• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "물리"에 대한 통합 검색 내용이 2,569개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
고성능 멀티피직스 플랫폼, Cadence Fidelity CFD
주요 디지털 트윈 소프트웨어   고성능 멀티피직스 플랫폼, Cadence Fidelity CFD   ■ 개발 : Cadence, www.cadence.com ■ 자료 제공 : 나인플러스아이티, 02-867-8633, www.npit.co.kr 1. Millennium M1 Millennium M1은 기존 전산 유체 역학(CFD) 시뮬레이션의 한계를 뛰어넘는 차세대 턴키 CFD 솔루션으로, 업계에 새로운 기준을 제시한다. Cadence(케이던스)의 Fidelity LES Solver(일명 CharLES)와 고성능 GPU 기반 HPC(고성능 컴퓨팅)를 결합한 이 플랫폼은 LES(대형 와류 시뮬레이션)를 중심으로 대규모 시뮬레이션을 압도적인 속도와 정확성으로 수행한다. Millennium M1은 단순히 빠른 성능을 넘어, 고품질 데이터를 신속히 생성하고 생성형 AI를 활용한 설계 최적화 및 디지털 트윈 구축을 가능하게 한다. 며칠이 소요되던 작업을 몇 시간 내로 단축할 뿐 아니라, 항공우주, 자동차, 터보기계 등 다양한 산업에 적용 가능한 실질적이고 혁신적인 해법을 제공한다. 초고속 처리 능력과 Fidelity LES Solver의 정밀한 물리 해석이 결합된 Millennium M1은 혁신적인 설계와 엔지니어링의 패러다임을 바꿀 게임 체인저로, 기술 혁신의 새로운 기준을 제시할 것이다. 2. 주요 기능 및 특징 ■ 안정성과 정확성을 겸비한 해석 기술 : CharLES 솔버의 비선형 안정화 방식은 수치적 진동을 효과적으로 억제하며, 메시 크기를 줄여도 높은 정확도와 안정성을 유지한다. ■ 압도적인 계산 성능 : GPU 기반 LES 솔버와 전용 하드웨어의 조합으로, GPU 1개당 최대 1,000개의 CPU 코어에 상응하는 처리 성능을 제공한다. ■ 업계 최초 Turn-Key CFD 솔루션 : GPU 기반 솔버와 확장 가능한 HPC를 결합하여 별도의 복잡한 시스템 설정 없이 즉시 사용 가능하며, 빠르고 효율적인 데이터 생성을 지원한다. ■ AI 디지털 트윈 구현 : 고품질 데이터를 바탕으로 생성형 AI를 활용해 디지털 트윈을 신속하게 구현한다. ■ 다상 흐름 예측 : Volume-of-Fluid(VOF) 기법과 라그랑주 입자 추적법으로, 다양한 유동 영역에서 액체 및 미세 물방울 등의 복잡한 거동을 정확히 모델링할 수 있다. 3. 도입 효과 ■ 설계-검증 프로세스 단축 : 기존 몇 일이 소요되던 LES 시뮬레이션을 몇 시간 내로 단축해, 더 많은 설계-검증 프로세스를 시도할 수 있다. ■ 높은 신뢰성과 효율성 : 메시 크기가 작아도 안정적이고 정확한 결과를 제공하며, 후처리 작업부담을 크게 줄여준다. ■ 혁신적인 설계 최적화 : 생성형 AI와 디지털 트윈 기술을 활용해, 효율적인 설계로 제품 개발을 지원한다. ■ 경제적 이점 : 별도 시스템 구축이 필요 없는 턴키(Turn-Key) 솔루션으로, 운영 비용을 효과적으로 절감 할 수 있다.   4. 주요 고객 사이트 ■ 자동차(Automotive) : 전기차 주행 거리와 내연기관 차량 연비에 영향을 미치는 공기역학을 풍동 수준의 정확도로 예측하며, 빠른 분석을 제공한다. ■ 항공우주(Aerospace) : 복잡한 형상과 유동 조건에서 항력 변화와 에어포일 실속 현상을 정밀하게 분석하여, 높은 설계 신뢰성을 보여준다. ■ 에너지 및 터보 머신(Energy & Turbomachinery) : 난류 연소와 열 전달을 정확히 예측하며, 열 플럭스 및 Conjugate Heat Transfer 분석으로 에너지 효율성을 극대화한다.       상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기
작성일 : 2025-05-10
쌔스, SAS 이노베이트 2025, 인간-AI 협업 시대 여는 혁신 기술 공개
SAS, ‘SAS 이노베이트 2025’에서 인간-AI 상호작용 가능한 AI 에이전트 등 혁신 기술 공개   SAS(쌔스)가 5월 6일부터 9일(현지시간)까지 미국 플로리다주 올랜도에서 열린 연례 컨퍼런스 ‘SAS 이노베이트 2025(SAS Innovate 2025)’에서 최신 AI 및 데이터 분석 기술 혁신과 다양한 비즈니스 사례를 선보였다. SAS 이노베이트는 전 세계 산업 전문가와 오피니언 리더들이 한자리에 모여 인사이트를 공유하는 자리다. 투명한 의사결정을 위한 맞춤형 인간-AI 상호작용 지원 ‘AI 에이전트’ 공개 인간의 개입 없이 AI 시스템이 스스로 의사결정을 내리고 조치를 취하는 시대가 점차 다가오고 있다. 이러한 AI 에이전트의 빠른 발전에 발맞춰 SAS는 책임 있는 혁신(responsible innovation)을 기반으로 에이전틱 AI(agentic AI)의 미래를 구축하고 있다. SAS는 자사의 데이터 및 AI 플랫폼 SAS 바이야(SAS® Viya®)에서 구동되는 SAS 인텔리전트 디시저닝(SAS® Intelligent Decisioning)을 통해 AI 에이전트를 설계, 배포, 확장할 수 있도록 지원한다고 발표했다. 이는 인간과 AI 간의 자율성 균형을 맞추고, 의사결정 과정에 대한 설명 가능성과 거버넌스를 확보하는 데 중요한 역할을 할 것으로 기대된다. 의사결정 시 윤리적 기준을 반영하는 AI 에이전트 첨단 기술 리서치 기관인 더 퓨처럼 그룹(The Futurum Group)의 AI 소프트웨어 및 도구 부문 닉 페이션스(Nick Patience) 부사장은 "SAS의 에이전트 기반 AI 접근 방식은 자율적인 의사결정과 윤리적 거버넌스 간의 중요한 균형을 맞추고 있다"라며, "SAS의 지능형 에이전트는 단순한 기술적 진보를 넘어 책임감 있는 엔터프라이즈 AI 도입을 위한 실용적인 프레임워크로서, 이는 조직이 빠르게 진화하는 환경에서 경쟁 우위를 확보하는 데 필수적인 요소"라고 강조했다. SAS 바이야의 에이전틱 AI 프레임워크는 AI 에이전트의 설계 및 제공 방식을 정의하는 세 가지 핵심 요소를 기반으로 한다. 첫째, 의사결정이다. SAS는 강력한 결정론적 분석(deterministic analytics)과 대규모 언어 모델(LLM, Large Language Models)의 유연성 및 추론 능력을 결합한 하이브리드 접근 방식을 채택하고 있다. 이를 통해 SAS 고객은 규제 산업에서 요구되는 비즈니스 기준과 규칙을 준수하면서 더욱 정확하고 신뢰할 수 있는 결과를 도출하는 AI 에이전트를 구축할 수 있다. 둘째, 인간과 AI의 균형이다. SAS는 업무의 복잡성, 리스크, 비즈니스 목표에 따라 AI 에이전트의 자율성과 인간 개입 수준을 기업이 직접 조정할 수 있도록 지원한다. AI 에이전트는 반복적인 데이터 기반 작업에서 완전히 자율적으로 운영될 수 있으며, 인간은 감독, 윤리적 판단, 전략적 방향을 제시하는 역할을 수행할 수 있다. 셋째, 거버넌스다. SAS의 내장된 거버넌스 프레임워크를 활용하여 기업은 윤리 기준과 데이터 프라이버시를 준수하면서 비즈니스 가치 및 규제 심사에 부합하는 AI 에이전트를 구축할 수 있다. SAS 바이야가 이끄는 에이전틱 AI(agentic AI)의 미래 SAS 바이야는 데이터 수집 및 분석부터 AI 에이전트 구축, 배포, 모니터링에 이르기까지 AI 에이전트 여정의 모든 단계를 포괄적으로 지원한다. 또한, 지속적인 성과 추적, 거버넌스 및 보안을 보장하며, 제품 수명주기 전반에 걸쳐 효율적인 방식으로 AI 에이전트를 관리할 수 있도록 돕는다. SAS는 수십 년간 축적해온 신뢰성 있는 거버넌스 경험을 바탕으로 모든 에이전트에 감사 가능성(auditability), 편향 탐지, 규제 준수 기능을 제공한다. 향후 SAS는 에이전틱 AI 로드맵에 따라 SAS 바이야에 코파일럿 생산성 어시스턴트를 통합할 계획이라고 밝혔다. 이를 통해 사용자는 더욱 빠르고 스마트하게 수작업을 줄이고, 기업 논리에 기반하여 업무를 수행할 수 있을 것으로 기대된다. 