• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "문서"에 대한 통합 검색 내용이 2,976개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
미라콤아이앤씨, 대상웰라이프에 클라우드형 MES 구축 스마트팩토리 전환 가속화
대상웰라이프 천안 1, 2공장에 Nexplant MESplus CE 도입   대상웰라이프 천안2공장(출처 – 대상웰라이프)   미라콤아이앤씨가 대상웰라이프의 천안 1, 2공장에 자사의 클라우드 기반 제조실행시스템(MES) 솔루션인  넥스트플랜트 엠이에스플러스(Nexplant MESplus) CE(Cloud Edition)를 구축한다고  밝혔다. 대상웰라이프는 폭넓은 소비자층의 생애주기와 라이프스타일에 맞춘 다양한 뉴트리션 솔루션을 제공하는 헬스케어 기업이다. 특히 환자용 균형영양식 브랜드 ‘뉴케어’는 10년 연속 시장 점유율 1위를 기록하며 많은 이들의 건강 관리에 기여하고 있다. 미라콤아이앤씨의 Nexplant MESplus CE가 적용될 대상웰라이프의 천안 1, 2공장은 건강식품 생산의 핵심 기지 역할을 수행하고 있다. 지난 2월 시작된 이번 프로젝트는 약 7개월간 진행되어 오는 9월 완료될 예정이다. 구축 완료 후 미라콤아이앤씨는 향후 5년간 대상웰라이프에 안정적인 운영 서비스를 제공할 계획이다. 지주사인 대상홀딩스는 그룹 차원에서 수년 전부터 디지털 전환과 제조 경쟁력 강화를 적극적으로 추진해 왔다. 이러한 노력의 일환으로 대상홀딩스는 대상웰라이프가 미라콤아이앤씨와 협력하여 이번 프로젝트를 진행할 수 있도록 중요한 역할을 수행했다. 더불어 대상홀딩스의 IT 계열사인 대상정보통신 역시 대상웰라이프와 미라콤아이앤씨 간의 원활한 협업을 지원하며 시스템 구축에 힘을 보태고 있다. 이번 Nexplant MESplus CE 구축을 통해 미라콤아이앤씨는 대상웰라이프 천안 공장의 디지털화 수준을 한 단계 끌어올릴 것으로 기대된다. 우선 시스템 기반의 재료 오투입 방지 기능을 통해 레시피 변경으로 인한 불량 발생을 사전에 차단하여 식품 안전성을 강화한다. 또한 선입선출 기반의 자재 관리 시스템을 도입하여 제품의 신선도를 유지하고 불필요한 폐기물을 최소화함으로써 제조 과정의 투명성을 높일 예정이다. 멸균기, 자동 충전 장비 등 생산 설비와의 인터페이스를 통해 설비 데이터를 실시간으로 모니터링하고 정밀하게 관리하여 품질 관리 능력을 향상시키는 것도 중요한 목표 중 하나다. 이와 더불어 원부자재를 시스템 기반으로 정확하게 계량하고 측정하여 생산 공정에 투입함으로써 제품 맛의 일관성을 유지하는 데에도 기여할 것으로 보인다. 미라콤아이앤씨는 이뿐만 아니라 탄소 배출량을 체계적으로 산정하는 기능을 이번 시스템 구축에 포함하여 대상웰라이프가 탄소중립 시대를 선도적으로 준비할 수 있도록 지원할 예정이다. 키오스크 및 태블릿 PC 등을 활용한 원부자재 입고 관리 시스템을 구축하여 기존의 수기 문서 작업을 줄이고 공장 내 페이퍼리스 환경을 구현하는 것도 중요한 목표다. 미라콤아이앤씨의 대표적인 MES , Nexplant MESplus Nexplant MESplus CE는 미라콤아이앤씨가 제공하는 대표적인 제조실행시스템(MES)인 Nexplant MESplus의 클라우드 기반 버전이다. Nexplant MESplus CE의 가장 큰 장점은 단연 비용 절감 효과다. 클라우드 기반으로 제공되므로 고객은 서버나 데이터베이스 등 고가의 시스템 인프라를 직접 구축할 필요가 없으며, 합리적인 월 구독 방식으로 비용을 지불하여 초기 투자 부담을 크게 줄일 수 있다. 이는 초기 대규모 투자가 어려운 중소·중견 기업에게 매력적인 대안이 될 수 있다. 또한 시스템 구축 후 유지보수 및 운영 인력을 별도로 채용하거나 관리할 필요가 없어 IT 인력 운영에 대한 부담까지 덜 수 있다. 클라우드 기반으로 비용 효율성을 높였지만, 기능적인 측면에서는 기존 Nexplant MESplus의 강력한 성능을 그대로 제공한다. Nexplant MESplus는 미라콤아이앤씨가 지난 27년간 스마트팩토리 분야에서 쌓아온 풍부한 경험과 기술 노하우를 집약한 솔루션이다. 자체 개발한 디지털 플랫폼인 MDP(Miracom Digital Platform)을 기반으로 생산관리, 설비관리, 자재관리, 품질관리 등 스마트 공장 운영에 필수적인 다양한 기능을 통합적으로 제공한다. 대상웰라이프 측은 "이번 Nexplant MESplus CE 도입을 통해 생산성과 품질 관리 능력을 한층 강화할 수 있을 것으로 기대한다"며 "다양한 건강식품을 기반으로 지속 가능한 성장의 발판을 마련하겠다"고 밝혔다. 미라콤아이앤씨 측은 “국내 스마트팩토리 1위 기업으로서 자부심을 가지고 대상웰라이프 공장의 디지털 전환과 스마트화를 성공적으로 이끌어낼 수 있도록 최선을 다하겠다”고 강조했다.
작성일 : 2025-05-10
쌔스, SAS 이노베이트 2025, 인간-AI 협업 시대 여는 혁신 기술 공개
SAS, ‘SAS 이노베이트 2025’에서 인간-AI 상호작용 가능한 AI 에이전트 등 혁신 기술 공개   SAS(쌔스)가 5월 6일부터 9일(현지시간)까지 미국 플로리다주 올랜도에서 열린 연례 컨퍼런스 ‘SAS 이노베이트 2025(SAS Innovate 2025)’에서 최신 AI 및 데이터 분석 기술 혁신과 다양한 비즈니스 사례를 선보였다. SAS 이노베이트는 전 세계 산업 전문가와 오피니언 리더들이 한자리에 모여 인사이트를 공유하는 자리다. 투명한 의사결정을 위한 맞춤형 인간-AI 상호작용 지원 ‘AI 에이전트’ 공개 인간의 개입 없이 AI 시스템이 스스로 의사결정을 내리고 조치를 취하는 시대가 점차 다가오고 있다. 이러한 AI 에이전트의 빠른 발전에 발맞춰 SAS는 책임 있는 혁신(responsible innovation)을 기반으로 에이전틱 AI(agentic AI)의 미래를 구축하고 있다. SAS는 자사의 데이터 및 AI 플랫폼 SAS 바이야(SAS® Viya®)에서 구동되는 SAS 인텔리전트 디시저닝(SAS® Intelligent Decisioning)을 통해 AI 에이전트를 설계, 배포, 확장할 수 있도록 지원한다고 발표했다. 이는 인간과 AI 간의 자율성 균형을 맞추고, 의사결정 과정에 대한 설명 가능성과 거버넌스를 확보하는 데 중요한 역할을 할 것으로 기대된다. 의사결정 시 윤리적 기준을 반영하는 AI 에이전트 첨단 기술 리서치 기관인 더 퓨처럼 그룹(The Futurum Group)의 AI 소프트웨어 및 도구 부문 닉 페이션스(Nick Patience) 부사장은 "SAS의 에이전트 기반 AI 접근 방식은 자율적인 의사결정과 윤리적 거버넌스 간의 중요한 균형을 맞추고 있다"라며, "SAS의 지능형 에이전트는 단순한 기술적 진보를 넘어 책임감 있는 엔터프라이즈 AI 도입을 위한 실용적인 프레임워크로서, 이는 조직이 빠르게 진화하는 환경에서 경쟁 우위를 확보하는 데 필수적인 요소"라고 강조했다. SAS 바이야의 에이전틱 AI 프레임워크는 AI 에이전트의 설계 및 제공 방식을 정의하는 세 가지 핵심 요소를 기반으로 한다. 