대비 180% 이상 증가한 것으로 예상된다. 자격 증명 피싱과 인포스틸러를 통해 신원 공격은 저렴하고, 확장 가능하며, 수익성이 좋아졌다. 인포스틸러는 데이터를 빠르게 유출할 수 있어 타깃 지점에 머무는 시간을 줄이고, 포렌식 흔적을 거의 남기지 않는다. 2024년에 다크웹에서 800만 개 이상의 광고가 상위 5개의 인포스틸러만을 위한 것이었으며, 각 광고에는 수백 개의 자격 증명이 포함될 수 있다. 또, 사이버 공격자들은 다크웹에서 다중인증(MFA)을 우회하기 위해 중간자 공격(AITM) 피싱 키트와 맞춤형 AITM 공격 서비스를 판매하고 있다. 손상된 자격 증명과 다중인증 우회 방법이 만연하다는 것은 수요 또한 높다는 것을 의미하며 이러한 추세는 멈출 기미가 보이지 않는다. 지역으로 살펴보면, 2024년 한 해 동안 IBM 엑스포스가 전 세계적으로 대응한 사이버 공격 중 약 34%가 아시아태평양에서 발생하며 아태 지역이 세계에서 가장 많은 사이버 공격을 경험한 것으로 나타났다. 데이터 도용(12%), 인증정보 탈취(10%), 갈취(extortion, 10%) 등이 순위가 높은 공격 대상이었다. 일본은 전체 조사 대상 인시던트의 66%를 차지했으며, 한국, 필리핀, 인도네시아, 태국이 각각 5%의 비율을 차지했다. 분야별로는 제조업이 공격 대상의 26%를 차지하며 4년 연속 사이버 공격이 가장 많이 발생한 산업으로 집계됐다. 특히 랜섬웨어 피해 사례가 가장 많았으며, 시스템 중단에 대한 허용 범위가 극히 낮은 산업 특성상 암호화 공격에 대한 범죄자의 수익성이 여전히 높은 것으로 분석된다. 한국IBM 컨설팅 사이버보안서비스 사업총괄 이재웅 상무는 “사이버 공격은 이제 더욱 조용하고 치밀해지고 있다. 공격자들은 파괴적인 행위 없이 자격 증명을 탈취해 기업 시스템에 접근하며, 인포스틸러와 같은 악성코드를 통해 빠르게 데이터를 유출하고 흔적을 남기지 않는다”고 말하며, “이러한 저위험·고수익 공격이 확산되는 지금, 기업은 단순 방어를 넘어, 인증 시스템 강화와 위협 사전 탐지 체계를 통해 공격 표적이 되지 않도록 대비해야 한다”고 강조했다.
작성일 : 2025-04-24
2025년 AI 산업 경제와 기술 트렌드 전망
이 글에서는 최신 자료와 연구를 바탕으로 2025년 AI 산업 경제와 주요 기술 트렌드를 전망하고자 하며, 이를 통해 AI가 제공할 기회와 해결해야 할 도전 과제를 균형 있게 분석하고자 한다.   2025년은 인공지능(AI)이 경제와 기술 전반에 걸쳐 혁신을 주도하며, 산업 구조와 일상생활에 깊은 영향을 미칠 것이며, 전 세계 산업 경제와 기술 혁신의 중심축으로 자리 잡는 해가 될 것이다. 코로나19 팬데믹 이후 가속화된 디지털 전환과 AI 기술의 융합은 사회 전반에 큰 변화를 가져왔다. 특히, 제조, 금융, 헬스케어, 물류, 교육 등 다양한 산업 분야에서 AI는 단순히 비용 절감 도구를 넘어 새로운 가치를 창출하고, 기존 비즈니스 모델을 재정의하고 있다. 최근 예측 자료에 의하며, AI 에이전트, 엣지 AI, AI 사이버 보안, AI 기반 로봇 등이 성장세에 위치하고 있다.    1. AI 산업 경제 전망 2025년은 경제 성장의 주도 동력으로서의 AI, 글로벌 AI 기술 ,그리고 AI가 가져올 고용과 직업의 변화 등에서 다양한 AI 산업 경제 변화를 예상해 볼 수 있다.  IDC의 보고서에 따르면, 2025년 전 세계 기업들의 AI 솔루션 지출은 약 3,070억 달러에 달할 것으로 예상되며, 이는 2028년까지 연평균 29.0%의 성장률로 6,320억 달러에 이를 것으로 전망하였다. 