더불어 SAS는 자사의 뛰어난 산업 전문성을 바탕으로 데이터 엔지니어링, 공급망 최적화 등 다양한 업종별 워크플로우에 쉽게 통합할 수 있는 사전 구성된(pre-packaged) 산업 특화 지능형 에이전트도 제공할 예정이다. 이는 기업들이 통제력과 신뢰성을 유지하면서 비즈니스 가치 실현을 가속화하는 데 기여할 것으로 보인다. 마리넬라 프로피(Marinela Profi) SAS 글로벌 AI 시장 전략 부문 리드는 “SAS 바이야는 단순히 행동하는 에이전트를 넘어, 분석, 비즈니스 규칙, 적응성에 기반하여 목적성 있는 의사결정을 내리는 에이전트를 구축한다”며, “거버넌스를 준수하며 의사결정에 집중한 SAS의 통합 프레임워크를 통해 AI 에이전트가 기업의 핵심 차별화 요소로 자리 잡을 것”이라고 전망했다. SAS, 비즈니스 병목 해소 위한 맞춤형 AI 모델 공개 SAS는 산업별 솔루션에 대한 10억 달러 투자의 일환으로 새로운 AI 모델 포트폴리오를 발표했다. 각 산업별로 즉시 적용 가능하거나, 고객 데이터를 기반으로 맞춤형 학습이 가능한 AI 모델들은 다양한 규모의 기업 환경에 쉽게 통합하여 사용할 수 있도록 설계되었다. 현재 제공 중인 주요 AI 모델로는 ▲(전 산업) AI 기반 개체 식별 및 문서 분석 모델 ▲(헬스케어) 약물 복약 순응도 위험 모델 ▲(제조) 전략적 공급망 최적화 모델 ▲(공공) 식량 지원 결제 무결성 모델 및 판매세 세금 규정 준수 모델 등이 있다. 올해에는 ▲(금융) 결제 및 카드 거래 판별 모델 ▲(헬스케어) 의료비 지급 적정성 검증 모델 ▲(제조) 근로자 안전 모니터링 모델 ▲(공공) 개인 소득세 납세 준수 모델 등 새로운 모델들이 추가로 출시될 예정이다. 뿐만 아니라 SAS는 데이터 과학자들이 데이터 레이크(data lake)를 구축하고 정교화하는 데 소요되는 시간을 단축하기 위해 데이터 준비 과정을 자동화하고, 모델이 실시간으로 작동할 수 있도록 지원하는 사전 구축된 AI 에이전트(AI agent)도 향후 제공할 계획이다. SAS, 에픽게임즈의 언리얼 엔진 기반 디지털 트윈으로 제조업 혁신 지원 SAS는 포트나이트로 유명한 미국 게임사 에픽게임즈(Epic Games)의 실시간 3차원(3D) 창작 툴인 언리얼 엔진(Unreal Engine)과 SAS의 강력한 AI 및 고급 분석 기술을 결합한 디지털 트윈(digital twin)을 통해 제조 산업의 핵심 프로세스 혁신을 지원하고 있다. 이를 통해 제조업체는 시뮬레이션된 가상 환경에서 새로운 전략을 실험하고 효과적인 방식을 실제 공정에 적용할 수 있게 된다. 미국 종합 제지 및 포장 제조 기업 조지아-퍼시픽(Georgia-Pacific)은 AGV(Automated Guided Vehicle: 무인운송차량) 운용을 포함한 기타 생산 프로세스를 최적화하기 위해 SAS 기술이 적용된 디지털 트윈을 활용하고 있다. SAS는 에픽게임즈가 개발한 모바일 앱 리얼리티스캔(RealityScan)을 활용하여 조지아-퍼시픽 서배너 공장의 실제와 똑같은(photorealistic) 렌더링 이미지를 캡처하고, 이를 언리얼 엔진에 통합했다. 언리얼 엔진과 결합된 SAS의 분석 기술은 실제 생산 라인에 영향을 주지 않고 공정을 정밀하게 조정할 수 있도록 지원하여, 비용 절감과 제품 품질 향상에 기여할 것으로 기대된다. 언리얼 엔진은 정교한 물리 시뮬레이션, 차세대 라이팅, 굴절 표면 효과를 제공하여 매우 사실적이고 세밀한 디지털 모델 구현을 가능하게 한다. 이를 통해 제조업체는 디지털 환경에서 공정을 시각화하고 상호작용하며, SAS의 고급 AI 기술과 결합되어 더욱 정확한 예측과 향상된 비즈니스 의사결정을 도출할 수 있다. 기업들은 시간과 비용이 많이 소요되는 실제 환경 테스트 없이 언리얼 엔진과 SAS의 분석 기술을 결합한 디지털 환경에서 정교하고 정확한 디지털 트윈을 활용하여 잠재적인 문제를 사전에 발견하고 해결할 수 있다. SAS, “글로벌 기업 5곳 중 3곳, 양자 AI 투자 및 도입 검토” SAS가 최근 실시한 글로벌 설문조사에 따르면, 양자 컴퓨팅(quantum computing)과 양자 AI(quantum AI)는 AI 이후의 차세대 혁신 기술로 주목받고 있으며, 전체 응답자의 60% 이상이 양자 AI에 적극적으로 투자하거나 도입을 검토 중인 것으로 나타났다. 동시에 비즈니스 리더들은 양자 AI 도입의 주요 장애 요인으로 ▲높은 비용(38%) ▲기술에 대한 이해 및 지식 부족(35%) ▲실제 적용 사례에 대한 불확실성(31%) 등을 지적했다. 이는 양자 AI에 대한 관심은 높지만, 실제 비즈니스에 활용하기 위해서는 명확한 로드맵과 실용적인 가이드가 필요하다는 점을 시사한다. SAS는 이러한 요구에 발맞춰 고객과의 파일럿 프로젝트, 양자 AI 연구, 양자 컴퓨팅 분야의 선도 기업들과의 협력을 통해 양자 기술의 효과적인 도입을 지원하고 있다. 특히 복잡한 양자 시장이나 물리학적 원리를 깊이 이해하지 않아도 누구나 양자 기술을 쉽게 이해하고 활용할 수 있도록 돕는 데 주력하고 있다. 현재 SAS는 양자 어닐링(quantum annealing) 시스템을 개발하는 디웨이브 퀀텀(D-Wave Quantum), 초전도 기반 양자 컴퓨팅을 선도하는 IBM, 중성 원자 기반 컴퓨팅 기술을 보유한 큐에라 컴퓨팅(QuEra Computing)과 협력하고 있으며, 이들의 기술을 자사 연구와 고객 프로젝트에 적극적으로 활용하고 있다.   SAS 바이야 혁신으로 속도·생산성·신뢰성 향상   이 외에도 SAS는 SAS 바이야(SAS® Viya®) 데이터 및 AI 플랫폼의 새로운 성능 향상을 발표했다. 이번 성능 개선은 최신 AI 기술 발전을 기반으로 인간의 생산성과 의사결정 능력을 확장하고 향상시키는 데 초점을 맞추었다. 새롭게 출시되었거나 곧 출시 예정인 SAS 바이야의 주요 기능은 다음과 같다. SAS 데이터 메이커(SAS Data Maker): 작년 비공개 프리뷰를 통해 처음 소개된 SAS의 안전한 합성 데이터 생성기 ‘SAS 데이터 메이커’는 조직이 데이터 개인 정보 보호 및 부족 문제를 해결하는 동시에 프로세스를 간소화하고 리소스를 절약하는 데 기여한다. SAS가 최근 합성 데이터 분야의 선두 기업인 헤이지(Hazy)의 주요 소프트웨어 자산을 인수하면서 개발 속도가 더욱 빨라졌으며, 2025년 3분기에 정식 출시될 예정이다. SAS 관리형 클라우드 서비스: SAS 바이야 에센셜즈(SAS Viya Essentials): 중소기업을 위해 올해 초 출시된 관리형 클라우드 서비스 패키지인 ‘SAS 바이야 에센셜즈’는 소규모로 즉시 사용 가능한 호스티드 관리형 서비스 형태로 제공되어 SAS 바이야 도입의 장벽을 낮춘다. SAS 바이야 코파일럿(SAS Viya Copilot): SAS 바이야 플랫폼에 내장된 AI 기반 대화형 어시스턴트인 ‘SAS 바이야 코파일럿’은 강력한 개인 비서 역할을 수행하여 개발자, 데이터 과학자 및 비즈니스 사용자 모두의 분석 작업 및 업무 효율성을 높인다. SAS 바이야 코파일럿은 현재 개별 초대를 통한 비공개 프리뷰로 제공되고 있으며, 2025년 3분기에 정식 출시될 예정이다. 초기 코파일럿 제품의 주요 기능에는 SAS 사용자를 위한 AI 기반 모델 개발 및 코드 지원이 포함된다. 애저 AI 서비스(Azure AI Services)를 기반으로 구축된 코파일럿은 SAS와 마이크로소프트 파트너십의 중요한 결과물이다. SAS 바이야 워크벤치(SAS Viya Workbench): 2024년에 출시된 SAS 바이야 워크벤치는 개발자, 데이터 과학자 및 모델러의 작업 속도와 효율성을 크게 향상시키는 클라우드 기반 코딩 환경이다. 비주얼 스튜디오 코드(Visual Studio Code) 또는 주피터 노트북(Jupyter Notebook)을 통해 SAS 또는 파이썬(Python) 코드를 사용하여 데이터 관리, 분석 및 모델 개발을 용이하게 수행할 수 있다. 2025년의 새로운 기능으로는 R 코딩 지원, SAS 엔터프라이즈 가이드(SAS Enterprise Guide) 개발 환경 지원이 추가되었으며, 기존 AWS 마켓플레이스뿐만 아니라 마이크로소프트 애저 마켓플레이스(Microsoft Azure Marketplace)에서도 이용 가능하게 되었다.  
