• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "방법론"에 대한 통합 검색 내용이 1,075개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
[신간] 돈 되는 AI 어디서부터 무엇을 어떻게 해야 할까
장동인 지음 / 2만 5000원 / 리코멘드 AI 도입, CEO의 기술 이해가 성공을 좌우한다 - 오라클·딜로이트 출신 전문가의 실전 AI 도입 전략서 출간 “기업의 AI 수준은 CEO의 AI 이해 수준을 넘을 수 없다.” ChatGPT부터 AI 에이전트까지 인공지능(AI)이 기업 경영의 핵심으로 부상했다. 기업들은 앞다투어 AI 도입에 나서고 있지만, 실질적인 성과를 내지 못하고 프로젝트가 좌초되는 사례가 속출하고 있다. 이는 시스템 구축에만 집중하고 현장과의 연동에 실패했거나, 경영진의 기술 이해 부족으로 전략을 세우지 못했기 때문이다. 국내 최고의 AI·빅데이터 전문가로 꼽히는 장동인 AIBB LAB 대표가 AI 도입의 성공 전략을 담은 책을 펴냈다. 오라클 본사, 딜로이트, 언스트앤영 등에서 30년간 글로벌 기업 컨설팅을 담당해 온 저자는 『돈 되는 AI, 어디서부터 무엇을 어떻게 해야 할까』를 통해 AI 도입을 고민하는 모든 기업인에게 실전 가이드라인을 제시한다. AI 프로젝트, 첫 문제 정의부터 실패한다 저자는 AI 프로젝트의 90%가 '첫 문제 정의 단계'에서부터 실패한다고 단언했다. 많은 기업이 AI를 도입하면 자동으로 성과가 나올 것이라 착각하지만, 명확한 문제 정의와 전략 없이는 실패를 피할 수 없다는 것이다. 이 책은 이론이 아닌 실전에 초점을 맞춰, 기업 현장에 바로 적용 가능한 구체적인 방법론을 제공한다. 특히 '돈 되는 AI' 문제 정의를 위한 4단계 필터링(문제 정의의 예리성, 데이터 연관성, AI 해결 가능 유형, ROI 산출)을 제시하고, ABCD 방법론(Analysis, Blueprint, Create, Develop)을 통해 AI 도입의 전 과정을 체계화했다. 경영진의 기술 이해가 기업의 생존을 결정한다 엔지니어 출신인 저자는 KAIST AI대학원 CAIO 과정 책임교수이자 6년간 <CEO를 위한 AI 코딩 강의>를 진행하며 경영진의 기술 이해를 강조해 왔다. 이 책에서도 경영진의 기술 이해가 AI 도입 성패를 좌우한다고 거듭 강조했다. 실무자를 위해서는 RAG(검색 증강 생성) 기술을 활용한 사내 지식 관리, AI 에이전트를 통한 업무 자동화, 기존 시스템과의 통합 방법 등 구체적인 실전 사례를 제시했다. 또한 보안이 중요한 기업 환경에 최적화된 오픈 소스 LLM, 클로즈드 소스 LLM, 하이브리드 등 다양한 AI 아키텍처를 비교 분석했다. 랭체인, 코파일럿 스튜디오 등 최신 AI 에이전트 개발 도구까지 실무 관점에서 총정리했다. 이 외에도 젠슨 황의 엔비디아 성공 비결, 딥시크(DeepSeek), 테스트 타임 스케일링, MCP(Model Context Protocol) 등 2025년 최신 AI 트렌드를 총망라해 AI 시대 비즈니스 방향을 고민하는 CEO, 임원, 기획자, 실무자 모두에게 필독서가 될 것으로 기대된다.
작성일 : 2025-10-23
스티뮬러스의 모델 기반 요구사항 검증 방법
산업 디지털 전환을 가속화하는 버추얼 트윈 (7)   현대 산업 시스템이 복잡해지면서 개발 초기 단계의 정확한 요구사항 검증이 중요해졌다. 특히 안전이 중요한 시스템에서 발생하는 오류는 치명적인 결과를 초래할 수 있다. 하지만 자연어 기반의 전통적인 요구사항 명세는 모호하여 해석 오류를 낳고, 요구사항 간 충돌이나 누락을 발견하기 어렵다는 한계를 갖는다. 이번 호에서는 모델 기반 시스템 엔지니어링(MBSE) 접근법을 지원하는 다쏘시스템의 요구사항 시뮬레이션 도구 스티뮬러스(STIMULUS)를 통해 개발 초기부터 정확성, 완전성, 일관성을 검증하는 새로운 해결책을 살펴본다.   ■ 신효주 다쏘시스템코리아의 Industry Process Consultant로 모델 기반 시스템 엔지니어링 설루션을 담당하고 있다. 자동차, 항공, 전자제품 등 다양한 산업 분야에서 프로젝트를 수행하며 복잡한 시스템 개발 과정에서의 어려움을 파악하고 이를 해결하기 위한 방법론과 MBSE 기반의 설루션을 제안하고 있다. 특히, 요구사항 검증 및 시스템 아키텍처 방법론을 중심으로 고객의 개발 효율성과 품질 향상을 지원하는 역할을 수행한다. 홈페이지 | www.3ds.com/ko   MBSE 접근을 통한 요구사항 검증 현대의 산업 시스템은 점점 더 복잡해지고 있으며, 이에 따라 시스템 개발 초기 단계에서의 정확한 요구사항 정의와 검증의 중요성이 커지고 있다. 특히 항공우주, 자동차, 철도, 의료기기 등 안전이 중요한 산업 분야에서는 시스템 오류가 치명적인 결과로 이어질 수 있어, 개발 초기 단계에서의 철저한 요구사항 검증이 필수이다. 그러나 전통적인 요구사항 관리 방식은 여러 가지 심각한 한계점을 가지고 있다. 가장 근본적인 문제는 자연어를 사용한 요구사항 명세에서 시작된다. 자연어의 본질적 모호성으로 인해 동일한 요구사항에 대해 서로 다른 해석이 가능하며, 이는 개발 과정에서 심각한 오해와 실수로 이어질 수 있다. 예를 들어 “시스템은 빠르게 응답해야 한다”와 같은 요구사항은 ‘빠르게’라는 단어의 모호성으로 인해 개발자와 사용자 간에 기대치의 차이를 초래할 수 있다. 또한, 수백 혹은 수천 개의 요구사항이 존재하는 대규모 시스템에서는 요구사항 간의 상충 관계를 수동으로 발견하는 것이 거의 불가능하다. 시스템의 특정 상태나 조건에 대한 요구사항이 누락되었을 때도 이를 문서 검토만으로는 발견하기 어렵다. 더욱 심각한 문제는 대부분의 요구사항 오류가 설계 단계나 심지어 구현 단계에서야 발견된다는 점이다. 이 시점에서의 수정은 많은 비용과 시간을 필요로 하며, 전체 프로젝트의 지연으로 이어질 수 있다. 현대의 복잡한 시스템에서는 이러한 문제가 더욱 심화된다. 정적인 문서로는 여러 컴포넌트가 동시에 상호작용하는 시스템의 동적 동작을 완전히 이해하고 검증하는 것이 불가능하다. 특히 실시간 시스템에서 중요한 타이밍 제약조건을 문서만으로는 충분히 검증할 수 없으며, 요구사항 변경이 시스템의 다른 부분에 미치는 영향을 파악하고 추적하는 것도 매우 어려운 과제이다. 이러한 한계를 극복하기 위해 선진 기업에서는 MBSE 접근법을 주목하고 있으며, 그 중에서도 다쏘시스템의 스티뮬러스(STIMULUS)는 혁신적인 요구사항 시뮬레이션 기능을 통해 새로운 해결책을 제시한다. 스티뮬러스의 Requirement-In-the-Loop(RIL) 시뮬레이션을 통해 요구사항을 형식화 하고 실행 가능한 모델로 변환하여, 개발 초기 단계에서 요구사항의 정확성, 완전성, 일관성을 검증할 수 있다.   모델 기반 요구사항 검증 방법 시스템 개발에서 요구사항의 정확한 명세와 검증은 성공적인 프로젝트 수행을 위한 핵심 요소이다. 이번 호에서는 먼저 스티뮬러스의 핵심 기능인 Requirement-In-the-Loop(RIL) 시뮬레이션에 대해 살펴보려고 한다.   그림 1. 랜딩기어 시스템 핸들 명령 요구사항 모델링   요구사항 모델링 시스템의 기능을 검증하기 위해서는 두 가지 주요 요구사항 관점을 이해해야 한다. 