첫째, 의사결정이다. SAS는 강력한 결정론적 분석(deterministic analytics)과 대규모 언어 모델(LLM, Large Language Models)의 유연성 및 추론 능력을 결합한 하이브리드 접근 방식을 채택하고 있다. 이를 통해 SAS 고객은 규제 산업에서 요구되는 비즈니스 기준과 규칙을 준수하면서 더욱 정확하고 신뢰할 수 있는 결과를 도출하는 AI 에이전트를 구축할 수 있다. 둘째, 인간과 AI의 균형이다. SAS는 업무의 복잡성, 리스크, 비즈니스 목표에 따라 AI 에이전트의 자율성과 인간 개입 수준을 기업이 직접 조정할 수 있도록 지원한다. AI 에이전트는 반복적인 데이터 기반 작업에서 완전히 자율적으로 운영될 수 있으며, 인간은 감독, 윤리적 판단, 전략적 방향을 제시하는 역할을 수행할 수 있다. 셋째, 거버넌스다. SAS의 내장된 거버넌스 프레임워크를 활용하여 기업은 윤리 기준과 데이터 프라이버시를 준수하면서 비즈니스 가치 및 규제 심사에 부합하는 AI 에이전트를 구축할 수 있다. SAS 바이야가 이끄는 에이전틱 AI(agentic AI)의 미래 SAS 바이야는 데이터 수집 및 분석부터 AI 에이전트 구축, 배포, 모니터링에 이르기까지 AI 에이전트 여정의 모든 단계를 포괄적으로 지원한다. 또한, 지속적인 성과 추적, 거버넌스 및 보안을 보장하며, 제품 수명주기 전반에 걸쳐 효율적인 방식으로 AI 에이전트를 관리할 수 있도록 돕는다. SAS는 수십 년간 축적해온 신뢰성 있는 거버넌스 경험을 바탕으로 모든 에이전트에 감사 가능성(auditability), 편향 탐지, 규제 준수 기능을 제공한다. 향후 SAS는 에이전틱 AI 로드맵에 따라 SAS 바이야에 코파일럿 생산성 어시스턴트를 통합할 계획이라고 밝혔다. 이를 통해 사용자는 더욱 빠르고 스마트하게 수작업을 줄이고, 기업 논리에 기반하여 업무를 수행할 수 있을 것으로 기대된다. 더불어 SAS는 자사의 뛰어난 산업 전문성을 바탕으로 데이터 엔지니어링, 공급망 최적화 등 다양한 업종별 워크플로우에 쉽게 통합할 수 있는 사전 구성된(pre-packaged) 산업 특화 지능형 에이전트도 제공할 예정이다. 이는 기업들이 통제력과 신뢰성을 유지하면서 비즈니스 가치 실현을 가속화하는 데 기여할 것으로 보인다. 마리넬라 프로피(Marinela Profi) SAS 글로벌 AI 시장 전략 부문 리드는 “SAS 바이야는 단순히 행동하는 에이전트를 넘어, 분석, 비즈니스 규칙, 적응성에 기반하여 목적성 있는 의사결정을 내리는 에이전트를 구축한다”며, “거버넌스를 준수하며 의사결정에 집중한 SAS의 통합 프레임워크를 통해 AI 에이전트가 기업의 핵심 차별화 요소로 자리 잡을 것”이라고 전망했다. SAS, 비즈니스 병목 해소 위한 맞춤형 AI 모델 공개 SAS는 산업별 솔루션에 대한 10억 달러 투자의 일환으로 새로운 AI 모델 포트폴리오를 발표했다. 각 산업별로 즉시 적용 가능하거나, 고객 데이터를 기반으로 맞춤형 학습이 가능한 AI 모델들은 다양한 규모의 기업 환경에 쉽게 통합하여 사용할 수 있도록 설계되었다. 현재 제공 중인 주요 AI 모델로는 ▲(전 산업) AI 기반 개체 식별 및 문서 분석 모델 ▲(헬스케어) 약물 복약 순응도 위험 모델 ▲(제조) 전략적 공급망 최적화 모델 ▲(공공) 식량 지원 결제 무결성 모델 및 판매세 세금 규정 준수 모델 등이 있다. 올해에는 ▲(금융) 결제 및 카드 거래 판별 모델 ▲(헬스케어) 의료비 지급 적정성 검증 모델 ▲(제조) 근로자 안전 모니터링 모델 ▲(공공) 개인 소득세 납세 준수 모델 등 새로운 모델들이 추가로 출시될 예정이다. 뿐만 아니라 SAS는 데이터 과학자들이 데이터 레이크(data lake)를 구축하고 정교화하는 데 소요되는 시간을 단축하기 위해 데이터 준비 과정을 자동화하고, 모델이 실시간으로 작동할 수 있도록 지원하는 사전 구축된 AI 에이전트(AI agent)도 향후 제공할 계획이다. SAS, 에픽게임즈의 언리얼 엔진 기반 디지털 트윈으로 제조업 혁신 지원 SAS는 포트나이트로 유명한 미국 게임사 에픽게임즈(Epic Games)의 실시간 3차원(3D) 창작 툴인 언리얼 엔진(Unreal Engine)과 SAS의 강력한 AI 및 고급 분석 기술을 결합한 디지털 트윈(digital twin)을 통해 제조 산업의 핵심 프로세스 혁신을 지원하고 있다. 이를 통해 제조업체는 시뮬레이션된 가상 환경에서 새로운 전략을 실험하고 효과적인 방식을 실제 공정에 적용할 수 있게 된다. 미국 종합 제지 및 포장 제조 기업 조지아-퍼시픽(Georgia-Pacific)은 AGV(Automated Guided Vehicle: 무인운송차량) 운용을 포함한 기타 생산 프로세스를 최적화하기 위해 SAS 기술이 적용된 디지털 트윈을 활용하고 있다. SAS는 에픽게임즈가 개발한 모바일 앱 리얼리티스캔(RealityScan)을 활용하여 조지아-퍼시픽 서배너 공장의 실제와 똑같은(photorealistic) 렌더링 이미지를 캡처하고, 이를 언리얼 엔진에 통합했다. 언리얼 엔진과 결합된 SAS의 분석 기술은 실제 생산 라인에 영향을 주지 않고 공정을 정밀하게 조정할 수 있도록 지원하여, 비용 절감과 제품 품질 향상에 기여할 것으로 기대된다. 언리얼 엔진은 정교한 물리 시뮬레이션, 차세대 라이팅, 굴절 표면 효과를 제공하여 매우 사실적이고 세밀한 디지털 모델 구현을 가능하게 한다. 이를 통해 제조업체는 디지털 환경에서 공정을 시각화하고 상호작용하며, SAS의 고급 AI 기술과 결합되어 더욱 정확한 예측과 향상된 비즈니스 의사결정을 도출할 수 있다. 기업들은 시간과 비용이 많이 소요되는 실제 환경 테스트 없이 언리얼 엔진과 SAS의 분석 기술을 결합한 디지털 환경에서 정교하고 정확한 디지털 트윈을 활용하여 잠재적인 문제를 사전에 발견하고 해결할 수 있다. SAS, “글로벌 기업 5곳 중 3곳, 양자 AI 투자 및 도입 검토” SAS가 최근 실시한 글로벌 설문조사에 따르면, 양자 컴퓨팅(quantum computing)과 양자 AI(quantum AI)는 AI 이후의 차세대 혁신 기술로 주목받고 있으며, 전체 응답자의 60% 이상이 양자 AI에 적극적으로 투자하거나 도입을 검토 중인 것으로 나타났다. 동시에 비즈니스 리더들은 양자 AI 도입의 주요 장애 요인으로 ▲높은 비용(38%) ▲기술에 대한 이해 및 지식 부족(35%) ▲실제 적용 사례에 대한 불확실성(31%) 등을 지적했다. 이는 양자 AI에 대한 관심은 높지만, 실제 비즈니스에 활용하기 위해서는 명확한 로드맵과 실용적인 가이드가 필요하다는 점을 시사한다. SAS는 이러한 요구에 발맞춰 고객과의 파일럿 프로젝트, 양자 AI 연구, 양자 컴퓨팅 분야의 선도 기업들과의 협력을 통해 양자 기술의 효과적인 도입을 지원하고 있다. 특히 복잡한 양자 시장이나 물리학적 원리를 깊이 이해하지 않아도 누구나 양자 기술을 쉽게 이해하고 활용할 수 있도록 돕는 데 주력하고 있다. 