작성일 : 2025-05-10
쿤텍-디스페이스, SIL 기반 소프트웨어 검증 환경 구축 및 시장 발굴 협력
미래차 SW 안정성 높인다…쿤텍-dSPACE 코리아, SIL 기반 검증 환경 구축 MOU 체결   왼쪽부터 디스페이스(dSPACE) 코리아 손태영 대표, 쿤텍 방혁준 대표   쿤텍과 디스페이스(dSPACE)코리아가 소프트웨어 검증 환경 구축과 신규 시장 발굴을 위해 손을 맞잡았다. 양사는 5월 9일 미래차를 포함한 다양한 산업 분야에서 소프트웨어의 안전성과 신뢰성을 강화하기 위한 업무협약(MOU)을 체결했다고 밝혔다. 이번 협약의 핵심 목표는 SIL(Software In the Loop) 기반의 가상화 검증 환경을 공동으로 구축하고, 관련 솔루션을 연계하여 국내외 시장을 적극적으로 개척하는 것이다. 쿤텍과 dSPACE 코리아는 긴밀한 협력을 통해 각 산업별 요구사항에 최적화된 맞춤형 가상 검증 플랫폼을 개발하고, 글로벌 임베디드 시장을 함께 공략하기 위한 전략 수립에도 박차를 가할 계획이다.   SIL 기반 가상 검증, 개발 효율성과 품질 향상에 기여   SIL 기술은 자동차, 국방, 산업 제어 시스템 등 다양한 임베디드 소프트웨어를 실제 하드웨어 없이 가상 환경에서 검증할 수 있는 핵심 기술로 평가받는다. 이 기술을 통해 개발 효율성을 높이고 소프트웨어 품질을 향상시키는 것은 물론, 개발 비용을 절감하고 초기 단계에서 결함을 발견하는 데 크게 기여할 수 있다. 특히 차세대 SDV(소프트웨어 중심 차량, Software Defined Vehicle)) 환경의 핵심 기반 기술로 주목받고 있으며, 정밀한 시뮬레이션이 필수적인 국방 및 특수 산업 분야에서도 폭넓게 활용될 잠재력을 가지고 있다. 쿤텍의 '패스트브이랩스'와 dSPACE의 MBD 기술의 시너지   쿤텍은 자체 개발한 임베디드 가상화 솔루션인 '패스트브이랩스(FastVLabs)'를 통해 복잡한 제어 소프트웨어를 물리적인 장비 없이 효율적으로 개발하고 검증할 수 있는 플랫폼을 제공하며 기술력을 인정받고 있다. 특히 쿤텍은 dSPACE의 공식 1호 파트너로서, 이번 MOU를 통해 dSPACE의 모델 기반 개발(MBD, Model-Based Development) 기술과의 시너지를 창출하여 산업별 맞춤형 검증 체계를 더욱 고도화할 방침이다. dSPACE는 독일에 본사를 두고 있으며, 글로벌 모빌리티 시뮬레이션 및 검증 분야의 선두 기업이다. HIL(Hardware In the Loop), SIL 환경 구축 등 차량 ECU 및 임베디드 소프트웨어 개발과 검증에 필요한 종합적인 툴체인을 공급하고 있다. 전 세계 유수의 완성차 및 부품 제조사들이 dSPACE의 솔루션을 활발하게 사용하고 있으며, 자율주행, 전기차, SDV 분야뿐만 아니라 국방·항공 연구기관에서도 그 활용 범위가 넓어지고 있다. 국내 유일 Level 4 하드웨어 가상화 기술력   쿤텍의 패스트브이랩스(FastVLabs)는 국내에서 유일하게 명령어 집합 시뮬레이터(ISS, Instruction Set Simulator) 기술을 활용한 Level 4 하드웨어 가상화 기반 솔루션이다. 이 기술은 한국항공우주산업, 한국수력원자력 등 다양한 임베디드 산업 분야에 적용되어 그 기술력을 입증받았다. 또한, 패스트브이랩스는 FMI(Functional Mock-Up Interface)를 통해 dSPACE 솔루션과의 연동이 가능하다. 이번 MOU를 통해 dSPACE와의 더욱 긴밀한 기술 협력을 통해 SIL 기반 소프트웨어 검증 환경 구축과 시장 발굴이 더욱 가속화될 것으로 전망된다. 양사 대표, 협력을 통한 시너지 효과 기대   쿤텍 방혁준 대표는 "이번 협약은 가상화 기반 검증 체계 고도화를 위한 중요한 전환점이 될 것이다"라고 강조하며, "dSPACE 코리아와의 협력을 통해 SDV는 물론, 높은 신뢰성이 요구되는 국방 및 특수 산업 분야에서 기술적 차별성을 확보해 나가겠다"고 포부를 밝혔다. dSPACE 코리아 손태영 대표는 "쿤텍의 패스트브이랩스와 당사의 MBD 기반 시뮬레이션 기술을 연계함으로써, 고객에게 더욱 정밀하고 신뢰할 수 있는 소프트웨어 검증 환경을 제공할 수 있게 되었다"고 설명하며, "이번 협력은 국내외 시장 확장에도 중요한 역할을 할 것으로 기대한다"고 덧붙였다.  
작성일 : 2025-05-10
[칼럼] 로봇 기반 제조 자동화와 디지털 트윈
디지털 트윈과 산업용 메타버스 트렌드   영화 매트릭스가 개봉된 지 20년이 더 지난 2020년대에 이러한 가상 세상은 영화가 아닌 실제 산업 현장에서 구현되어 산업 혁신을 주도하고 있다. 바로 ‘디지털 트윈 (Digital Twin)’이다 이 글에서는 디지털 트윈의 의미와 제조 산업 특히 로봇 기반 자동화에서 디지털 트윈이 어떻게 제조현장을 혁신하는지 실증 사례를 기반으로 소개한다.   장영재 교수 / 카이스트  “헬기를 몰 줄 알아요?” 남자 요원이 동행한 여자 요원에게 물었다. “아니요. 아직은요. 잠시만 기다리세요.” 그리고 즉시 여자 요원은 무전로 본부에 연락해, 헬기 시뮬레이션 교육프로그램을 업로드 해달라 본부에 요청했다. 본부에서는 즉시 시뮬레이션 교육프로그램을 가속으로 돌려 헬기 조정 능력을 여자 요원의 머리에 업로드하였다. 여자요원은 불과 몇 초 사이에 수백시간 걸릴 헬기훈련을 마친 베터랑 헬기 조정사 능력을 가지게 되었다. 그리고 여자 요원은 외쳤다. “빨리 헬기를 몰고 도망칩시다!” 그리고 여자 요원은 능숙한 솜씨로 헬기를 몰고 남자요원과 함께 탈출한다. 1999년 개봉된 영화 매트릭스의 한 장면이다. 가상의 세상과 실제 세상을 오가며 과연 무엇이 진실이며 실제 (real)이란 무엇일까란 질문을 던지는 매우 철학적인 영화다 .  영화 매트릭스가 개봉된 지 20년이 더 지난 2020년대에 이러한 가상 세상은 영화가 아닌 실제 산업 현장에서 구현되어 산업 혁신을 주도하고 있다. 바로 ‘디지털 트윈 (Digital Twin)’이다. 본 특집에서는 디지털 트윈의 의미와 제조 산업 특히 로봇 기반 자동화에서 디지털 트윈이 어떻게 제조현장을 혁신하는지 실증 사례를 기반으로 소개한다.   1. 시뮬레이션과 디지털 트윈의 차이 우리나라 과학기술정보 통신부에서는 디지털 트윈을 다음과 같이 정의하고 있다.  “가상세계에서 실제 사물의 물리적 특징을 동일하게 반영한 쌍둥이 (Twin)을 3D 모델로 구현하고 제 사물과 실시간으로 동기화 및 시뮬레이션을 통해 관제, 분석, 예측 등 현실의 의사결정에 활용하는 기술” 그러나 이러한 정의만으로는 구체적으로 디지털 트윈을 파악하기에 모호하다. 시뮬레이션과 디지털 트윈의 차이가 무엇인지, 실시간 동기화가 왜 필요한지, 관제, 분석, 예측은 이미 다양한 방식으로도 가능한데 디지털 트윈이 제공하는 또 다른 가치가 있는지 설명이 부족하다. 최근 디지털 트윈 관련 이슈가 많다 보니 기업들도 앞 다투어 디지털 트윈을 기술을 확보했다는 등의 보도자료를 통해 기술 홍보를 하기도 한다. 이런 대부분은 공장의 가공 로봇이 움직임을 실시간 3D 애니메이션으로 구현해서 실제 로봇의 움직임을 컴퓨터에 시연하는 정도다. 그러나 이러한 시연을 보면 대부분 사람들의 반응은 “이것으로 무엇을 하지요?” “굳이 거액을 들여 실물의 움직임을 컴퓨터 그래픽으로 그대로 보여줄 필요 있나요? 그저 CCTV 하나 설치하면 컴퓨터에서 영상으로 볼 수 있는 것을 굳이 컴퓨터 그래픽 3D영상으로 구현할 필요가 있나요?” 등의 반응이다. 그렇다면 우선 시뮬레이션과 디지털 트윈의 차이가 무엇일까? 2. 디지털 트윈이 과연 무엇인가?   시뮬레이션은 가상의 시나리오를 기반으로 그 결과를 재현해 보는 것을 의미한다. 내가 A란 결정을 했을 때 그 결과가 어떻게 나올지를 유추해 보는 것이 시뮬레이션이다. 