첫 번째는 ‘What’ 관점으로, 시스템이 수행해야 하는 구체적인 동작이나 특정 기능을 명시하는 요구사항을 의미한다. 예를 들어 랜딩기어(landing gear) 시스템에서 “핸들 명령이 down일 때, 모든 랜딩기어는 15초 이내에 확장되고 모든 도어는 닫혀야 한다”와 같은 요구사항이 이에 해당된다. 두 번째는 ‘How well’ 관점으로, 시스템이 기능 요구사항을 얼마나 잘 충족하는지 즉 안전성과 성능, 사용성 등 시스템의 품질 속성을 정의하는 요구사항을 의미한다. 랜딩기어 시스템이 15초 이내에 모든 기어를 확장하고 모든 도어를 닫는 데 성공하는지 여부가 이러한 관점의 예시가 될 수 있다. RIL 시뮬레이션에서는 두 가지 관점 중에서도 ‘What’ 관점의 기능 요구사항을 주로 사용한다. 스티뮬러스는 이러한 기능 요구사항을 형식화하기 위해 일련의 문장 템플릿을 제공하며, 이를 레고 블록처럼 조합하여 정형화된 요구사항을 만들 수 있다. 랜딩기어 시스템에서 ‘핸들 명령이 down일때, 모든 랜딩 기어는 15초 이내에 확장되고 모든 도어는 닫혀야 한다’라는 요구사항을 스티뮬러스에서 형식화하기 위해 ‘When’, ‘is’, ‘shall be’와 같은 기본 템플릿을 조합하게 된다. ‘When’, ‘is’, ‘shall be’와 같은 템플릿은 단순한 문장 구조를 넘어 정확한 의미를 내포하고 있다. 예를 들어 ‘When’ 템플릿은 조건이 참일 때 특정 동작을 활성화하는 상태 기계(state machine)로 정의되어 있으며, ‘is’ 템플릿은 수학적 동등성을 의미한다. 이렇게 명확한 의미가 정의되어 있기 때문에 특정 기능 요구사항에 대해 모두가 동일한 방식으로 스티뮬러스 요구사항 모델을 정의하고, 동등한 의미로 해석할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
[포커스] 알테어, 제조 현장의 핵심 기술로 자리 잡는 AI 비전 소개
알테어는 9월 5일 ‘2025 추계 AI 워크숍’을 진행했다. ‘엔지니어를 위한 AI’를 주제로 진행된 이번 워크숍에서 알테어는 AI를 활용해 제품 개발 프로세스를 가속화하고 의사결정의 정확성을 높이며, 지능형 디지털 트윈을 완성한다는 비전을 선보였다. 또한 AI 기반 시뮬레이션, 생성형 AI, AI 에이전트, 지식 그래프 등 최신 AI 기술의 실제 적용 사례와 활용 방안을 소개했다. ■ 정수진 편집장     한국알테어의 김도하 지사장은 개회사를 통해 AI 기술이 산업 고객의 현장에서 빠르게 내재화되며 동반 성장하고 있다면서, “이는 고객들이 명확한 비전과 단계별 로드맵을 가지고 각자의 환경에 맞춰 AI를 접목하고 있기 때문”이라고 설명했다. 또한, 국가 AI 프로젝트가 시작되어 1만 4000 장의 GPU가 1차 도입되는 등 정부가 주도하는 ‘소버린 AI’ 시대가 열리고 있는 점에 주목하면서, “AI를 통한 제조 산업의 르네상스가 도래하고 있으며, 알테어 또한 시장과 함께 성장하기 위해 준비하고 있다”고 전했다.   엔지니어링 언어를 학습하는 AI 알테어의 케샤브 선다레시(Keshav Sundaresh) 디지털 전환 총괄 시니어 디렉터는 “AI는 더 이상 개념이 아니라 실제 현장의 핵심 기술”이라면서, 엔지니어링 수명주기 전반에 걸친 로코드·고효율 AI 접근법을 구현해야 한다고 짚었다. MIT의 연구에 따르면, 기업의 생성형 AI 파일럿 프로젝트 가운데 95%가 실질적인 재무 성과를 내는 데 실패하고 있는 것으로 나타났다. 그 원인으로는 ▲특정 결과에 편중된 데이터 ▲단편적이고 사일로화된 데이터 ▲값비싼 컴퓨팅 자원 ▲도메인 지식과 AI 기술 간 격차 ▲기존 시스템과의 통합 및 신뢰성 문제 등이 꼽힌다. 선다레시 시니어 디렉터는 이런 현실적 장벽을 극복할 수 있도록 알테어와 지멘스의 기술 역량을 결합해 AI 기반의 통합 설루션 포트폴리오를 제공할 수 있다는 점을 강조했다. “제품의 요구사항 정의부터 폐기에 이르는 모든 과정에서 AI를 활용하고, 단절된 디지털 스레드를 통합하여 데이터 기반의 신속한 의사결정을 지원하겠다”는 것이다. 이를 위한 핵심 전략은 ‘AI에게 엔지니어링 및 제조의 언어’를 가르치는 것이다. 기존의 LLM(대규모 언어 모델)이 텍스트나 이미지 등 일반 데이터에 강점을 보인다면, 지멘스와 알테어는 기계 설계, 전기/전자, BOM(Bill-of-Materials), 시뮬레이션 데이터 등 산업 특화 데이터를 학습시켜 신뢰도 높은 ‘산업용 파운데이션 모델(Industrial Foundation Model)’을 구축하고 있다는 것이 선다레시 시니어 디렉터의 설명이다.   AI 확산으로 제조 혁신의 속도 높인다 AI 비전을 구체화하는 방법론으로 알테어는 ‘라이프사이클 인텔리전스(Lifecycle Intelligence)’ 프레임워크를 제시했다. 이 프레임워크는 AI 도입의 장벽을 낮추고 모든 엔지니어가 AI를 손쉽게 활용해 혁신을 가속화할 수 있도록 하는 데에 중점을 두고 있다. 선다레시 시니어 디렉터는 ▲반복 작업의 자동화 및 대규모 데이터 분석으로 인간 전문가의 역량을 강화하고 ▲기존 워크플로와 도구에 AI 기능을 통합하여, 학습 부담 없이 자연스러운 AI 활용을 도우며 ▲코딩 지식과 관계 없이 모든 사용자가 AI를 구축하고 배포할 수 있는 환경을 제공하는 세 가지 접근법을 통해 AI 도입을 가속화한다는 로드맵을 소개했다. 이 프레임워크를 활용하면 전처리 영역에서는 형상 인식 AI 기술로 부품 분류 및 군집화를 자동화하거나, 자연어 처리(NLP) 기반 코파일럿을 통해 모델 정리부터 전체 해석 설정까지 대화형으로 수행할 수 있다. 솔빙 영역에서는 기존의 시뮬레이션 데이터를 학습해 CAD 또는 메시 단계에서 물리 현상을 빠르게 예측할 수 있고, 시스템 레벨의 시뮬레이션 속도를 높일 수 있다. 후처리 영역에서는 AI가 핫스폿이나 파손 영역을 자동 식별해 결과 분석을 돕는다. 이 프레임워크의 기술적 기반은 분산된 데이터를 연결하는 ‘데이터 패브릭’과 AI 모델을 개발·운영하는 ‘AI 팩토리’의 결합이다. 선다레시 시니어 디렉터는 알테어의 데이터 분석/AI 플랫폼인 래피드마이너(RapidMiner)와 로코드 앱 개발을 지원하는 지멘스 멘딕스(Mendix)를 통해 라이프사이클 인텔리전스를 구현할 수 있다고 설명했다.     엔지니어링 AI의 혁신 동력 에이전틱 AI(Agentic AI), 지식 그래프(Knowledge Graph), 생성형 AI 등 최신 AI 기술이 R&D부터 설계와 제조까지 엔지니어링 전반의 혁신을 가속화하고 있다. 알테어는 이들 기술이 개별적으로도 강력하지만, 서로 결합하면서 데이터 기반의 신속한 의사결정을 지원하고 기존 워크플로를 지능적으로 전환하는 핵심 동력으로 작용한다고 소개했다. AI 에이전트는 사용자를 대신해 특정 목표를 이해하고 자율적으로 판단 및 실행하는 ‘지능형 디지털 대리인’이다. 단순 반복 작업을 자동화하는 것을 넘어서, 여러 에이전트가 협업하는 다중 에이전트 구조를 통해 복잡한 과업을 수행하는 것이 최근의 흐름이다. 엔지니어링 현장에도 공정 상 발생한 문제에 대해 자연어로 질문하면 해결 방법을 제시하거나, 생산 라인의 다운타임 원인을 분석하고 관련 데이터를 종합해 보고하는 등의 AI 에이전트가 도입되고 있다. 