• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "무기"에 대한 통합 검색 내용이 425개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
[칼럼] 나만의 AI 에이전트 필살기 Ⅱ – 코드를 이해하는 기획자, 비개발자의 바이브 코딩 입문기
현장에서 얻은 것 No. 23   “거인의 어깨 위에 올라서서 더 넓은 세상을 바라보라.” – 아이작 뉴턴 AI라는 거대한 변화의 파도는 우리 삶 곳곳을 흔들고 있었다. 이는 단순히 새로운 기술의 등장이 아니라, 사고방식과 일하는 방식, 나아가 사회 전체의 구조를 바꾸는 흐름이었다. 필자는 지난 8개월 동안 이 변화의 흐름 속에서 매일 배우고 실험하며 자신만의 여정을 이어갔다. 이 시간 동안 AI를 단순한 도구로만 보지 않게 되었는데, 그것은 업무, 창작, 학습, 그리고 삶 전반을 통해 스스로를 끊임없이 자극하는 동반자였다. AI를 맹목적으로 신뢰하기보다는 신중하게 거리를 두고, 동시에 적극적으로 받아들이는 태도를 통해 자신만의 ‘필살기’를 다듬어왔다. 필자의 학습법은 눈으로 익힌 것이 70%, 손으로 부딪히며 체득한 것이 30%로 다소 독특했다. 이러한 비율을 받아들인 이유는 필자의 경험이 개발자의 삶이 아니었기 때문이었다. ‘바이브 코딩(vibe coding)’을 통해 비개발자도 개발을 할 수 있다고 광고했지만, 실제로는 한계가 있음을 이해했다. 커서 AI(Cursor AI)로 회사 홈페이지를 만들고, 리플릿(Replit) 프로그램으로 MBTI 판별 프로그램을 바이브 코딩으로 시도하며, 만들고 수정하는 것도 가능했다. 하지만 PLM을 기업에 구축하는 PM으로서 경험한 바로는, 비개발자가 프로그램을 만드는 데에는 한계가 있었다. 취미로 만드는 것은 환영하지만 프로그램이 론칭된 이후 발생하는 많은 이슈를 경험하며, 개발자와의 협업이 더 효율적이라는 자신만의 학습 공식을 터득했다. 강의와 책, 스터디에서 얻은 지식이 토대가 되었고, 실습과 시행착오가 그 지식을 현실과 연결해 주었다. 이부일 대표의 강의를 들으며 챗GPT를 활용한 파이썬 코드를 직접 따라가던 순간, AI가 단순한 언어 모델이 아니라 강력한 실무 도구라는 사실을 처음 체감했다. 첫날은 잘 따라갔지만 둘째 날 노트북 배터리가 나가 낭패를 본 기억도 생생했는데, 이러한 경험조차도 학습 과정의 일부가 되었다. AI 학습은 지식을 머리에 담는 것뿐만 아니라 삶과 환경 속에서 몸으로 받아들이는 과정임을 깨달았다. 실패와 해프닝도 자산이 되어 필자의 학습 지도 위에 하나씩 좌표가 찍혀갔다. 중요한 것은 속도가 아니라, 끊임 없이 배우고 기록하고 다시 활용하는 과정이 훨씬 값지다는 것이었다.  “미래는 예측하는 것이 아니라 상상하는 것이다.” – 앨런 케이   ▲ 코드를 이해하는 기획자, 비개발자의 바이브 코딩 입문(Map by 류용효) (클릭하시면 큰 이미지로 볼수 있습니다.)   비개발자가 코드를 배우려 했던 이유 필자가 비개발자로서 코드를 배우기 시작한 동기는 개인적인 필요에서 비롯되었다. PLM 구축 PM으로서 개발자와 같은 언어로 소통하고 싶었고, 프로세스 컨설팅을 수행하며 시스템/프로세스 흐름을 실제 코드 레벨에서 검증하고 싶었다. 또한 콘셉트맵과 AI를 접목하여 아이디어를 프로토타입 코드로 구현하고, 데이터 및 AI 기반으로 확장하고자 했다. 바이브 코딩을 통해 손쉽게 프로토타입을 직접 만들어 아이디어를 빠르게 실험하고 싶었던 것도 큰 동기였다. 일반적인 경우에도 비개발자가 코드를 배우는 다양한 이유가 있었다. 반복적이고 단순한 작업을 효율화하여 업무를 자동화하고, 데이터 구조를 직접 다루어 인사이트를 도출하며 데이터 이해력을 강화하는 것이었다. 개발자와의 협업 과정에서 기술적 언어를 이해하여 소통을 원활하게 하고, 아이디어를 직접 테스트하고 시각화하여 창의적 문제 해결 능력을 키우는 데에도 코딩이 필요했다. 또한 디지털 리터러시와 융합 역량을 확보하여 커리어를 확장하고, AI 툴 활용의 전제 조건인 코드 이해를 통해 AI 시대에 적응하고자 했다. 결론적으로, 비개발자가 코드를 배우는 이유는 개발자가 되기 위해서가 아니라 아이디어를 직접 다루고, 빠르게 실험하며, 더 나은 협업자이자 창의적 문제 해결자가 되기 위함이었다. 개발자와 비개발자의 시선 차이는 명확했는데, 개발자는 ‘코드와 로직을 어떻게 짤까’에 집중하고 성능, 안정성, 기술적 가능성에 관심을 두는 반면, 비개발자는 ‘왜 이게 필요한 걸까’에 집중하며 사용성, 효율, 비즈니스 가치를 중요하게 생각했다. 예를 들어, 같은 CSV 데이터를 보더라도 개발자는 데이터의 구조와 처리 방법을, 비개발자는 그 데이터가 무엇을 말해주고 경영 의사결정에 어떻게 쓰일지에 대한 의미와 활용 방법을 보았다. “가장 현명한 사람은 계속해서 배우는 사람이다.” – 소크라테스   나만의 바이브 코딩 조합 : 작은 성공에서 배운 것들 AI와 바이브 코딩 시대에 기획자의 새로운 역할이 중요하게 부각되었다. 바이브 코딩은 2025년 2월 안드레이 카르파티가 처음 언급한 개념으로, 코드 작성보다는 ‘원하는 결과물의 느낌(바이브)’을 AI에게 자연어로 설명하여 프로그래밍하는 방식이었다. 이는 코드 작성 능력이 창의력과 기획 능력으로 전환되는 트렌드를 반영했다. 비개발자를 위한 AI 개발 방법론은 문제 정의, PRD(제품 요구 문서) 작성, AI 프롬프팅, 그리고 결과 검증의 단계로 이루어졌다. 기획자는 문제 정의와 사용자 경험에 집중하고, AI와 대화하며 요구사항을 구체화하고 결과물을 정제하며, 빠른 프로토타입으로 아이디어를 시각화하고 개선점을 파악하는 데 주력했다. 필자는 8개월간의 여정 속에서 자신만의 AI 활용법, 즉 ‘필살기’를 만들어갔다. 이는 단순히 나열된 여러 갈래의 길이 아니라, 하나의 지도 위에 유기적으로 연결되어 있었다. AI는 단순히 도구가 아니라 이 지도를 함께 그려가는 협력자가 되었다. 필자의 AI 필살기는 다음과 같았다. 커서 AI : 비개발자의 ‘첫 코치’ 역할을 했다. 