이러한 투자는 AI 기술이 다양한 산업 분야에서 핵심적인 역할을 할 것임을 시사한다.  글로벌 컨설팅 기업 PwC의 보고서에 따르면, AI는 2030년까지 세계 GDP를 약 15.7조 달러를 증가시킬 것이며, 이는 연평균 14% 이상의 성장률에 해당된다고 예측했다. 이는 AI 기술이 단순히 비용 절감 도구를 넘어 새로운 부가가치를 창출하는 데 중요한 역할을 하고 있음을 보여주는 예측이다.  PwC는 보고서에서 AI에 대해 몇 가지 강조한 점이 있는데, 첫째, AI는 글로벌 경제의 생산성과 GDP 잠재력을 변화시킬 수 있으며. 이를 실현하기 위해서는 다양한 유형의 AI 기술에 대한 전략적 투자가 필요하다고 하였다. 둘째, 노동 생산성 향상이 초기 GDP 증가를 주도할 것이며, 기업들은 AI 기술을 활용해 노동력의 생산성을 ‘증강(augment)’시키고 일부 작업과 역할을 자동화하려 할 것이라고 하였다. 셋째, 2030년까지 전체 경제적 이익의 45%는 제품 개선에서 비롯될 것이며, 이는 소비자 수요를 자극하게 되어 AI가 더 다양한 제품을 제공하고, 시간이 지남에 따라 개인화, 매력도, 경제성을 높이기 때문이라고 하였다. 넷째, AI로 인한 가장 큰 경제적 이익은 중국(2030년 GDP 26% 증가)과 북미(14.5% 증가)에서 발생할 것이며, 이는 총 10.7조 달러에 달해 전 세계 경제적 영향의 약 70%를 차지할 것으로 전망하였다. 특히, 스마트 팩토리, 자동화 물류 시스템, 지능형 고객 서비스 등이 AI 기술 적용의 대표적인 사례로 들 수 있다. 예를 들어, 독일의 Siemens는 자사의 스마트 팩토리에서 AI를 활용해 제조 공정을 최적화하여 생산성을 20% 이상 향상시켰으며, 물류 업계에서는 Amazon이 자율주행 로봇과 AI 기반 물류 분석을 통해 배송 시간을 단축시킨 바 있다.   ***상세 내용은 PDF로 제공됩니다.   조영임 교수 / 가천대 컴퓨터공학과
작성일 : 2025-04-18
스노우플레이크, “AI 조기 도입한 기업의 92%가 투자 대비 수익 실현”
스노우플레이크가 ‘생성형 AI의 혁신적 ROI(Radical ROI of Generative AI)’ 보고서를 발표했다. 이번 보고서는 글로벌 시장 조사 기관 ESG(Enterprise Strategy Group)와 공동으로 AI를 실제 사용 중인 9개국 1900명의 비즈니스 및 IT 리더를 대상으로 진행한 설문조사 결과를 담았다. 보고서에 따르면 AI를 도입한 기업의 92%가 이미 AI 투자를 통해 실질적 ROI(투자수익률)를 달성했고, 응답자의 98%는 올해 AI에 대한 투자를 더욱 늘릴 계획인 것으로 나타났다. 전 세계 기업의 AI 도입이 빨라지면서 데이터 기반이 성공적인 AI 구현의 핵심 요소로 떠오르고 있다. 그러나 많은 기업이 여전히 자사 데이터를 AI에 적합한 형태로 준비하는 데 어려움을 겪는 것으로 파악됐다.  전반적으로 기업들은 AI 초기 투자에서 성과를 거두고 있는 것으로 나타났다. 93%의 응답자는 자사의 AI 활용 전략이 ‘매우’ 또는 ‘대부분’ 성공적이라고 답했다. 특히 전체 응답자의 3분의 2는 생성형 AI 투자에 따른 ROI를 측정하고 있고, 1달러 투자당 평균 1.41달러의 수익을 올리며 ROI를 높이고 있는 것으로 집계됐다.  또한 국가별 AI 성숙도에 따라 기업이 AI 역량을 주력하는 분야가 달랐으며, 이는 지역별 ROI 성과와 밀접한 연관이 있는 것으로 드러났다. 미국은 AI 투자 ROI가 43%로 AI 운영 최적화 측면에서 가장 앞서 있었다. 