우리가 일반적으로 잘 알고 있는 시뮬레이션이 컴퓨터 시뮬레이션이다. 즉 컴퓨터가 구현한 상황에서 특정 의사결정에 대해 그 결과를 컴퓨터를 통해 산출하는 것이다. 컴퓨터 시뮬레이션 활용의 대표적인 예가 워 게임 (War Game)이다. 군에서는 전략전술 교본이나 전술, 그리고 무기 체계 설계를 할 때 컴퓨터를 통한 시뮬레이션을 활용한다. 평가나 실험을 위해 실제 전투나 전쟁을 치를 수 없기에 컴퓨터를 통해 가상의 적군과 전투를 하며 훈련을 하거나 전술 평가에 활용한다. 실제 컴퓨터 시뮬레이션 활용에 대한 연구가 가장 활발히 이뤄지는 분야가 국방 시뮬레이션 분야인 이유다.  우리 일상 생활에서도 이러한 시뮬레이션이 실제 많이 활용된다. 대표적인 예가 바로 자동차 네비게이션이다. 10년전 네비게이션을 떠올리면 전형적인 시뮬레이션 장비라 할 수 있다. 목적지를 입력하면 내 위치에서 목적지까지 수많은 대안 경로 중 최적 경로를 제안해 준다 . 그러나 당시 네비게이션은 실시간 교통정보를 경로 탐색에 담지 않았다. 그러다 보니 출퇴근 교통혼잡이나 사고로 인한 교통 체증과 같은 상황에서도 일반 상황과 동일한 이동경로 시간 산출과 경로를 제시하는 한계가 있었다. 최근 자동차 네비게이션이나 스마트폰 차량 맵은 실시간 교통정보를 포함해 다양한 대안 경로를 제시한다. 즉 실시간 GPS 정보를 통해 내 차량의 위치는 클라우드의 컴퓨터로 전송이 되고 또한 다양한 교통정보를 기반으로 실시간으로 대안경로를 찾고 도착시간을 지속해서 업데이트 한다. 그리고 내차의 이동 경로와 교통 상황은 사용자가 직관적으로 파악할 수 있도록 컴퓨터 그래픽으로 전달된다. 즉 실시간 교통정보를 기반으로 지속적인 업데이트된 경로를 제공하는 스마트폰 네비 앱이 디지털 트윈의 가장 대표적인 사례다. 학문에서는 디지털 트윈의 조건을 아래로 정의한다. 1. 실물과 가상의 시스템이 거의 실시간 (near real-time)으로 연동되어야 한다. 2. 다양한 상황의 시나리오를 검토하고 대안을 제시할 수 있어야 한다. 3. 사용자의 의사결정을 지원하며 사용자가 쉽게 의사결정 상황을 직관적으로 파악할 수 있는 인터페이스를 제공해야 한다.   스마트폰 네비는 위 조건을 모두 만족한다. 실시간으로 차량의 위치가 GPS로 전송되고 교통정보도 활용한다는 점에서 1번 조건을 만족하며, 다양한 대안경로를 검토함으로 2번 조건을 만족하며, 사용자의 최적경로를 제안하며 이러한 경로를 그래픽으로 전달하는 방식으로 3번 조건을 만족한다. 즉 스마트폰 네비가 우리 생활의 디지털 트윈이라 할 수 있다. 이런 의미를 보면 굳이 디지털 트윈이 현실과 매우 흡사한 고퀄리티 네비를 제공해 줄 의무는 없고 3D그래픽을 제공하는 것도 조건은 아니다. 사람의 의사결정을 직관적으로 지원해 줄 수 있는 정도면 기능이 충분하다 할 수 있다. 3. 로봇 기반 제조 운영에서의 디지털 트윈   이러한 디지털 트윈 활용의 가장 대표적인 예가 제조 물류 자동화 시스템 설계 및 운영이다. 최근 제조 시스템의 가장 큰 변화 중의 하나는 컨베이어 벨트가 없는 자동화(Beltless Automation)로 표현되는 군집 로봇 기반 물류 자동화다. 1916년 포드 T모델이 컨베이어 방식으로 생산되며 제조 자동화 혁명을 가져왔다. 이후 컨베이어 벨트 기반 물류 자동화는 공장 자동화의 표준 생산이 되었다. 그러나 이러한 컨베이어 방식은 단일 품종 대량 생산에는 적합하지만 다품종 소량 생산과 같은 현대 소비 시장의 욕구를 충족하는 데는 한계가 있다. 차량 모델이 바뀔 때 마다 공장을 세우고 컨베이어 벨트와 설비 위치를 재 조정해야 하는 등 상당한 재투자가 필요하다. 카이스트 산업 및 시스템 공학과 졸업생들이 2020년에 창업하여 카이스트 및 네이버가 투자한 다임리서치는 디지털 트윈 기술을 기반으로 AGV나 ARM의 이동을 관제하고 제어하는 솔루션을 개발하여 LG전자뿐만 아닌 국내 반도체 및 2차전지 기업에 공급하고 있다.      상세 내용은 PDF로 제공됩니다.    
작성일 : 2025-05-09
한국산업지능화협회, “제조산업에서 공급망 전반의 통합 보안 대응이 시급”
한국산업지능화협회는 최근 산업 전반의 공급망이 복잡·다변화됨에 따라 물리적 측면의 공급망 안전과 디지털 측면의 사이버 보안을 아우르는 통합 공급망 리스크 대응 전략을 주제로 제조 보안 기업 설명회를 개최하였다. 이번 설명회는 디지털 전환 가속화에 따라 IT 시스템, 산업제어시스템(ICS), 클라우드 플랫폼, IoT 장비 등이 제조 공정의 핵심 요소로 자리잡으며, 해커들이 단일 부품 공급업체나 물류 시스템을 통해 전체 산업체를 마비시키는 공급망 사이버 공격의 증가에 대응하기 위해 마련되었다. 첫 번째로 발표를 맡은 중소벤처기업연구원의 김주미 수석위원은 “제조업이 현재 사이버 위협에 가장 취약한 산업 중 하나, 보안이 내재된 시스템 설계와 공급망 전반의 보안 강화가 무엇보다 시급하다”고 강조하였다.  김주미 수석위원은 스마트 공장이 도입한 이후 생산성 증가, 고용 시장 확대 등의 긍정적인 효과가 있었지만 동시에 제조업 부문에서 사이버 공격이 300% 이상 증가했다는 조사 결과를 소개하며, 인더스트리 4.0 기술(IIoT 장치, 클라우드 시스템, 상호 연결된 공급망) 도입으로 공격 표면(attack surface)이 급격히 확대되고 있다고 설명했다. 또한 “AI 및 머신러닝 기반의 자동화된 사이버 공격이 늘어나면서, 위협 행위자들의 표적 탐지 및 방어 우회 능력이 고도화되고 있다”며, 산업 현장에 보안 전략이 부재한 현실에 대해 언급하였다. 두 번째 발표자로 나선 코어시큐리티 한근희 부사장은 “제조업 공급망의 안정성은 이제 물리적 보호만으로는 충분하지 않다”며, “공급망 전반의 사이버 보안을 위한 국제 표준인 IEC 62443을 중심으로 한 보안 프레임워크의 확대 적용이 필수”라고 강조했다. 그는 “공급망의 회복력(resilience)은 국가 산업 경쟁력의 핵심”이라며, 특히 ICS 보안은 기업 규모와 무관하게 모든 산업 프로세스에 적용되어야 한다고 밝혔다. 또한, 유럽은 디지털 요소가 포함된 모든 제품에 대해 2027년까지 국제표준 기반 보안 시스템 적용을 의무화하고 있다고 소개했다. 한근희 부사장은 공급망 보안에서 가장 중요한 보안 3대 요소 중 ‘가용성(availability)’을 가장 핵심으로 지목하며, “공격 발생 시 복구가 지연될 경우 5일에 한번꼴로 사이버 공격을 받을 수 있으며, 기업의 존폐를 위협할 수 있다”고 경고했다. 이어서 케이포시큐리티의 박경철 대표는 유럽연합이 추진 중인 디지털 제품 여권(DPP)의 정책과 CEN JTC24 표준화 동향을 소개하였다. 그는 DPP가 분산ID(DID), 블록체인 기반 무결성 검증, 검증 가능한 자격 증명(Verifiable Credential : VCDM) 등을 기반으로 제품 정보의 신뢰성과 추적성을 확보하는 핵심 기술임을 강조하며, ISO 및 W3C 국제 표준 기반 기술을 도입하는 것이 필수임을 설명하였다.  또한, EU는 2027년부터 배터리 제품에 DPP 적용을 의무화할 예정이며 이후에는 전 산업으로 확대될 가능성이 높아, 한국 역시 이에 대한 선제적 대응이 필요하다고 강조하였다.  한국산업지능화협회는 향후 산학연 관계자들과의 협력을 바탕으로 공급망 보안 표준의 보급과 적용을 지속 확대할 계획이라고 밝혔다. 이번 설명회를 함께 기획한 국가표준 첨단제조 박주상 코디네이터는 “제조 보안은 민관 협력을 통해 지속 가능한 산업 생태계를 조성하는 기반이 되며, 표준화를 통해 중소기업의 경쟁력을 높일 수 있다”고 말했다. 또한 국제 진출과 시장 확대의 기회가 표준을 통해 더욱 열릴 것이라고 강조했다.