코딩의 벽을 낮춰주는 동반자로, 복잡한 문법, 오류, 환경 설정의 두려움을 덜어주었다. 커서 AI는 단순한 코드 자동 생성이 아니라 필자의 의도를 코드로 번역하여 작은 실험과 반복을 가능하게 했고, 바이브 코딩 학습을 지원했다. GPT-4 기반의 AI 코드 에디터로 비주얼 스튜디오 코드(VS Code)와 호환되며, 자연어로 코딩하고, 즉각적인 에러 수정, 단계별 설명, 코드 리팩토링 기능을 제공했다. 구글 CLI(Google CLI) : 데이터와 시스템을 다루는 새로운 무기였다. 클릭 대신 명령어로 반복 작업을 자동화하여 속도와 효율성을 극대화했다. 가상머신(VM), 스토리지(Storage), 데이터베이스(DB) 등 클라우드 리소스를 제어하고, 데이터를 핸들링하며, API를 직접 호출하여 서비스 통합을 용이하게 했다. 이는 GUI의 한계를 넘어서는 전문가의 무기가 되었다. 파이썬(Python) : 실전에서 가장 유용한 최소 단위였다. 쉽고 직관적인 문법, 방대한 라이브러리, 빠른 프로토타이핑이 강점이었다. 데이터 읽기/쓰기 한 줄, 간단한 자동화 스크립트 등 작은 코드로도 큰 효과를 낼 수 있었고, CSV 분석 및 시각화, 업무 자동화, AI·ML 모델 실험 등에 활용되었다. 커서 AI와 제미나이(Gemini)가 내장되어 더 쉽게 사용할 수 있었다. 이러한 도구들을 조합하여 데이터 분석 자동화 시나리오와 업무 자동화 봇 구축 시나리오를 구현할 수 있었다. 예를 들어, 커서 AI로 데이터 수집 스크립트를 작성하고, 파이썬으로 데이터 정제 및 시각화를 하며, 구글 CLI로 정기적 실행을 스케줄링했다. 무엇보다 데이터 이해는 코드보다 중요한 사고 프레임이었다. 코딩은 기술 습득이 아니라 사고방식의 확장임을 깨달았다. 데이터 구조를 이해하면 문제 정의력이 달라지고, 기획자로서 문제를 바라보는 시각이 새로워졌다. CSV 한 줄이 어떤 의미를 담고 있는지, 칼럼이 단순한 값이 아니라 업무의 맥락임을 이해하게 되면서, 데이터를 읽는 순간 업무 프로세스가 보이기 시작했다. 이러한 변화된 시각은 단순 결과물이 아닌 흐름과 원인을 질문하게 했고, 개발자와 같은 언어로 협업 및 설계를 가능하게 하며, 데이터 기반의 빠른 실험과 검증으로 이어졌다. 필자는 매일 새로운 프로그램에 도전하는 ‘하루 한 프로그램 도전기’를 통해 작은 성공을 쌓아갔다. 완벽함보다는 경험과 시행착오를 통한 학습을 강조했고, 개발의 본질이 사고의 연습임을 깨달았다. 즉, 코드는 도구일 뿐 핵심은 문제를 정확히 이해하고 구조화하는 능력이며, 실패는 학습이고 작은 성공이 쌓여 성장 곡선을 만든다는 것이었다. 끊임없이 배우고 기록하고 다시 활용하는 과정이 훨씬 값지다는 것을 체감했다. 그러나 바이브 코딩에는 현실적인 문제점도 있었다. 새로운 기능을 추가할 때 기존 기능이 손상되는 회귀 테스트 부재 문제, AI가 전체 맥락을 충분히 기억하지 못해 발생하는 기능 안정성 문제가 있었다. 무한루프나 잘못된 로직 생성, 에러 메시지 오해 등으로 인한 오류 및 디버깅 한계, 그리고 수정 과정에서 토큰/리소스를 과다하게 소비하는 문제도 발생했다. 세션이 바뀌거나 컨텍스트가 길어지면 AI가 이전 코드의 세부 흐름을 잊어버리는 지속성 부족 문제와, AI에 의해 산발적으로 작성된 코드가 구조화가 부족하여 협업 및 유지보수가 어렵다는 한계도 있었다. 이러한 문제를 경험하며 코드를 이해하거나 개발자와 협업하는 것이 필수라는 결론에 도달했다. “성공의 비결은 기회를 잡기 위해 준비하는 것이다.” – 벤저민 디즈레일리   미래를 향한 다리 : 기획자의 새로운 역할 AI 시대에 기획자의 역할은 크게 확장될 수 있었다. 비개발자의 강점은 데이터 맥락 해석력, 비즈니스 중심 사고, 그리고 맥락적 설명 능력에 있었고, 이는 CSV 데이터 컬럼의 의미와 관계를 명확하게 설명하고, 로직보다 비즈니스 가치와 목적에 집중하며, 기술적 디테일보다 전체적인 흐름과 맥락을 설명하는 커뮤니케이션 역량을 제공했다. 프로세스 컨설턴트에서 프로그램 기획자로의 역량 확장이 필요했다. 컨설팅 경험을 시스템 아키텍처 설계에 적용하고, 업무 분석 능력을 시스템 요구사항으로 전환하며, 사용자 관점과 시스템 관점의 통합을 통해 더 나은 UX(사용자 경험)를 설계하는 것이었다. 현업 부서와 IT 부서 간의 가교 역할을 수행하고, 업무 프로세스 최적화를 통해 비효율 지점을 발견하고, 시스템 병목 현상을 데이터 흐름 관점에서 해결하는 역량이 중요했다. 컨설팅 산출물을 소프트웨어 명세서로 변환하고 워크플로 시뮬레이션으로 최적화를 검증하는 방법이 요구되었다. 기획자는 기술 이해도를 바탕으로 개발팀과의 협상력을 강화하고, 데이터 기반의 의사결정 모델을 구축하며, 비즈니스와 기술을 잇는 통합적 관점을 제시하고, 프로토타입으로 아이디어를 구체화하는 능력을 확보해야 했다. 이를 위한 역량 개발로는 시스템 사고, 기술 리터러시(API, DB 구조, 클라우드 서비스 기본 개념), 애자일 방법론, 그리고 지라(Jira), 피그마(Figma), 미로(Miro)와 같은 협업 도구 활용 능력이 있었다. 기획자와 개발자의 경계를 허물고 함께 문제를 정의하고 해결하는 통합적 협업 체계를 구축하는 것이 중요했다. “나는 똑똑한 것이 아니다. 단지 문제와 더 오래 씨름할 뿐이다.” – 알베르트 아인슈타인 AI의 본질은 ‘주체’가 아니라 ‘도움’이었다. AI는 망설임 없이 실행하지만, 그것이 옳은 방향인지 판단하는 것은 인간의 몫이었다. 필자는 회의록 요약 같은 업무를 AI에 맡겼다가 보안 문제와 인간 역량 퇴화의 위험성을 깨달았다. 편리함이 언제나 효율을 의미하는 것은 아니며, 잘못된 의존은 인간의 중요한 능력을 잃게 만들 수 있었다. 그래서 필자는 AI의 답변을 최소 세 번 이상 검증했는데, 빠른 실행보다 올바른 방향 설정이 중요했기 때문이었다. AI가 주는 답은 끝이 아니라 출발점이었다. 필자가 AI와 함께한 여정은 자신을 끊임없이 질문하게 했다. AI는 인간을 대체하는 기계가 아니라, 인간이 더 깊은 사고와 창조의 세계로 들어가도록 돕는 동반자였다. 필자가 찾은 필살기는 바로 이것이었다. AI 덕분에 자신의 본질(core)에 더 많은 시간을 쏟을 수 있게 된 것이었다. 