현재 SAS는 양자 어닐링(quantum annealing) 시스템을 개발하는 디웨이브 퀀텀(D-Wave Quantum), 초전도 기반 양자 컴퓨팅을 선도하는 IBM, 중성 원자 기반 컴퓨팅 기술을 보유한 큐에라 컴퓨팅(QuEra Computing)과 협력하고 있으며, 이들의 기술을 자사 연구와 고객 프로젝트에 적극적으로 활용하고 있다.   SAS 바이야 혁신으로 속도·생산성·신뢰성 향상   이 외에도 SAS는 SAS 바이야(SAS® Viya®) 데이터 및 AI 플랫폼의 새로운 성능 향상을 발표했다. 이번 성능 개선은 최신 AI 기술 발전을 기반으로 인간의 생산성과 의사결정 능력을 확장하고 향상시키는 데 초점을 맞추었다. 새롭게 출시되었거나 곧 출시 예정인 SAS 바이야의 주요 기능은 다음과 같다. SAS 데이터 메이커(SAS Data Maker): 작년 비공개 프리뷰를 통해 처음 소개된 SAS의 안전한 합성 데이터 생성기 ‘SAS 데이터 메이커’는 조직이 데이터 개인 정보 보호 및 부족 문제를 해결하는 동시에 프로세스를 간소화하고 리소스를 절약하는 데 기여한다. SAS가 최근 합성 데이터 분야의 선두 기업인 헤이지(Hazy)의 주요 소프트웨어 자산을 인수하면서 개발 속도가 더욱 빨라졌으며, 2025년 3분기에 정식 출시될 예정이다. SAS 관리형 클라우드 서비스: SAS 바이야 에센셜즈(SAS Viya Essentials): 중소기업을 위해 올해 초 출시된 관리형 클라우드 서비스 패키지인 ‘SAS 바이야 에센셜즈’는 소규모로 즉시 사용 가능한 호스티드 관리형 서비스 형태로 제공되어 SAS 바이야 도입의 장벽을 낮춘다. SAS 바이야 코파일럿(SAS Viya Copilot): SAS 바이야 플랫폼에 내장된 AI 기반 대화형 어시스턴트인 ‘SAS 바이야 코파일럿’은 강력한 개인 비서 역할을 수행하여 개발자, 데이터 과학자 및 비즈니스 사용자 모두의 분석 작업 및 업무 효율성을 높인다. SAS 바이야 코파일럿은 현재 개별 초대를 통한 비공개 프리뷰로 제공되고 있으며, 2025년 3분기에 정식 출시될 예정이다. 초기 코파일럿 제품의 주요 기능에는 SAS 사용자를 위한 AI 기반 모델 개발 및 코드 지원이 포함된다. 애저 AI 서비스(Azure AI Services)를 기반으로 구축된 코파일럿은 SAS와 마이크로소프트 파트너십의 중요한 결과물이다. SAS 바이야 워크벤치(SAS Viya Workbench): 2024년에 출시된 SAS 바이야 워크벤치는 개발자, 데이터 과학자 및 모델러의 작업 속도와 효율성을 크게 향상시키는 클라우드 기반 코딩 환경이다. 비주얼 스튜디오 코드(Visual Studio Code) 또는 주피터 노트북(Jupyter Notebook)을 통해 SAS 또는 파이썬(Python) 코드를 사용하여 데이터 관리, 분석 및 모델 개발을 용이하게 수행할 수 있다. 2025년의 새로운 기능으로는 R 코딩 지원, SAS 엔터프라이즈 가이드(SAS Enterprise Guide) 개발 환경 지원이 추가되었으며, 기존 AWS 마켓플레이스뿐만 아니라 마이크로소프트 애저 마켓플레이스(Microsoft Azure Marketplace)에서도 이용 가능하게 되었다.  
작성일 : 2025-05-10
클라우드플레어, “주요 테크 기업과 협력해 클로드 기반의 차세대 AI 에이전트 경험 제공”
클라우드플레어는 아사나, 아틀라시안, 블록, 페이팔, 센트리, 스트라이프 등의 글로벌 테크 기업이 앤트로픽(Anthropic)의 AI 어시스턴트인 클로드(Claude)를 활용해 차세대 AI 사용자 경험을 구축하기 위해 클라우드플레어와 협업 중이라고 발표했다. 이들 기업은 클라우드플레어 워커스(Workers) 기반의 안전한 연결을 통해 클로드 및 기타 AI 어시스턴트가 자사의 서비스를 사용자 대신 활용할 수 있도록 지원하고 있으며, 이를 통해 사용자는 개별 애플리케이션에 직접 접속하지 않고도 클로드와의 자연스러운 대화를 통해 업무를 처리할 수 있게 되었다. AI는 이미 이메일 작성, 코드 생성, 데이터 분석 등 다양한 업무에서 활용되고 있다. 그러나 여전히 사용자는 여러 애플리케이션과 탭을 전환하며 작업을 이어가야 하는 번거로움이 있다. 보다 자율적이고 효율적인 AI 에이전트 경험을 구현하기 위해서는, AI가 사용자를 대신해 다양한 비즈니스 도구와 직접 연동되어 실행할 수 있어야 한다. 클라우드플레어는 이러한 연동을 가능하게 하는 MCP(Model Context Protocol) 서버를 통해 AI 플랫폼이 기업에서 사용하는 다양한 업무 도구와 직접 연결될 수 있도록 지원한다. 이를 통해 사용자는 AI 어시스턴트를 벗어나지 않고도 이메일을 발송하거나, 마케팅 캠페인 관련 질의에 응답하고, 송장 발행 등의 작업을 처리할 수 있다. 그러나 외부 시스템과 데이터를 안정적이면서도 보안성 있게 연결하는 것은 특히 글로벌 환경에서는 기술적으로 매우 도전적인 과제다. 클라우드플레어는 앤트로픽이 개발한 오픈소스 표준 MCP 기반의 원격 MCP 서버를 신속하고 간편하게 구축할 수 있는 툴킷을 제공한다. 이를 통해 개발 팀은 복잡한 인프라 문제로부터 자유로워져, 사용자 중심의 강력한 AI 경험을 설계하는 데 집중할 수 있다. 클라우드플레어는 복잡한 인증 및 권한 관리 과정을 단순화하고, 에이전트 권한 제어 및 접근 로그 추적 기능을 제공함으로써 보안성을 확보한 MCP 서버 구축을 가능하게 한다. 특히 클라우드플레어 글로벌 네트워크를 기반으로 원격 MCP 서버를 수주가 아닌 수일 내에 구축 및 배포할 수 있어, 전 세계 사용자에게 빠르고 신뢰성 있는 AI 경험을 제공할 수 있다. 또한 클라우드플레어는 자사 MCP 서버를 공개하고, 사용자가 클로드와의 대화를 통해 웹 사이트를 더 빠르게 만들고, 애플리케이션을 구축하며, 네트워크와 사이트를 안전하게 운영할 수 있도록 지원한다고 발표했다. 예를 들어, 개발자는 더 이상 복잡한 문서를 읽거나 관찰 도구를 직접 탐색하지 않아도 클로드에게 대화로 요청해 로그를 분석하고 오류 추적 및 디버깅을 손쉽게 수행할 수 있다. 클라우드플레어의 매튜 프린스(Matthew Prince) CEO 겸 공동 창업자는 “클라우드플레어는 AI가 세상과 연결되는 방식을 구현하고 있다. 브라우저, 앱, 혹은 클로드와 같은 AI 어시스턴트를 통해 AI가 사용자와 상호작용할 수 있도록 만드는 핵심 인프라 역할을 하고 있다. 앞으로 에이전트 기반 AI가 새로운 인터페이스로 자리 잡게 되면서, 기업은 AI 전략을 구축하고 확장하기 위해 클라우드플레어를 필수적인 인프라로 활용하게 될 것”이라고 말했다. 앤트로픽의 마헤시 무라그(Mahesh Murag) 프로덕트 매니저는 “AI 애플리케이션이 높은 가치를 제공하기 위해서는 다양한 데이터 및 도구와의 연동이 필수이지만, 이를 안정적으로 구축하는 것은 쉽지 않은 일이다. 클라우드플레어는 MCP를 통해 누구나 간편하고 안전하게 클로드와 자사 앱을 연결할 수 있도록 지원하고 있으며, MCP의 도입을 가속화하고 원격 서버 기반 생태계를 확대하는 데 중요한 역할을 하고 있다”고 말했다.