작성일 : 2025-05-09
앤시스, 인텔 18A 공정 및 3D-IC 설계 위한 시뮬레이션 설루션 인증 획득
앤시스가 인텔의 18A(1.8나노급) 공정 기술로 제조되는 첨단 반도체 설계를 위한 열 및 다중 물리 검증 도구 인증을 획득했다고 밝혔다. 이번 인증은 AI 칩, 그래픽처리장치(GPU), 고성능 컴퓨팅(HPC) 제품 등 고난이도 애플리케이션에 사용되는 반도체 시스템의 기능성과 신뢰성을 확보하는 데 핵심 역할을 한다. 또한, 앤시스와 인텔 파운드리(Intel Foundry)는 멀티다이 기반 3D 집적 회로(3D-IC) 시스템 구현에 활용되는 EMIB(Embedded Multi-Die Interconnect Bridge) 기술을 지원하는 포괄적인 다중 물리 검증 분석 플로를 공동 구축했다. 앤시스 레드호크-SC(Ansys RedHawk-SC) 및 앤시스 토템(Ansys Totem)은 인텔 18A의 GAA(Gate-All-Around) 트랜지스터인 리본펫(RibbonFET)과 후면 전력 공급 기술인 파워비아(PowerVia) 구조를 기반으로 전력 무결성과 신뢰성 분석 성능을 제공한다. 아울러 확장 가능한 전자기 시뮬레이션을 위해 HFSS-IC 제품군 내에 HFSS-IC Pro를 새롭게 선보였다. HFSS-IC Pro는 인텔 18A 프로세스 노드로 제작된 무선 주파수(RF) 칩, WiFi, 5G/6G 및 기타 통신 애플리케이션의 온칩 전자기(Electromagnetic, EM) 무결성 모델링에 대한 인증을 획득했다.     EMIB 기술은 고성능 마이크로프로세서, 이기종 통합 시스템 등 다양한 고성능 컴퓨팅 시스템에서 3D-IC 구현을 가능하게 하는 한편 다양한 종류의 칩을 유기적으로 연결해 고성능 컴퓨팅 시스템의 성능과 통합 수준을 높인다. 이번 다중 물리 플로에는 앤시스 레드호크-SC 일렉트로우써멀(Ansys RedHawk-SC Electrothermal)을 활용한 열 신뢰성 분석이 포함되어 있으며, 앤시스와 인텔 파운드리의 협력 범위를 확대해 실리콘 관통 전극(TSV)이 적용된 차세대 EMIB-T 기술까지 지원한다. EMIB-T 분석 플로는 HFSS-IC Pro와 앤시스의 에스아이웨이브(Anys SIwave)를 통한 신호 무결성 분석, 그리고 레드호크-SC 및 토템을 활용한 전력 무결성 분석까지 포괄하는 형태로 확장됐다. 레드호크-SC, 토템, HFSS-IC Pro의 인텔 18A 고성능 공정 노드(Intel 18A-P) 대상 인증 절차는 현재 진행 중이다. 고객은 최신 인텔의 공정 설계 키트(PDK, Process Design Kit)를 요청해 조기 설계 작업 및 IP 개발을 시작할 수 있다. 해당 설루션은 인텔 14A-E의 공정 정의 및 설계 기술 최적화(DTCO, Design Technology Co-Optimization)의 일환으로 포함되어 있다. 또한, 앤시스는 인텔 파운드리 액셀러레이터 얼라이언스(Intel Foundry Accelerator Alliance)의 일부인 인텔 파운드리 칩렛 얼라이언스에 합류해, 상호운용 가능한 칩렛 설계 및 제조를 위한 보안 생태계 구축에 기여할 예정이다. 인텔의 석 리(Suk Lee) 파운드리 에코시스템 기술실 부사장 겸 총괄 매니저는 “멀티다이 어셈블리 방식은 칩 적층 및 설계 효율에 대한 업계의 관점을 변화시키고 있다. 앤시스의 시뮬레이션은 고객이 설계를 고정밀로 검증할 수 있도록 지원하며, 복구가 어려운 비용을 절감하는 데 중요한 역할을 할 것”이라며, “칩렛 기술 발전을 위한 핵심 협력체인 인텔 파운드리 칩렛 얼라이언스에 앤시스가 참여하고 있어 매우 기대하고 있다”고 밝혔다. 앤시스의 존 리(John Lee) 전자·반도체·광학 사업부문 총괄 부사장은 “앤시스의 다중 물리 시뮬레이션 설루션은 고객에게 높은 수준의 열, 신호, 전력, 기계적 무결성을 보장하며, 최고의 신뢰를 제공한다. 고객의 칩 설계 방식은 다양할 수 있지만, 정확하고 신뢰성 있는 도구에 대한 수요는 항상 존재하며, 이 지점에서 앤시스의 강점이 발휘될 것”이라며, “인텔 파운드리와의 협업을 강화하고 칩렛 얼라이언스에 합류함으로써, 앤시스는 개방형 및 상호운용 가능한 기술을 통해 엔지니어링 완성도 향상이라는 약속을 실천해 나갈 것”이라고 덧붙였다.