단순 반복 업무를 대신해 주는 AI 덕분에, 필자는 사고하고 기획하고 판단하는 인간 고유의 역량에 집중할 수 있었다. AI는 더 이상 선택이 아닌 필수 도구이자 협력자였다. 중요한 것은 이 강력한 도구를 어떻게 나의 본질과 연결하여, 나만의 고유한 가치를 창출하고 미래를 만들어갈 것인가에 대한 깊은 고민과 끊임없는 실행이었다. AI는 재능은 있지만 한계에 부딪힌 사람에게 ‘도움’이 되어 AI 가수, AI 영화감독, AI 작가, AI 프로그래머가 될 수 있는 길을 열어주었다. 효율만을 쫓기보다는 본질에 집중하고, 변화의 흐름을 읽으면서도 자신만의 ‘필살기’를 계속해서 갈고 닦아야 했다. 미래를 향한 첫걸음은 지금 바로 도전하는 것이었다. 바이브 코딩은 기획 의도와 개발 실행 사이의 간극을 해소하고, AI 시대 기획자의 역할 확장과 가능성을 발견하게 해주었다. 업무 자동화로 반복 작업에서 벗어나 창의적 업무에 시간을 활용하고, 데이터 기반의 의사결정과 인사이트 도출 능력을 강화할 수 있었다. 하루 30분, 한 프로그램 만들기로 시작하는 것이 중요했고, 완벽함보다는 시작하는 용기가 중요했다. 하지만 잊지 말아야 할 것은, 바이브 코딩의 장단점을 잘 파악하여 적용해야 한다. 특히 개인적인 사용의 간단한 프로그램은 괜찮으나, 대외적인 서비스를 하는 프로그램 개발의 경우, 반드시 고급 개발자의 코드리뷰를 거쳐서 보안상의 문제, 데이터 유출 등이 없도록 해야 한다. AI는 명확하게 정의된 문제를 푸는 데 능숙하지만, 복잡하고 모호한 비즈니스 요구사항을 해석하여 견고한 시스템을 설계하는 것은 못하는 것을 명심해야 한다. “코딩은 기술이 아닌 사고 프레임의 확장이다.”    ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다. (블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[칼럼] 인공지능 기술 : 도입에서 혁신으로
디지털 지식전문가 조형식의 지식마당   빠르게, 그리고 깊게 지난 2년간 필자는 정신없이 AI 지식을 흡수하고 수많은 설루션을 직접 사용했다. 신기함과 불편함이 뒤섞인 체험 끝에, 직감적으로 2025년이 인공지능 기술의 이정표가 될 것이라 확신하게 됐다.   거시 흐름, 지능형 자동화와 에이전트의 부상 인공지능(AI) 기술의 발전은 2024년을 기점으로 단순히 새로운 기술의 도입을 넘어, 산업과 사회 전반의 혁신을 촉발하는 핵심 동력으로 자리 잡았다. 여러 분석가는 2024년이 AI 도입의 해였다면, 2025년은 AI가 기존 산업의 경계를 허물고 운영 방식을 근본적으로 재정의하는 ‘혁신의 해’가 될 것으로 전망하고 있다. 이러한 변화의 물결 속에서 기업들은 막연한 기대감을 넘어, AI 기술을 통해 실질적인 비즈니스 가치(ROI)를 창출하는 데 집중하고 있다. 특히, 반복적이고 명확한 규칙 기반의 작업을 AI로 자동화함으로써 즉각적인 효율성 증대와 함께 투자 성과를 확보하는 전략이 부상하고 있다. 이러한 맥락에서 ‘지능형 자동화(intelligent automation)’는 단순 반복 작업을 넘어 복잡한 워크플로를 자율적으로 처리하고 의사결정까지 내리는 단계로 진화하고 있다. 이는 ‘AI 에이전트’의 형태로 구현되며, 응용 AI의 차세대 진화로 주목받고 있다.  이러한 거시적 흐름 속에서 AI 기술의 3대 핵심 분야인 언어 모델, 이미지 및 영상 모델, 음성 모델의 최신 기술적 동향과 시장 변화를 심층적으로 분석하고, 나아가 이들 간의 융합 현상인 ‘멀티모달 AI’의 부상을 조망함으로써 비즈니스 리더와 기술 전문가에게 전략적 통찰을 만들어 봤다. 첫 번째, 대규모 언어 모델(LLM)의 혁신은 대부분 ‘트랜스포머(transformer)’ 아키텍처에 기반을 두고 있다. GPT-4, LLaMA 2, Falcon 등 현재 시장을 선도하는 모델은 이 아키텍처를 활용하여 방대한 데이터 세트에서 인간 언어의 패턴과 구조를 학습한다. 트랜스포머는 언어 모델의 근간을 이루며, 그 영향력은 비단 텍스트에만 머무르지 않고, 오픈AI(OpenAI)의 최신 비디오 생성 모델인 소라(Sora)의 ‘디퓨전 트랜스포머’ 아키텍처에도 확장 적용되고 있다. 최근 LLM 훈련 방법론은 단순히 모델의 규모를 키우는 것을 넘어, 효율과 특화된 성능을 확보하는 방향으로 진화하고 있다. LLM 시장은 ‘규모’를 추구하는 초대형 모델(LLM)과 ‘효율’을 추구하는 소형 언어 모델(SLM)이 공존하는 양면적 발전 양상을 보인다. GPT-4o나 제미나이(Gemini)와 같은 초대형 모델은 뛰어난 범용성과 성능으로 시장을 선도하는 한편, 특정 산업이나 용도에 맞게 최적화된 SLM은 적은 비용과 빠른 속도를 무기로 틈새시장을 공략하고 있다. 이러한 이원화된 전략은 기업이 적용 업무의 성격에 따라 두 모델을 전략적으로 선택하거나 조합하는 하이브리드 접근법을 채택하도록 유도하고 있다. 두 번째, 최근 이미지 및 영상 생성 모델의 핵심 기술은 ‘디퓨전 모델(diffusion model)’이다. 이 모델은 기존의 생성적 적대 신경망(GAN)이 가진 ‘모드 붕괴(mode collapse)’ 문제를 해결하며 고품질의 다양하고 사실적인 이미지 생성을 가능하게 했다. 디퓨전 모델은 이미지에 점진적으로 노이즈를 추가한 뒤, 이 노이즈를 단계적으로 제거하며 깨끗한 이미지를 복원하는 방식을 사용한다. 이 기술은 스테이블 디퓨전(Stable Diffusion), 달리(DALL-E)와 같은 대표적인 서비스에 활용되고 있다. 대규모 언어 모델과 마찬가지로, 이미지 및 영상 모델 역시 규모의 확장과 효율의 최적화라는 상반된 흐름을 동시에 경험하고 있다. 디퓨전 모델은 모델의 규모가 클수록 더 좋은 성능을 보이지만, 그만큼 막대한 연산 자원과 느린 처리 속도라는 문제에 직면한다. 이러한 한계를 극복하기 위해 모델 경량화와 처리 속도를 높이는 기술적 접근이 중요하게 다루어지고 있다. 이는 AI 기술의 상용화와 대중화를 위한 필수 단계이다. 