알테어는 시각적 워크플로 설계 도구를 통해 이러한 AI 에이전트를 쉽게 구축하고 AI 클라우드 프로세스와 원활하게 연결하는 방법을 제시했다. 지식 그래프는 다양한 출처(소스)에 분산된 데이터를 하나의 의미 계층(semantic layer)으로 통합해서 데이터 간의 숨겨진 관계를 파악하게 하는 기술이다. 이는 AI 모델의 가장 큰 문제점으로 꼽히는 환각(hallucination) 현상을 최소화하고, 장기적인 맥락을 이해하는 메모리로 기능하면서 신뢰성 높은 AI 에이전트를 구현할 수 있게 돕는다. 엔지니어링 분야에서 지식 그래프는 여러 AI 에이전트가 일관된 지식 베이스를 공유하게 해서 협업의 효율을 높이고, 공장 문제 해결 시 여러 데이터베이스에 동적으로 접근하여 질문에 답하는 아키텍처를 구현하는 데 쓰인다.   PLM과 AI의 시너지로 더 큰 혁신도 가능 알테어는 지난 3월 지멘스와의 합병을 완료했다. 제조 기술에 강점을 가진 지멘스와 엔지니어링 및 AI 기술에 집중해 온 알테어의 시너지에 대해, 이번 워크숍에서 한 가지 실마리를 발견할 수 있었다. 알테어는 AI와 PLM(제품 수명주기 관리)의 결합이 제조업의 패러다임을 바꿀 것으로 보았다. 한국알테어 최병희 본부장은 “많은 기업이 PLM 시스템에 제품의 설계부터 생산, 운영까지 대량의 데이터를 축적하고 있지만, 이를 제대로 활용하지 못하고 있다. 이 PLM 데이터를 AI로 분석해 기업의 핵심 자산으로 만들고, 경험에 의존하던 사후 대응 방식의 업무 환경을 미래가 예측하고 문제를 예방하는 예측 기반의 업무 환경으로 혁신할 수 있다”고 소개했다. 지멘스의 PLM 설루션인 팀센터(Teamcenter)가 제품의 모든 역사를 기록한 단일 진실 공급원(single source of truth)이라면, 알테어의 래피드마이너는 코딩 지식이 없이도 AI 모델을 개발할 수 있는 ‘똑똑한 AI 분석가’라고 할 수 있다. 두 설루션을 통합하면 래피드마이너가 팀센터의 데이터를 분석해 숨겨진 패턴과 인사이트를 찾아내고, 이를 바탕으로 미래 예측 모델을 생성할 수 있다. 그리고 이 예측 결과를 다시 팀센터에 전달해 시스템 전체가 똑똑해지는 선순환 구조를 만든다. 최종적으로는 현실을 명확히 이해하고 미래를 예측하는 ‘지능형 디지털 트윈’을 완성할 수 있다는 것이 최병희 본부장의 설명이다. 이 외에 공급망 최적화, 품질 이상의 조기 탐지, 고객 피드백의 반영 등 다양한 분야로 시너지를 확장할 수 있는 가능성도 점칠 수 있다. 최병희 본부장은 “PLM 데이터를 시작으로 ERP, MES, CRM 등 분산된 기업 데이터를 통합하면 더 큰 범위의 업무 혁신이 가능하다”고 전했다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[칼럼] 나만의 AI 에이전트 필살기 Ⅱ – 코드를 이해하는 기획자, 비개발자의 바이브 코딩 입문기
현장에서 얻은 것 No. 23   “거인의 어깨 위에 올라서서 더 넓은 세상을 바라보라.” – 아이작 뉴턴 AI라는 거대한 변화의 파도는 우리 삶 곳곳을 흔들고 있었다. 이는 단순히 새로운 기술의 등장이 아니라, 사고방식과 일하는 방식, 나아가 사회 전체의 구조를 바꾸는 흐름이었다. 필자는 지난 8개월 동안 이 변화의 흐름 속에서 매일 배우고 실험하며 자신만의 여정을 이어갔다. 이 시간 동안 AI를 단순한 도구로만 보지 않게 되었는데, 그것은 업무, 창작, 학습, 그리고 삶 전반을 통해 스스로를 끊임없이 자극하는 동반자였다. AI를 맹목적으로 신뢰하기보다는 신중하게 거리를 두고, 동시에 적극적으로 받아들이는 태도를 통해 자신만의 ‘필살기’를 다듬어왔다. 필자의 학습법은 눈으로 익힌 것이 70%, 손으로 부딪히며 체득한 것이 30%로 다소 독특했다. 이러한 비율을 받아들인 이유는 필자의 경험이 개발자의 삶이 아니었기 때문이었다. ‘바이브 코딩(vibe coding)’을 통해 비개발자도 개발을 할 수 있다고 광고했지만, 실제로는 한계가 있음을 이해했다. 커서 AI(Cursor AI)로 회사 홈페이지를 만들고, 리플릿(Replit) 프로그램으로 MBTI 판별 프로그램을 바이브 코딩으로 시도하며, 만들고 수정하는 것도 가능했다. 하지만 PLM을 기업에 구축하는 PM으로서 경험한 바로는, 비개발자가 프로그램을 만드는 데에는 한계가 있었다. 취미로 만드는 것은 환영하지만 프로그램이 론칭된 이후 발생하는 많은 이슈를 경험하며, 개발자와의 협업이 더 효율적이라는 자신만의 학습 공식을 터득했다. 강의와 책, 스터디에서 얻은 지식이 토대가 되었고, 실습과 시행착오가 그 지식을 현실과 연결해 주었다. 이부일 대표의 강의를 들으며 챗GPT를 활용한 파이썬 코드를 직접 따라가던 순간, AI가 단순한 언어 모델이 아니라 강력한 실무 도구라는 사실을 처음 체감했다. 첫날은 잘 따라갔지만 둘째 날 노트북 배터리가 나가 낭패를 본 기억도 생생했는데, 이러한 경험조차도 학습 과정의 일부가 되었다. AI 학습은 지식을 머리에 담는 것뿐만 아니라 삶과 환경 속에서 몸으로 받아들이는 과정임을 깨달았다. 실패와 해프닝도 자산이 되어 필자의 학습 지도 위에 하나씩 좌표가 찍혀갔다. 중요한 것은 속도가 아니라, 끊임 없이 배우고 기록하고 다시 활용하는 과정이 훨씬 값지다는 것이었다.  “미래는 예측하는 것이 아니라 상상하는 것이다.” – 앨런 케이   ▲ 코드를 이해하는 기획자, 비개발자의 바이브 코딩 입문(Map by 류용효) (클릭하시면 큰 이미지로 볼수 있습니다.)   비개발자가 코드를 배우려 했던 이유 필자가 비개발자로서 코드를 배우기 시작한 동기는 개인적인 필요에서 비롯되었다. PLM 구축 PM으로서 개발자와 같은 언어로 소통하고 싶었고, 프로세스 컨설팅을 수행하며 시스템/프로세스 흐름을 실제 코드 레벨에서 검증하고 싶었다. 또한 콘셉트맵과 AI를 접목하여 아이디어를 프로토타입 코드로 구현하고, 데이터 및 AI 기반으로 확장하고자 했다. 바이브 코딩을 통해 손쉽게 프로토타입을 직접 만들어 아이디어를 빠르게 실험하고 싶었던 것도 큰 동기였다. 일반적인 경우에도 비개발자가 코드를 배우는 다양한 이유가 있었다. 반복적이고 단순한 작업을 효율화하여 업무를 자동화하고, 데이터 구조를 직접 다루어 인사이트를 도출하며 데이터 이해력을 강화하는 것이었다. 개발자와의 협업 과정에서 기술적 언어를 이해하여 소통을 원활하게 하고, 아이디어를 직접 테스트하고 시각화하여 창의적 문제 해결 능력을 키우는 데에도 코딩이 필요했다. 또한 디지털 리터러시와 융합 역량을 확보하여 커리어를 확장하고, AI 툴 활용의 전제 조건인 코드 이해를 통해 AI 시대에 적응하고자 했다. 결론적으로, 비개발자가 코드를 배우는 이유는 개발자가 되기 위해서가 아니라 아이디어를 직접 다루고, 빠르게 실험하며, 더 나은 협업자이자 창의적 문제 해결자가 되기 위함이었다. 개발자와 비개발자의 시선 차이는 명확했는데, 개발자는 ‘코드와 로직을 어떻게 짤까’에 집중하고 성능, 안정성, 기술적 가능성에 관심을 두는 반면, 비개발자는 ‘왜 이게 필요한 걸까’에 집중하며 사용성, 효율, 비즈니스 가치를 중요하게 생각했다. 