작성일 : 2025-05-08
[특별기고] 디지털 트윈 발전 전망
디지털 트윈과 산업용 메타버스 트렌드   데이터 기반 서비스 관점에서의 디지털 트윈의 역할은 실 체계에서 수집한 실제 데이터와 디지털 트윈 시뮬레이션으로 얻어진 가상 데이터의 융합을 통하여 실제 시스템 관련 문제 해결에 유용한 빅 데이터 생성이라 할 수 있다.  디지털 트윈 활용은 안정성에 부담이 적고 신속/가시적 성공사례 확보가 가능한 스마트시티, 스마트 팩토리, 스마트SOC(도로, 철도, 항만, 공항, 등) 등이 대상이지만 기술성숙도가 높아지고 안정성이 보장됨에 따라 자율주행, 의료/인공장기, 식물공장 등으로 확대될 전망이다.   ▲ 철도 네트워크의 디지털 트윈 구축하는 독일 디지털 철도(이미지 출처 : 엔비디아)   1. 디지털 전환과 디지털 트윈 디지털 전환(Digital Transformation: DX)은 비즈니스 전 과정에 ICT 기술을 도입하여 전사적 업무, 생산 기술, 제품 등을 디지털화 한 후 이를 기반으로 가상 실험이 가능한 디지털 환경을 구축하는 것이다.  디지털 전환의 궁극적 목적은 기업 이윤 극대화에 필요한 업부/생산 효율성 및 제품 부가 가치 증대를 위한 다양한 창의적 대안들을 가상 실험을 통해 평가한 후 그 결과를 비즈니스 전 과정에 활용하는 것이다. 예를 들어, 스마트 팩토리의 디지털 전환은 조달 시스템, 생산 시스템, 물류 시스템 등 스마트 팩토리 구성요소들의 자원 할당 및 운용에 대한 다양한 대안들을 가상 실험을 통해 평가할 수 있는 환경을 구축하여야 한다. 그렇다면, 비즈니스 전 과정을 가상 실험하기 위해서는 무엇이 필요할까?  가상 실험을 하기 위해서는 먼저 가상 실험 대상(예: 제조 공장)을 선정하고, 다음으로, 가상 실험 시나리오(예:새로운 제조 장비 도입)가 필요하며 시나리오를 수행할 모델(예: 제조 공정 시뮬레이션 모델)이 필요하다. 이러한 가상 실험을 위한 모델이 디지털 트윈이며 이런 이유로 많은 사람들이 디지털 트윈을 DX의 Key(Richard Marchall, 2017), DX의 Enablers(Reterto Saracco, 2019), DX의 Central(Vijay Ragjumathan, 2019), DX의 Steppingstone(Harry Forbes, 2020), DX의 Pillar(Fransesco Belloni, 2020)라고 지적하였다.   2. 디지털 트윈의 정의 디지털 트윈은 물리적 자산, 프로세스 및 시스템에 대한 복제본으로 정의[Wiki 사전]되며, 복제본이란 대상 체계의 운용 데이터, 지형/공간/형상 정보 및 동작/운용 법(규)칙을 컴퓨터 속에 디지털화 해 놓은 것을 의미한다. 예를 들면, 제조 공장의 디지털 트윈은 제조 공장의 운용 데이터, 제조 공장의 공간/형상 정보, 그리고 제조 장비 동작 및 공정 모델이 컴퓨터 속에 복제된 것이 될 것이다. 디지털 트윈과 대상 체계가 쌍둥이기 때문에 쌍둥이 중 누가 먼저 태어났느냐에 따라 디지털 트윈의 이름을 다르게 붙이기도 한다. 대상 체계가 존재하기 전에 만들어진 디지털 트윈을 디지털 트윈 프로토타입(Prototype) 그리고 대상 체계가 만들어진 후 복제된 디지털 트윈을 디지털 트윈 인스턴스(Instance)라고 부른다. 디지털 트윈 프로토타입은 대상 체계 설계 단계에서 활용되며 디지털 트윈 인스턴스는 대상 체계의 운용 분석에 활용되는 것이 일반적이다. 디지털 트윈 인스턴스(실 체계의 복제본)와 디지털 트윈 프로토타입(실 체계의 설계 모델)이 모두 존재할 수도 있지만 디지털 트윈 프로토타입 없이 디지털 트윈 인스턴스만 존재할 수도 있다. 디지털 트윈 프로토타입과 인스턴스가 모두 존재한다면 인스턴스는 프로토타입에 실 체계 운용 정보가 반영되어 진화(성장)된 트윈으로 볼 수 있다. 3. 디지털 트윈 구축 목적 디지털 트윈의 구축 목적은 대상 실 체계와 디지털 트윈을 연동 운용함으로써 실 체계 관련 이해 당사자에게 지혜 수준의 혁신적 서비스를 제공할 수 있는 핵심 도구/수단으로 활용하기 위함이다. 데이터 기반 서비스 관점에서의 디지털 트윈의 역할은 실 체계에서 수집한 실제 데이터와 디지털 트윈 시뮬레이션으로 얻어진 가상 데이터의 융합을 통하여 실제 시스템 관련 문제 해결에 유용한 빅 데이터 생성이라 할 수 있다. 융합 빅 데이터는 AI-통계/공학 분석도구들을 이용하여 실 세계의 구성요소인 자산, 사람, 운용 프로세스들의 다양한 결합에 대한 분석/예측 및 체계 운용 최적 대안(최적화)을 찾는데 활용될 수 있다. 아울러, 융합 빅 데이터는 실 세계를 가상 환경에서 현실감 있게 표출할 수 있는 다양한 장비/장치와 VR/AR/XR/메타버스 관련 ICT 기술과의 융합 인터페이스를 통해 오락, 관광, 교육 훈련, 체험 등에 활용될 수 있다.     디지털 트윈의 복제 대상은 실 체계의 운용 데이터, 공간/형상 정보 및 실 체계에 포함된 객체들의 행위 모델 등 3가지이다. 운용 데이터는 실 체계에 설치된 IoT 장비로부터 획득이 가능하다. 공간/형상 정보는 서비스 목적에 따라 GIS, BIM 혹은 3D CAD 중 한 가지 이상을 결합하여 사용한다. 객체 행위 모델은 다양한 시나리오를 가상 실험하기 위한 시뮬레이션 모델을 사용하지만 서비스 목적에 따라서는 운용 데이터를 학습한 데이터 모델을 사용할 수도 있다. 구성요소 중 일부만을 사용한 디지털 트윈은 나머지 구성요소를 사용하지 않음으로 인한 한계점에 봉착하게 된다. 예를 들면, 실 체계 운용 데이터 복제만으로 구성된 IoT 기반 디지털 트윈은 수집된 데이터를 분석할 수는 있지만, 실 체계를 시각화한 지형/공간 상에 데이터를 표출할 수 없을 뿐만 아니라 실 체계와는 다른 가상 데이터를 입력한 시뮬레이션을 수행할 수 없다. 마찬가지로, 지형/공간 정보 만으로 구성된 디지털 트윈은 실 체계에서 일어나는 지형/공간 정보의 변화를 실 시간으로 반영할 수 없으며 시뮬레이션을 통한 실 체계의 현상 분석 및 미래 예측이 불가능 하다.      디지털 트윈의 효율적인 활용을 위해서는 위의 세 가지 구성요소 모두를 개발 및 운용할 수 있는 통합 플랫폼이 바람직하지만 국내외적으로 표준화된 디지털 트윈 플랫폼은 존재하지 않는다. 디지털 트윈의 특성 상 3가지의 디지털 트윈 구성요소 각각을 개발하는 독립적인 플랫폼을 사용하여 구성요소를 개발한 후 이들을 연동하여 운용하는 것이 효율적이다.  구체적으로는, 먼저, 디지털 트윈 개발 목적에 맞게 운용 데이터를 수집하는 IoT 플랫폼, 지형/공간 정보를 구축하는 지형/공간정보 플랫폼 및 모델링 시뮬레이션 플랫폼들을 이용하여 각 구성요소를 개발한다. 다음으로, 개발된 세 가지 구성요소를 실행하는 플랫폼들을 연동 운용하는 PoP(Platform of Platforms) 구조를 사용할 수 있다. PoP 구조는 디지털트윈의 목적에 부합되는 모든 디지털트윈을 개발/운용할 수 있는 플랫폼으로써 신뢰성 및 경제성(개발 기간 및 비용) 면에서 효율적인 구조이다. PoP 구조를 사용할 경우 플랫폼들 사이의 연동을 위한 데이터 모델과 API의 국제적인 표준화가 요구되며 데이터 모델의 표준은 대상 시스템에 따라 달라질 수 있다.  디지털 트윈을 실제 시스템에 대한 문제 해결 목적으로 사용하기 위해서는 대상 시스템에 대한 다양한 질문의 답을 디지털 트윈을 통해서 얻을 수 있는 서비스가 제공되어야 한다. OR 이론의 창시자 중 한 명으로 경영 과학 이론가인 R.L.Ackoff 교수는 사람이 생각하는 내용을 데이터, 정보. 지식, 지혜 등 4가지로 분류하였다. 데이터는 단순한 심벌(숫자나 문자)을 말하지만 정보는 ‘who’, ‘what’, ‘where’, ‘when’을 답할 수 있고, 지식은 ‘how’를 답할 수 있고, 지혜는 ‘why’를 답할 수 있어야 한다고 정의하였다. 디지털 트윈의 서비스 수준을 Ackhoff 교수의 분류법에 매핑 시킨다면 정보 수준 서비스는 시스템 분석(현상, 기능 등), 지식 수준 서비스는 시스템 예측(행위, 성능 등) 그리고 지혜 수준 서비스는 시스템 최적화(운용 최적화 등) 및 진단(수명 진단 등)에 해당한다. 예를 들어, 교통 시스템에 대한 다양한 질문을 답하기 위해 교통 디지털 트윈을 만들었다고 하자. 정보 서비스의 예는 현재 교통 시스템의 현상을 분석하는 것으로 어느 위치의 현재 시간대에 단위 시간당 교차로 통과 차량 대수가 얼마인지에 대한 답을 하는 서비스이다. 지식 서비스의 예는 현재 출발지에서 목적지까지의 소요 시간이 얼마가 되는지를 예측하는 질문에 대한 답을 하는 서비스이다. 지혜 서비스의 예는 현재 출발지에서 목적지까지의 소요 시간이 최소가 되는 최적화된 경로가 어떤 것인지의 질문에 대한 답을 하는 서비스이다.    