• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "물류"에 대한 통합 검색 내용이 708개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
한국산업지능화협회, ‘SMATOF 2025’ 및 ‘제조 AX 혁신 콘퍼런스’ 개최
한국산업지능화협회가 공동 주관하는 경남 대표 스마트팩토리 & 자동화산업 전문전시회인 ‘제9회 창원 국제 스마트팩토리 및 생산제조기술전(이하 SMATOF 2025)’이 10월 29일 개막했다. 협회는 올해 처음으로 ‘산업 AI 특별관’을 구성해, 산업 AI 기술과 플랫폼을 선도하는 기업들의 혁신 사례와 설루션을 선보였다. 이번 특별관에는 서버키트, 온스트림, 이웨이브솔루션, 넘프, 나이스솔루션 등 주요 기업들이 참여해 산업 AI 기반의 제조 혁신 사례를 공유했다. 또한 태국국제로지스틱스협회, 말레이시아 제조업 연맹, 베트남호치민자동화협회 등 해외 주요 제조 관련 기관을 통해 약 70여 개사의 바이어가 방한했다. 행사 기간 동안 ▲1:1 수출상담회 ▲스마트 등대공장 및 경남 미래전략산업 대표공장 시찰 프로그램 등을 통해 우리 기업들과의 글로벌 네트워킹과 협력 기회를 마련했다.     한편, 10월 30일 개최된 ‘2025 제조 AX 혁신 콘퍼런스’는 창원의 5대 주력산업인 기계, 항공, 방산, 자동차, 미래 모빌리티 분야를 중심으로, DX·AX 선도기업의 실제 기술 적용 사례와 성공 전략이 공유된다. 기조 세션에서는 ▲AWS가 ‘제조AX 추진 전략, 데이터에서 더 많은 가치를!’이라는 주제로, 최적의 제조 AX 성과를 달성할 수 있는 방안과 실제 사례를 소개했다. ▲유비씨는 ‘From DX to AX : 앞서가는 기업들이 선택한 무인화·자율화 디지털 트윈 전략’을 주제로, DX 단계를 넘어 자율화(AX) 시대를 여는 핵심 전략과 2차전지, 조선, 물류 등 실제 산업 사례를 소개했다. ▲B&R 인더스트리얼 오토메이션은 ‘AI와 자동화의 융합 : 제조 혁신을 가속하는 트랜스포메이션 전략’을 주제로, AI와 클라우드 협업을 통해 엔지니어링 환경을 혁신하는 방법을 제시했다. 이 밖에도 일반 세션에서는 온로봇 코리아, 넘프, 온스트림, 서버키트가 참여해 스마트 공장 설루션, 로컬 LLM 적용 사례, 공정 최적화 및 예지보전 등 제조 AI 적용 전략과 실무적 인사이트를 공유했다. 한국산업지능화협회 김태희 혁신기획센터장은 ‘이번 행사를 계기로 지역과 기업 간의 협력 네트워크를 강화하고, 산업 현장의 디지털 전환(DX) 및 인공지능 전환(AX)을 지속적으로 지원해 나가겠다’고 밝혔다.  한편, SMATOF는 내년부터 격년제가 아닌 매년 개최되며, 2026년에는 10월 14일~16일 창원컨벤션센터(CECO)에서 열릴 예정이다.
작성일 : 2025-10-30
[케이스 스터디] 인더스트리 4.0을 위한 로봇 예측 유지보수의 발전
디지털 트윈과 AI가 시뮬레이션과 현실의 간극을 메우다   제조 시설은 지속적인 문제에 직면해 있다. 정비 일정은 일반적으로 실제 마모와 관계없이 3개월마다 부품을 점검하고 6개월마다 구성 요소를 교체하는 등 엄격한 일정을 따른다. 그 결과 불필요한 점검과 교체로 인한 비효율적인 시간 낭비가 발생하고, 반대로 정비 일정 전에 부품이 고장 나는 일도 생긴다. 센트랄수펠렉-파리 사클레대학교(CentraleSupélec–Université Paris-Saclay)의 지궈 젠(Zhiguo Zeng) 교수와 그의 연구팀은 디지털 트윈 기술과 딥러닝을 결합한 혁신적인 접근 방식을 통해 이 문제를 해결하고 있다. 그들의 목표는 모든 중요 부품에 센서를 배치할 필요 없이 시스템 수준의 모니터링 데이터만으로 로봇 시스템의 구성요소 수준의 고장을 감지하는 것이다. 젠 교수는 “유지보수는 공장에서 매우 큰 문제”라면서, “기계에 유지보수가 필요한 시기를 미리 안다면 주문이 적은 시기에 수리 일정을 잡을 수 있어 생산성 손실을 최소화할 수 있다”고 말했다. 그는 신뢰성 공학과 수명 예측 분야에서 풍부한 경험을 갖고 있지만, 디지털 트윈 기술은 그의 이전 연구와는 결이 다른 새로운 영역이었다. 센트랄수펠렉의 안 바로스(Anne Barros) 교수와 페드로 로드리게스-아예르베(Pedro Rodriguez-Ayerbe) 교수가 주도하는 학제 간 프로젝트인 ‘미래의 산업(Industry of the future)’에 참여하면서, 그는 디지털 트윈이 어떻게 강력한 시뮬레이션 도구를 물리적 시스템에 실시간으로 직접 연결할 수 있는지 깨달았다. 젠 교수는 “디지털 트윈은 결함 진단에 매우 유용하다. 이를 실제 기계의 데이터에 연결하여 그 데이터로 모델을 개선할 수 있다”고 설명했다.  제조업, 자동차, 항공우주 및 기타 분야로 활용 영역이 확대되면서, 디지털 트윈은 인더스트리 4.0에서 유망한 기술 중 하나로 자리잡고 있다. 물리적 객체나 시스템의 가상 복제본인 디지털 트윈(digital twin)을 생성함으로써, 조직은 운영 현황과 유지보수 필요성을 명확하게 파악할 수 있다. 또한 디지털 트윈은 예측 유지 관리 시스템 개발의 어려운 측면 중 하나인 고장 데이터의 부족에 대한 해결책을 제시한다. 젠 교수는 “현실에서는 고장이 자주 발생하는 걸 보기는 어렵다. 그래서 이제는 시뮬레이션을 통해 고장 데이터를 만들어낸다”고 설명했다.   가상과 물리의 가교 역할 디지털 트윈 프로젝트는 물리적 시스템과 가상 시스템 간의 다양한 수준의 통합을 통해 구현 옵션을 제공한다. 젠 교수의 연구팀은 세 가지 서로 다른 수준의 디지털 표현으로 작업했다. 기본 수준에서 디지털 모델은 기존 시뮬레이션처럼 작동하며, 물리적 시스템과 데이터를 교환하지 않는 정적 모델로 오프라인에서 실행된다. 그다음 단계는 디지털 섀도로, 가상 모델이 물리적 시스템의 데이터를 받아 그 행동을 미러링하지만 제어하지는 않는다. 가장 발전된 구현은 데이터와 정보의 양방향 흐름을 갖춘 진정한 디지털 트윈이다. 여기서 모델은 관찰을 바탕으로 스스로 업데이트하고 물리적 시스템을 제어하는 실시간 결정을 내린다. 연구팀은 테스트용으로 ArmPi FPV 교육용 로봇을 선택했다. 이 로봇은 5개의 관절과 하나의 엔드이펙터로 구성되며, 6개의 서보 모터로 제어된다. 결함 진단의 기초가 될 만큼 정확한 디지털 트윈을 만드는 것은 어려운 일이었다. 또한 기존 모니터링 접근 방식의 한계를 해결해야 했다. 젠 교수는 “대부분의 산업 사례에서 베어링을 진단하려면 베어링 수준의 센서가 필요하며, 이는 쉽지 않은 일이다. 내부에 베어링이 있는 큰 기계를 상상해보면 센서를 설치하기 위해서는 기계를 분해해야 하는데 때로는 공간이 충분하지 않을 때도 있다”고 말했다.   그림 1. ArmPi FPV 교육용 로봇(출처 : 센트랄수펠렉)   그들의 접근 방식은 시스템 수준 데이터(로봇 엔드 이펙터의 이동 궤적)를 사용하여 구성 요소 수준의 오류(개별 모터 문제)를 진단하는 것이었다. 또한 디지털 트윈을 사용하여 관찰할 수 있는 것과 감지해야 할 것 사이의 격차를 해소하고자 했다. 연구팀은 시뮬링크(Simulink)와 심스케이프 멀티바디(Simscape Multibody)를 사용하여 디지털 트윈을 구축했으며, 구성요소와 시스템 수준 동작을 모두 나타내는 계층적 모델을 만들었다. 젠 교수는 “모든 것은 시뮬레이션 모델을 설계하는 것으로 시작한다. 