뿐만 아니라 자사의 AI를 실제 비즈니스 목표 달성에 ‘매우 성공적’으로 활용하고 있다고 답한 비율이 52%로 전체 응답국 중 가장 높았다. 한국의 경우 AI 투자 ROI는 41%로 나타났다. 보고서에 따르면 한국 기업은 AI 성숙도가 높은 편으로 오픈소스 모델 활용, RAG(검색증강생성) 방식을 활용해 모델을 훈련 및 보강하는 비율이 각각 79%, 82%로 글로벌 평균인 65%, 71%를 웃돌았다.  특히 한국 기업들은 기술 및 데이터 활용에 있어 높은 실행 의지를 보이고 있는 것으로 나타났다. 오픈소스 모델 활용(79%), RAG 방식의 모델 훈련 및 보강(82%), 파인튜닝 모델 내재화(81%), 텍스트 투 SQL(Text to SQL, 자연어로 작성한 질문을 SQL 쿼리로 자동 변환하는 기술) 서비스 활용(74%) 등 고급 AI 기술을 활용한다고 답변한 비율이 글로벌 평균을 크게 웃돌았다. 이러한 데이터 활용 역량은 비정형 데이터 관리 전문성(35%)과 AI 최적화 데이터 보유 비율(20%)에서도 확인된다. 이런 성과에 비해 아직도 전략적 의사결정에 AI 활용하는 데에는 어려움을 겪고 있는 모습도 나타났다. 조사 결과에 따르면 응답자의 71%는 ‘제한된 자원에 대비해 추진할 수 있는 AI 활용 분야가 매우 다양하고, 잘못된 의사결정이 시장 경쟁력에 부정적 영향을 미칠 수 있다’고 답했다. 또한 응답자의 54%는 ‘비용, 사업 효과, 실행 가능성 등 객관적 기준에 따라 최적의 도입 분야를 결정하는 데 어려움을 겪고 있다’고 밝혔다. 59%는 ‘잘못된 선택이 개인의 직무 안정성까지 위협할 수 있다’고 우려했다. 한국 기업의 경우, 기술적 복잡성(39%), 활용 사례 부족(26%), 조직 내 협업 문제(31%) 등의 어려움을 겪고 있다고 답하며 아직 다양한 비즈니스 영역으로의 AI 확대는 더딘 것으로 나타났다. 그럼에도 향후 12개월 내 ‘다수의 대규모 언어 모델(LLM)을 적극적으로 도입’하고 ‘대규모 데이터를 활용할 계획’이라고 답한 기업은 각각 32%와 30%로, AI 도입 확대에 관한 강한 의지를 드러냈다. 설문에 응답한 전체 기업의 80%는 ‘자체 데이터를 활용한 모델 파인튜닝을 진행 중’이고 71%는 ‘효과적인 모델 학습을 위해 수 테라바이트의 대규모 데이터가 필요하다’고 답하며, AI의 효과를 극대화하기 위해 자사 데이터를 적극 활용하고 있는 것으로 나타났다. 그러나 여전히 많은 기업들이 데이터를 AI에 적합한 형태로 준비하는 과정에서 어려움을 겪기도 했다. 데이터 준비 과정에서 겪는 주요 과제로 ▲데이터 사일로 해소(64%) ▲데이터 거버넌스 적용(59%) ▲데이터 품질 관리(59%) ▲데이터 준비 작업 통합(58%) ▲스토리지 및 컴퓨팅 자원의 효율적 확장(54%) 등을 꼽았다. 스노우플레이크의 바리스 굴테킨(Baris Gultekin) AI 총괄은 “AI가 기업들에게 실질적인 가치를 보여주기 시작했다”면서, “평균 일주일에 4000개 이상의 고객이 스노우플레이크 플랫폼에서 AI 및 머신러닝을 활용하고 있고 이를 통해 조직 전반의 효율성과 생산성을 높이고 있다”고 강조했다.  스노우플레이크의 아르틴 아바네스(Artin Avanes) 코어 데이터 플랫폼 총괄은 “AI의 발전과 함께 조직 내 데이터 통합 관리의 필요성이 더욱 커지고 있다”면서, “스노우플레이크처럼 사용이 쉽고 상호 운용 가능하며 신뢰할 수 있는 단일 데이터 플랫폼은 단순히 빠른 ROI 달성을 돕는 것을 넘어, 사용자가 전문적인 기술 없이도 안전하고 규정을 준수하며 AI 애플리케이션을 쉽게 확장할 수 있도록 견고한 기반을 마련해 준다”고 말했다. 
작성일 : 2025-04-16