영상 생성 기술은 미디어 및 엔터테인먼트 산업의 콘텐츠 창작 패러다임을 근본적으로 변화시키고 있다. 텍스트 입력만으로 원하는 비디오를 만들 수 있는 능력은 브레인스토밍을 가속화하고, 마케팅 자료, 게임 비주얼, 와이어프레임 및 프로토타입 제작 시간을 획기적으로 단축시켜 기업의 시장 대응력을 높인다. 특히, 전자상거래 기업은 AI 생성 이미지를 사용하여 다양한 제품 쇼케이스와 맞춤형 마케팅 자료를 대규모로 제작할 수 있다. 세 번째, 음성 모델은 크게 음성 신호를 텍스트로 변환하는 ‘음성 인식(ASR : Automatic Speech Recognition)’과 텍스트를 음성으로 변환하는 ‘음성 합성(TTS : Text-to-Speech)’ 기술로 구분된다. 딥러닝 기술의 발전은 이 두 분야에 혁명적인 변화를 가져왔다. 음성 인식(ASR) : 딥러닝 기반의 엔드 투 엔드 모델은 음향 모델링과 언어 모델링 과정을 통합하여 ASR의 정확도를 비약적으로 향상시켰다. 최신 시스템은 배경 소음을 제거하고 자연어 처리(NLP) 기술을 활용하2025/10여 문맥을 이해함으로써 최대 99%에 가까운 정확도를 달성하고 있다. 이는 단순히 음성을 텍스트로 바꾸는 것을 넘어, 사용자의 의도를 정확히 이해하고 적절하게 대응하는 대화형 AI 시스템의 핵심 기반이 된다. 음성 합성(TTS) : 딥러닝 기반 모델은 기계적인 느낌을 벗어나 사람처럼 자연스럽고 운율이 담긴 목소리를 생성하는 데 큰 발전을 이루었다. 이는 텍스트 분석, 운율 모델링, 그리고 실제 음성 파형을 생성하는 ‘보코더(vocoder)’ 과정을 통해 이루어진다. 현대 음성 합성 기술의 발전 방향은 단순히 자연스러움을 넘어, 인간-기계 상호작용을 더욱 몰입감 있고 개인화된 경험으로 이끄는 데 있다. 감정 표현 TTS : 이는 기계에 감정을 부여하여 인간 언어와 더욱 유사한 음성을 생성하는 것을 목표로 한다. 기쁨, 슬픔, 분노 등 다양한 감정을 표현하는 음성 합성은 사용자 경험을 더욱 풍부하게 만든다. 개인화된 음성 합성(Personalized TTS) : 이 기술은 약 1시간 분량의 데이터만으로 개인의 목소리를 복제하여 맞춤형 TTS를 만드는 연구 단계에 있다. 이는 부모의 목소리로 동화책을 읽어주는 등 감성적이고 따뜻한 응용 분야에 적용될 가능성을 열어준다.   감성으로 완성되는 기술 올해는 유난히 더운 것인지 아니면, 우리가 에어컨 환경에 너무 노출되어서 더위에 대한 저항력이 없어진 것인지는 모르지만 너무 더워서 정신적 활동이 힘들었다. 그 와중에 개인 자료를 정리하던 중에 개인적으로는 필자의 입사 이력서 사진을 우연히 찾아봤으나, 손상이 많이 되어서 인공지능으로 복원해 보기로 했다.     그림 1. 옛날 사진을 스마트폰으로 촬영한 이미지와 구글 인공지능으로 생성한 이미지   우선 스마트폰으로 이 사진을 찍은 다음 구글의 제미나이로 복원하고 다양한 모습으로 재현해 봤다. 그리고 동영상도 만들어 봤다. 아주 작고 희미한 흑백 사진이라고 우리의 머리속에 있는 이미지와 유사할 때까지 계속 보강된 이미지를 만들 수 있다. 그래서 최근에는 ‘포즈의 정리(Theorem of Pose)’라는 책을 구입해서 인공지능 생성 이미지 프롬프트를 본격적으로 연구해 보기로 했다.     그림 2. 구글 제미나이로 생성된 이미지   돌이켜보면 생각보다 빠른 속도다. 기술은 때로 불안과 경외를 동시에 불러온다. 그러나 확실한 것은, 인공지능이 우리의 감성을 자극하기 시작했다는 사실이다. 오래된 사진이 되살아나고, 목소리가 감정을 띠며, 텍스트가 움직이는 영상으로 변한다. 도입의 해를 지나 혁신의 해로 들어서는 지금, 우리는 효율을 넘어 의미를 설계해야 한다. AI는 결국, 우리 일과 삶의 이야기를 더 풍부하게 엮어내는 도구다. 기술이 감성을 만나 경험을 재편할 때, 진짜 혁신은 비로소 현실이 된다. 기업의 입장에서 2024년이 ‘도입의 해’였다면 2025년은 운영 방식 자체를 재정의하는 ‘혁신의 해’다. 기업은 막연한 기대가 아니라 ROI로 말하기 시작했고, 반복적·규칙 기반 업무를 AI로 자동화하여 즉각적인 효율과 투자 성과를 확보하는 전략이 주류로 부상했다. 그 중심에는 언어, 시각(이미지·영상), 음성이라는 세 가지 축과 이들을 촘촘히 엮어내는 멀티모달 AI가 있다.   ■ 조형식 항공 유체해석(CFD) 엔지니어로 출발하여 프로젝트 관리자 및 컨설턴트를 걸쳐서 디지털 지식 전문가로 활동하고 있다. 현재 디지털지식연구소 대표와 인더스트리 4.0, MES 강의, 캐드앤그래픽스 CNG 지식교육 방송 사회자 및 컬럼니스트로 활동하고 있다. 보잉, 삼성항공우주연구소, 한국항공(KAI), 지멘스에서 근무했다. 저서로는 ‘PLM 지식’, ‘서비스공학’, ‘스마트 엔지니어링’, ‘MES’, ‘인더스트리 4.0’ 등이 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
[케이스 스터디] KAI의 언리얼 엔진 기반 차세대 시뮬레이션 에코시스템
비행 훈련부터 제품 개발·운영까지 아우르는 핵심 인프라를 목표로   최근 몇 년 사이 시뮬레이션 산업은 디지털 트윈, AI(인공지능), VR(가상현실)/AR(증강현실) 등 첨단 디지털 기술 중심으로 빠르게 재편되고 있다. KAI(한국항공우주산업)는 이러한 흐름에 발맞춰 언리얼 엔진을 도입함으로써 항공산업 전반에 걸친 디지털 혁신을 추진하고 있다. ■ 자료 제공 : 에픽게임즈   KAI는 KT-1 기본 훈련기, T-50 고등훈련기, 수리온 기동헬기, 송골매 무인기 등 다양한 항공우주 시스템을 자체적으로 설계 및 제작하며, 지난 40년간 항공산업 및 국방산업을 선도해 온 종합 항공우주 설루션 기업이다. 최근에는 소형무장헬기(LAH)와 차세대 전투기 KF-21 개발을 비롯해 위성과 발사체 총조립 등 우주 분야로도 사업을 확대하고 있다. KAI는 2024년 ‘언리얼 페스트 시애틀 2024(Unreal Fest Seattle 2024)’에 참가해 자사의 시뮬레이션 전략을 소개하는 세션을 진행했다. 