동적 시스템과 그 제어기를 모델링하고 싶다면 시뮬링크는 매우 강력하다”고 말했다. 연구팀은 시뮬링크를 사용해 모터 제어기를 PID 제어기로 모델링하면서 실험적으로 조정한 게인 값을 활용했다. 또한, 시뮬링크의 시각화 기능을 적극적으로 활용해 시뮬레이션 데이터와 실제 로봇의 센서 데이터를 연동할 수 있는 인터페이스를 구축하고, 실시간 모니터링 환경을 구성하였다. ROS 툴박스(ROS Toolbox)는 로봇 하드웨어와의 연결에서 유용한 역할을 했다. 젠 교수는 “로봇 운영 체제(Robot Operating System : ROS)를 사용하려면 일반적으로 ROS와 파이썬(Python) 환경을 별도로 구성하고 모든 연결을 직접 처리해야 한다”면서, “ROS 툴박스를 사용하면 이런 설정이 자동으로 관리되기 때문에 많은 노력을 아낄 수 있다”고 설명했다. 연구팀은 AI 모델 학습을 위한 데이터 준비 과정에서는 두 가지 접근 방식을 시도하였다. 먼저, 로봇에 입력되는 모터 명령과 그에 따른 그리퍼(gripper)의 움직임 패턴과 같은 원시 계측값을 기반으로 데이터를 수집하였다. 이후에는 디지털 트윈을 활용한 방식을 도입하였다. 시뮬레이션을 통해 로봇이 명령에 따라 어떻게 움직여야 하는지를 예측하고, 이 결과를 실제 움직임과 비교함으로써 예상과 실제 간의 차이를 도출하였다. 이러한 차이는 미세한 고장을 감지하는 데 유용한 지표로 작용하였다.   그림 2. 심스케이프 멀티바디의 로봇 팔에 대한 시뮬링크 모델(출처 : 센트랄수펠렉)   연구팀은 딥 러닝 툴박스(Deep Learning Toolbox)를 사용하여 장단기 메모리(Long Short-Term Memory : LSTM) 신경망을 훈련하여 특정 실패를 나타내는 패턴을 식별했다. 모델 아키텍처에는 각각 100개의 숨겨진 단위가 있는 두 개의 LSTM 계층, 그 사이의 드롭아웃 계층 및 완전히 연결된 분류 계층이 포함된다. 연구팀은 매트랩 앱 디자이너(MATLAB App Designer)를 사용하여 각 모터의 위치, 전압 및 온도를 포함한 실시간 데이터를 수집하는 그래픽 사용자 인터페이스를 설계했다. 이 인터페이스를 통해 로봇의 상태를 모니터링하고 오류 진단 모델의 예측을 검증할 수 있었다. 이러한 통합 도구들이 원활하게 함께 작동하면서, 연구팀은 소프트웨어 호환성 문제와 씨름하기보다는 효율적으로 기술적 과제 해결에 집중할 수 있었다.   현실 격차에 도전하다 연구팀은 실제 로봇에서 훈련된 모델을 테스트했을 때 연구원들이 ‘현실 격차’라고 부르는 시뮬레이션과 현실 세계 간의 불일치에 직면했다. 결함 진단 모델은 시뮬레이션에서 98%의 정확도를 달성하여 모터 고장의 위치와 유형을 모두 정확하게 식별했지만, 실제 로봇에서 테스트했을 때 성능은 약 60%로 떨어졌다. 젠 교수는 “시뮬레이션이 현실과 일치하지 않는 이유를 분석하고 있다”고 말하며, “실제 세계를 시뮬레이션 상에서 표현할 때 고려하지 못한 요소들이 있다”고 설명했다. 젠 교수와 그의 연구팀은 통신 신뢰성 문제, 시뮬레이션에서 고려되지 않은 모터 노이즈, 제어 명령과 모니터링 활동 간의 동기화 문제 등 성능 격차에 기여하는 여러 요인을 확인했다.   그림 3. 정상 상태 오류에서 로봇 팔의 애니메이션 및 관련 혼동 매트릭스(출처 : 센트랄수펠렉)   이러한 과제는 디지털 트윈 애플리케이션의 광범위한 문제를 반영한다. 현실은 가장 정교한 시뮬레이션보다 더 복잡하다. 연구팀은 낙담하기보다는 실제 노이즈 패턴을 시뮬레이션 하는 모듈을 디지털 트윈에 추가하고 전이 학습에 도메인 적응 기술을 적용하는 등 이러한 격차를 해소하기 위한 방법을 개발했다. 젠 교수는 “디지털 트윈 모델을 개발할 때 보정 테스트를 하긴 하지만, 이 역시 통제된 환경에서 이루어진다”고 말했다. 이어서 “하지만 산업 현장에 모델을 실제로 적용하면 훨씬 더 많은 노이즈가 포함된 데이터를 접하게 된다. 이처럼 현실의 노이즈를 알고리즘 관점에서 어떻게 보정할 것인가는 매우 도전적인 연구 주제”라고 설명했다. 이러한 수정을 통해 연구팀은 실제 세계 정확도를 약 85%까지 개선했다. 이는 실용적 구현을 향한 중요한 진전이다.   소규모 실험실에서 스마트 공장으로 연구팀의 작업은 단일 로봇을 넘어서 확장되고 있다. 이들은 다수의 로봇이 협업하며 생산 라인을 구성하는 소규모 스마트 공장 환경을 구축하고 있으며, 이를 통해 고장 진단 알고리즘을 보다 실제에 가까운 조건에서 실험하고자 한다. 젠 교수는 “우리는 미니 스마트 공장을 구축하려고 한다”면서, “생산 설비와 유사한 환경을 만들어 로봇에 알고리즘을 적용해, 실제 생산 스케줄링에 통합될 수 있는지를 실험하고 있다”고 설명했다. 이러한 접근 방식은 교육적 효과도 크다. 센트랄수펠렉의 공학과 학생들은 수업과 프로젝트를 통해 디지털 트윈, 로보틱스, 머신러닝 기술을 실습 기반으로 학습하고 있다. 젠 교수는 “학생들이 처음부터 가상 공간에서 모델을 직접 설계하고 이를 점차 실제 로봇과 연결해가는 과정을 보면, 그들이 이 과정을 진심으로 즐기고 있다는 걸 알 수 있다”고 전했다. 이 연구는 제조업뿐 아니라 물류, 스마트 창고 등 다양한 산업 분야로의 확장이 가능하다. 예를 들어 스마트 창고에서는 로봇이 정해진 경로를 따라 이동하지만, 장애물이 나타나면 이를 인식하고 경로를 유동적으로 조정해야 한다.   그림 4. 여러 로봇이 소규모 스마트 공장 환경의 생산 라인에서 협력하여 작동한다.(출처 : 센트랄수펠렉)   젠 교수는 “스마트 창고에서 로봇은 사전 정의된 규칙을 따르지만, 패키지가 떨어지고 경로가 막히는 등 경로를 리디렉션하고 다시 프로그래밍해야 하는 경우가 있을 수 있다. 이런 경우 로봇을 조정하기 위해 각 로봇의 실시간 위치를 알아야 하기 때문에 디지털 트윈 시스템이 필요하다”고 설명했다. 연구팀은 구성요소가 고장 날 때 로봇의 움직임을 조정하는 것과 같은 내결함성 제어를 포함한 추가 응용 프로그램을 모색하고 있다. 또한 연구자들은 에너지 소비만 고려하는 것이 아니라, 궤적 최적화 모델에서 각 모터의 성능 저하 수준과 잔여 유효 수명도 고려하는 건전성 인식 제어를 개발하고 있다. 그들의 코드, 모델, 데이터 세트를 깃허브 저장소(GitHub repository)를 통해 자유롭게 공개하고 있으며, 다른 연구자들이 이를 바탕으로 연구를 확장해 나가기를 기대하고 있다. 목표는 개선의 출처가 어디든 간에, 보다 나은 고장 진단 시스템을 구축하는 것이다. 젠 교수는 “누군가 우리보다 더 나은 결과를 만들어낸다면 정말 기쁠 것”이라고 전했다. 중국 제조업 현장에서 일하던 부모님의 영향을 받아 공학자의 길을 걷게 된 젠 교수에게 이번 연구는 단순한 학문적 탐구를 넘어선 개인적인 사명이기도 하다. 젠 교수는 “어릴 때 제조업에서 일하는 것이 얼마나 힘든 일인지 직접 보며 자랐다”면서, “내가 그렸던 비전은 그런 육체 노동을 로봇이 대체하게 해 사람들이 보다 나은 삶을 살 수 있도록 하는 것이었다”고 전했다.   ■ 이웅재 매스웍스코리아의 이사로 응용 엔지니어팀을 이끌고 있으며, 인공지능·테크니컬 컴퓨팅과 신호처리·통신 분야를 중심으로 고객의 기술적 성공을 지원하는 데 주력하고 있다. LG이노텍과 LIG넥스원에서 연구개발을 수행하며 신호처리와 통신 분야의 전문성을 쌓아왔다.     ■ 기사 PDF는 추후 제공됩니다.