예를 들어, 같은 CSV 데이터를 보더라도 개발자는 데이터의 구조와 처리 방법을, 비개발자는 그 데이터가 무엇을 말해주고 경영 의사결정에 어떻게 쓰일지에 대한 의미와 활용 방법을 보았다. “가장 현명한 사람은 계속해서 배우는 사람이다.” – 소크라테스   나만의 바이브 코딩 조합 : 작은 성공에서 배운 것들 AI와 바이브 코딩 시대에 기획자의 새로운 역할이 중요하게 부각되었다. 바이브 코딩은 2025년 2월 안드레이 카르파티가 처음 언급한 개념으로, 코드 작성보다는 ‘원하는 결과물의 느낌(바이브)’을 AI에게 자연어로 설명하여 프로그래밍하는 방식이었다. 이는 코드 작성 능력이 창의력과 기획 능력으로 전환되는 트렌드를 반영했다. 비개발자를 위한 AI 개발 방법론은 문제 정의, PRD(제품 요구 문서) 작성, AI 프롬프팅, 그리고 결과 검증의 단계로 이루어졌다. 기획자는 문제 정의와 사용자 경험에 집중하고, AI와 대화하며 요구사항을 구체화하고 결과물을 정제하며, 빠른 프로토타입으로 아이디어를 시각화하고 개선점을 파악하는 데 주력했다. 필자는 8개월간의 여정 속에서 자신만의 AI 활용법, 즉 ‘필살기’를 만들어갔다. 이는 단순히 나열된 여러 갈래의 길이 아니라, 하나의 지도 위에 유기적으로 연결되어 있었다. AI는 단순히 도구가 아니라 이 지도를 함께 그려가는 협력자가 되었다. 필자의 AI 필살기는 다음과 같았다. 커서 AI : 비개발자의 ‘첫 코치’ 역할을 했다. 코딩의 벽을 낮춰주는 동반자로, 복잡한 문법, 오류, 환경 설정의 두려움을 덜어주었다. 커서 AI는 단순한 코드 자동 생성이 아니라 필자의 의도를 코드로 번역하여 작은 실험과 반복을 가능하게 했고, 바이브 코딩 학습을 지원했다. GPT-4 기반의 AI 코드 에디터로 비주얼 스튜디오 코드(VS Code)와 호환되며, 자연어로 코딩하고, 즉각적인 에러 수정, 단계별 설명, 코드 리팩토링 기능을 제공했다. 구글 CLI(Google CLI) : 데이터와 시스템을 다루는 새로운 무기였다. 클릭 대신 명령어로 반복 작업을 자동화하여 속도와 효율성을 극대화했다. 가상머신(VM), 스토리지(Storage), 데이터베이스(DB) 등 클라우드 리소스를 제어하고, 데이터를 핸들링하며, API를 직접 호출하여 서비스 통합을 용이하게 했다. 이는 GUI의 한계를 넘어서는 전문가의 무기가 되었다. 파이썬(Python) : 실전에서 가장 유용한 최소 단위였다. 쉽고 직관적인 문법, 방대한 라이브러리, 빠른 프로토타이핑이 강점이었다. 데이터 읽기/쓰기 한 줄, 간단한 자동화 스크립트 등 작은 코드로도 큰 효과를 낼 수 있었고, CSV 분석 및 시각화, 업무 자동화, AI·ML 모델 실험 등에 활용되었다. 커서 AI와 제미나이(Gemini)가 내장되어 더 쉽게 사용할 수 있었다. 이러한 도구들을 조합하여 데이터 분석 자동화 시나리오와 업무 자동화 봇 구축 시나리오를 구현할 수 있었다. 예를 들어, 커서 AI로 데이터 수집 스크립트를 작성하고, 파이썬으로 데이터 정제 및 시각화를 하며, 구글 CLI로 정기적 실행을 스케줄링했다. 무엇보다 데이터 이해는 코드보다 중요한 사고 프레임이었다. 코딩은 기술 습득이 아니라 사고방식의 확장임을 깨달았다. 데이터 구조를 이해하면 문제 정의력이 달라지고, 기획자로서 문제를 바라보는 시각이 새로워졌다. CSV 한 줄이 어떤 의미를 담고 있는지, 칼럼이 단순한 값이 아니라 업무의 맥락임을 이해하게 되면서, 데이터를 읽는 순간 업무 프로세스가 보이기 시작했다. 이러한 변화된 시각은 단순 결과물이 아닌 흐름과 원인을 질문하게 했고, 개발자와 같은 언어로 협업 및 설계를 가능하게 하며, 데이터 기반의 빠른 실험과 검증으로 이어졌다. 필자는 매일 새로운 프로그램에 도전하는 ‘하루 한 프로그램 도전기’를 통해 작은 성공을 쌓아갔다. 완벽함보다는 경험과 시행착오를 통한 학습을 강조했고, 개발의 본질이 사고의 연습임을 깨달았다. 즉, 코드는 도구일 뿐 핵심은 문제를 정확히 이해하고 구조화하는 능력이며, 실패는 학습이고 작은 성공이 쌓여 성장 곡선을 만든다는 것이었다. 끊임없이 배우고 기록하고 다시 활용하는 과정이 훨씬 값지다는 것을 체감했다. 그러나 바이브 코딩에는 현실적인 문제점도 있었다. 새로운 기능을 추가할 때 기존 기능이 손상되는 회귀 테스트 부재 문제, AI가 전체 맥락을 충분히 기억하지 못해 발생하는 기능 안정성 문제가 있었다. 무한루프나 잘못된 로직 생성, 에러 메시지 오해 등으로 인한 오류 및 디버깅 한계, 그리고 수정 과정에서 토큰/리소스를 과다하게 소비하는 문제도 발생했다. 세션이 바뀌거나 컨텍스트가 길어지면 AI가 이전 코드의 세부 흐름을 잊어버리는 지속성 부족 문제와, AI에 의해 산발적으로 작성된 코드가 구조화가 부족하여 협업 및 유지보수가 어렵다는 한계도 있었다. 이러한 문제를 경험하며 코드를 이해하거나 개발자와 협업하는 것이 필수라는 결론에 도달했다. “성공의 비결은 기회를 잡기 위해 준비하는 것이다.” – 벤저민 디즈레일리   미래를 향한 다리 : 기획자의 새로운 역할 AI 시대에 기획자의 역할은 크게 확장될 수 있었다. 비개발자의 강점은 데이터 맥락 해석력, 비즈니스 중심 사고, 그리고 맥락적 설명 능력에 있었고, 이는 CSV 데이터 컬럼의 의미와 관계를 명확하게 설명하고, 로직보다 비즈니스 가치와 목적에 집중하며, 기술적 디테일보다 전체적인 흐름과 맥락을 설명하는 커뮤니케이션 역량을 제공했다. 프로세스 컨설턴트에서 프로그램 기획자로의 역량 확장이 필요했다. 컨설팅 경험을 시스템 아키텍처 설계에 적용하고, 업무 분석 능력을 시스템 요구사항으로 전환하며, 사용자 관점과 시스템 관점의 통합을 통해 더 나은 UX(사용자 경험)를 설계하는 것이었다. 현업 부서와 IT 부서 간의 가교 역할을 수행하고, 업무 프로세스 최적화를 통해 비효율 지점을 발견하고, 시스템 병목 현상을 데이터 흐름 관점에서 해결하는 역량이 중요했다. 컨설팅 산출물을 소프트웨어 명세서로 변환하고 워크플로 시뮬레이션으로 최적화를 검증하는 방법이 요구되었다. 기획자는 기술 이해도를 바탕으로 개발팀과의 협상력을 강화하고, 데이터 기반의 의사결정 모델을 구축하며, 비즈니스와 기술을 잇는 통합적 관점을 제시하고, 프로토타입으로 아이디어를 구체화하는 능력을 확보해야 했다. 이를 위한 역량 개발로는 시스템 사고, 기술 리터러시(API, DB 구조, 클라우드 서비스 기본 개념), 애자일 방법론, 그리고 지라(Jira), 피그마(Figma), 미로(Miro)와 같은 협업 도구 활용 능력이 있었다. 기획자와 개발자의 경계를 허물고 함께 문제를 정의하고 해결하는 통합적 협업 체계를 구축하는 것이 중요했다. “나는 똑똑한 것이 아니다. 단지 문제와 더 오래 씨름할 뿐이다.” – 알베르트 아인슈타인 AI의 본질은 ‘주체’가 아니라 ‘도움’이었다. AI는 망설임 없이 실행하지만, 그것이 옳은 방향인지 판단하는 것은 인간의 몫이었다. 필자는 회의록 요약 같은 업무를 AI에 맡겼다가 보안 문제와 인간 역량 퇴화의 위험성을 깨달았다. 편리함이 언제나 효율을 의미하는 것은 아니며, 잘못된 의존은 인간의 중요한 능력을 잃게 만들 수 있었다. 그래서 필자는 AI의 답변을 최소 세 번 이상 검증했는데, 빠른 실행보다 올바른 방향 설정이 중요했기 때문이었다. AI가 주는 답은 끝이 아니라 출발점이었다. 