이번 호에서는 이 발표 내용을 바탕으로 시뮬레이션 산업의 급변하는 흐름 속에서 KAI가 어떻게 대응하고 있는지, 언리얼 엔진을 중심으로 한 시뮬레이션 통합 전략과 실제 적용 사례, 그리고 향후 비전 등을 중심으로 KAI의 기술 혁신에 대해 살펴본다.   ▲ 이미지 출처 : ‘KAI의 언리얼 엔진 기반 차세대 시뮬레이션 에코시스템 | 언리얼 엔진’ 영상 캡처   시뮬레이션 산업의 변화와 KAI의 대응 최근 시뮬레이션 산업은 빠르게 발전하며 구조적인 변화를 겪고 있다. 클라우드 기반 시뮬레이션 도입으로 언제 어디서든 고성능 자원에 접근할 수 있게 되었고, 디지털 트윈, AI, 머신러닝 기술의 결합을 통해 시뮬레이션은 단순한 재현을 넘어 예측과 최적화를 수행할 수 있는 툴로 진화하고 있다. 또한 VR/AR/MR(혼합현실) 기술은 훈련의 몰입감과 현실감을 높여 실제 환경과 유사한 시뮬레이션을 가능하게 하고, 마이크로서비스 아키텍처를 기반으로 한 소프트웨어 설계는 유연성과 확장성을 높이고 있다. KAI는 이러한 디지털 전환에 적극 대응하기 위해 전통적인 레거시 시뮬레이션 시스템을 언리얼 엔진과 통합하고 있다. 핵심 전략은 세 가지이다. 첫째, 언리얼 엔진을 활용한 빠른 프로토타이핑으로 기술 검증과 적용 속도를 높이는 것이다. 둘째, 표준화된 인터페이스를 통해 기존 시스템과의 원활한 연동을 실현하는 것이다. 셋째, 지속 가능한 콘텐츠 개발을 위한 플랫폼 설계로 장기적인 생태계 구축을 추진하는 것이다. 이를 통해 KAI는 기존 자산의 가치를 극대화함과 동시에 급변하는 기술 환경에 유연하고 효율적으로 대응하고 있다.   언리얼 엔진이 변화하는 시뮬레이션 산업에 주는 영향 언리얼 엔진은 시뮬레이션 산업의 진화에 있어 중요한 역할을 하고 있다. 우선 고품질의 리얼타임 3D 그래픽을 통해 현실감 있는 몰입형 시뮬레이션 환경을 구현할 수 있어, 훈련과 테스트의 효율성을 높이고 있다. 또한 VR/AR/MR과의 통합 지원은 다양한 산업에서 실제 같은 체험 기반 학습을 가능하게 한다. 언리얼 엔진의 모듈형 아키텍처와 개방된 생태계는 기존 레거시 시스템과의 통합을 쉽게 하고, 새로운 기술이나 기능을 빠르게 적용할 수 있는 유연성을 제공한다. 특히 디지털 트윈, AI, 머신러닝 등 최신 기술과의 연계가 원활하여 복잡한 시스템의 설계, 유지보수, 운영 효율을 높일 수 있다. KAI와 같은 기업에게 언리얼 엔진은 단순한 툴을 넘어, 지속 가능한 시뮬레이션 콘텐츠를 개발하고 새로운 시뮬레이션 생태계를 구축하는 핵심 기술로 자리잡고 있다.   ▲ KAI의 시뮬레이터로 본 FA-50의 모습(이미지 출처 : KAI)   기존 시스템에 언리얼 엔진을 통합한 사례 KAI는 항공기 훈련 체계에 언리얼 엔진을 도입해 현실성과 효율을 갖춘 시뮬레이터를 개발하고 있다. 대표적으로 VR 시뮬레이터의 경우, 조종사가 풀 플라이트 시뮬레이터에 들어가기 전 VR 기기를 통해 절차와 조작 감각을 사전에 익힐 수 있도록 돕고 있다. 언리얼 엔진으로 실제 항공기와 동일한 가상 조종석을 구현해 이륙/착륙, 비상절차, 항전 장비 조작 등을 별도 교관 없이 반복 학습할 수 있도록 했다. 기존의 시뮬레이터는 실제 항공기 수준의 조작감과 훈련 효과를 제공하지만, 높은 구축 비용과 운영 비용, 전용 시설의 필요 등으로 대량 보급에 한계가 있었다. KAI는 이러한 문제를 보완하기 위해 VR 기술을 도입했다. 언리얼 엔진은 영상 발생 장치, 계기 패널, 입출력 장치 등을 대체한 것은 물론, VR HMD(헤드 마운트 디스플레이) 하나만으로 기존의 여러 장치를 필요로 하는 대형 시현 시스템의 효과를 구현할 수 있게 했다. 또한 KAI는 독자적인 역학 모델과 항전 시스템을 언리얼 엔진의 실시간 렌더링과 결합해 실제 조종과 유사한 수준의 훈련 환경을 제공하고 있다. GIS(지리 정보 시스템), DEM(수치 표고 모델) 등 초정밀지도 기반의 한반도 3D 지형을 재현해 조종사의 임무 지역 지형 학습까지 지원하고 있다. 정비 훈련 분야에서도 언리얼 엔진은 핵심 플랫폼으로 활용되고 있다. 2024년 I/ITSEC 전시회에서 공개된 FA-50 정비 훈련 시뮬레이터는 VR 환경에서 점검과 부품 교체를 실습할 수 있을 뿐만 아니라, 사용자가 직접 교육 과정을 만들 수 있도록 설계됐다. 이를 통해 기존 문서와 평면형 CBT(컴퓨터 기반 훈련), 반복 시나리오 기반의 실습 중심 교육의 한계를 극복할 대안을 제시했다. 또한 같은 행사에서 선보인 수리온 헬기 비행 시뮬레이터(VFT)는 디지털 트윈과 고해상도 시각화를 통해 실제 기체 성능과 지형 정보를 반영한 몰입형 훈련 환경을 제공했다.   ▲ FA-50 비행 시뮬레이션의 디스플레이 장면(이미지 출처 : KAI)   시뮬레이션·시스템 개발에서 언리얼 엔진의 기여도 언리얼 엔진 도입 이후 KAI의 시뮬레이션 제작 파이프라인에는 큰 변화가 있었다. 데이터스미스를 활용해 카티아 등 설계 도구의 3D 모델을 쉽게 불러올 수 있어, 실제 설계 기반의 가상 조종석과 기체 모델을 빠르게 구축하고 별도의 모델링 없이 제작 시간을 줄일 수 있었다. 또한 자체 개발한 비행역학 엔진과 항공전자 시뮬레이션 소프트웨어를 언리얼 엔진과 실시간으로 연동해, 백엔드 시스템과 시각화 프론트엔드를 효과적으로 통합함으로써 전반적인 생산성이 향상되었다. 특히 조종사가 시각과 청각 정보를 통해 상황을 판단하는 VR 시뮬레이터 개발에서는 언리얼 엔진의 렌더링, 사운드, 애니메이션 기능이 핵심 도구로 사용되었다. 물리 기반 렌더링(PBR)은 금속, 유리, 계기판 등 재질을 사실적으로 구현했으며, 파티클 시스템과 머티리얼 노드를 통해 연기, 공기 왜곡 등의 시각 효과도 유연하게 조정할 수 있었다. 사운드 역시 메타사운드를 통해 엔진 RPM이나 환경 변화에 따라 실시간으로 반응하며, 조종사에게 실제 비행과 유사한 감각을 제공했다. 또한 애니메이션 블루프린트를 활용해 조종간, 계기판, 비행 제어면 간 연동 애니메이션의 비주얼을 직관적으로 구현할 수 있었으며, 스카이 애트머스피어, 볼류메트릭 클라우드, 하이트 포그 등의 기능은 대기 표현과 공간 인식 훈련의 몰입감을 높였다. 