작성일 : 2025-10-20
국가핵심기술 지정 등에 관한 고시 개정안 시행
산업통상자원부(이하 산업부)는 10월 2일 목요일, '국가핵심기술 지정 등에 관한 고시' 개정안을 시행했다. 이번 개정안은 지난 5월 행정예고를 통해 발표되었으며, 의견수렴과 규제심사 등의 절차를 거쳐 최종 확정되었다. 국가핵심기술은 기술적·경제적 가치가 높아 해외로 유출될 경우 국가안보와 국민경제 발전에 중대한 악영향을 초래할 수 있는 기술을 의미한다. 산업부가 산업기술보호위원회를 거쳐 해당 기술을 지정하고 보호하고 있다. 신규 지정 기술 및 보호 범위 변경 내용 이번 개정안 시행으로 총 3개 분야의 3개 기술이 국가핵심기술로 신규 지정되었고, 6개 분야의 15개 국가핵심기술의 범위 및 표현이 변경되었다.   신규 지정 기술 (3개) 새롭게 국가핵심기술로 지정된 기술은 다음과 같다: 전기전자 분야: 적층세라믹콘덴서(MLCC) 제조 관련 기술 금속 분야: 아연 제련 관련 기술 우주 분야: 위성레이더(SAR) 제조 및 신호처리 관련 기술 변경되는 국가핵심기술 (15개)   기존 기술 중 보호 범위가 확대되거나 내용이 수정된 기술은 총 15개이다. 주요 변경 사항으로는 5G 고도화 기술까지 보호 범위가 확대되었으며, 초대형 컨테이너선 관련 일부 기술이 제외되고, 단위 수정 등이 이루어졌다. 이 기술들은 반도체, 조선, 정보통신 등 6개 분야에 걸쳐있다. 기술 보유 기관의 의무 사항 강화   신규 지정되거나 범위가 변경된 국가핵심기술을 보유한 기관은 '산업기술의 유출방지 및 보호에 관한 법률'에 따라 강화된 보호 조치를 취해야 한다. 주요 의무 사항은 다음과 같다: 보호구역 설정: 핵심기술 관련 시설 및 구역에 대한 철저한 관리 취급인력 구분 및 관리: 기술 취급 인력에 대한 체계적인 관리와 보안 유지 해외 기술 이전 시 사전 심사: 해당 기술을 해외로 이전하려는 경우 정부의 사전 심사를 반드시 받아야 한다. 향후 지속적인 기술 보호 관리 계획   산업부는 국가핵심기술의 지정, 변경, 해제 작업을 지속적으로 추진할 계획이라고 밝혔다. 기술의 보호 필요성을 산업정책적 관점에서 면밀히 검토하여, 보호가 필요한 기술은 적기에 지정하고 보호 필요성이 낮아진 기술은 과감하게 해제할 방침이다. 이를 위해 산업부는 기술의 국가안보적 및 국민경제적 가치 등을 평가하여 대상 기술을 선정할 예정이며, 수요조사를 포함한 구체적인 내용은 향후 산업부 홈페이지 등을 통해 발표될 예정이다.     「국가핵심기술 지정  등에  관한  고시」  개정안  주요  내용 1.  신규지정 : 3개  분야  3개  기술 분  야 국가핵심기술명 전기전자 (1개) 21uF/mm3   이상  초고용량밀도  MLCC  설계,  공정  및  제조  기술 금속 (1개) 아연제련공정에서의  저온  저압  헤마타이트  공정  기술 우주 (1개) 1m이하  해상도의  SAR  탑재체   제작  및  신호처리  기술   2.  변경 : 6개  분야  15개  기술 분  야 현행  기술명 개정  기술명 반도체 (1개) LTE/LTE_adv/5G  Baseband Modem LTE/LTE_adv/5G/5G_adv  Baseband   설계기술 Modem  설계  기술 자동차·철도 (1개) 자율주행자동차  핵심  부품·시스템 설계  및  제조기술  (단,  상용화   3년 이내의   카메라   시스템,   레이더 시스템,   라이더   시스템   및 정밀위치탐지  시스템에  한함) 자율주행자동차  핵심  부품·시스템 설계  및  제조  기술  (단,  상용화   3년 이내의   카메라,   레이더,   라이더   및 정밀측위모듈 및  제어시스템에 한함) 금속 (4개) 항복강도 700MPa급  이상  철근  및 인장강도 650MPa급  이상  형강  제조 기술  [저탄소강(0.4%  C이하)으로 전기로  방식에  의해  제조된  것에  한함] 항복강도 700MPa급  이상  철근  및 인장강도 650MPa급  이상  형강  제조 기술  [저탄소강(0.4wt.%  C이하)으로 전기로  방식에  의해  제조된  것에  한함]   고가공용  망간(10%  Mn  이상)  함유 특수강   제조기술 고망간(10wt.%  Mn  이상)  함유 특수강   제조  기술   합금원소  총량  4% 이하의   기가급 고강도   철강판재  제조기술 합금원소  총량  4wt.% 이하의 기가급   고강도   철강판재  제조  기술   저니켈(3%  Ni  이하)  고질소(0.4%  N 이상)  스테인리스강  제조기술 저니켈(3wt.%  Ni  이하)  고질소(0.4wt.% N  이상)  스테인리스강 제조  기술 조선 (3개) 고부가가치 선박(초대형컨테이너선, 저온액화탱크선,  빙해화물선, 친환경연료 추진선,  전기추진선 등) 고부가가치 선박(저온액화탱크선, 빙해화물선,  전기추진선,  WIG선  등)   및  해양시스템(해양작업선,  해양구조물 및  해양플랜트 등)  설계기술 및  해양시스템(해양작업선,  해양구조물 및  해양플랜트 등)  설계  기술   선박용  핵심기자재 제조기술(BWMS 제조기술,   WHRS  제조기술,   SCR  및 EGCS 등  대기오염원  배출저감 기자재   제조  기술) 선박용  핵심기자재 제조  기술(BWMS 제조  기술,  WHRS  제조  기술,  SCR, EGCS, OCCUS  등  대기오염원 배출저감  기자재   제조  기술)   친환경연료(저탄소 및  무탄소)  운반  및 추진선박용 연료공급장치,  화물운영 시스템,  재액화  및  재기화장치 등 설계,  공정  및  제조  기술 친환경연료(저탄소  및  무탄소)   운반 및  추진선박용 연료공급장치, 화물·BOG  운영시스템의  설계와 제조  기술 정보통신 (4개) 기지국  소형화  및  전력을  최소화하는 PA  설계  기술 무선장치에 활용가능한 전력증폭기 설계  기술   LTE/LTE_adv/5G  계측기기 설계기술 LTE/LTE_adv/5G/5G_adv  계측기기 설계  기술   SDN(소프트웨어 정의  네트워크) 구현을  위한  광통신  핵심  기술 차세대  패킷  광  전달망  구현을  위한 광통신  핵심  기술   5G  시스템(빔포밍/MIMO  및 이동통신망)  설계  기술 5G  및  5G_adv  시스템(빔포밍/MIMO 및  이동통신망)  설계  기술 로봇 (2개) 제조  공정에서 작업영역을 공유하는 다중  제조  로봇  운영  소프트웨어 기술 제조  및  물류  환경에서 다중의 로봇을   운영하는  소프트웨어  기술   영상  감시  기반  다중  이동로봇 통합통제 기술 이동형  감시·정찰  로봇  통합통제 기술
작성일 : 2025-10-12