4. 디지털 트윈의 구성요소 디지털 트윈의 3 가지 구성요소 중 행위 모델은 목적에 따라 데이터 모델과 시뮬레이션 모델로 대별된다. 데이터 모델은 실 체계에서 수집된 데이터들 사이의 상관관계를 기계학습하여 얻어진 모델(예: 인공신경망)로서 지식 서비스를 위한 시스템 행위 예측에 한계점을 가지고 있다. 구체적으로, 데이터 모델은 학습된 데이터 영역에서는 미래 예측이 가능하지만 학습된 영역 밖의 데이터에 대한 예측은 불가능 하다. 뿐만 아니라 학습 시와 예측 시의 시스템 운용 조건이 달라질 경우에도 예측이 불가능하다. 앞서 예시한 교통 디지털 트윈으로 데이터 모델을 사용할 경우 학습 시 도로 상황(운행 시간, 사고 발생 유무 등)이 예측 시 도로 상황과 동일하지 않으면 소요 시간 예측의 정확도가 보장되지 않는다. 더욱이, 시스템 변수 사이의 상관 관계로 표현된 데이터 모델은 변수 사이의 인과 관계가 필요한 시스템의 최적화 및 고장 진단 등에는 활용할 수 없다. 이러한 데이터 모델의 서비스 한계를 극복하기 위해서는 시뮬레이션 모델을 사용할 수 있다. 시뮬레이션 모델은 구축은 대상 시스템에 대한 도메인 지식과 이를 표현하는 지배 법칙에 대한 수학적/논리적 표현 방법을 이해해야 하므로 데이터 모델에 비해 고 비용이 요구된다. 따라서, 디지털 트윈의 행위 모델은 대상 시스템의 서비스 목적과 수준에 따라 다르게 선택될 수 있다.    5. 디지털 트윈의 발전 전망  디지털 트윈의 향후 발전 전망은 문제 해결과 가상 체험 및 빅 데이터 분야로 대별할 수 있다. 문제 해결 분야에서 디지털 트윈의 대상은 분석, 예측, 최적화/진단 대상이 되는 모든 시스템 분야로서 산업(제조, 생산, 물류, 식물공장 등), 공공(교통, 환경, 금융 등), 의료(진단, 인공장기, 가상수술 등), 재난안전(안전점검, 피해분석, 대피훈련 등), 국방(군사훈련, 국방분석, 무기체계 획득 등)등을 포함한다.  현재 디지털 트윈 활용은 안정성에 부담이 적고 신속/가시적 성공사례 확보가 가능한 스마트시티, 스마트 팩토리, 스마트SOC(도로, 철도, 항만, 공항, 등) 등이 대상이지만 기술성숙도가 높아지고 안정성이 보장됨에 따라 자율주행, 의료/인공장기, 식물공장 등으로 확대될 전망이다.  가상 체험 분야는 디지털 트윈이 실 세계 혹은 가상 세계를 움직이는 다양한 시나리오를 정형화한 지배 법칙(모델)을 실행(시뮬레이션)하는 수단으로 활용될 전망이다. 이러한 지배법칙 실행은 실제 세계와 가상 세계의 구별 없는 가상 체험을 목표로 하는 메타버스의 서비스 콘텐츠를 제공한다. 따라서, 메타버스 발전을 위해서 메타버스의 서비스 컨텐츠를 제공하는 디지털 트윈 발전이 필수적으로 향후 메타버스와 디지털 트윈은 동시에 발전할 전망이다.  빅 데이터 분야에서는 디지털 트윈의 가상 실험을 통해 실 체계에서는 물리적/경제적 이유로 수집 불가능한 다양한 빅 데이터를 생성하는데 활용될 전망이다. 유의미한 빅 데이터 생성을 위해서는 실 체계에서 수집 가능한 데이터를 사용하여 디지털 트윈 모델의 검증이 선행된 후 실 체계에서 수집 불가능한 데이터 생성을 위한 가상 실험이 설계되어야 한다. 디지털 트윈을 사용한 빅 데이터 생성은 시스템 기능 검증, 예지 진단 및 기계학습 등과 같은 부가가치가 높은 데이터 생성에 집중되어 미래 데이터 구독 시장 활성화에 기여할 전망이다.   김탁곤 명예교수  KAIST 전기전자공학부  
작성일 : 2025-05-05
디지털 트윈 모델 생성 및 배포 솔루션, Ansys Twin Builder
주요 디지털 트윈 소프트웨어 디지털 트윈 모델 생성 및 배포 솔루션, Ansys Twin Builder 개발 : Ansys, www.ansys.com 자료 제공 : Ansys Korea, 02-6009-0500, www.ansys.com   Ansys Twin Builder는 디지털 트윈(Digital Twin) 기술을 활용하여 실제 물리 시스템을 가상 환경에서 시뮬레이션하고 최적화할 수 있는 솔루션이다. 멀티피직스 시뮬레이션 기술을 기반으로 물리 모델과 실시간 센서 데이터를 결합하여 예측 유지보수 및 성능 최적화를 지원한다. 제조, 자동차, 항공우주, 전자, 에너지, 의료 등 다양한 산업에서 활용된다.   1. 주요 특징 (1) Physics 기반의 디지털 트윈 구축 IoT 데이터 및 시뮬레이션 모델을 결합하여 정밀한 디지털 트윈 모델 생성 (2) 실시간 시뮬레이션 및 예측 유지보수 지원  센서 데이터를 활용하여 장비의 고장 가능성 예측 및 유지보수 최적화 (3) 멀티피직스 통합 분석  전자기, 유체, 구조, 열 해석을 통합하여 복잡한 시스템 성능 분석 가능 (4) AI 및 머신러닝 연계 가능  OptiSLang을 활용한 AI 기반 최적화 및 데이터 분석 지원 (5) IoT 및 클라우드 플랫폼과 연계  AWS, Microsoft Azure, PTC ThingWorx 등 다양한 IoT 플랫폼과의 호환성 제공 2. 주요 기능 (1) 디지털 트윈 생성 및 실행  시뮬레이션 모델을 물리 데이터와 연결하여 실시간 가상 시뮬레이션 수행 (2) Model-Based Systems Engineering(MBSE) 지원  시스템 레벨 설계를 위한 MBSE 기반 시뮬레이션 제공 (3) 고급 시뮬레이션 및 자동화  MATLAB, Simulink, FMI 모델과 통합 가능하여 복잡한 시스템 해석 (4) PLM 및 데이터 관리 통합  Siemens Teamcenter, PTC Windchill 등 주요 PLM 시스템과 연계하여 제품 수명주기 관리 지원 (5) Predictive Maintenance 기능 내장  실시간 데이터 분석을 통해 유지보수 전략 개선 3. 도입 효과 ■ 설비 가동률 향상: 디지털 트윈을 활용한 사전 예측 유지보수로 시스템 다운타임 감소 ■ 제품 개발 기간 단축: 프로토타입 제작 없이 가상 환경에서 제품 설계 검증 가능 ■ 운영 비용 절감: 최적화된 유지보수 전략을 통해 운영 및 유지보수 비용 절감 ■ 설계 품질 향상: 실제 운영 데이터를 기반으로 제품 설계 개선 및 성능 최적화 4. 주요 고객 사이트 ■ 제조업: 두산 그룹, POSCO  ■ 자동차: 현대자동차그룹, LS Automotive Technologies, HL Mando ■ 항공우주: Korea Aerospace Industries (KAI), Hanwha Aerospace ■ 반도체/전자: Samsung Electronics, SK Hynix, LG Electronics, Samsung Electro-Mechanics, Samsung Display, LG Display, LG Innotek, LX Semicon ■ 에너지: LG Energy Solution, SK On, Samsung SDI, Hyundai Electric & Energy Systems, Doosan Enerbility, Hanwha Solutions   상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기
작성일 : 2025-05-04
수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석
최적화 문제를 통찰하기 위한 심센터 히즈 (3)   이번 호에서는 심센터 히즈(Simcenter HEEDS)를 사용하여 수집된 외부 데이터를 시각화하고 분석하는 데 초점을 맞추고, 데이터 시각화의 중요성과 분석 기법의 활용 방안을 살펴본다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 및 사례 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 및 사례 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 및 사례 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 및 사례 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화 및 사례   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   데이터 분석의 중요성 오늘날 데이터는 우리의 일상과 비즈니스 운영에서 점점 더 중요한 역할을 하고 있다. 수집되고 측정된 데이터의 양이 증가하면서 이를 효과적으로 처리하고 분석하는 방법은 더욱 필요해지고 있다. 이러한 변화 속에서, 지멘스의 심센터 히즈는 강력한 데이터 분석 및 시각화 기능을 제공하여 다양한 산업 분야에서 최적의 해결책을 찾는 데 기여하고 있다. 