지형 구현에서도 언리얼 엔진의 LWC(Large World Coordinates)를 통해 수천 km 단위의 지형에서도 고속 이동 시 정밀도를 유지할 수 있었고, 풀 소스 코드를 활용해 AI 훈련 체계에 맞는 좌표 변환, 시스템 연동, 정밀 지형 구조를 구현할 수 있었다. 이 과정에서 실제 지형 데이터, 항공 사진, 고도 정보를 언리얼 엔진에 통합했고, GIS, DEM 기반의 정밀 지형 정보를 효과적으로 활용해 복잡한 비행 경로, 저공 비행 훈련, 목표 탐색 등 고난도 시나리오도 현실감 있게 구현할 수 있었다. 그 결과 KAI는 초대형 지형 데이터, 초정밀 위치 기반 훈련, 외부 시스템과의 정밀한 좌표 연동을 모두 만족하는 차세대 항공기 시뮬레이터 플랫폼을 성공적으로 구축할 수 있었다. 이외에도 다양한 플러그인, 하드웨어 인터페이스, 형상 관리 툴 연동, 이제는 리얼리티스캔으로 변경된 리얼리티캡처, 마켓플레이스 등을 활용하여 프로젝트 확장성과 콘텐츠 제작 유연성이 높아졌다.   ▲ 애니메이션 블루프린트를 활용해 구현한 조종간(이미지 출처 : KAI)   대규모 전술 훈련을 위한 AI 에이전트를 언리얼 엔진에 도입 KAI는 차세대 전술 훈련 시뮬레이터 개발을 위해 강화학습 기반의 AI 에이전트를 실제 훈련 시나리오에 연동하는 작업을 진행 중이다. 특히, 복잡한 전장 환경에서는 다양한 무기 체계와 플랫폼이 동시에 운용되기 때문에, 이를 하나의 시뮬레이션 공간에서 유기적으로 연동하는 기술이 매우 중요하다. 기존 상용 시뮬레이터 설루션의 경우 외부 시스템 연동이나 커스터마이징에 제약이 많지만, 언리얼 엔진은 C++ 기반의 풀 소스 코드 접근이 가능해 이러한 한계를 극복할 수 있다. KAI는 이러한 개방성을 바탕으로 자체 개발한 AI 에이전트를 정밀하게 통합해, 복잡한 상호작용이 필요한 전술 훈련 시나리오에서도 실질적인 이점을 확보할 수 있었다. 이와 같은 통합은 단순히 AI를 활용하는 수준을 넘어, 인간 조종사와 AI가 동일한 시뮬레이션 환경에서 훈련하고 상호 작용할 수 있는 구조를 의미한다. 기존의 설루션으로는 구현하기 어려웠지만 KAI는 언리얼 엔진을 도입해 이를 실현할 수 있었다. 결과적으로 언리얼 엔진은 AI, 실시간 시뮬레이션, 데이터 피드백이 통합된 플랫폼을 제공하며, KAI의 차세대 전술 훈련체계 구현에 핵심 역할을 하고 있다.   ▲ 지형 데이터 통합으로 구현한 대규모 도시 지역 디지털 트윈(이미지 출처 : KAI)   향후 시뮬레이션 에코시스템의 방향과 KAI의 비전 향후 시뮬레이션 에코시스템은 개방성, 지속 가능성, 개인화를 중심으로 발전해 나갈 것이다. AI와 빅데이터를 기반으로 한 맞춤형 훈련 시스템, 클라우드 환경에서의 지리적 제약 없는 고성능 시뮬레이션 그리고 VR/AR, 웨어러블 기술 등을 활용한 몰입형 실시간 피드백 시스템이 표준이 되어갈 것으로 전망된다. 이러한 변화 속에서 KAI는 기술 통합형 플랫폼과 자체 시뮬레이션 에코시스템을 구축하며, 대한민국 시뮬레이션 산업의 지속 가능한 성장 기반을 마련할 예정이다. 언리얼 엔진을 단순한 개발 툴이 아닌 시뮬레이션 엔진으로 활용하며, 플랫폼을 중심으로 고퀄리티 콘텐츠를 빠르게 생산할 수 있는 시뮬레이션 콘텐츠 파이프라인을 개발 중이다. KAI의 비전은 국내를 넘어 글로벌 시뮬레이션 에코시스템과 연결되는 것이다. 언리얼 엔진의 개방성과 기술력을 바탕으로 산업 전반에 걸쳐 공유 가능한 시뮬레이션 플랫폼을 만들고, 이를 통해 다양한 산업, 기관, 개발자가 협력할 수 있는 건강하고 확장 가능한 에코시스템을 조성하는 것이 목표다. 이러한 방향성과 비전을 바탕으로, KAI는 시뮬레이션 기술을 단순한 훈련 도구를 넘어 제품 개발, 유지보수, 운영 효율 개선을 위한 핵심 인프라로 성장시키고자 한다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
SIMTOS 2026, 우주항공·방산 분야 참관객 유치 확대 추진
생산제조기술 전시회 SIMTOS 2026이 참가업체의 주요 수요산업 중 하나인 우주항공·방산 부품 제조 분야 참관객 유치를 확대하기 위해 전략적 협력에 나섰다. SIMTOS 사무국은 ‘서울 ADEX 2025(서울 국제 항공우주 및 방위산업 전시회 2025) 공동운영본부와 업무협약(MOU)’을 맺었다고 밝혔다. 이와 함께 수요산업 실제 구매력을 갖춘 바이어와 전문 참관객을 SIMTOS 현장으로 유치하기 위한 공동 프로그램을 운영하기로 했다. 우주·항공, 방산 전문 전시회인 ADEX는 글로벌 제조기업과 국방부, 방위사업청 등 주요 기관, 그리고 해외 무기체계 구매 대표단이 참여하는 행사로, 올해는 서울공항(10.17~19)과 킨텍스(2025.10.20.~24)에서 개최된다. SIMTOS와 ADEX는 이번 MOU를 통해 ▲산업간 교류 및 협력 확대를 위한 사업 발굴 ▲정보 교류 확대를 위한 콘퍼런스 공동 기획·운영 ▲주최 전시회 상호 참가, 참관단 파견 등 교류 ▲협력사업 홍보자료 상호 공유 및 홍보 ▲양 기관이 합의한 기타 협력사업 공동 추진 등에 상호 협력을 확대할 계획이다. 이번 업무협약 체결로, SIMTOS는 우주항공과 방위 등 수요산업과 연계를 더욱 강화하게 되었다. 이와 함께 구매력 높은 바이어와 의사결정권자, 전문 엔지니어들의 방문이 확대될 것으로 기대됨에 따라 참가업체의 판로 및 시장 개척에도 직접 기여할 것으로 보인다.  2026년 4월 13일부터 17일까지 KINTEX 1·2 전시장에서 개최되는 SIMTOS 2026은 30여 개국 1300개 기업이 참가하고 10만 명 이상의 참관객이 방문하는 생산제조기술 전시회다. 이번 서울 ADEX 2025 공동운영본부와의 협력을 통해, SIMTOS 2026은 참가업체와 수요산업이 직접 연결되는 글로벌 산업 비즈니스 플랫폼으로서의 위상을 한층 더 공고히 할 것으로 기대하고 있다. SIMTOS 사무국은 “특히 이번 협약은 참가업체가 실질적인 시장 확대 기회를 얻을 수 있도록 수요산업과의 연계를 강화한 사례로, SIMTOS 참가업체들은 기존 제조·자동차·반도체 수요시장뿐 아니라 우주항공 및 방위산업이라는 고부가가치 산업 분야로 시장 저변을 넓힐 수 있을 것으로 기대된다”고 전했다.