AI 팩토리 M.AX 얼라이언스, 2030 제조 AI 최강국 향한 혁신 가속화
산업통상부는 10월 1일 AI 팩토리 M.AX 얼라이언스 전략 회의를 개최하고, 대한민국 제조업의 인공지능 전환(M.AX)을 통한 2030 제조 AI 최강국 도약을 위한 성과와 전략을 점검했다. 삼성전자, 현대자동차, LG엔솔, 삼성중공업 등 국내 대표 제조 기업들이 한자리에 모여 제조 혁신의 의지를 다졌다. 김정관 장관은 "AI 시대는 속도와의 전쟁이다. AI 팩토리는 빠르게 세계 1위를 도전할 수 있는 분야"라며, "정책과 자원을 집중해 순풍을 만들겠다"고 밝혔다.   AI 팩토리 선도사업, 2030년까지 500개로 대폭 확대 AI 팩토리 선도사업은 제조 공정에 AI를 접목해 생산성을 획기적으로 높이고 제조 비용과 탄소 배출 등을 감축하는 핵심 프로젝트이다. 이날 회의를 계기로 삼성전자, 현대자동차, LG전자, LG엔솔, SK에너지, HD현대중공업, 농심 등 업종 대표 기업들이 신규 참여를 확정했다. 이에 따라 현재 102개인 AI 팩토리 선도 사업은 2030년까지 500개 이상으로 확대될 계획이다. 주요 기업들은 AI 팩토리를 통해 혁신적인 성과를 목표로 했다. 삼성전자는 AI를 통해 HBM(고대역폭메모리반도체)의 품질을 개선한다. HBM은 ’28년까지 연평균 100% 이상 급성장이 기대될 정도로 각광받는 AI 반도체이다. 삼성전자는 현재 전반적으로 사람이 수행중인 HBM 불량 식별 공정에 AI를 도입할 계획이다. AI가 발열검사 영상, CT 이미지 등을 분석해 품질검사의 정확도를 99% 이상 높이고, 영상·이미지 등의 비파괴 검사를 통해 검사시간도 25% 이상 단축할 것으로 기대된다. HD현대중공업은 함정 MRO용(Maintain 유지보수, Repair 수리, Overhaul 정비) 로봇 개발을 추진한다. 보통 선체의 10% 면적에 따개비·해조류 등의 오염물질이 부착되면 연료소비가 최대 40%까지 증가한다. HD현대중공업은 숙련공에 의존하던 해양생물 제거, 재도장 등의 작업을 AI 로봇에 맡겨, MRO효율을 80% 이상 향상시키고 작업자 안전사고 등을 방지할 계획이다. 현대자동차는 셀방식 생산방식에 핵심이 되는 AI 다기능 로봇팔을 개발한다. 자동차산업은 소품종 대량생산의 컨베이어벨트 방식에서, 제품별로 공정을 다르게 적용해 유연생산이 가능한 셀기반 방식으로 전환되고 있다. 현대차는 힌지·도어 조립, 용접품질 검사 등 다양한 공정을 자율적으로 수행가능한 AI 로봇팔을 공정에 도입하여, 시장수요 변화에 신속히 대응하고 생산성을 30% 이상 높일 계획이다. 농심은 라면 제조설비에 AI 기반 자율정비 시스템을 도입한다. 원료공급, 제면, 포장 등의 라면 제조공정은 연속작동 설비가 많아 한 부분의 예기치 못한 고장으로 생산라인 전체가 중단될 수 있다. 이에 각 공정별로 다양한 이상 징후를 조기에 탐지하는 자율정비 시스템을 도입해 설비 효율성을 10% 이상 제고하고, 유지보수 비용은 10% 이상 절감할 계획이다. 현재까지 AI 팩토리 선도사업에 참여중인 업종별 주요기업 자동차 반도체 전자(가전 등) 철강 조선 현대차, LG이노텍, 한국타이어, 기아 삼성전자, 케이씨텍, 이수페타시스 LG전자, 쿠첸, LS전선 포스코, KG스틸, 대한제강 삼성중공업, HD현대삼호 항공·방산 식품·바이오 이차전지 석유화학·섬유 기계·건설 대한항공, KAI. 한화시스템 농심, 삼양식품, 한국콜마 LG에너지솔루션, 삼성SDI SK에너지, GS칼텍스, 코오롱 HD현대건설기계, 코넥 휴머노이드 로봇, 금년부터 제조 현장 실증 본격 투입 AI 팩토리 전략의 한 축으로, 제조 현장 휴머노이드 로봇 투입을 위한 실증 계획도 공개되었다. 금년에는 디스플레이, 조선, 물류 등 6개 현장에 휴머노이드가 투입된다. 분야 수요기업 공급기업 휴머노이드 주요 과업 디플 삼성디스플레이 레인보우로보틱스 레이저 장비내 렌즈교체, 검사 JIG 교체 작업 등 조선 HD현대미포 에이로봇 각종 상황과 이음 형태에 맞는 용접 작업 수행   삼성중공업 에이로봇 다양한 장애물, 협소 공간, 비평탄면 등 극복을 통해 자율 이동하며 용접·청소 등 가전 LG전자 로브로스 인간 수준 핸들링 작업 및 보행을 바탕으로 가전제품 공장 내 조립·운송 화학 SK에너지 홀리데이로보틱스 석유화학 제품 검사, 유압/가스 밸브 등 조작, 시료 제조, 검사 시료 운송 등 수행 유통 CJ대한통운 레인보우로보틱스 피킹·분류·검수·포장 등 복잡한 물류 작업 동작을 다양한 상품에 맞게 자율적으로 수행 산업부는 올해부터 2027년까지 100개 이상 휴머노이드 실증 사업을 통해 핵심 데이터와 기술을 확보하고, 2028년부터는 본격적인 양산 체계에 돌입할 계획이다. 선도사업 성과 가시화, 세계 최고 업종별 제조 AI 모델 개발 착수 현재까지 진행된 AI 팩토리 선도 사업에서는 이미 가시적인 성과가 도출되고 있다. GS칼텍스는 AI를 통해 정유 공정 데이터를 분석해 연료 비용을 20%가량 감축했으며, 온실가스 배출 저감 효과도 달성했다. HD현대미포는 AI 로봇을 투입해 용접 검사·조립 작업시간을 12.5% 단축했다. 반도체 기업인 대덕전자와 신한다이아몬드는 AI 도입으로 기존 육안 품질 검사 시간을 각각 90%, 30% 단축하는 성과를 보였다. 이러한 성과를 바탕으로 AI 팩토리 M.AX 얼라이언스는 세계 최고 수준을 목표로 하는 업종별 특화 제조 AI 모델 개발에 착수했다. 제조 AI에 특화된 전문가를 비롯해 뉴욕대 조경현 교수, 멜버른대 한소연 교수 등 초거대 AI 모델 전문가 23명이 공동으로 참여한다. 개발된 모델은 2028년 완료를 목표로 하며, 제조 현장 배포 시 기업들은 개발 비용 50%, 개발 시간 40%를 줄일 수 있을 것으로 기대했다. '다크 팩토리' 구현 위한 AI 팩토리 사업 확대 전략 산업부는 AI 팩토리 사업을 확대·개편해 내년부터 완전 자율형 AI 공장인 AI 팩토리(다크 팩토리) 건설에 필요한 기술 개발과 실증 사업을 추진한다. 제조 공정뿐 아니라 공장 설계, 시생산, 공급망 관리, 물류, A/S 등 제조 전 단계를 아우르는 AI 모델을 개발·확산할 계획이다. 특히 엔비디아 CEO 젠슨 황이 강조한 디지털 트윈을 활용한 '가상공장(Virtual Factory)' 구현을 전략의 한 축으로 삼았다. 가상공장을 통해 기업은 시스템 변경, 설비 고장, 공급망 변동 등 다양한 상황에서 공정 가동을 미리 테스트하고, 실제 공장과 연동해 모니터링, 예지 보전, 원격 제어 등에 활용할 수 있게 된다. 이러한 기술을 바탕으로 2030년까지 우리나라가 세계 최고의 AI 팩토리 수출국으로 발돋움하는 것을 목표로 관련 전략을 수립했다.