이번 호에서는 히즈의 기능을 효과적으로 활용하여 어떻게 복잡한 데이터를 이해하고 의미 있는 인사이트를 얻을 수 있는지 살펴볼 것이다.   히즈의 데이터 분석 기능 히즈의 Discover(디스커버) 탭은 사용자가 데이터 사이의 관계 및 최적화 가능성을 탐구할 수 있도록 다양한 도구를 제공한다. Discover 기능은 주요한 데이터 분석 및 이해를 도와주는 여러 방법을 포함하고 있다.    그림 1   다음은 각각의 기능에 대한 설명이다.  Closest : 특정 데이터 포인트에 가장 가까운 변화를 식별한다. 이를 통해 최적화 과정에서의 데이터 민감성을 이해하고 결정에 도움을 줄 수 있다.  Similar : 사용자가 선택한 기준에 따라 유사한 데이터 집합을 찾는 기능이다. 이는 집합의 규칙 또는 모델을 파악하는 데 유용하다. Clusters : 데이터 세트를 서로 연관된 그룹으로 분류한다. 군집화 기법을 통해 데이터의 패턴을 식별하고 알고리즘에 의한 데이터 이해를 개선할 수 있다.  Trade-offs : 다수의 설계 목표 간의 상충 관계를 분석한다. 이를 통해 각각의 설계 대안이 어떻게 특정 목표를 달성하는지에 대해 명확하게 이해할 수 있다.  Patterns : 데이터 내의 반복되는 경향이나 구조를 발견하여 예측 및 모델링에 도움을 주는 기능이다. 패턴 인식은 정보의 신뢰도를 높이는 데 중요하다.  Preview History : 사용자가 수행한 변경이나 실행의 기록을 미리 보면서 데이터 분석의 이력을 관리할 수 있다.  Design Set : 여러 디자인 시나리오를 만들고 비교하여 최적의 설계를 도출하는 데 도움을 준다.  Performance & Plot : 데이터의 성능을 평가하고 시각적으로 플롯하여 분석 결과를 명확하게 표현한다.  Discover 탭의 이러한 기능은 히즈 사용자가 데이터를 깊이 이해하고 시뮬레이션 최적화 과정에서 효과적인 의사 결정을 내리도록 돕는다. 이를 바탕으로 보다 정확하고 신뢰성 있는 설계와 분석 결과를 도출할 수 있다.   데이터 분석을 위한 예제   그림 2    목적함수 외팔보 H빔의 체적을 최소화 제약 조건 최대 굽힘 응력(σ) ≤ 200 MPa  최대 끝단 처짐(δ) ≤ 2 mm  설계 변수 Length : 5,000 mm  Load P : 6,500 N  E : 200 MPa  H : 50 mm ≤ H ≤ 100 mm  h1 : 5 mm ≤ h1 ≤ 30 mm  b1 : 50 mm ≤ b1 ≤ 100 mm  b2 : 5 mm ≤ b2 ≤ 50 mm 히즈의 Discovery Method를 사용하여 분석할 데이터는 우리가 지금까지 계속 예제로 사용한 외팔보의 처짐 문제를 기반으로 Adaptive Sampling Study(어댑티브 샘플링 스터디)에서 500개의 데이터를 생성하여 사용할 것이다. 아니면 독자들이 가지고 있는 데이터를 사용해도 괜찮다.   그림 3     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
아키텍처 모델과 1D 모델의 전략적 연계
MBSE를 위한 아키텍처-1D 모델 연계의 중요성 및 적용 전략 (1)   제조산업에서 설계 효율 향상과 개발 기간 단축을 위해 모델 기반 개발(MBD)을 적극 도입하고 있지만, 아키텍처 모델과 1D 모델 간의 연계 부족으로 인해 개발 단계에서 모델의 실질적인 활용과 의사결정 지원이 어려운 경우도 많다. 이번 호에서는 MBD의 성과를 높이기 위한 아키텍처 모델과 1D 모델의 체계적인 연계 방안을 제시하고, 이를 통한 설계 효율 및 개발 정확성 향상의 전략적 방향을 살펴본다.   ■ 오재응 한양대학교 명예교수, LG전자 기술고문   최근 제조산업은 제품의 개발 기간 단축과 다품종 생산이라는 트렌드에 대응하기 위해 개발의 효율성을 극대화하고 반복 설계를 최소화하는 방향으로 변화하고 있다. 이러한 흐름 속에서 모델 기반 개발(Model-Based Development : MBD)은 이미 많은 제조업체가 적극 추진하고 있으며, 이를 통해 설계 초기부터 제품의 동작을 예측하고 최적화할 수 있는 기반을 마련하고자 한다. 그러나 모델 기반 개발을 도입하고 실제로 모델을 구축했음에도 불구하고, 현업에서 모델이 제대로 활용되지 못하는 경우가 많다. 이는 구축된 모델이 단지 형식적으로 존재할 뿐, 제품 개발의 맥락 속에서 아키텍처적, 1D적 연결성을 갖추지 못해 실질적인 의사결정과 개발 단계에서 활용되지 못하고 있기 때문이다. 즉, 원래 의도한 목적이나 아키텍처적 요구와 연계되지 않은 모델이기 때문에, 사용자는 해당 모델이 ‘내 일에 어떻게 쓰이는지’를 이해하지 못하고 거리감을 느끼는 것이다. 이러한 문제를 극복하기 위해서는 아키텍처 모델과 1D 모델을 유기적으로 연계하고, 이를 기반으로 아키텍처 요구사항을 구체화할 수 있어야 한다. 아키텍처 모델이란 제품의 구조, 기능, 물리적 메커니즘 등 아키텍처적 개념을 설명하는 모델이며, 1D 모델은 이러한 개념을 수학적으로 해석하고 시뮬레이션 가능한 형태로 정형화한 것이다. 따라서 아키텍처 모델과 1D 모델 간의 연계는 제품 개발의 전체 V자 프로세스에서 핵심 역할을 하며, 상호보완적으로 작용하여 제품 성능 검증 및 요구사항 만족 여부를 평가하는 데 기여한다.   그림 1. 아키텍처 모델 – 1D 모델 연계   <그림 1>은 이러한 개념을 시각적으로 설명한다. 초기의 아키텍처 설계 단계에서 아키텍처 요구와 구조를 정의한 뒤 이를 바탕으로 1D 모델이 생성되고, 시뮬레이션 및 해석을 통해 결과를 도출하며, 이 결과는 다시 상위의 아키텍처 요구사항에 대한 검증으로 이어진다. 이처럼 상향식-하향식 피드백 루프를 통해 아키텍처 모델과 1D 모델이 반복적으로 연계되어야 진정한 의미의 모델 기반 개발이 실현될 수 있다. 특히 설계자와 개발자는 1D 모델은 제품을 해석하고 튜닝하는 강력한 도구라고 인식하지만, ‘왜 이 설계를 했는가’, ‘서브시스템 간 구조는 어떻게 되는가’, ‘요구사항은 어떻게 충족되는가’와 같은 질문에는 답하지 못한다. 그 해답을 주는 것이 바로 아키텍처 모델(MBSE)이며, 이 두 모델을 연결해야만 설계의 정확성, 추적성, 협업성이 동시에 확보된다.   다양한 유형의 아키텍처적 측정 간의 관계   그림 2. ISO/IEC 15288 System Life Cycle Technical Processes & Life Cycle   ISO/IEC 15288(그림 2)은 시스템 수명주기 전반에 걸친 아키텍처 프로세스의 흐름과 체계를 정의한 국제 표준이다. 특히 이 표준은 모델 기반 시스템 엔지니어링(Model-Based Systems Engineering : MBSE) 관점에서 시스템 개발 활동을 구조화한 것으로, 시스템 수명 주기(V 모델)를 기반으로 요구 분석, 설계, 검증 및 확인, 유지보수 등 각 단계의 아키텍처적 활동과 그 상호 관계를 정립한다. 시스템 엔지니어링 활동을 통해 성공적인 시스템을 구축하기 위해서는 다양한 아키텍처적 성과 지표와 측정 지표가 필요하며, 이를 통해 시스템의 목표 달성 여부를 판단할 수 있다. 대표적인 지표로는 다음과 같은 세 가지가 있다. MOE(Measure of Effectiveness, 효과성 측정지표)는 시스템이 실제 운용 환경에서 얼마나 효과적으로 임무를 수행할 수 있는지를 평가하는 지표로, 주로 고객 요구사항이나 운용 목표 달성 여부에 초점을 맞춘다.  MOP(Measure of Performance, 성능 측정지표)는 시스템의 성능 수준을 수치적으로 정량화한 것으로, 설계 명세나 요구된 성능 기준을 얼마나 충족하는지를 평가한다.  TPM(Technical Performance Measure, 아키텍처 성과 측정지표)은 개발 과정 중 아키텍처 적인 목표 도달 여부를 지속적으로 모니터링하고 예측하는 데 사용되는 지표로, 시스템 개발 리스크를 조기에 식별하고 관리하는 데 활용된다. 이러한 측정 지표는 예측 차이나 실측 차이를 바탕으로 비교 분석할 수 있으며, 시스템 개발 단계에서 시스템의 위험 요인에 대한 조기 탐지와 개선 대책의 선제 적용이 가능하도록 지원한다. 이는 곧 사업의 비용 효율성 제고와 일정 준수에 기여하며, 전체 수명주기 동안 긍정적인 영향을 유도할 수 있다.  <그림 2>는 ISO/IEC 15288의 V-모델과 아키텍처적 측정 지표가 어떻게 연계되는지를 보여준다. 요구사항 도출과 검증, 설계와 확인 간의 대응 관계를 통해 아키텍처적 활동이 체계적으로 연결되며, 수명주기 전체에서 MOE, MOP, TPM이 통합적으로 작동하여 아키텍처적 리스크를 관리하고 시스템의 성공적인 구현을 가능하게 한다.      ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02