작성일 : 2025-08-29
항공/방위 산업의 스마트 유지보수 및 MRO 구현
산업 디지털 전환을 가속화하는 버추얼 트윈 (4)   MRO(Maintenance, Repair, Overhaul or Operation)는 운영 중인 장비의 엔진, 장비, 부품 등에 대한 정비, 수리, 개조, 재생정비 등의 작업을 통해 안전성과 정시성, 신뢰성을 확보하기 위한 활동 및 산업을 통칭한다. 이번 호에서는 다쏘시스템의 3D익스피리언스 플랫폼(3DEXPERIENCE Platform)을 활용하여 스마트 유지보수를 구현하는 가상 모델 기반의 엔드 투 엔드 유지보수 설루션을 소개한다.   ■ 최형완 다쏘시스템코리아 IC본부에서 A&D (Aerospace & Defense)부문 Technical Executive를 맡고 있다. 홈페이지 | www.3ds.com/ko   MRO 산업은 크게 민간 정비 사업과 군용 MRO 사업으로 나뉘며, 민간 정비 사업은 주로 항공 정비와 선박 정비로 구분한다. 민간 정비 사업 중 항공 부문의 2025년 전 세계 MRO 시장은 1230억 달러로 예상되며, 2034년에는 1640억 달러로 연 평균 3.2%의 성장률을 예상하고 있다. 우리 정부는 국내 항공 부문의 MRO 산업을 2030년까지 38억 달러(약 5조 원), 2만 3000명의 일자리를 창출하는 시장으로 키우겠다는 계획을 발표했다. 우리 나라 방산업계는 지난 2년 동안 우수한 기술력과 생산력을 바탕으로 303억 달러 규모의 무기 수출 계약을 체결하여 2년 연속 글로벌 방산 수출 상위 10위권 내로 진입하였다. 이에 따라 국내 방산업체들은 높아진 위상을 바탕으로 더 높은 수익을 장기적, 안정적으로 낼 수 있는 사업에 집중하고 있는데, 바로 MRO 산업이다. 보통 무기체계는 가격이 비싸고 한 번 도입하면 10년에서 30년 동안 사용하는 것이 일반적이다. 따라서 판매 후에도 지속적인 사후 관리 서비스를 요구하는 경우가 대부분이다. 현재 글로벌 방산 MRO 사업은 전체 무기체계 시장에서 60% 이상의 비중을 차지하는 것으로 알려져 있다. 이 시장을 위해서 국내 대형 방산업체인 KAI, 한화오션, 한화시스템, LIG넥스원도 MRO 전담 조직을 설립하여 적극 투자 중이다. 항공/방위 산업을 영위하는 90% 이상의 고객사는 다쏘시스템의 설루션을 사용하고 있으며, 다쏘시스템은 고객사의 엔드 투 엔드 프로세스를 지원하는 11개 산업 특화 설루션을 보유하고 지속적으로 발전시키고 있다. 이 중에서 운영/유지보수(Keep Them Operating) 특화 설루션은 장비의 가용성을 높이고 유지보수 비용을 줄이면서도 장비의 안정성을 높이는데 중점을 두고 있는 프로세스이다.   그림 1. 모델 기반의 스마트 유지보수   이러한 흐름 속에서 요즘은 장비 생애주기 중 유지보수(sustainment)가 핵심 프로세스로 자리잡고 있다. 운영자(항공사나 사용군), 서비스 제공자, OEM들은 장비의 유지보수 가용성을 보장하기 위해서 전통적인 정비 방식에서 모델 기반 정비(modelbased maintenance)로의 프로세스 전환에 대해 피할 수 없는 변화로 여기고 있다. 다쏘시스템은 전통적인 고립된 MRO 서비스 방식과는 다른, 스마트 유지보수(smart sustainment)로 프로세스를 변화시키고 향상시키는 포괄적인 엔드 투 엔드 모델 기반 유지보수 설루션을 제공한다. 다쏘시스템의 엔드 투 엔드 모델 기반 유지보수 설루션은 3D익스피리언스 플랫폼(3DEXPERIENCE Platform)을 활용하여 MRO 프로세스를 가상(virtual) 환경에 투영할 수 있으며, 다음의 여섯 단계를 통하여 스마트 유지보수를 구현한다. 이러한 과정을 통해 우리는 더 나은 의사결정 지원을 받아 장비 가용성 증대와 유지보수 비용 절감이라는 목표를 달성할 수 있다.   엔드 투 엔드 디지털 연속성 첫 번째 단계는 장비의 지속적인 운영을 위한 엔드 투 엔드 디지털 연속성이다. 설계 데이터가 MBOM(제조 BOM)과 SBOM(서비스 BOM)까지 연결되어 있으며, 설계 및 엔지니어링 활동에서 서비스 엔지니어링 활동까지 완전한 디지털 연속성이 확보되고, 이러한 모든 활동은 3D익스피리언스 플랫폼 내에서 수행된다. 전용 애플리케이션을 통해 전용 EBOM(엔지니어링 BOM)에서 파생된 모델 기반 SBOM 구조를 생성할 수 있으며, 여기에 정비 작업, 서비스 키트, 예비 부품, 정비 지침 및 제조사 정비 공지문(service bulletin) 등 주요 서비스 기술 데이터를 포함시킬 수 있다. 또한, 레거시(기존) 장비의 유지보수 데이터도 플랫폼에 가져올 수 있다는 점도 중요하다. 이렇게 하면 유지보수 데이터 모델에 통합할 수 있으며, 플랫폼에서 설계된 장비뿐만 아니라 레거시 장비 전체도 플랫폼의 이점을 누릴 수 있다.   그림 2. 엔드 투 엔드 디지털 연속성     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-07-01
[포커스] PLM/DX 베스트 프랙티스 컨퍼런스 2025, 제조 혁신을 위한 PLM과 AI 전략을 짚다
‘PLM/DX 베스트 프랙티스 컨퍼런스 2025’가 지난 6월 20일 서울 코엑스에서 열렸다. ‘제조의 미래를 위한 PLM 혁신과 AX 전략’을 주제로 한 이번 행사에서는 제조산업에서 불확실한 외부 환경에 대응하고 기술 및 비용 경쟁력을 확보하기 위한 통합 PLM(제품 수명주기 관리) 설루션과 인공지능 전환(AX)의 중요성을 강조했다. ■ 정수진 편집장     한국산업지능화협회 PLM 기술위원회 위원장인 KAIST 서효원 명예교수는 개회사에서 AI와 결합하여 다시 중요해진 PLM의 미래를 강조했다. 그는 “AI 혁신이 전 세계를 휩쓰는 가운데 특히 제조 산업에서 GPT와 같은 LLM(대규모 언어 모델)을 어떻게 적용할지가 핵심 과제”라면서, “제조 특유의 반구조화된 데이터, 환각(hallucination) 문제, 막대한 학습 데이터 구축 비용 등의 난관을 극복하고 1~2년 내에 현업에서 성과를 내야 한다”고 강조했다. 또한, “이번 콘퍼런스가 PLM을 넘어 생성형 AI, 디지털 트윈 등 폭넓은 미래 지향적 주제를 다루며, 산업 전문가들이 디지털 혁신의 본질적 가치와 방향성을 논의하고 상호 인사이트를 얻는 교류의 장이 되기를 바란다”고 전했다.   ▲ 서효원 한국산업지능화협회 PLM 기술위원회 위원장   한국CDE학회의 회장인 충남대학교 정현 교수는 격려사를 통해 “이번 행사에서 PLM의 AI 전환을 위해 생성형 AI, 디지털 트윈 등 폭넓은 미래 지향적 논의가 이뤄지기를 바란다”면서, 다양한 산업 전문가들의 교류를 통해 디지털 혁신의 본질적 가치와 방향성을 점검하고 상호 인사이트를 얻는 것이 중요하다고 짚었다. 