작성일 : 2025-10-11
슈나이더 일렉트릭, 선박의 안정적인 전력 공급을 위한 무정전 전원 공급 장치 제안
슈나이더 일렉트릭이 자사의 무정전 전원 공급 장치(UPS)인 ‘갤럭시 VS(Galaxy VS)’를 통해 조선·해양 산업의 안전성과 지속가능성 강화의 중요성을 강조했다. 오늘날 선박은 항해 장비, 통신 시스템, 안전 설비 등 모든 운영이 전력에 의존하는 환경에 놓여 있어 전력 공급의 연속성이 무엇보다 중요하다. 특히 선박의 운항 환경에서는 한순간의 정전이나 전력 불안정도 항해 차질, 통신 두절, 심각한 안전사고로 직결될 수 있다. 이처럼 선박 운영에서 전력 공급의 연속성은 단순한 효율의 문제가 아니라 인명 보호와 직결된 필수 요건으로 인식되고 있다. 이를 대응하기 위해 슈나이더 일렉트릭은 해양 산업의 특수한 요구에 부합하는 3상 무정전 전원 공급 장치인 ‘갤럭시 VS’를 제안하고 있다. 갤럭시 VS는 IT 시설뿐만 아니라 조선·해양 환경에서 요구되는 고가용성과 공간 효율성을 충족하며, 선박의 전력 안정성을 보장할 수 있는 설루션이다.     갤럭시 VS는 해양 장비의 안전과 성능을 평가하는 선급 회사인 DNV(Det Norske Veritas)와 BV(Bureau Veritas)로부터 해양 타입 승인(Marine-type approval)을 받았다. 특히 고온·저온·습기·진동 등 다양한 해양 환경 조건을 모사한 시험과 전자파 적합성(EMC level C2) 기준을 포함한 해양 표준 테스트를 통과했다. 슈나이더 일렉트릭은 “이는 갤럭시 VS가 선박 운항 및 해양 설비의 안전 규정을 충족하는 것은 물론, 극한 환경에서도 안정적인 전력 공급이 가능하다는 점을 공식적으로 입증한 것”이라고 전했다.  갤럭시 VS는 20~150kW 용량 범위에서 400/440V 전압을 지원하는 것은 물론 현장 여건에 따라 조정이 가능하다. 기본 제공되는 IP22 키트 외에도 옵션으로 IP52 방진·방수 등급을 선택할 수 있어 다양한 설치 환경에 대응할 수 있다. 모듈형 UPS 구조와 내부 N+1 이중화 설계는 전력 연속성을 극대화하며, 손쉽게 모듈을 교체할 수 있어 유지보수 효율 또한 높다는 것이 슈나이더 일렉트릭의 설명이다. 특히, 갤럭시VS는 옵션으로 제공되는 모듈형 배터리 캐비닛(Modular Battery Cabinet)을 통해 배터리 운영의 유연성과 안정성을 강화했다. 이 캐비닛은 스마트 모듈형 배터리를 탑재해 자동 감지(Self-detection), 이중화(Redundancy), 실시간 모니터링, 사용자 교체(User-swappable)가 모두 가능하도록 설계되었다. 사용 환경과 수명 요구에 따라 표준형(Standard, 3~5년)과 장수명형(Long Life, 10년) 두 가지 옵션이 제공된다. 해양 전용 설계도 특징이다. 할로겐 프리 케이블(Halogen-free cables)을 채택하여 화재 시 유독가스 발생을 최소화했다. 선박 용접용 마린 스키드(Marine Skid) 옵션을 제공하여 해양 환경의 안전 규격도 충족한다. 아울러 갤럭시VS는 이컨버전(eConversion) 모드에서 최대 99%, 이중변환 모드에서 최대 97%의 높은 에너지 효율을 제공하며, 총 소유 비용 절감이 가능한 리튬 이온 배터리 옵션도 지원한다. 이외에도 ▲공간 제약이 큰 선박 및 해양 시설에도 적합한 컴팩트 모듈형 설계 ▲라이브 스왑(Live Swap) 옵션을 통한 모듈 교체 ▲슈나이더 일렉트릭의 통합 아키텍처 플랫폼인 에코스트럭처(EcoStruxure) 지원 등 원격 모니터링과 유지보수를 간소화할 수 있는 강점을 지니고 있다. 슈나이더 일렉트릭 코리아 시큐어파워 사업부의 최성환 본부장은 “조선·해양 산업은 전 세계 물류와 에너지 공급의 중추적 역할을 수행하는 동시에, 안전성과 지속가능성 확보가 무엇보다 중요한 산업”이라며, “갤럭시 VS는 단순한 UPS를 넘어 선박 운영의 안전성을 보장하고, 해양 산업 전반의 친환경 전환에도 기여할 수 있는 최적의 설루션”이라고 강조했다. 한편 슈나이더 일렉트릭 코리아는 10월 21일부터 부산 벡스코에서 개최되는 조선·해양 산업 전문 전시회인 ‘코마린(KORMARINE) 2025’에 참가해 선박의 안정적인 전력 공급을 위한 무정전 전원 공급 장치 갤럭시 VS를 선보일 예정이라고 전했다.
작성일 : 2025-10-02
[케이스 스터디] 확장현실로 건설 장비의 사용 교육과 운영 효율 강화
포지FX가 VR 훈련 설루션을 만드는 방법   콘크리트 레벨링 기술 기업인 소메로 엔터프라이즈(Somero Enterprises)는 포지FX(ForgeFX)와 파트너십을 맺고 S-22EZ 레이저 스크리드 장비용 몰입형 가상 현실(VR) 설루션으로 작업자 교육에 혁신을 가져왔다. 콘크리트 전문가를 위한 이 몰입형 교육 설루션은 높은 교육 비용과 물류 문제를 줄이는 동시에 작업자에게 안전하고 참여도가 높은 실습 학습 환경을 제공한다. 소메로와 같은 제조업체는 유니티(Unity)의 기술 및 XR 인터랙션 툴킷(XR Interaction Toolkit)과 같은 툴을 활용하여 교육 프로세스를 간소화하고, 운영자의 숙련도를 개선하며, 운영상의 제약을 줄일 수 있다. ■ 자료 제공 : 유니티 코리아     오늘날 건설 업계에서 숙련된 인재를 찾는 것은 인력 부족으로 인해 프로젝트가 중단될 위기에 처한 것과 마찬가지로 벅찬 일이다. 2024년 미국 건설업협회에 따르면, 현재 건설업체의 79%가 숙련된 인력을 구하기 어려워 프로젝트 일정과 비용에 영향을 받고 있다고 한다. 전미 주택 건설업자 협회에 따르면 2031년까지 인력의 41%가 은퇴할 것으로 예상되는 등 인력 고령화도 이러한 격차의 원인 중 하나이다. 건설업계의 기술 인력 부족에 대한 스마트 설루션의 필요성이 그 어느 때보다 커졌다.   기존 교육의 과제 소메로는 고품질의 평탄한 콘크리트 바닥을 만들기 위한 핵심 도구인 S-22EZ 레이저 스크리드 기계를 비롯한 레이저 유도 콘크리트 스크리드 장비 전문 업체이다. 이들의 목표는 높은 출장 비용, 장비의 마모, 물류의 한계 등 글로벌 수용 능력의 제약을 해결하면서, 안전하고 효율적으로 운영자를 교육할 수 있는 VR 시뮬레이터를 개발하는 것이었다. 교육생들은 물리적 기계 없이도 컨트롤을 다루고 공간 역학을 이해하는 경험이 필요했다. 콘크리트 평탄화 기술을 마스터하려면 단순한 도구가 아니라 수년간의 신체적 연습을 통해 연마한 기술을 전수받아야 한다. 