필자가 AI와 함께한 여정은 자신을 끊임없이 질문하게 했다. AI는 인간을 대체하는 기계가 아니라, 인간이 더 깊은 사고와 창조의 세계로 들어가도록 돕는 동반자였다. 필자가 찾은 필살기는 바로 이것이었다. AI 덕분에 자신의 본질(core)에 더 많은 시간을 쏟을 수 있게 된 것이었다. 단순 반복 업무를 대신해 주는 AI 덕분에, 필자는 사고하고 기획하고 판단하는 인간 고유의 역량에 집중할 수 있었다. AI는 더 이상 선택이 아닌 필수 도구이자 협력자였다. 중요한 것은 이 강력한 도구를 어떻게 나의 본질과 연결하여, 나만의 고유한 가치를 창출하고 미래를 만들어갈 것인가에 대한 깊은 고민과 끊임없는 실행이었다. AI는 재능은 있지만 한계에 부딪힌 사람에게 ‘도움’이 되어 AI 가수, AI 영화감독, AI 작가, AI 프로그래머가 될 수 있는 길을 열어주었다. 효율만을 쫓기보다는 본질에 집중하고, 변화의 흐름을 읽으면서도 자신만의 ‘필살기’를 계속해서 갈고 닦아야 했다. 미래를 향한 첫걸음은 지금 바로 도전하는 것이었다. 바이브 코딩은 기획 의도와 개발 실행 사이의 간극을 해소하고, AI 시대 기획자의 역할 확장과 가능성을 발견하게 해주었다. 업무 자동화로 반복 작업에서 벗어나 창의적 업무에 시간을 활용하고, 데이터 기반의 의사결정과 인사이트 도출 능력을 강화할 수 있었다. 하루 30분, 한 프로그램 만들기로 시작하는 것이 중요했고, 완벽함보다는 시작하는 용기가 중요했다. 하지만 잊지 말아야 할 것은, 바이브 코딩의 장단점을 잘 파악하여 적용해야 한다. 특히 개인적인 사용의 간단한 프로그램은 괜찮으나, 대외적인 서비스를 하는 프로그램 개발의 경우, 반드시 고급 개발자의 코드리뷰를 거쳐서 보안상의 문제, 데이터 유출 등이 없도록 해야 한다. AI는 명확하게 정의된 문제를 푸는 데 능숙하지만, 복잡하고 모호한 비즈니스 요구사항을 해석하여 견고한 시스템을 설계하는 것은 못하는 것을 명심해야 한다. “코딩은 기술이 아닌 사고 프레임의 확장이다.”    ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다. (블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[칼럼] 인공지능 기술 : 도입에서 혁신으로
디지털 지식전문가 조형식의 지식마당   빠르게, 그리고 깊게 지난 2년간 필자는 정신없이 AI 지식을 흡수하고 수많은 설루션을 직접 사용했다. 신기함과 불편함이 뒤섞인 체험 끝에, 직감적으로 2025년이 인공지능 기술의 이정표가 될 것이라 확신하게 됐다.   거시 흐름, 지능형 자동화와 에이전트의 부상 인공지능(AI) 기술의 발전은 2024년을 기점으로 단순히 새로운 기술의 도입을 넘어, 산업과 사회 전반의 혁신을 촉발하는 핵심 동력으로 자리 잡았다. 여러 분석가는 2024년이 AI 도입의 해였다면, 2025년은 AI가 기존 산업의 경계를 허물고 운영 방식을 근본적으로 재정의하는 ‘혁신의 해’가 될 것으로 전망하고 있다. 이러한 변화의 물결 속에서 기업들은 막연한 기대감을 넘어, AI 기술을 통해 실질적인 비즈니스 가치(ROI)를 창출하는 데 집중하고 있다. 특히, 반복적이고 명확한 규칙 기반의 작업을 AI로 자동화함으로써 즉각적인 효율성 증대와 함께 투자 성과를 확보하는 전략이 부상하고 있다. 이러한 맥락에서 ‘지능형 자동화(intelligent automation)’는 단순 반복 작업을 넘어 복잡한 워크플로를 자율적으로 처리하고 의사결정까지 내리는 단계로 진화하고 있다. 이는 ‘AI 에이전트’의 형태로 구현되며, 응용 AI의 차세대 진화로 주목받고 있다.  이러한 거시적 흐름 속에서 AI 기술의 3대 핵심 분야인 언어 모델, 이미지 및 영상 모델, 음성 모델의 최신 기술적 동향과 시장 변화를 심층적으로 분석하고, 나아가 이들 간의 융합 현상인 ‘멀티모달 AI’의 부상을 조망함으로써 비즈니스 리더와 기술 전문가에게 전략적 통찰을 만들어 봤다. 첫 번째, 대규모 언어 모델(LLM)의 혁신은 대부분 ‘트랜스포머(transformer)’ 아키텍처에 기반을 두고 있다. GPT-4, LLaMA 2, Falcon 등 현재 시장을 선도하는 모델은 이 아키텍처를 활용하여 방대한 데이터 세트에서 인간 언어의 패턴과 구조를 학습한다. 트랜스포머는 언어 모델의 근간을 이루며, 그 영향력은 비단 텍스트에만 머무르지 않고, 오픈AI(OpenAI)의 최신 비디오 생성 모델인 소라(Sora)의 ‘디퓨전 트랜스포머’ 아키텍처에도 확장 적용되고 있다. 최근 LLM 훈련 방법론은 단순히 모델의 규모를 키우는 것을 넘어, 효율과 특화된 성능을 확보하는 방향으로 진화하고 있다. LLM 시장은 ‘규모’를 추구하는 초대형 모델(LLM)과 ‘효율’을 추구하는 소형 언어 모델(SLM)이 공존하는 양면적 발전 양상을 보인다. GPT-4o나 제미나이(Gemini)와 같은 초대형 모델은 뛰어난 범용성과 성능으로 시장을 선도하는 한편, 특정 산업이나 용도에 맞게 최적화된 SLM은 적은 비용과 빠른 속도를 무기로 틈새시장을 공략하고 있다. 이러한 이원화된 전략은 기업이 적용 업무의 성격에 따라 두 모델을 전략적으로 선택하거나 조합하는 하이브리드 접근법을 채택하도록 유도하고 있다. 두 번째, 최근 이미지 및 영상 생성 모델의 핵심 기술은 ‘디퓨전 모델(diffusion model)’이다. 이 모델은 기존의 생성적 적대 신경망(GAN)이 가진 ‘모드 붕괴(mode collapse)’ 문제를 해결하며 고품질의 다양하고 사실적인 이미지 생성을 가능하게 했다. 디퓨전 모델은 이미지에 점진적으로 노이즈를 추가한 뒤, 이 노이즈를 단계적으로 제거하며 깨끗한 이미지를 복원하는 방식을 사용한다. 이 기술은 스테이블 디퓨전(Stable Diffusion), 달리(DALL-E)와 같은 대표적인 서비스에 활용되고 있다. 대규모 언어 모델과 마찬가지로, 이미지 및 영상 모델 역시 규모의 확장과 효율의 최적화라는 상반된 흐름을 동시에 경험하고 있다. 디퓨전 모델은 모델의 규모가 클수록 더 좋은 성능을 보이지만, 그만큼 막대한 연산 자원과 느린 처리 속도라는 문제에 직면한다. 이러한 한계를 극복하기 위해 모델 경량화와 처리 속도를 높이는 기술적 접근이 중요하게 다루어지고 있다. 이는 AI 기술의 상용화와 대중화를 위한 필수 단계이다. 영상 생성 기술은 미디어 및 엔터테인먼트 산업의 콘텐츠 창작 패러다임을 근본적으로 변화시키고 있다. 텍스트 입력만으로 원하는 비디오를 만들 수 있는 능력은 브레인스토밍을 가속화하고, 마케팅 자료, 게임 비주얼, 와이어프레임 및 프로토타입 제작 시간을 획기적으로 단축시켜 기업의 시장 대응력을 높인다. 특히, 전자상거래 기업은 AI 생성 이미지를 사용하여 다양한 제품 쇼케이스와 맞춤형 마케팅 자료를 대규모로 제작할 수 있다. 세 번째, 음성 모델은 크게 음성 신호를 텍스트로 변환하는 ‘음성 인식(ASR : Automatic Speech Recognition)’과 텍스트를 음성으로 변환하는 ‘음성 합성(TTS : Text-to-Speech)’ 기술로 구분된다. 딥러닝 기술의 발전은 이 두 분야에 혁명적인 변화를 가져왔다. 음성 인식(ASR) : 딥러닝 기반의 엔드 투 엔드 모델은 음향 모델링과 언어 모델링 과정을 통합하여 ASR의 정확도를 비약적으로 향상시켰다. 