작성일 : 2025-05-07
지멘스, 모든 규모의 기업이 PLM을 활용할 수 있도록 팀센터 X 확장
지멘스 디지털 인더스트리 소프트웨어는 모든 규모의 조직이 SaaS(서비스형 소프트웨어) 기반 PLM(제품 수명주기 관리)을 활용하여 제조 산업 전반의 디지털 전환과 혁신을 촉진할 수 있도록 팀센터 X(Teamcenter X) 소프트웨어의 새로운 버전을 출시한다고 발표했다. 새로운 팀센터 X 제품군은 기계, 전기, 전자 개발을 아우르는 프로세스 관리 및 크로스 도메인 기능 등 다양한 고급 기능을 사전 구성된 형태로 제공한다. 팀센터 X는 기존 두 종류의 버전에 새롭게 두 가지를 추가해, 총 네 가지 버전으로 제공된다.     팀센터 X 에센셜즈(Teamcenter X Essentials)는 간편한 배포와 낮은 운영 비용을 고려하여 설계되었으며, 기계 설계에 집중하는 기업을 위한 데이터 관리 기능을 제공한다. CAD 데이터 관리, 제품 구조 및 리비전 관리, 사용 위치 검색, 체크인/체크아웃, 3D 보기 및 마크업 기능이 포함되어 있으며, 기업의 성장에 따라 확장성을 지원한다. 새롭게 출시된 팀센터 X 스탠더드(Teamcenter X Standard)는 에센셜즈 버전을 기반으로 단순 변경 관리, 프로젝트 일정 관리, 문서 관리, 보고서 생성 등 추가적인 PLM 기능을 포함한다. 모든 기능은 사전 구성된 형태로 제공되며, 고객의 요구에 맞게 조정할 수 있다. 역시 새롭게 출시된 팀센터 X 어드밴스드(Teamcenter X Advanced)는 제품 수명 주기 전반에 걸쳐 기계, 전자 및 전기 설계 간의 크로스 도메인 협업이 필요한 기업을 지원한다. 전기 및 전자 설계 통합 및 분류를 위한 데이터 관리 기능이 추가되었으며, 마찬가지로 사전 구성된 상태로 제공되고 필요 시 맞춤화할 수 있다. 팀센터 X 프리미엄(Teamcenter X Premium)은 클라우드 공급자를 선택할 수 있으며, 팀센터의 전체 기능을 활용하고자 하는 기업을 위한 포괄적 PLM 설루션이다. 엔터프라이즈 BOM, 비즈니스 시스템 통합, 모델 기반 시스템 엔지니어링(MBSE), 제조 계획, 품질 및 컴플라이언스 관리, 제품 비용 및 서비스 수명 주기 관리까지 포함한다. 또한 산업용 기계, 의료기기, 반도체 등 특정 산업군을 위한 사전 구성 설루션도 제공된다. 지멘스 디지털 인더스트리 소프트웨어의 프랜시스 에반스(Frances Evans) 라이프사이클 협업 소프트웨어 수석 부사장은 “팀센터 X의 이번 확장은 SaaS PLM을 모든 규모의 기업이 보다 쉽게 접근할 수 있도록 하려는 지멘스의 사명을 이어가는 것”이라면서, “새로운 팀센터 X의 기능은 더 많은 고객이 빠르게 PLM 도입을 시작하고, 이후 팀센터 포트폴리오 전반을 통해 비즈니스 과제를 확장해 나갈 수 있도록 돕는다”고 말했다.
작성일 : 2025-05-02
AI 기반 기능 및 성능이 향상된 오토캐드 2026
오토캐드 2026의 새로운 기능과 개선사항   이번 호에서는 지난 3월 출시된 오토캐드(AutoCAD)의 40번째 제품인 ‘오토캐드 2026(코드네임 Watt)’에서 새로 추가된 기능과 변경 및 개선된 사항을 살펴보도록 하자.   ■ 양승규 캐드앤그래픽스 전문 필진으로, MOT를 공부하며 엔지니어와 직장인으로 살아가는 방법에 대해 탐구한다. 건축과 CAD를 좋아한다. 홈페이지 | yangkoon.com    시작 오토캐드 2026의 스플래시 이미지(Splash image)는 이전 버전과 달리 완전히 새롭게 디자인되었다. 2026 버전은 오토데스크의 40주년을 기념하여 특별한 스플래시 이미지와 함께 시작된다.   그림 1   최초 실행 시 시작 탭이 활성화되며, 아래쪽의 메뉴를 선택하여 ‘학습(LEARN)’, ‘작업(CREATE)’ 화면으로 이동할 수 있다. 학습 화면에는 새로워진 사항에 대한 동영상 도움말, 시작하기 비디오, 기능 비디오, 학습 팁, 온라인 지원 메뉴가 표시되며, 작업 화면에서는 시작하기, 최근 문서, 알림, 오토데스크 독스(Autodesk Docs) 연결 메뉴가 표시된다.   그림 2   성능 향상 오토캐드 2026은 이전 버전에 비해 놀라운 성능 향상을 제공한다.  파일 열기 속도 : 최대 11배 향상 애플리케이션 시작 속도 : 4배 향상 대용량 도면 처리 : 50% 더 빠른 렌더링 및 처리 네트워크 환경 : LAN/네트워크 환경에서 DWG 파일 작업 시 특히 더 빠른 속도   DWG 파일 포맷 오토캐드 2026은 오토캐드 2025와 동일한 DWG 파일 포맷인 ‘AutoCAD 2018 Drawing’을 사용한다. DWG 버전 2018 이후에는 계속 같은 포맷을 유지 중이다.    DWG 버전 코드 AC1032 : AutoCAD 2018-2026  AC1027 : AutoCAD 2013/2014/2015/2016/2017  AC1024 : AutoCAD 2010/2011/2012  AC1021 : AutoCAD 2007/2008/2009  AC1018 : AutoCAD 2004/2005/2006  AC1015 : AutoCAD 2000/2000i/2002    AI 기반 기능 오토캐드 2026에는 설계 프로세스를 혁신적으로 변화시키는 여러 AI 기반 기능이 추가되었다.   오토데스크 어시스턴트   그림 3   그림 4   오토데스크 어시스턴트(Autodesk Assistant)는 대화형 AI 기반 디지털 어시스턴트로, 오토캐드 작업 중 발생하는 질문에 자연어로 응답한다. 이전 버전보다 더 정확하고 맥락을 이해하는 응답을 제공한다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
비즈니스 프로세스 모델링을 배워보자
BPMN을 활용하여 제품 개발의 소통과 협업 극대화하기 (3)   지난 호에서는 BPMN(Business Process Modeling Notation)의 구성 요소를 살펴보고, 간단한 예제를 통해 주요 기능과 특징을 개괄적으로 파악해 보았다. 이번 호에서는 BPMN을 작성하기 위한 모델링 툴을 살펴보고, 이를 활용하여 비교적 간단한 비즈니스 프로세스 모델을 작성하는 방법을 소개하도록 하겠다.   ■ 연재순서 제1회 비즈니스 프로세스 모델링이 필요한 이유 제2회 BPMN은 무엇일까? 제3회 비즈니스 프로세스 모델링을 배워보자 제4회 간단한 제품 개발 프로세스를 디자인해보기 제5회 클라우드 서버 환경에서 BPMN을 연결하는 설루션 탐구   ■ 윤경렬 현대자동차 연구개발본부 책임연구원 ■ 가브리엘 데그라시 이탈리아 Esteco사의 프로젝트 매니저   우리는 지난 호에서 BPMN이 무엇인지에 대해 알아보았다. 우선 BPMN의 구성 요소를 살펴보았고 아주 간단한 BPMN 예제를 통해 주요 기능과 특징을 개괄적으로 파악해 보았다. 또한 BPMN을 활용하여 리프 스프링 개발 프로세스를 모델링하는 사례를 통해, 일반적인 WBS와 비교해 보았을 때 개발에 참여한 이해관계자들이 어떻게 협업을 해야 하는지 명확하게 파악할 수 있다는 것을 알게 되었다.   BPMN 웹사이트에서 모델러 확인 및 다운로드받기 BPMN을 작성하기 위한 모델링 툴을 알아보기에 앞서, 지난 호에서 소개한 바 있는 OMG 그룹에서 운영하고 있는 BPMN 웹사이트를 우선 찾아가 보도록 하겠다. OMG의 웹사이트(www.bpmn.org)에서는 기본적인 BPMN 개념 정의부터 새로운 BPMN 표준에 대한 연구까지 자세하게 소개하고 있으며, BPMN의 개념, 문서, 예제, 표준화 진행 등에 대한 내용이 자세하게 기술되어 있어서 BPMN을 이해하고 활용하는데 많은 도움을 받을 수 있다.   