소메로의 데이브 라사카(Dave Raasakka) 글로벌 고객 지원 담당 부사장은 “콘크리트는 부패하기 쉬운 제품이다. 일단 땅에 떨어지면 한 시간 내에 완료해야 한다. 그렇지 않으면 문제가 생길 수 있다”고 설명했다. S-22EZ 레이저 스크리드 장비와 같은 중장비 교육에는 일반적으로 기계 자체, 레이저 트랜스미터와 같은 특수 장비, 적절한 콘크리트 형태와 타설 조건을 갖춘 전용 교육 공간 등 광범위한 물리적 자원이 필요하다. 이러한 실제 시나리오는 종종 기계의 마모를 포함하여 높은 비용을 수반하며 장비 가용성, 악천후, 높은 부품에 접근하는 동안의 미끄러짐 및 추락과 같은 위험과 같은 요인으로 인해 방해를 받을 수 있다. 6개의 글로벌 서비스 센터와 연간 수백 명의 교육생을 보유한 소메로 콘크리트 인스티튜트(Somero Concrete Institute)는 이러한 물류, 재무 및 안전 문제를 효과적으로 해결할 수 있는 확장 가능한 설루션이 필요했다. 소메로는 그들의 요구 사항을 충족하고 제약 조건을 해결하는 일관된 고품질 학습 경험을 제공하기 위해 대체 교육 설루션으로 포지FX 시뮬레이션(ForgeFX Simulations)을 선택했다. 실제 기계로 작업하는 경험을 모방하는 데 필요한 촉각적 피드백과 시각적 사실감을 포착하는 등 레이저 스크리드의 작동을 정확하게 재현하는 몰입형 교육 시뮬레이터를 설계해야 하는 복잡한 과제에 직면했다. 유니티 기반의 이 설루션은 S-22EZ의 복잡한 컨트롤을 복제하여 교육생에게 가상 환경에서 실제와 같은 실습 경험을 제공하므로 학습 과정에서 물리적 장비가 필요하지 않다.     사실감을 높여주는 기술/기능 유니티의 XR(확장현실) 툴은 S-22EZ 레이저 스크리드 VR 시뮬레이터를 구동하여 사실적인 몰입형 3D 환경에서 장비 동작을 정밀하게 재현할 수 있다. 유니티 클라우드(Unity Cloud)의 예외 보고 기능은 실행 가능한 스택 추적을 제공하여 최소한의 수동 개입으로 QA 및 이슈 추적을 지원한다. 성능의 경우, 유니티의 CPU 및 GPU 프로파일러를 사용하여 병목 현상을 진단하고 프레임 속도를 최적화하여 원활하고 반응이 빠른 VR 경험을 보장한다. 이러한 도구는 특히 물리 계산에서 비효율적인 부분을 파악하고 해결하여, 원활한 상호 작용과 안정적인 시뮬레이션을 유지하도록 안내한다. XR 인터랙션 툴킷(XRITK)은 가상 상호작용을 간소화하는 직관적인 크로스 플랫폼 설루션으로, 소메로 트레이닝 시뮬레이터의 몰입도와 운영 효율을 높인다. 유니티는 XRITK를 사용하여 VR 릭을 관리함으로써 메타 퀘스트 3에서 컨트롤러와 고급 핸드 트래킹 기능을 지원하여 교육생의 몰입도를 극대화하는 원활하고 반응이 빠른 교육 환경을 만들 수 있었다. 이 설정은 스냅 회전, 순간 이동, 오브젝트 조작과 같은 인터랙션 구성 요소를 표준화하여 개발 시간을 최소화하고 향후 하드웨어 및 소프트웨어 업데이트에도 시뮬레이터가 적응력을 유지할 수 있도록 한다.   ▲ 충돌기가 작동하는 모습을 보여주는 개발자 화면   유니티의 잡 시스템을 사용하면 메인 스레드의 성능에 영향을 주지 않고 보조 스레드에서 콘크리트를 사실적으로 시뮬레이션할 수 있다. 트리거 충돌기를 바운딩 박스로 사용하여 의도적이든 비의도적이든 콘크리트에 영향을 줄 수 있는 요소(예 : 스크리드 헤드 또는 기계 타이어로 인한 요소)를 정의했다. 여기에는 강체(rigid body)가 없고 충돌(collision)에 대한 레이어 마스크가 아무것도 포함하지 않도록 설정되어 있으므로, 메인 스레드에서 최소한의 작업이 수행되고 있다. 작업 시스템을 사용하면 메인 스레드 성능에 영향을 주지 않고 독립형 퀘스트 헤드셋에서 최대 4개의 스레드를 동시에 실행할 수 있다.(메인 스레드에서는 콘크리트에 영향을 줄 수 있는 기계 조각을 나타내는 바운딩 박스의 위치를 추적한다.)   ▲ 핸드 트래킹을 통해 기계 컨트롤과 현실감 있게 상호작용할 수 있다.   유니티는 다음을 활용한다. 유니티 터레인(Unity Terrain)을 활용하여 콘크리트 표면을 사실적으로 렌더링하고 텍스처를 블렌딩하여 타설 전반에 걸쳐 다양한 마감과 일관성을 반영한다. 유니티 잡(Unity Job)은 커스텀 콘크리트 시뮬레이션의 계산을 오프로드하여 쟁기나 진동기와 같은 콘크리트 충돌기가 콘크리트의 매끄러움이나 거칠기에 미치는 영향과 표면에서 콘크리트를 밀고 당기는 방식을 결정하는 커스텀 콘크리트 시뮬레이션에 배포된다. ‘러프’ 및 ‘스무스’ 텍스처가 있으며, 기본값은 러프이다. 지형 높이 맵의 각 지점에서 얼마나 부드러운 텍스처를 표시할지에 대한 알파 값을 설정한다. 메인 스레드에는 작업에 쓰이는 하이트맵 및 알파 맵 데이터와 일치하도록 지형을 업데이트하는 두 가지 빠른 함수가 있다. 이러한 시스템은 사용자가 콘크리트 작업의 시각적, 촉각적 뉘앙스를 경험할 수 있는 몰입형 가상 환경을 강화하여 복잡한 건설 활동을 충실하게 재현함으로써 교육 효과와 사용자 참여를 높인다.   ▲ 워크어라운드 검사 강의 시연하기   고객 피드백 파일럿 단계가 끝날 무렵, 소메로는 VR 교육을 마친 후 22EZ 레이저 스크리드에서 작업자 기술이 향상되었음을 보여주는 두 가지 사례 연구를 수행했다. 사례 1 : 비사용자 직원이 VR 교육을 받고 성공적으로 기계 사용법을 시연할 수 있었다. 사례 2 : 교육을 받은 비사용자를 대상으로 설문조사를 실시한 결과, 기계 작동에 자신감이 생겼다고 응답했다.   시뮬레이터의 향후 계획 보다 효과적인 교육 소메로 S-22EZ 고급 레이저 스크리드 VR 교육 시뮬레이터는 건설 교육 기술의 도약을 상징한다. 이 몰입형 교육 플랫폼은 기존 교육 방법의 문제를 해결함으로써 전 세계 운영자에게 높아진 정확성, 접근성 및 참여도를 제공한다. 복잡한 실제 시나리오를 시뮬레이션하고 환경에 미치는 영향을 줄이며 기술 유지를 강화하는 기능을 갖춘 이 시뮬레이터는 작업자가 최적의 성과를 낼 수 있도록 준비할 뿐만 아니라 소메로가 더 높은 효율과 ROI를 달성할 수 있도록 지원한다.   시장 도달 범위 확대 이 시뮬레이터는 유통업체가 대규모 기계를 원격으로 대화형으로 시연할 수 있는 기능을 제공함으로써, 소메로의 글로벌 시장 진출에 긍정적인 영향을 미칠 것으로 보인다. 소메로는 판매 주기를 가속화하고, 고객의 의사 결정을 개선하며, 글로벌 입지를 확장하는 동시에 기존 장비 쇼케이스와 관련된 물류 비용과 환경에 미치는 영향을 줄일 수 있는 잠재력을 가지고 있다.   체계적인 수업 그 이상 소메로는 시뮬레이터 2단계에 대한 추가 테스트를 진행하면서 3단계 로드맵을 구상하고 있다. 다양한 슬럼프 수준이나 건조 단계와 같은 요소를 재현하는 고급 콘크리트 시뮬레이션, 구조화된 수업 단계를 넘어, 교육생이 가상 기계와 자유롭게 상호작용할 수 있는 샌드박스 스타일의 수업 등이 잠재적인 집중 분야이다. 포지FX와 소메로는 유니티 플랫폼에서 혁신을 거듭하면서, 제조 업계에서 혁신적인 교육 경험을 제공할 수 있는 가능성을 높이고 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