최신 시스템은 배경 소음을 제거하고 자연어 처리(NLP) 기술을 활용하2025/10여 문맥을 이해함으로써 최대 99%에 가까운 정확도를 달성하고 있다. 이는 단순히 음성을 텍스트로 바꾸는 것을 넘어, 사용자의 의도를 정확히 이해하고 적절하게 대응하는 대화형 AI 시스템의 핵심 기반이 된다. 음성 합성(TTS) : 딥러닝 기반 모델은 기계적인 느낌을 벗어나 사람처럼 자연스럽고 운율이 담긴 목소리를 생성하는 데 큰 발전을 이루었다. 이는 텍스트 분석, 운율 모델링, 그리고 실제 음성 파형을 생성하는 ‘보코더(vocoder)’ 과정을 통해 이루어진다. 현대 음성 합성 기술의 발전 방향은 단순히 자연스러움을 넘어, 인간-기계 상호작용을 더욱 몰입감 있고 개인화된 경험으로 이끄는 데 있다. 감정 표현 TTS : 이는 기계에 감정을 부여하여 인간 언어와 더욱 유사한 음성을 생성하는 것을 목표로 한다. 기쁨, 슬픔, 분노 등 다양한 감정을 표현하는 음성 합성은 사용자 경험을 더욱 풍부하게 만든다. 개인화된 음성 합성(Personalized TTS) : 이 기술은 약 1시간 분량의 데이터만으로 개인의 목소리를 복제하여 맞춤형 TTS를 만드는 연구 단계에 있다. 이는 부모의 목소리로 동화책을 읽어주는 등 감성적이고 따뜻한 응용 분야에 적용될 가능성을 열어준다.   감성으로 완성되는 기술 올해는 유난히 더운 것인지 아니면, 우리가 에어컨 환경에 너무 노출되어서 더위에 대한 저항력이 없어진 것인지는 모르지만 너무 더워서 정신적 활동이 힘들었다. 그 와중에 개인 자료를 정리하던 중에 개인적으로는 필자의 입사 이력서 사진을 우연히 찾아봤으나, 손상이 많이 되어서 인공지능으로 복원해 보기로 했다.     그림 1. 옛날 사진을 스마트폰으로 촬영한 이미지와 구글 인공지능으로 생성한 이미지   우선 스마트폰으로 이 사진을 찍은 다음 구글의 제미나이로 복원하고 다양한 모습으로 재현해 봤다. 그리고 동영상도 만들어 봤다. 아주 작고 희미한 흑백 사진이라고 우리의 머리속에 있는 이미지와 유사할 때까지 계속 보강된 이미지를 만들 수 있다. 그래서 최근에는 ‘포즈의 정리(Theorem of Pose)’라는 책을 구입해서 인공지능 생성 이미지 프롬프트를 본격적으로 연구해 보기로 했다.     그림 2. 구글 제미나이로 생성된 이미지   돌이켜보면 생각보다 빠른 속도다. 기술은 때로 불안과 경외를 동시에 불러온다. 그러나 확실한 것은, 인공지능이 우리의 감성을 자극하기 시작했다는 사실이다. 오래된 사진이 되살아나고, 목소리가 감정을 띠며, 텍스트가 움직이는 영상으로 변한다. 도입의 해를 지나 혁신의 해로 들어서는 지금, 우리는 효율을 넘어 의미를 설계해야 한다. AI는 결국, 우리 일과 삶의 이야기를 더 풍부하게 엮어내는 도구다. 기술이 감성을 만나 경험을 재편할 때, 진짜 혁신은 비로소 현실이 된다. 기업의 입장에서 2024년이 ‘도입의 해’였다면 2025년은 운영 방식 자체를 재정의하는 ‘혁신의 해’다. 기업은 막연한 기대가 아니라 ROI로 말하기 시작했고, 반복적·규칙 기반 업무를 AI로 자동화하여 즉각적인 효율과 투자 성과를 확보하는 전략이 주류로 부상했다. 그 중심에는 언어, 시각(이미지·영상), 음성이라는 세 가지 축과 이들을 촘촘히 엮어내는 멀티모달 AI가 있다.   ■ 조형식 항공 유체해석(CFD) 엔지니어로 출발하여 프로젝트 관리자 및 컨설턴트를 걸쳐서 디지털 지식 전문가로 활동하고 있다. 현재 디지털지식연구소 대표와 인더스트리 4.0, MES 강의, 캐드앤그래픽스 CNG 지식교육 방송 사회자 및 컬럼니스트로 활동하고 있다. 보잉, 삼성항공우주연구소, 한국항공(KAI), 지멘스에서 근무했다. 저서로는 ‘PLM 지식’, ‘서비스공학’, ‘스마트 엔지니어링’, ‘MES’, ‘인더스트리 4.0’ 등이 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
윈드리버, 현대모비스의 SDV 개발 고도화 위해 협력
지능형 에지 소프트웨어 제공 기업인 윈드리버가 현대모비스와 협력해 소프트웨어 중심 차량(SDV)을 위한 통합 소프트웨어 개발 환경인 ‘모비스 디벨롭먼트 스튜디오(Mobis Development Studio)’를 개발 완료했다고 밝혔다. 이 시스템은 현대모비스 클라우드 기반 차량 개발 환경 설루션과 ‘윈드리버 스튜디오 디벨로퍼(Wind River Studio Developer)’를 기반으로 구축되었다. ‘모비스 디벨롭먼트 스튜디오’는 웹 기반의 통합 개발 플랫폼으로, 직관적인 UI를 통해 차량 제어기별 개발 환경을 제공하고, 고속 빌드 및 테스트 자동화 기능을 통합하여 소프트웨어 품질과 개발 효율을 향상시킨다. 특히, 복잡성이 증가하는 차량 시스템에 대응하기 위한 고도화된 소프트웨어 수명 주기 관리를 지원한다. 윈드리버는 “이는 현대모비스가 소프트웨어 중심 기업으로의 전환을 본격화하고 있음을 보여주며, 전문 소프트웨어 기업들이 구축하는 수준의 자동화된 개발 환경 체계를 선제적으로 마련했다는 점에서 중요한 의미를 갖는다”고 설명했다.  윈드리버와 현대모비스의 협력을 통해 구축된 이 개발 환경에는 ‘윈드리버 스튜디오 디벨로퍼’의 협업, 자동화 및 조기 검증을 위한 ‘시프트-레프트(shift-left)’ 테스트 모듈 등의 관련 기능이 활용되었다. 양사는 각 사의 고유한 강점을 결합함으로써 차세대 소프트웨어 중심 차량에 최적화된 최첨단 소프트웨어 개발 인프라를 구축했다. 양사는 긴밀한 협업을 통해 개발 방법론을 정교하게 조율하고 자동차 시스템의 설계·개발·배포를 가속화함으로써, 보다 신속한 혁신과 차량 전 생애주기에 걸친 확장 가능한 제공 기반을 마련했다. 윈드리버 스튜디오 디벨로퍼는 지능형 에지에서 미션 크리티컬 시스템의 개발, 배포 및 운영을 가속화하도록 설계된 클라우드 데브섹옵스(DevSecOps) 플랫폼으로서, 지속적 통합(CI), 지속적 제공(CD), 지속적 테스트(CT)와 같은 애자일 실천 방식을 지원해 자동화의 장벽을 극복할 수 있도록 돕는다. 또한 자동화와 협업 수준을 높여 개발 효율성을 강화하고, 개발 초기 단계부터의 테스트(shift-left testing)를 가능하게 하며, 민첩성과 혁신을 촉진하고, 시스템의 수명 가치를 높인다. 윈드리버의 샌딥 모드바디아(Sandeep Modhvadia) 최고 제품 책임자(CPO)는 “자동차 산업이 더욱 지능적이고 자율주행 중심으로 전환됨에 따라 소프트웨어는 이러한 변화의 원동력이 되고 있다. 윈드리버는 현대모비스와 협력해 클라우드 및 에지 환경을 아우르는 동시에 견고한 소프트웨어 수명 주기 관리를 갖춘 차세대 개발 프레임워크를 선보이고 있다. 양사의 기술력이 만나 자동차 제조업체들은 더 빠르게 혁신하고, 효율적으로 운영하며, 소프트웨어 중심 차량의 발전을 앞당길 수 있을 것”이라고 전했다. 현대모비스의 전장BU장인 정수경 부사장은 “양사의 협력을 통해 차량 개발 전 주기에 걸쳐 자동화 수준을 한층 높이고, 차세대 지능형 차량용 소프트웨어 개발의 혁신을 앞당길 수 있을 것으로 기대한다”면서, “이번 개발 환경은 자동화에 그치지 않고, 인공지능(AI)을 접목한 차세대 개발 체계로의 확장을 가속화하고 있다”라고 덧붙였다.