그림 1. OMG 그룹에서 운영하는 BPMN 웹사이트   우리는 여기서 세 가지 정도를 간단하게 살펴보고자 한다. 우선 ‘Examples’에는 BPMN을 보다 쉽게 이해할 수 있도록 다양한 분야의 예제를 템플릿 형태로 제공하고 있어, 사용자가 이를 활용하여 빠르게 BPMN을 적용해 볼 수 있도록 도움을 주고 있다. 다음은 ‘Implementers’로 현재 BPMN을 지원하고 활용하는 산업과 사례를 소개하고 있는데, 생각보다 다양하고 유명한 회사에서 어떻게 활용되고 있는지 확인할 수 있다.   그림 2. 다양한 예제를 보여주는 Examples   그림 3. 사례를 보여주는 Implementers   마지막으로 ‘BPMN MIWG’에서는 BPMN 표준을 준수하고 상호 모델을 교환하고 위한 목적으로 다양한 툴(소프트웨어)을 소개하고 비교 분석을 수행하고 있다. 우리가 여기서 관심 있게 살펴보려고 하는 것은 ‘View current test results on various tools’의 내용이다. 개인적 취향 및 선호도에 따라 모델링을 하기 위한 툴을 선택할 수 있지만, 대부분 표준을 잘 준수하고 있어서 표준 모델링의 경우 선택의 차이는 크지 않을 것으로 생각된다. 그래서 BPMN 모델을 작성하기 위해 우리는 상대적인 차이가 크지 않지만 인지도가 높은 ‘Camunda Modeler’를 선택하였다.   그림 4. 다양한 모델러에 대한 표준 및 상호 모델 교환 수준에 대한 정리     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
오픈마누스 AI 에이전트의 설치, 사용 및 구조 분석
BIM 칼럼니스트 강태욱의 이슈 & 토크   생성형 AI 에이전트는 목표 달성을 위해 세상을 관찰하고 스스로 행동하는 자율적인 애플리케이션으로, 행동과 의사결정을 위한 인지 아키텍처를 갖추고 있다. 이번 호에서는 오픈소스 AI 에이전트인 오픈마누스(OpenManus)를 통해 AI 에이전트의 동작 메커니즘이 어떻게 구현되는지 분석해 본다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   최근 AI 에이전트 기술이 크게 발전하고 있다. 구글의 에이전트 백서를 보면, 생성형 AI 에이전트는 목표 달성을 위해 세상을 관찰하고 스스로 행동하는 자율적인 애플리케이션으로 설명한다. 명시적인 지시가 없어도 스스로 판단하고 능동적으로 목표에 접근할 수 있다. 이러한 에이전트는 행동과 의사결정을 위한 인지 아키텍처를 갖추며, 핵심 구성 요소는 <그림 1>과 같이 사용자 입력에 대한 추론 역할을 하는 모델(보통은 GPT와 같은 LLM), 입력에 대해 필요한 기능을 제공하는 도구(tools), 그리고 어떤 도구를 호출할지 조율하는 오케스트레이션의 세 가지로 이루어진다.   그림 1. AI 에이전트의 구성 요소(Agents, Google, 2024)   이번 호에서는 AI 에이전트의 동작 메커니즘을 분석하기 위한 재료로, 딥시크(DeekSeek)와 더불어 관심이 높은 마누스(Manus.im)에서 영감을 받아 개발된 오픈마누스(OpenManus) 오픈소스 AI 에이전트를 활용하겠다. 오픈마누스는 메타GPT(MetaGPT)라는 이름으로 활동 중인 중국인 개발자가 공개한 AI 에이전트이다. 개발자는 오픈마누스가 연결된 다양한 도구를 LLM으로 조율하고 실행할 수 있다고 주장하고 있다. 깃허브(GitHub) 등에 설명된 오픈마누스는 다음과 같은 기능을 지원한다. 로컬에서 AI 에이전트 실행 여러 도구 및 API 통합 : 외부 API, 로컬 모델 및 자동화 도구를 연결, 호출 워크플로 사용자 지정 : AI가 복잡한 다단계 상호 작용을 효율적으로 처리 여러 LLM 지원 : 라마(LLaMA), 미스트랄(Mistral) 및 믹스트랄(Mixtral)과 같은 인기 있는 개방형 모델과 호환 자동화 향상 : 내장 메모리 및 계획 기능을 통해 코딩, 문서 처리, 연구 등을 지원   <그림 2>는 이 에이전트가 지원하는 기능 중 일부이다. 프롬프트 : “Create a basic Three.js endless runner game with a cube as the player and procedurally generated obstacles. Make sure to run it only in browser. If possible also launch it in the browser automatically after creating the game.”   그림 2   오픈마누스는 이전에 중국에서 개발된 마누스에 대한 관심을 오픈소소로 옮기는 데 성공했다. 오픈마누스는 현재 깃허브에서 4만 2000여 개의 별을 받을 정도로 관심을 받고 있다.    그림 3. 오픈마누스(2025년 4월 기준 42.8k stars)   필자는 오픈마누스에 대한 관심이 높았던 것은 구현된 기술보다는 에이전트 분야에서 크게 알려진 마누스에 대한 관심, 오픈소스 버전의 AI 에이전트 코드 공개가 더 크게 작용했다고 생각한다. 이제 설치 및 사용해 보고, 성능 품질을 확인해 보자. 그리고 코드 실행 메커니즘을 분석해 본다.    오픈마누스 설치 개발 환경은 이미 컴퓨터에 엔비디아 쿠다(NVIDIA CUDA), 파이토치(PyTorch) 등이 설치되어 있다고 가정한다. 이제, 다음 명령을 터미널에서 실행해 설치한다.   conda create -n open_manus python=3.12 conda activate open_manus git clone https://github.com/mannaandpoem/OpenManus.git cd OpenManus pip install -r requirements.txt playwright install   오픈마누스가 설치하는 패키지를 보면, 많은 경우, 기존에 잘 만들어진 LLM, AI Agent 라이브러리를 사용하는 것을 알 수 있다. 여기서 사용하는 주요 라이브러리는 다음과 같다.  pydantic, openai, fastapi, tiktoken, html2text, unicorn, googlesearch-python, playwright, docker     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
[칼럼] 실용형 AI, 제조의 미래를 바꾸다
트렌드에서 얻은 것 No. 23   “AI는 모든 산업에 새로운 가능성을 열어 준다. 중요한 것은 기술이 아니라, 그것을 어떻게 활용하느냐이다.” – 사티아 나델라(Satya Nadella), 마이크로소프트 CEO 마이크로소프트는 생성형 AI를 다양한 산업에 통합하며, 기술의 활용 방식에 중점을 두고 있고,  나델라의 말은 기술 도입보다 전략적 활용이 중요하다는 점을 강조한다.   생성형 AI와 함께 설계하고, 시뮬레이션하고, 개선하라 지금 이 이야기를 한국의 제조기업에 가서 한다면, 이상한 사람 취급을 받을 수 있다. 당장, 어떻게 할 수 있는지 이야기할 수 있느냐? 우리도 그렇게 하고 싶은데, 어떻게 할 수 있는지 제대로 나온 것도 없고, 사례가 있는지 등의 얘기가 자연스럽게 나온다. 맞는 말이다. 하지만, 지금은 레이스의 출발선에서 모두 같은 상황일 것이다. 다만, 전체를 제어하고 미래를 설계하는 혜안이 있는 사람이나 조직 유무에 따라 회사들의 달리기 속도는 분명 차이가 날 것이다.  우리는 그런 시대를 살아가고 또 지나가고 있다. 