알테어, 한국 건축구조 설계기준 반영한 시뮬레이션 소프트웨어 출시
알테어는 최신 한국 건축구조 설계기준(KDS)을 자사의 소프트웨어에 반영해 국내 건축·엔지니어링·건설(AEC) 시장 진출을 본격화한다고 밝혔다. 알테어는 2021년 건축 구조해석 전문 소프트웨어 기업인 에스프레임을 인수하며 자동차와 전기전자 등 기존 주력 산업을 넘어 AEC 시장 진출의 기반을 마련했다. 알테어의 구조 해석 및 설계 설루션은 BIM(건설 정보 모델링), CAD 등 다양한 설계 프로그램과의 원활한 연동으로 생산성과 데이터의 신뢰성을 높일 수 있다는 점을 내세운다. 실제 바람, 지진, 폭설, 폭발, 다양한 하중 조건 등에 대한 반응을 시뮬레이션하고, 철근 콘크리트, 강구조, 대형 목구조 건축물을 설계 및 최적화하며, 복잡한 형상과 구조의 모델까지 평가해 안전성을 높이는 것이 특징이다. 알테어는 “자사의 설루션이 이미 글로벌 시장에서 수많은 초고층 빌딩과 인프라 프로젝트를 통해 국제적으로 인정받은 바 있다”면서, “이번 KDS 반영으로 국내 고객은 글로벌 수준의 해석 기술을 활용하면서 동시에 한국의 최신 설계 기준까지 충족할 수 있게 되었다”고 전했다. 이번 KDS 업데이트는 에스프레임(S-FRAME), 에스콘크리트(S-CONCRETE), 에스패드(S-PAD) 등에 적용되며, 국내 건설사와 설계 사무소는 물론 공공기관 및 연구기관까지 건축 설계와 검증을 수행하는 현장에서 폭넓게 활용할 수 있다.     에스프레임은 일반 구조물부터 초고층 빌딩, 대형 구조물이 지진이나 강풍 등 외부 하중을 받을 때, 건물이 어떻게 움직이고 힘이 전달되는지를 정밀하게 시뮬레이션하는 프로그램이다. 이번 KDS의 반영으로 지진하중 기준(KDS 41 17 00)과 풍하중 기준(KDS 41 12 00)을 자동으로 생성하고 적용할 수 있도록 개선되었다. 알테어의 에스콘크리트는 철근 콘크리트 건축물의 주요 구조 요소를 최신 설계 기준에 따라 해석·검증해 구조물의 안전성과 신뢰성을 확보하는 소프트웨어다. 이번 업데이트는 철근 콘크리트 구조 설계기준(KDS 14 20 00)을 공식적으로 반영한다. 에스패드는 대형 공장, 물류센터, 경기장과 같은 철골 건축물의 뼈대를 이루는 기둥과 보를 신속하게 검증하는 소프트웨어다. 에스프레임, 에스스틸과 함께 강구조 설계에 쓰이며, 이번에 최신 강구조 설계기준(KDS 14 31)이 포함됐다. 한국알테어의 김도하 지사장은 “국내 건축·토목 산업은 최근 지진과 태풍 등 자연재해에 대한 대비와 디지털 설계·검증 프로세스의 확산이 빠르게 진행되고 있으며, 이에 따라 공공기관과 건설사를 중심으로 국제 표준 수준의 구조 해석을 요구하는 사례가 늘어나고 있는 상황”이라면서, “이번 KDS 업데이트는 국내 고객에게 세계적 수준의 설계 환경을 제공하는 동시에 국내 AEC 시장에서 입지를 강화하는 전환점이 될 것”이라고 말했다.
작성일 : 2025-09-30
유니티, ‘유데이 서울 : 인더스트리’에서 산업 현장의 디지털 트윈 전략 소개
유니티가 9월 26일 한국과학기술회관에서 개최한 ‘유데이 서울 : 인더스트리(U/DAY Seoul:Industry)’를 마쳤다고 밝혔다. 이번 ‘유데이 서울 : 인더스트리’에는 다양한 산업 분야 관계자와 종사자 350명이 참석해 산업 생태계의 혁신적인 디지털 트윈 전략과 기술 인사이트를 공유하고 체험했다. 특히 사전 참가 등록 기간에 600명 이상이 신청하며 조기 마감되는 등 높은 관심을 보였으며, 행사 종료 후 제공되는 온라인 레코딩 영상 신청에도 약 200명이 참여해 지속적인 관심을 확인할 수 있었다. 유니티는 산업 현장 속 유니티 기반 디지털 트윈 기술을 직접 체험할 수 있는 ‘실전형 데모존’에 참관객의 호응이 높았다고 소개했다. 특히 메타넷디지털의 ‘메타팩토리’, 모라이의 ‘자율주행 차량 테스트 데모’ 등이 주목을 받았다. 메타넷디지털 데모존을 담당한 김남일 이사는 “메타팩토리는 제조 현장의 데이터를 실시간으로 연결하고 AI와 3D 기술을 더해 운영 효율성을 크게 개선할 수 있는 제조 운영 관리 플랫폼“이라며, “이번 행사를 통해 제조업 뿐만 아니라 물류, 자동차 등 여러 분야의 산업 관계자 분들과 다양한 의견을 나누고, 좋은 피드백을 청취할 수 있어 의미 깊었다”고 말했다. 모라이 데모존을 담당한 이원상 매니저는 “상암, 강남 등 친숙한 도로 환경을 구현한 데모를 준비했는데, 유니티 기반의 고정밀 시뮬레이션 기술이 제공하는 현실감을 높이 평가해주셨고, 기술적 진보를 실감했다는 반응도 많았다”고 말했다. 이어 “유데이 서울 : 인더스트리를 계기로 보다 많은 분들께 저희 설루션의 가치를 알리고, 잠재적 협력 파트너들과 새로운 비즈니스 기회를 논의할 수 있어 뜻깊었다”고 소감을 전했다.     전문가 세션에서는 산업 혁신의 방향성을 제시하며, 다양한 실제 적용 사례를 살펴볼 수 있는 세션들이 눈길을 끌었다. 그 중에서도 SK AX의 강철규 매니저가 발표한 ‘HBM 전용 Stack 3D Map PoC’ 세션은 유니티 협업 과정에서 얻은 인사이트와 노하우를 구체적으로 다뤄 참관객들의 만족도가 높았다. 유니티 코리아 김현민 시니어 설루션 엔지니어가 발표한 세션도 관심을 모았다. 이 세션에서는 BMW의 유니티 애셋 매니저 기반 3D 에셋 관리 사례와 오바야시의 실시간 3D 협업 워크플로 구축 사례에 대해 전했다. 또한 버추얼 프라이빗 클라우드(VPC) 배포 옵션 등 유니티의 3D 데이터 보호 기능 및 대규모 산업 데이터 관련 인사이트를 공유했다. 유니티 코리아의 송민석 대표는 “이번 유데이 서울 : 인더스트리는 유니티의 기술이 창출하는 새로운 가치와 가능성을 확인할 수 있었던 시간”이라며, “앞으로도 협력 생태계를 확대해 나갈 수 있도록 여러 산업군에 최적화된 설루션을 선보일 것”이라고 말했다.