작성일 : 2025-09-17
캐디안, 아시아건축사대회에서 전통 건축물 가상 설계하는 AI CAD 소개
캐디안은 AI 기반 건축 가상 설계 기술을 통해 전통 목조건축을 가상으로 재현한 3D 모델을 아시아건축사대회(ACA21)에서 선보였다고 밝혔다. 9월 8일부터 12일까지 인천 송도컨벤시아에서 열린 제21차 ACA21은 아시아 각국의 건축 전문가들이 참여했다. 특히 ‘Heritage에서 AI 건축으로 : 한옥의 미래’라는 주제의 한옥 심포지엄에서는 AI 기술을 활용한 전통 건축 가상 설계 기술이 소개됐다.     국가유산청 과제를 통해 캐디안과 함께 인공지능 기반 건축 가상 설계 기술을 공동 개발한 한국전자통신연구원(ETRI) 이승재 연구실장과 고려대학교 류성룡 교수는 대한건축사협회가 주관한 심포지엄에서 ‘지능형 디지털 헤리티지 공유 플랫폼(H-BIM)’과 ‘AI 기반 전통 건축 설계 도구’의 핵심 연구 내용을 발표했다. 이 연구의 결과물인 ‘CADian TWArch Pro’는 영주 부석사 조사당과 북한 사리원의 성불사 극락전을 3D 디지털 모델로 재현했다. AI는 훼손되거나 누락된 도면 정보를 스스로 인식·추론해 원형에 가까운 모델을 재현함으로써, 기존 수작업 위주의 설계 방식에 비해 시간과 공간의 한계를 극복할 수 있는 새로운 방법론을 제시했다. 발표에서는 한국전쟁으로 소실된 성불사 극락전을 일제강점기 손도면 자료만으로 재현했다는 점을 주목할 만한 성과로 소개하면서, “이는 현장 접근이 불가능한 북한 문화유산의 디지털 재현 가능성을 입증한 사례로, 향후 전통 목조 건축의 복원 및 설계에 있어 중요한 전환점이 될 것”이라고 평가했다. 캐디안은 이번 발표가 단순한 기술 시연을 넘어, 인공지능 기반 국산 CAD 기술이 글로벌 수준에 도달했음을 입증한 사례라고 전했다. CADian TWArch Pro는 오토캐드의 DWG 파일과 높은 호환성을 갖추고 있어, 전통 건축 가상 재현뿐만 아니라 다양한 설계 분야에서도 활용 가능성이 높다. 캐디안의 한명기 상무는 “이번 기술 개발은 단순한 가상 재현을 넘어, 일본, 중국, 타이완, 태국, 말레이시아, 베트남, 네팔 등 전통 목조 건축물이 많은 아시아 국가에 진출을 위한 교두보가 될 것”이라며, “전통 건축 유산의 보존과 재해석에 기여하는 국산 설루션으로 성장함과 동시에, 인공지능 주권(AI 소버린) 실현에도 앞장서겠다”고 밝혔다.
작성일 : 2025-09-15
티맥스소프트, 소버린 AI 프레임워크로 '글로벌 AI 기업' 도약 선언
  티맥스소프트가 소버린 AI(Sovereign AI)를 위한 프레임워크를 개발하고, 이를 통해 글로벌 경쟁력을 갖춘 AI 기업으로 도약하겠다고 밝혔다. 소버린 AI는 국가와 기업의 AI 및 데이터 주권을 실현하는 것을 목표로 한다. 국산 AI 프레임워크로 국내 AI 생태계 주도 티맥스소프트는 AI 패권 경쟁 시대에 맞춰 소버린 AI 풀스택 완성을 위한 프레임워크 개발에 착수했다. 현재 비즈니스 애플리케이션에 AI 기능을 접목할 수 있는 국산 상용 AI 개발 플랫폼이 부족한 상황에서, 티맥스소프트는 경쟁력 있는 AI 프레임워크를 선보여 국내 AI 생태계에 적극적으로 참여할 방침이다. 개발 중인 '소버린 AI 프레임워크'는 공공기관, 금융, 일반 기업이 비즈니스 애플리케이션에 다양한 AI 기능을 효율적으로 접목하도록 돕는 AI 비즈니스 개발 플랫폼 소프트웨어다. 기존 오픈소스 기반 프레임워크의 복잡성과 특정 인프라에 종속되는 록인(Lock-in) 문제를 해결하는 데 중점을 뒀다. 티맥스소프트는 20년 이상 금융, 통신, 제조, 공공 사업에서 검증된 개발 솔루션 기술력을 바탕으로 AI에 최적화된 개발 환경을 제공할 계획이다. 통합된 AI 개발 환경 제공과 글로벌 진출 확대 이 프레임워크는 통합된 AI 개발 환경을 제공하는 것이 가장 큰 특징이다. 단순한 AI 기능 제공을 넘어, 기업의 개발 방법론과 기술 스택을 표준화하여 상호 운용성과 재사용성을 높여준다. 이를 통해 기업은 복잡한 AI 기술 도입의 어려움을 해소할 수 있다. 또한, 지속적인 업그레이드와 기술 지원이 필요한 AI 개발 플랫폼을 선택할 수 있는 이점도 제공한다. 티맥스소프트는 향후 여러 파일럿 프로젝트를 통해 기능을 검증하고 품질을 향상시킬 예정이다. 이후 AI 전환(AX)이 필요한 공공, 금융 기업 시장을 공략하여 국내 상용 AI 프레임워크 분야를 선도하고, 동시에 글로벌 시장으로의 진출도 확대할 방침이다. 특히, 티맥스소프트는 정부의 'AI 3대 강국' 정책에 발맞춰 'AI 프레임워크 선도기업'으로서 소버린 AI 풀스택 완성과 글로벌 경쟁력 확보에 중요한 역할을 한다는 목표를 세웠다. 이를 위해 올해 연말까지 국내 유수의 하드웨어 및 IT 서비스 기업들과 협력 관계를 구축해 국내 AI 생태계 활성화에 본격적으로 참여할 계획이다. 기존 제품과의 시너지로 미래 경쟁력 강화 티맥스소프트는 핵심 제품인 애플리케이션 서버, 인터페이스 플랫폼, 비즈니스 프레임워크, 메인프레임 현대화 솔루션 등도 AI·클라우드 시대에 맞춰 진화시키고 있다. 자사 제품을 AI 기술과 서비스에 최적화하여 미래 경쟁력을 강화하고 있다. 일례로, 생성형 AI 기술을 활용한 AI옵스(AIOps) 기능을 탑재한 'TEM(Tmaxsoft Enterprise Manager)' 개발을 진행 중이다. 이 솔루션은 장애 대응, 모니터링 데이터 분석, 이상 징후 감지, 구성 자동화 등이 가능하다. 이형용 티맥스소프트 대표이사는 "국내 애플리케이션 서버 시장 1위 기업으로서 다양한 기업의 혁신을 촉진할 프레임워크를 제공하고 국내 AI 생태계 강화에 이바지하겠다"고 말했다.