뉴스에서 다른 회사의 소식을 들으면서 탄식을 하고 있을 것인가, 아니면 고통스럽더라도 뭔가 해 보는 것이 낫지 않느냐의 갈림길에 있다. “그럼에도 불구하고, 우리는 설계할 수 있다.” 그렇다. ‘생성형 AI로 설계하고, 시뮬레이션하고, 개선하라’는 말은 지금의 제조 현장에선 거대한 간극처럼 느껴진다. 공장의 열기와 노하우 속에서 살아온 실무자에게는 뜬구름 잡는 이야기처럼 들릴 수 있다. “AI가 좋다는데, 어디까지 해봤나?”, “누가 이걸 설계에 실제로 썼대?” 이런 질문은 당연한 것이고, 오히려 현실을 잘 아는 사람일 수록 더 조심스러운 반응을 보인다. 그러나 지금, 우리는 모두 레이스의 출발선에 서 있다. 완성된 길도, 검증된 답도 아직 없다. 그러니 이 때 필요한 건 기술보다 먼저 혜안을 가진 사람, 구조를 설계할 수 있는 리더다. 단 한 줄의 프로토타입이라도 그려보려는 엔지니어, 익숙한 보고서보다 새로운 질문을 고민하는 팀장, 시행착오를 감수하고 방향을 잡으려는 임원이 지금 이 시대의 속도를 결정짓는다. 그리고 그 ‘혜안’은 거창한 청사진이 아닐 수도 있다. 단 하나의 설계 데이터를 기반으로 AI에게 첫 도면을 그리게 해보는 실험, 실시간 현장 일지에서 이상 징후를 요약하게 해 보는 시도, 현장의 사진 데이터로 품질 검사 자동화를 위한 검출 모델을 훈련해 보는 도전 등이 현 시점에서 예상해 볼 수 있는 가까운 미래 모습일 것 같다. “우리는 예상치 못한 상황을 목격하고, 예상된 상황을 보고하며, 결국 승리할 것입니다.” – 알렉스 카프, 팔란티어 CEO 카프는 AI를 활용한 제조업의 혁신이 불확실성을 극복하고 성공으로 이끄는 열쇠라고 보고 있으며, 이는 생성형 AI를 통한 제조업의 미래를 긍정적으로 전망한다.    그림 1. 실용형 AI 맵 ‘제조 미래를 바꾸다’(Map by 류용효) (클릭하면 큰 이미지로 볼 수 있습니다.)   제조, AI를 다시 만나다 “설계는 끝났지만, 고객은 원하지 않는다.”  “시뮬레이션은 끝났지만, 현장은 여전히 오류를 반복한다.”  “보고서는 쌓이지만, 문제는 여전히 현재진행형이다.” 이 문장들은 지금도 수많은 제조 현장에서 반복되고 있다. 전통적인 제조 프로세스는 분업과 효율을 중심으로 설계되었지만, 급변하는 고객의 요구와 복잡해진 제품 환경은 기존 체계의 민첩성과 창의성에 한계를 드러낸다. 이제 제조기업은 하나의 질문 앞에 서 있다. “우리는 더 빠르고 똑똑한 공장을 가질 준비가 되었는가?” 생성형 AI는 단순한 자동화 기술이 아니다. 설계자의 의도를 읽고 CAD 모델을 생성하며, 수십 개의 시뮬레이션으로 프로세스 병목을 알려주고, 품질 이상을 예측할 뿐 아니라 원인을 유추해주는 ‘설계적 사고를 하는 AI’가 등장하고 있다. 이는 기술의 도입이 아니라 제조기업의 ‘운영 철학’ 자체가 전환되는 순간이다. 제조기업이 생성형 AI와 함께 앞으로 어떻게 설계하고, 시뮬레이션하고, 개선할 수 있을지를 구체적으로 조망한다. “AI는 인류가 만든 가장 중요한 기술이다. 우리는 그것을 책임감 있게 개발하고 활용해야 한다.” – 순다르 피차이(Sundar Pichai), 구글 CEO 구글은 AI 개발에 있어 윤리적 책임과 사회적 영향을 고려하고 있으며, 피차이의 말은 기술 발전과 함께 그에 따른 책임도 중요하다는 점을 상기시켜 준다.   디자인의 재정의 - AI는 창의적인 엔지니어인가? 전통적인 제조 설계 과정은 복잡한 조건 설정, 반복적인 수정, 협업 간의 커뮤니케이션 비용 등으로 인해 수많은 시간과 리소스를 요구해왔다. 하지만 이제, 생성형 AI는 텍스트 한 줄로 설계를 시작하게 한다. “3개의 모듈로 구성된 소형 드론 프레임을 설계해 줘. 탄소 섬유 기반으로 무게는 150g 이하로.” 이 한 문장으로 AI는 초기 설계안을 생성하고, 다양한 대안 모델을 제공하며, 사용자 요구조건에 따라 자동 최적화를 제안한다. AI는 도면을 '그리는 도구'가 아니라, '제안하고 비교하는 동료 엔지니어'로 진화하고 있다. 예를 들어, 오토데스크의 퓨전 360(Fusion 360), 엔톱(nTop), 다쏘시스템의 3D익스피리언스 웍스(3DEXPERIENCE Works)는 이미 생성형 디자인 기능을 내장하고 있다.  디자이너는 아이디어를 제공하고, AI는 그에 기반한 설계 패턴을 도출한다. 이는 ‘무에서 유를 만드는’ 것이 아니라, 수많은 설계 데이터를 학습한 AI가 새로운 패턴과 조합을 도출해내는 방식이다. 결과적으로 설계자는 더 이상 반복적인 CAD 작업자가 아니다. 이제 디자이너는 ‘기획자’이자 ‘비평가’, 그리고 ‘AI와 협력하는 설계 전략가’가 된다. 또한, 이러한 생성형 설계는 대량 맞춤형 생산(mass customization)과의 결합으로 그 진가를 발휘한다. 기존에는 옵션이 제한된 범용 제품만이 경제성이 있었지만, 생성형 AI는 고객의 요구사항을 빠르게 읽고 즉시 설계에 반영할 수 있다. 이는 ‘고객이 참여하는 설계’, 즉 코디자인(co-design) 시대의 도래를 가능하게 한다. 기업은 더 빠르게 시장에 대응하고, 고객은 더 높은 만족도를 경험한다. 이처럼 생성형 AI는 설계를 단순히 ‘빠르게’ 만드는 기술이 아니라, 설계의 개념 자체를 ‘재정의’하는 도구이자 기업의 창의성과 기민함을 확장하는 전략 자산이 되고 있다. “퍼플렉시티(Perplexity)는 단순한 답변 엔진에서 행동 엔진으로 전환하고 있다. 이제는 단순히 질문에 답하는 것을 넘어, 사용자에게 행동을 제안하고 실행하는 단계로 나아가고 있다.” – 아라빈드 스리니바스(Aravind Srinivas), 퍼플렉시티 AI CEO 아라빈드의 말은 AI 기술이 단순한 정보 제공을 넘어, 사용자와의 상호작용을 통해 실제 행동을 유도하고 실행하는 방향으로 발전하고 있음을 의미한다.   시뮬레이션의 혁신 - 빠른 판단과 적은 비용 과거의 시뮬레이션은 전문 소프트웨어와 고성능 컴퓨팅 자원, 그리고 숙련된 엔지니어의 직관과 경험에 크게 의존해 왔다. CAE는 분명 설계 검증과 최적화의 핵심이었지만, 조건 설정 → 모델링 → 결과 해석 → 반복이라는 고비용 순환은 여전히 제품 개발의 병목으로 작용해왔다. 그러나 생성형 AI는 이 병목을 타파하는 새로운 접근을 제시한다. 자연어로 “강풍 조건에서 뒤틀림이 가장 적은 하우징 구조를 찾아줘”라고 지시하면, AI는 자동으로 물리 조건을 추론하고, 유사 데이터 기반의 시뮬레이션 템플릿을 구성하며, 수십 개의 대안 시나리오를 병렬 생성해 ‘예측 – 설명 – 추천’이라는 삼중 루프를 빠르게 수행한다. 이러한 기술은 시뮬레이션의 대중화(simulation democratization)를 이끈다. 기술 전공자가 아니어도, 제품 매니저나 품질 담당자가 AI의 도움으로 설계안의 응력 분포나 유동 조건에 대해 인사이트를 얻을 수 있다. 이는 실무자가 더 빠르게 결정을 내릴 수 있도록 돕고, 의사결정의 지연 대신, 다중 시나리오 기반의 ‘실험적 사고’를 가능하게 만든다. 대표적인 사례로는 알테어의 AI 기반 인스파이어 플랫폼(AI-driven Inspire Platform), 앤시스의 AI 기반 시뮬레이션 자동화, 그리고 다쏘시스템의 솔리드웍스 생성형 시뮬레이션(Generative Simulation for SOLIDWORKS)이 있다. 이들은 기존 FEM/CFD 분석의 시간과 비용을 줄이는 동시에, 경험 기반 의사결정에서 데이터 기반 최적화로의 전환을 이끌고 있다. 궁극적으로 생성형 AI는 단순히 ‘더 빠른 계산’을 넘어서, “어떤 시나리오를 먼저 고려해야 하는가?”, “이 조건에서 실패할 가능성은 무엇인가?”라는 전략적 질문에 답하는 보조 엔진이 되어 준다. 