작성일 : 2025-09-30
멘딕스, 스노우플레이크와 협력해 자동차 산업의 SW 개발 혁신 가속
지멘스의 사업부인 멘딕스는 AI 데이터 클라우드 기업인 스노우플레이크와 협력을 지속하면서, 기업이 최신 소프트웨어 개발을 통해 데이터 기반 가치 창출을 더욱 가속화할 수 있도록 지원한다고 밝혔다. 멘딕스는 스노우플레이크와 협업을 통해 양사의 고객에게 여러 비즈니스 성과를 제공할 수 있었다고 전했다. 산업 분야의 한 제조 기업은 멘딕스와 함께 스노우플레이크의 데이터 툴을 활용해 16주 만에 애플리케이션을 구현하고 배포할 수 있었다. 또 다른 산업 분야의 제조 기업은 노후화된 시스템을 최신 포트폴리오로 교체하고, 4개월 만에 첫 번째 신규 애플리케이션을 구현 및 출시했다. 한 대형 석유 및 가스 기업은 100개 이상의 멘딕스 애플리케이션을 구현했으며, 그 중 75%가 스노우플레이크와 연결되어 있다. 데이터 엔지니어는 이러한 통합 툴을 통해 사일로(silo) 형태로 운영되던 사내 개발자 팀뿐 아니라 비즈니스 최종 사용자와도 협업하여 소프트웨어 개발을 지원할 수 있다. 항공우주 분야의 한 제조업체는 멘딕스와 스노우플레이크의 통합 기능을 활용해 데이터 보안을 유지하고, 작업 현장의 운영 효율을 개선했다. 스노우플레이크의 AI 데이터 클라우드(AI Data Cloud) 동적 데이터 마스킹 기능은 민감한 데이터를 제한하고, 보호할 수 있도록 지원하며, 멘딕스 플랫폼은 애플리케이션 개발 라이프사이클 전반을 제어할 수 있는 내장 가드레일을 제공한다. 한 교통 당국은 멘딕스를 활용해 10개 이상의 애플리케이션을 구현하고, 다양한 소스에서 데이터를 수집한 다음, 이를 스노우플레이크로 전달해 분석을 수행하는 단일 통합 관리 및 모니터링(SPOG : Single Pane of Glass) 체계를 구축했다. 이를 통해 데이터에 대한 가시성을 확보하고, 프로세스 및 의사결정 개선을 위한 인사이트를 도출할 수 있다.     멘딕스는 공동 고객들에게 더 큰 가치를 제공하기 위해, 2025년 5월 스노우플레이크의 자동차 설루션 출시와 함께 스노우플레이크 데이터 클라우드 제품 파트너가 되었다. 스노우플레이크의 자동차 설루션은 고객에게 더 빠르고 효율적인 개발 주기를 지원하는 확장 가능한 플랫폼을 비롯해 공급업체와 재고 시스템, 물류 파트너 전반에 대한 실시간 공급망 가시성, 그리고 AI/ML 기반의 고급 분석 기능 등을 제공한다. 멘딕스 플랫폼은 핵심 기술 구성요소가 유연하게 설계되어 있어 스노우플레이크가 새로운 모델이나 기능을 도입하더라도 멘딕스와 쉽게 연동이 가능하다는 점을 내세운다. 이를 통해 더 많은 사용자가 스노우플레이크 AI를 활용하여 자동차 업계 고유의 요구사항을 충족하고, ‘개념 검증(Proof-of-Concept)에서 실제 운영(Production)’에 이르기까지 원활하게 적용할 수 있도록 한다는 것이 멘딕스의 설명이다. 점점 더 많은 기업들이 데이터의 중앙집중화에 대한 중요성을 인식함에 따라, 멘딕스와 스노우플레이크는 고객들에게 보다 포괄적인 설루션을 제공하는데 주력하고 있다. 양사의 이번 파트너십은 기업들이 디지털 혁신 프로젝트를 추진하고, 여러 플랫폼을 도입하는 과정에서 AI 사일로를 제거하고, 데이터에 대한 포괄적인 거버넌스와 제어권을 유지할 수 있도록 지원하는 데에 초점을 맞추고 있다. 스노우플레이크의 팀 롱(Tim Long) 글로벌 제조 부문 책임자는 “스노우플레이크 고객들은 기존 분석 방식을 뛰어넘는 새로운 차원의 설루션을 필요로 하고 있다. 우리는 멘딕스와의 협업을 바탕으로, 고객들이 스노우플레이크의 코텍스 AI(Cortex AI)를 활용해 지능적이고, 실행 가능한 엔터프라이즈 애플리케이션을 신속하게 개발할 수 있도록 지원하고 있다.”며, “이러한 원활한 통합 환경을 통해 고객들이 새로운 차원의 비즈니스 가치를 실현할 수 있을 것으로 기대한다”고 밝혔다.
작성일 : 2025-09-16
가트너, ‘2025 신기술 하이프 사이클’ 통해 자율 비즈니스 시대 전망
가트너가 ‘2025 신기술 하이프 사이클(2025 Hype Cycle for Emerging Technologies)’을 통해 주목해야 할 주요 혁신 기술로 ▲기계 고객 ▲AI 에이전트 ▲의사결정 인텔리전스 ▲프로그래머블 머니를 선정했다. 가트너 하이프 사이클은 기술 및 애플리케이션의 성숙도와 도입 현황을 시각적으로 표현하고, 실제 비즈니스 문제 해결 및 새로운 기회 창출과의 잠재적 연관성을 제시한다. 이 방법론은 시간 흐름에 따른 기술 또는 애플리케이션 발전 과정을 조망하고, 특정 비즈니스 목표의 맥락에서의 효과적인 도입 관리를 위한 신뢰 있는 인사이트를 제공한다. 가트너는 매년 프로파일링하는 2000개 이상의 기술 및 응용 프레임워크에서 핵심적인 인사이트를 도출해, 반드시 알아야 할 신기술을 정리해 제시하고 있다. 이들 기술은 향후 2년에서 10년간 혁신적인 이점을 제공할 잠재력을 갖춘 것으로 평가된다.     기계 고객(Machine Customers)이란 사람이나 기업을 대신해 상품, 서비스를 구매하는 비인간 경제 주체다. 가트너는 고객 역할을 수행할 수 있는 B2B 기기를 약 30억 개로 추산하며, 2030년까지 80억 개로 늘어날 것이라 전망했다. 가상 개인 비서, 스마트 가전, 커넥티드 카, 사물인터넷(IoT) 기반 공장 등이 이에 포함된다. 가트너는 기계 고객이 제조, 소매, 소비재 등 다양한 산업에서 새로운 수익과 효율성을 창출하는 핵심 동력이 될 것이라면서, “기업은 경쟁에서 뒤처지지 않기 위해 비즈니스 모델을 재정립하고 기회를 선제적으로 활용해야 한다”고 짚었다. AI 에이전트(AI Agents)는 디지털, 물리적 환경에서 인지, 의사결정, 행동을 수행해 기업의 목표 달성을 지원하는 자율 또는 반자율 AI 소프트웨어다. 기업은 대형 언어 모델(LLM)을 비롯한 AI 기술을 활용해 복잡한 작업을 수행할 수 있는 AI 에이전트를 개발, 배포하고 있으며, 이는 고객 서비스, 산업 운영, 데이터 분석, 콘텐츠 제작, 물류 등 여러 분야를 자동화해 산업 전반에 혁신을 가져올 잠재력을 갖고 있다. 예측과 실행 정확성에 대한 우려로 AI 에이전트에 대한 신뢰는 제한적이다. 이 기술은 인간의 감독 없이 중요한 결정을 신속히 내리며 독립성, 사용 편의성이 향상되고 있다. 가트너는 기업이 AI 에이전트를 효과적으로 활용하려면 기능과 적용 범위를 명확하게 이해하고, 전략적 계획에 반영할 것을 권장했다. 의사결정 인텔리전스(Decision Intelligence)는 의사결정을 고도화하는 실용적인 접근 방식으로, 의사결정 방식과 결과를 평가·관리·개선하는 과정을 이해하고 엔지니어링한다. 의사결정을 디지털 자산으로 전환하고 모델링하면, 통찰과 실행 사이의 간극을 줄이고 의사결정의 품질, 실행력, 결과를 개선할 수 있다. 가트너의 크리스티안 스테판(Christian Stephan) 시니어 디렉터 애널리스트는 “에이전틱 AI와 생성형 AI에 대한 과대광고, 의사결정 자동화 관련 규제 압박, 심화된 글로벌 불확실성은 기존 비즈니스 프로세스와 의사결정의 한계를 드러냈다. 이에 따라 기업은 속도와 품질을 넘어 일관성, 규정 준수, 비용 효율성, 적응력을 갖춘 새로운 의사결정 체계를 요구하고 있다”고 전했다. 프로그래머블 머니(Programmable Money)는 소프트웨어를 통해 프로그래밍할 수 있는 디지털 화폐를 의미한다. 알고리즘에 따라 작동 방식을 설정할 수 있어 블록체인 기반 토큰화와 스마트 계약을 활용하면 경제 주체의 참여를 확대하고 가치 교환을 자동화할 수 있다. 기업은 비즈니스 파트너, 직원, 기계 고객과 상호작용하기 위해 프로그래머블 머니를 전략적으로 활용해야 한다. 스테판 시니어 디렉터 애널리스트는 “프로그래머블 머니는 새로운 유형의 통화와 디지털 자산 시장을 열어 금융 서비스 분야에 변화를 가져올 것”이라며, “가치 창출, 자금 조달, M2M(Machine-To-Machine) 등 자산 교환의 혁신을 주도해 공급망과 금융 가치 사슬을 재편할 것”이라고 전망했다. 가트너의 마티 레스닉(Marty Resnick) VP 애널리스트는 “수년간의 디지털 혁신 이후, 기업은 AI와 자동화가 불러온 경쟁, 고객, 제품, 운영, 리더십 재편을 목도하고 있다”면서, “기업은 자율 비즈니스 시대라는 새로운 혁신 국면에 직면했으며, CIO는 신기술이 경쟁력 확보, 효율성 향상, 성장 기회 창출에 어떻게 기여할 수 있는지 평가해야 한다”고 말했다.
작성일 : 2025-09-10