작성일 : 2025-09-13
가트너, ‘2025 신기술 하이프 사이클’ 통해 자율 비즈니스 시대 전망
가트너가 ‘2025 신기술 하이프 사이클(2025 Hype Cycle for Emerging Technologies)’을 통해 주목해야 할 주요 혁신 기술로 ▲기계 고객 ▲AI 에이전트 ▲의사결정 인텔리전스 ▲프로그래머블 머니를 선정했다. 가트너 하이프 사이클은 기술 및 애플리케이션의 성숙도와 도입 현황을 시각적으로 표현하고, 실제 비즈니스 문제 해결 및 새로운 기회 창출과의 잠재적 연관성을 제시한다. 이 방법론은 시간 흐름에 따른 기술 또는 애플리케이션 발전 과정을 조망하고, 특정 비즈니스 목표의 맥락에서의 효과적인 도입 관리를 위한 신뢰 있는 인사이트를 제공한다. 가트너는 매년 프로파일링하는 2000개 이상의 기술 및 응용 프레임워크에서 핵심적인 인사이트를 도출해, 반드시 알아야 할 신기술을 정리해 제시하고 있다. 이들 기술은 향후 2년에서 10년간 혁신적인 이점을 제공할 잠재력을 갖춘 것으로 평가된다.     기계 고객(Machine Customers)이란 사람이나 기업을 대신해 상품, 서비스를 구매하는 비인간 경제 주체다. 가트너는 고객 역할을 수행할 수 있는 B2B 기기를 약 30억 개로 추산하며, 2030년까지 80억 개로 늘어날 것이라 전망했다. 가상 개인 비서, 스마트 가전, 커넥티드 카, 사물인터넷(IoT) 기반 공장 등이 이에 포함된다. 가트너는 기계 고객이 제조, 소매, 소비재 등 다양한 산업에서 새로운 수익과 효율성을 창출하는 핵심 동력이 될 것이라면서, “기업은 경쟁에서 뒤처지지 않기 위해 비즈니스 모델을 재정립하고 기회를 선제적으로 활용해야 한다”고 짚었다. AI 에이전트(AI Agents)는 디지털, 물리적 환경에서 인지, 의사결정, 행동을 수행해 기업의 목표 달성을 지원하는 자율 또는 반자율 AI 소프트웨어다. 기업은 대형 언어 모델(LLM)을 비롯한 AI 기술을 활용해 복잡한 작업을 수행할 수 있는 AI 에이전트를 개발, 배포하고 있으며, 이는 고객 서비스, 산업 운영, 데이터 분석, 콘텐츠 제작, 물류 등 여러 분야를 자동화해 산업 전반에 혁신을 가져올 잠재력을 갖고 있다. 예측과 실행 정확성에 대한 우려로 AI 에이전트에 대한 신뢰는 제한적이다. 이 기술은 인간의 감독 없이 중요한 결정을 신속히 내리며 독립성, 사용 편의성이 향상되고 있다. 가트너는 기업이 AI 에이전트를 효과적으로 활용하려면 기능과 적용 범위를 명확하게 이해하고, 전략적 계획에 반영할 것을 권장했다. 의사결정 인텔리전스(Decision Intelligence)는 의사결정을 고도화하는 실용적인 접근 방식으로, 의사결정 방식과 결과를 평가·관리·개선하는 과정을 이해하고 엔지니어링한다. 의사결정을 디지털 자산으로 전환하고 모델링하면, 통찰과 실행 사이의 간극을 줄이고 의사결정의 품질, 실행력, 결과를 개선할 수 있다. 가트너의 크리스티안 스테판(Christian Stephan) 시니어 디렉터 애널리스트는 “에이전틱 AI와 생성형 AI에 대한 과대광고, 의사결정 자동화 관련 규제 압박, 심화된 글로벌 불확실성은 기존 비즈니스 프로세스와 의사결정의 한계를 드러냈다. 이에 따라 기업은 속도와 품질을 넘어 일관성, 규정 준수, 비용 효율성, 적응력을 갖춘 새로운 의사결정 체계를 요구하고 있다”고 전했다. 프로그래머블 머니(Programmable Money)는 소프트웨어를 통해 프로그래밍할 수 있는 디지털 화폐를 의미한다. 알고리즘에 따라 작동 방식을 설정할 수 있어 블록체인 기반 토큰화와 스마트 계약을 활용하면 경제 주체의 참여를 확대하고 가치 교환을 자동화할 수 있다. 기업은 비즈니스 파트너, 직원, 기계 고객과 상호작용하기 위해 프로그래머블 머니를 전략적으로 활용해야 한다. 스테판 시니어 디렉터 애널리스트는 “프로그래머블 머니는 새로운 유형의 통화와 디지털 자산 시장을 열어 금융 서비스 분야에 변화를 가져올 것”이라며, “가치 창출, 자금 조달, M2M(Machine-To-Machine) 등 자산 교환의 혁신을 주도해 공급망과 금융 가치 사슬을 재편할 것”이라고 전망했다. 가트너의 마티 레스닉(Marty Resnick) VP 애널리스트는 “수년간의 디지털 혁신 이후, 기업은 AI와 자동화가 불러온 경쟁, 고객, 제품, 운영, 리더십 재편을 목도하고 있다”면서, “기업은 자율 비즈니스 시대라는 새로운 혁신 국면에 직면했으며, CIO는 신기술이 경쟁력 확보, 효율성 향상, 성장 기회 창출에 어떻게 기여할 수 있는지 평가해야 한다”고 말했다.
작성일 : 2025-09-10
시뮬리아 웨이브6를 활용한 환경 소음 시뮬레이션
산업 디지털 전환을 가속화하는 버추얼 트윈 (6)   이번 호에서는 다쏘시스템의 소음·진동 설루션 웨이브6(Wave6)를 활용해 도심 항공 모빌리티와 수중 방사 소음에 적용한 사례를 살펴본다.   ■ 이현충 다쏘시스템코리아의 소음 진동 해석 담당 기술 컨설턴트이다. 자동차/항공/선박 산업을 포함한 다양한 산업군에 진동해석 설루션을 적용하여 고객에서 가치를 전달하는 역할을 담당하고 있다. 홈페이지 | www.3ds.com/ko   환경 소음 규제가 점차 강화됨에 따라 소음 저감 기술의 적용이 중요해지고 있다. 특히 차세대 교통 체계 산업인 도심 항공 모빌리티(UAM : Urban Air Mobility) 분야에서는 이착륙장 위치와 항로를 결정할 때 소음이 가장 중요한 고려 요소이다. 또한 해양 생태계 보호를 위해 국제해사기구(IMO)는 선박의 수중 방사 소음(URN : Underwater Radiated Noise) 저감을 위한 규제를 논의하고 있다. 이는 도심형 항공기와 선박 등 운송 수단의 설계 단계에서부터 시뮬레이션을 기반으로 한 정확한 예측을 요구한다. 웨이브6는 다쏘시스템의 소음·진동 설루션으로, 광대역 주파수에서 소음이 방사되는 현상을 시뮬레이션할 수 있다. 특히 환경 소음의 경우 넓은 영역으로 방사되는 소음을 예측해야 하는데, 이는 많은 해석 시간과 리소스를 필요로 한다. 효율적으로 환경 소음을 예측하기 위해 웨이브6의 공간 경사(Spatial Gradient) 통계 에너지 해석(SEA, Statistical Energy Analysis) 방법론을 적용할 수 있다. 이번 호에서는 항공기 프로펠러 소음 해석 예시와 수중 방사 소음 연구 사례를 통해 웨이브6의 활용법을 소개한다.   웨이브6 소음 해석 방법론 소음 해석 방법론을 설명하기 위해 차량 실내 소음을 예로 들어보자. <그림 1>과 같이 차량 실내 공간 내 다양한 위치에서 음압 레벨(SPL : Sound Pressure Level)을 예측하는 것이 목적이다. 투명한 흰색 표면은 내부 음장 공간의 경계이며, 회색 표면은 공간 내 음압 레벨을 시각화하기 위한 가시화용 표면이다. 마지막으로 파란색 표면은 공간 내 소리를 방사하는 사이드 글라스를 나타낸다. <그림 1-b>는 사이드 글라스가 진동에 의해 발생하는 실내 소음을 경계요소법(BEM : Boundary Element Method)과 공간 경사 통계 에너지 해석(SEA : Statistical Energy Analysis) 방법으로 예측한 결과이다. 가진원인 사이드 글라스 근처에서 높은 음압 레벨이 나타나는 것을 확인할 수 있다. 경계요소법의 경우 주파수가 높아짐에 따라 높은 자유도(DOF : Degree of Freedom)를 필요로 하므로 해석 시간과 메모리 사용량이 크게 증가한다. 반면, 웨이브6의 공간 경사 통계 에너지 해석 기법은 훨씬 적은 메모리를 요구하며, 더 빠르게 해석 결과를 얻을 수 있다. 특히 환경 소음처럼 넓은 영역을 경계 요소법이나 유한 요소법(FEM : Finite Element Method)으로 해석하기 어려운 경우, 공간 경사 통계 에너지 해석 기법을 활용해 예측할 수 있다.   (a) 자동차 내부 공간   (b) 경계요소 해석 결과   (c) 공간경사 통계 에너지 해석 결과 그림 1   ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03