이는 시뮬레이션을 단지 제품 검증의 도구가 아니라, 경영 의사결정과 R&D 전략 수립의 인공지능 파트너로 진화시키는 변화의 시작점이다.  “AI는 우리가 상상하는 것보다 훨씬 더 빠르게 발전하고 있다. 자율주행차는 그저 시작일 뿐이다.” – 일론 머스크(Elon Musk), 테슬라 CEO 테슬라는 자율주행 기술 개발에 AGI 수준의 AI를 활용하고 있으며, 이는 단순한 기능 향상을 넘어 차량 설계와 운행 방식 전반을 재정의하는 접근이다.   업무 분석과 프로세스 개선 - 데이터는 말하고 AI는 듣는다 제조 현장의 데이터는 언제나 풍부했다. 작업자 일지, 설비 로그, 유지보수 메모, 품질검사 리포트, 현장 사진과 동영상, 고객 클레임 이메일… 하지만 이들 대부분은 정형화되지 않은 ‘텍스트’와 ‘문서’ 형태로 존재하며, 기존 시스템은 이를 ‘기록’하는 데에만 집중했고, 의미를 해석하고 연결하는 능력은 인간의 몫이었다. 이제 생성형 AI는 이 방대한 비정형 데이터의 숲에서 맥락을 이해하는 나무를 찾는다. 작업자가 남긴 “라인 3에서 어제도 제품 정렬이 안 맞았고, 자동 이젝터가 두 번 멈췄다”는 기록은, AI에겐 단순한 텍스트가 아니라 ‘패턴’과 ‘이상’의 시그널이다. LLM은 이런 문장을 분석해 작업 단계별 이벤트를 분해하고, 관련된 설비 로그와 품질 데이터를 연결하여 문제 지점을 도출한다. 이제 업무는 ‘기록하고 보고하는 일’이 아니라, ‘데이터가 스스로 분석하고 말하는 환경’으로 바뀌고 있다. 대표적인 활용 사례는 다음과 같다. 업무 요약 자동화 : 업무 일지를 요약해 경영진에게 핵심 이슈를 전달 프로세스 병목 식별 : 여러 부서의 텍스트 기반 보고서에서 공통 키워드와 불만 분석 문서 자동 생성 : SOP(표준작업지침서), 회의록, 개선안 보고서 등의 자동 초안 작성 협업 인텔리전스 : 여러 팀 간의 커뮤니케이션 데이터를 분석해 협업 지연 포인트 도출 실제로 지멘스는 AI 기반 자연어 처리 기술(Natural Language Processing : NLP)을 통해 디지털 작업지시서와 실시간 현장 대응 리포트를 자동 생성하는 기능을 도입했고, 보쉬는 AI를 통해 품질 클레임 문서에서 반복 출현하는 원인 유형을 추출하여 품질 개선의 단초로 활용하고 있다. 핵심은 이것이다. 현장의 수많은 대화와 기록이 AI에게 ‘말을 거는 데이터’가 되었고, AI는 그 말을 듣고, 요약하고, 통찰을 제시하며, 업무 개선을 스스로 제안하는 존재가 되었다는 점이다. 이제 우리는 묻지 않을 수 없다. 우리는 AI에게 말 걸 준비가 되어 있는가? 그리고 그 대답을 조직이 들을 준비는 되었는가? “가장 큰 위험은 아무런 위험도 감수하지 않는 것이다. 모든 것이 급변하는 시대에서 위험을 회피하는 전략은 반드시 실패로 이어진다.” — 마크 저커버그, 메타 CEO 저커버그는 변화와 혁신의 시대에 기존의 방식을 고수하며 위험을 회피하려는 태도가 오히려 더 큰 실패를 초래할 수 있음을 경고한다.   품질 관리의 진화 - AI는 예지적 감각을 가질 수 있는가 품질 관리는 제조업의 마지막 방어선이자, 가장 정교한 신경망이다. 그러나 지금까지의 품질 관리는 주로 사후 대응(postdefect 대응)에 집중되어 있었다. 불량이 발생한 후 원인을 찾고, 재발 방지책을 수립하고, 문서를 정리하는 ‘후행적 품질 관리’가 일반적이었다. 이제 생성형 AI는 이 전통적 프레임을 근본부터 흔들고 있다. AI는 ‘불량을 감지’하는 것이 아니라, ‘불량을 설명하고 예측’하려 한다. 예를 들어, 제품 표면의 이미지를 기반으로 한 비전 검사 시스템은 단순히 OK/NG를 판단하는 데서 그치지 않고, “이 영역의 텍스처 패턴은 온도 편차에 의한 수축 변형일 가능성이 높습니다”라고 말할 수 있는 설명형 모델로 진화하고 있다. 나아가, 생성형 AI는 텍스트, 이미지, 센서 데이터를 통합적으로 분석해 복합적인 이상 징후를 감지하고, 불량의 '가능성'과 '잠재 원인'을 추론해낸다. 예를 들어 다음과 같은 조합이 가능해진다. 작업자 일지 : “이틀 전부터 용접기압이 다소 약한 것 같다.” 센서 로그 : 오전 9~11시에 기압 편차 발생 불량 이미지 : 비드 형성 불균형 AI는 이를 연결해 “용접 조건의 경미한 변화가 반복 불량의 근본 원인일 수 있다”고 보고한다. 이는 단순한 예측모델이 아니다. ‘설명 가능한 품질 관리(Explainable Quality)’, 즉 AI가 품질 이슈에 대해 왜 그런 판단을 했는지를 근거와 함께 제시함으로써, 품질팀은 더 이상 직감이나 경험에만 의존하지 않고 데이터 기반의 합리적 개선 프로세스를 수립할 수 있다. 이미 보쉬, 토요타, GE 항공 등은 ▲AI 기반 비전 검사 시스템에서 ‘불량 예측 + 원인 설명’을 제공하는 모델을 구축 중이고 ▲ISO 9001과 연동되는 AI 품질 리포트 자동화 시스템을 테스트하고 있다. 이는 곧 ‘AI가 품질 시스템의 일원으로 공식 포함되는 시대’가 오고 있음을 뜻한다. 품질의 정의는 바뀌고 있다. 과거의 품질은 발견과 수정의 문제였지만, 앞으로의 품질은 예지와 설득의 문제다. AI는 이제 불량을 찾아내는 것이 아니라, 불량이 만들어지지 않도록 ‘생산 과정 그 자체를 개선하자’고 제안하는 동료가 되어가고 있다. “AI는 전기를 발견한 것과 같은 혁신이다. 모든 산업에 스며들 것이며, 그 영향을 무시할 수 없다.” – 앤드류 응(Andrew Ng), AI 전문가 앤드류 응은 AI의 보편성과 산업 전반에 미치는 영향을 강조하고 있다. 그의 말은 제조업에서도 AI의 통합이 필수임을 시사한다.   경고와 제언 - 생성형 AI는 도입이 아니라 전환이다 많은 제조기업이 생성형 AI에 주목하고 있다. 설계 자동화, 시뮬레이션 최적화, 업무 요약, 품질 예측… 도입 사례는 늘고 있지만, 도입이 곧 성공을 의미하진 않는다. 생성형 AI는 단순한 툴이 아니라, 운영 철학의 변화를 요구한다. 기존의 프로세스는 ‘정해진 절차와 역할’ 속에서 최적화를 추구해왔지만, 생성형 AI는 ‘질문을 던지고 시나리오를 비교하며 판단을 내리는 유연한 사고방식’을 요구한다. 즉, 기술만 바꾸는 것이 아니라 조직의 사고 체계와 역할 구조 자체를 재설계해야 하는 것이다. 예를 들어 <표 1>과 같은 전환이 필요하다.   표 1   하지만 문제는 기술이 아니다. 가장 큰 장벽은 조직이 AI를 받아들일 준비가 되어 있느냐는 것이다. 임원은 AI를 단순히 ‘자동화 툴’로 간주하는 경향이 많고, 현장은 여전히 ‘내 일을 뺏는 존재’로 AI를 경계한다. 이 간극을 메우지 않으면, AI는 시연 단계에서 멈추고, 조직은 변화의 본질을 놓친다. 따라서 다음과 같은 전환 전략이 필요하다. 파일럿이 아닌 전환 설계 특정 부서에서 테스트하는 것이 아니라, 조직 전체의 프로세스 전환 시나리오를 기획해야 한다. ‘도입 교육’이 아닌 ‘공감 설계’ 기술 사용법이 아니라, 왜 이 기술이 필요한지에 대한 비즈니스 관점에서의 스토리텔링이 필요하다. AI Co-Worker 관점 전환 AI는 도구가 아니라, 함께 판단하고 실험하는 동료로 봐야 한다. 이를 위해 직무 정의서(JD)도 다시 써야 한다. 성과 기준의 재정립 AI 도입 이후에는 ‘정확도’보다 ‘학습 속도’와 ‘적응력’이 핵심 성과 지표가 된다. 결국, 생성형 AI는 ‘도입해야 할 기술’이 아니라 ‘다르게 일하고, 다르게 생각하고, 다르게 운영하는 기업’으로 전환하기 위한 촉매제다. 이제 경영진에게 남은 질문은 단 하나다. “우리는 기술을 도입할 준비가 되었는가?”가 아니라, “우리는 조직을 전환할 용기를 가졌는가?”이다. “지금은 스타트업의 시대… 세상은 여전히 변화의 가능성에 잠들어 있다.” – 샘 올트먼, 오픈에이아이 CEO 올트먼은 기술 혁신의 시기에 기존 기업들이 변화에 둔감해질 수 있음을 경고하며, 새로운 도전과 변화를 추구하는 조직만이 미래를 선도할 수 있다는 메시지를 담고 있다.   맺음말 : 생성형 AI 시대의 제조 기업, 당신은 어떤 그림을 그리고 있는가 미래의 공장은 단지 더 정교하고, 더 빠르며, 더 자동화된 곳이 아니다. 그곳은 데이터를 읽고, 상황을 이해하고, 사람과 함께 결정하는 공장이다. 문제를 발견하기 전에 감지하고, 작업자를 지원하며, 스스로 최적의 방식을 제안하는 공장이다. 그리고 그 공장의 핵심 파트너는 인간의 상상력을 확장하는 생성형 AI다. 이제 중요한 질문은 이것이다. “우리는 어떤 그림을 그리고 있는가?” 기술은 빠르게 진화한다. 생성형 AI는 설계와 시뮬레이션, 업무 분석과 품질 관리까지 제조의 전 과정을 유기적으로 연결하며 ‘스마트’를 넘어 ‘지능적’으로 만들고 있다. 하지만 진정한 경쟁력은 기술의 채택이 아닌, 기술과 함께 일하는 방식의 변화에서 비롯된다. 아직 많은 제조기업은 ‘가능성 탐색’ 단계에 머물러 있다. 하지만 머뭇거릴 시간이 없다. AI는 이미 조직 구조, 업무 정의, 리더십의 방식까지 영향을 미치기 시작했다. 이제는 기술을 배우는 것이 아니라, 기술과 함께 일할 조직을 설계해야 할 때다. 생성형 AI 시대의 제조 기업은 세 가지 질문에 답할 수 있어야 한다. 우리는 상상할 수 있는가? 생성형 AI는 ‘주어진 문제를 해결’하는 것이 아니라 ‘가능성을 확장’한다. 제조기업의 조직은 아직도 문제만 찾고 있는가, 아니면 새로운 기회를 그리고 있는가? 우리는 받아들일 수 있는가? AI는 사람의 영역을 침범하지 않는다. 다만 그 옆에 선다. 우리는 전환할 수 있는가? 우리는 그것을 파트너로 받아들일 준비가 되어 있는가? AI 도입은 기술의 문제가 아니라, 사고방식과 리더십의 전환이다. 과연 지금의 조직은 그 전환을 감당할 수 있는가? 미래의 공장은 말하고 있다. “나는 설계하고, 시뮬레이션하고, 개선할 준비가 되어 있다. 너는 나와 함께 걸을 준비가 되어 있는가?”   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다.(블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
[신간] 50개의 프로젝트로 완성하는 파이썬 업무 자동화 + 챗GPT/Copilot/Gemini
오토코더 지음 / 22000원 / 위즈앤북   업무 효율성을 높이고 싶은 직장인, 실무에 바로 적용 가능한 파이썬 자동화 기술을 배우고 싶은 초보 개발자에게 안성맞춤인 책이 출간됐다. 『50개의 프로젝트로 완성하는 파이썬 업무 자동화 + 챗GPT/Copilot/Gemini』는 다양한 실전 예제를 통해 코딩에 익숙하지 않은 사람도 바로 실습할 수 있도록 구성된 실용서다. 이 책에서는 QR 코드 생성, 퀴즈 앱 만들기, 나만의 음성 비서 ‘자비스’ 제작 등 일상에서도 흥미롭게 활용할 수 있는 프로젝트부터, 문서 번역, 파일 정리, 데이터 분석, 엑셀 및 PDF 처리, 영상 다운로드 등 반복적인 업무를 자동화하는 실무 중심의 예제까지 폭넓게 다룬다. 또한, 뉴스·날씨·주식·환율·이미지·이커머스 정보 등 웹에서 데이터를 자동으로 수집하고 관리하는 프로젝트도 소개한다. 특히 주목할 점은 ChatGPT, Copilot, Gemini와 같은 최신 AI 도구들과의 연계를 통해 파이썬 자동화의 효율을 극대화할 수 있다는 점이다. AI 도구들은 코드 작성의 속도를 높이고, 오류를 쉽게 찾아내며, 더 나은 코드 구조를 제안해 주는 등 학습과 실무 모두에서 든든한 파트너가 되어준다. 이 책에서는 AI와 함께 협업하는 방법까지 친절하게 안내하고 있어, 기술을 처음 접하는 독자도 어렵지 않게 따라갈 수 있다. 무엇보다도 이 책의 강점은 실전 코드가 완성된 형태로 제공된다는 점이다. 독자들은 코드를 복사해 바로 실행해 볼 수 있으며, 각 코드에는 상세한 주석이 달려 있어 기능의 흐름을 쉽게 이해할 수 있다. '이론보다는 실습'이라는 책의 모토답게, 독자는 실제 작동하는 코드로 프로그래밍을 자연스럽게 익힐 수 있다. 파이썬은 직관적인 문법과 풍부한 라이브러리 덕분에 누구나 쉽게 배울 수 있는 언어다. 이 책은 그런 파이썬의 장점을 극대화하여, 독자들이 실생활과 업무에서 프로그래밍의 즐거움과 실용성을 모두 경험할 수 있도록 돕는다. 이제는 누구나 AI와 자동화를 활용해 스마트한 업무 환경을 만들 수 있다. 
작성일 : 2025-04-21
AWS, 아마존 Q 디벨로퍼 한국어 지원 확장
아마존웹서비스(AWS)는 아마존 Q 디벨로퍼(Amazon Q Developer)의 언어 지원 확장을 발표했다. 이를 통해 국내 개발자들은 한국어를 활용하여 아마존 Q 디벨로퍼 내에서 아키텍처 논의, 문서 작성, 인터페이스 설계, 애플리케이션 구축 등 다양한 개발 업무를 수행할 수 있게 됐다. 아마존 Q 디벨로퍼는 개발자가 사용하는 언어로 코드를 이해하고 문서를 작성하며, 인터페이스를 설계할 수 있도록 돕는 생성형 AI 기반 어시스턴트이다. 또한 코드에 대한 실시간 피드백을 제공하여 단순한 위험 요소 식별을 넘어 문제의 원인을 명확히 설명하고 해결 방안을 제시함으로써 반복적인 개발 작업을 신속하게 수행할 수 있도록 돕는다. 이를 통해 개발자는 보다 안전하고 신뢰할 수 있는 코드를 효율적으로 구현할 수 있으며, 다양한 개발 업무에서 생산성과 품질을 동시에 향상시킬 수 있다. 이번 한국어 지원 확장을 통해 아마존 Q 디벨로퍼는 개발자들이 한국어를 포함한 다양한 언어로 복잡한 기술 개념에 대해 보다 원활하게 자신이 선호하는 언어로 대화할 수 있도록 지원한다. 특히 이번 언어 지원 확장은 개발자들이 반복적이고 수동적인 작업에 소비하는 시간을 줄이고, 보다 창의적인 문제 해결에 집중할 수 있는 환경을 제공한다. AI 에이전트와 자연어 인터페이스가 결합되며 보다 직관적인 개발 경험이 가능해짐에 따라, 개발자들은 대규모 기술 현대화와 같이 기존에는 실행이 어려웠던 작업에도 적극적으로 대응할 수 있게 된다. 이는 개발자가 문제를 인식하고 해결하는 방식에 근본적인 변화를 가져오고 있으며, 복잡한 업무를 보다 효율적이고 전략적으로 수행할 수 있도록 돕는다. 예를 들어, 영어 등 다른 언어로 작성된 소스코드나 주석을 이해해야 하는 상황에서 아마존 Q 디벨로퍼가 유용하게 쓰일 수 있다. 개발자들은 모국어가 아닌 영어로 작성된 코드나 주석에 대해 한국어로 아마존 Q 디벨로퍼에게 질문하고 설명을 요청할 수 있으며, 아마존 Q 디벨로퍼는 이를 한국어로 명확하게 설명 가능하다. 이러한 기능은 영어나 다른 언어로 된 코드를 이해하는 데 있어 언어 장벽을 낮추고, 글로벌 개발 환경에서의 코드 이해도를 효과적으로 높이는 데 기여한다. 국내 기업은 이번 언어 지원 확장을 통해 해외 기업과의 협업에서 커뮤니케이션 효율을 높이고, 업무 생산성을 실질적으로 향상시킬 수 있다. 또한 다양한 언어를 사용하는 글로벌 팀 간 협업을 보다 포용적이고 효과적으로 만들고 글로벌 개발 환경을 강화할 수 있다. 확장된 언어 기능은 통합 개발 환경(IDE)과 커맨드라인 인터페이스(CLI)에서 즉시 이용 가능하며, 향후 AWS 매니지먼트 콘솔(AWS Management Console)에서도 지원될 예정이다. 또한 프리(Free) 및 프로(Pro) 요금제 사용자 모두에게 확장된 언어가 제공된다.
작성일 : 2025-04-14