그는 또한 기술 확산을 넘어 회사의 전략, 내부 문화, 조직 혁신이 동반되어야 진정한 디지털 AI 전환이 완성될 것이라고 강조하면서, “이번 PLX/DX 베스트 프랙티스 콘퍼런스가 새로운 협업과 혁신의 출발점이 되기를 바라며, 한국CDE학회 또한 산학연 협력의 구심점 역할을 이어나갈 것”이라고 전했다.   ▲ 한국CDE학회 정현 회장   이번 행사의 오전 시간에는 세 편의 기조연설이 진행됐다. 기조연설에서는 제조 산업의 미래를 위한 PLM 기반의 통합적 디지털/ AI 전환 전략을 통해 경쟁력을 강화하고 새로운 가치를 창출해야 한다는 메시지와 함께, 단순한 기술 도입을 넘어 데이터 통합과 표준화 그리고 궁극적으로 일하는 방식과 조직 문화의 근본적인 변화가 필요하다는 지적이 있었다.   PLM과 산업 AI, 미래 제조 산업의 핵심 동력이 되다 가천대학교의 조영임 교수는 ‘제조 산업의 미래, 산업 AI 트렌드와 과제’를 주제로 한 기조연설에서 전 세계적으로 AI 기술 개발이 빠르게 추진되고 있으며, 제조 기업이 AI에 몰입하지 않으면 경쟁력을 유지하기 어렵다고 짚었다. 그리고 AI를 통한 제조 산업의 미래 활성화 방안을 제시하면서, AI 기술 발전과 함께 제조업이 갖춰야 할 기술/전략/인프라/인재 양성의 중요성을 언급했다. PLM은 제품의 전체 생애 주기에 걸친 프로세스와 데이터를 통합 관리하는 개념으로 설명된다. 최근에는 단순한 제품 관리를 넘어 순환 경제(circular economy)의 핵심 개념으로 정의되고 있으며, 데이터 중심의 관리 및 전략적 최적화를 추구하고 있다. 조영임 교수는 “최근 PLM이 다시 중요하게 부각되는 이유는 디지털 전환에 있어 PLM이 디지털 스레드(digital Thread)와 디지털 트윈(digital Twin)을 포괄하는 상위 관리 체계로서 중요한 역할을 하며, 디지털 전환에 AI가 결합되는 구조가 글로벌 제조 산업 AI의 기본 모델이기 때문”이라고 짚었다.   ▲ 가천대학교 조영임 교수   한편, AI 기술은 현재 클라우드 중심의 LLM(대규모 언어 모델)에서 미래에는 온디바이스 기반의 SLM(소규모 언어 모델)로 변화하며 효율성과 협업, 그리고 지속가능성을 강조할 것으로 보인다. 특히 에이전틱 AI(agentic AI)는 LLM을 넘어 사용자의 복잡한 작업을 스스로 처리하는 비서 역할을 수행할 것으로 기대를 모으고 있다. 조영임 교수는 “국내 제조업의 AI 도입률은 아직 낮고, 대기업이 중소기업보다 도입률이 높다. 또한, 한국 기업은 핵심 기술 영역보다는 재무 관리 등 주변 인프라에 AI를 집중하는 경향이 있다”고 지적했다. 향후 산업 AI의 과제로는 핵심 기술에 대한 고도화된 도입과 전략 및 데이터 연결의 표준화가 꼽힌다. 조영임 교수는 “산업 AI는 제조 디지털 전환의 핵심 기술로서, PLM과 AI의 공동 연계, 통합 패키지 개발, 산업 AI 표준 반영, 제조 DX 가이드라인 개발 및 공공 조달 지침 마련 등이 정부가 기업과 함께 추진해야 할 과제”라고 전했다.   AI 시대 제조 경쟁력 향상을 위한 통합형 PLM 전략 SAP 코리아의 고건 파트너는 ‘AI 혁신을 기회로! 제조 경쟁력을 높이는 통합형 PLM 전략’이라는 주제로 기조연설을 진행하면서, SAP의 PLM과 ERP(전사 자원 관리) 통합 전략을 소개했다. SAP는 예측 불가능한 외부 환경에 대응하고 내부 역량을 강화하기 위해 애플리케이션 레벨의 수평적 통합과 데이터 및 AI 레이어를 통한 수직적 통합을 동시에 추구하고 있다. SAP가 추진하는 수평적 PLM 통합은 디지털 스레드를 통해 데이터 사일로를 해소하고, 사내뿐 아니라 협력사 및 고객사를 포함한 전체 가치사슬(value chain)의 데이터를 실시간으로 통합하는 것을 목표로 한다. 고건 파트너는 “SAP는 이를 위해 별도의 비즈니스 네트워크를 운영하며, 설계 단계의 산출물이 제조 및 설비 관리까지 원활하게 연동되어 정보 재활용이 극대화되는 환경을 제공한다”고 소개했다.   ▲ SAP 코리아 고건 파트너   수직적 PLM 통합은 애플리케이션 위에 AI 레이어를 두어 정형 및 비정형 데이터를 활용하고 AI가 비즈니스를 이해하도록 하는 전략이다. 고건 파트너는 국내 기업의 AI 도입 시 가장 큰 문제점으로 데이터 부재와 품질 문제를 꼽으면서, AI와 함께 지식 그래프(knowledge graph)를 PLM에 적용하여 예지 정비 및 설계 변경 영향도 분석 등이 가능한 데이터 플랫폼을 제안했다. 고건 파트너는 “SAP는 PLM에 AI 코파일럿인 쥴(Joule)을 적용해 협업 및 문서 요약 기능을 제공하고 있으며, 오픈 AI, 엔비디아, 메타 등 30개 이상의 파운데이션 모델과 협력하여 제조 현장의 로봇 제어까지 확장하고 있다”고 전했다. 또한 “현재 기업들이 직면한 불확실성에 대응하기 위해서는 제품 정보 관리의 고도화가 필수이며, 통합형 PLM 전략이 그 해답이 될 것”이라고 강조했다.   조선산업의 미래를 위한 차세대 설계/생산 통합 플랫폼 HD현대의 이태진 전무는 ‘조선업의 미래를 위한 차세대 설계/생산 통합 플랫폼’을 주제로 한 기조연설에서 조선산업의 현황과 디지털 전환 전략의 필요성을 짚었다. 국내 조선산업은 탈탄소 정책, 에너지 무기화, 군사력 강화 등으로 호황을 맞고 있지만, 한편으로 중국 조선소의 추격, 높은 원가와 인건비, 친환경 선박 생산의 어려움, 숙련 인력의 이탈, 그리고 신사업 발굴 필요성 등으로 인해 위기감을 갖고 있기도 하다. 이태진 전무는 이러한 상황에서 디지털 전환은 조선산업의 미래를 위한 필수 요소라고 진단하면서, 2020년부터 2030년까지 10년간 디지털로 최적 운영되는 초일류 조선소 구현을 목표로 하는 HD현대의 디지털 전환 전략을 소개했다. HD현대의 ‘FOS(Future of Shipyard)’ 프로젝트는 조선소 데이터의 디지털화, 데이터 연결 및 최적화, 지능형 조선소 구축 등 세 3단계로 진행되며, 그 핵심은 차세대 CAD와 PLM을 근간으로 하는 차세대 설계/생산 통합 플랫폼 구축에 있다.   ▲ HD현대 이태진 전무   HD현대의 차세대 설계/생산 통합 플랫폼은 연결성, 일하는 방식의 변화, 전체 업무 효율 극대화, 디지털 제조 기반 구축 등 네 가지 핵심 목표를 지향한다. 이를 실현할 수 있는 차세대 CAD/PLM 구축을 위해 HD현대는 올해 말 최종 설루션을 선정하고 2026년부터 구축에 들어갈 예정이며, 설루션 선정뿐만 아니라 업무 프로세스 변화를 함께 추진할 계획이다. 이태진 전무는 “PLM/DX는 제조업 경쟁력 강화의 핵심 구현 수단이며, 디지털 스레드는 생산, SCM(공급망 관리), MRO(유지보수, 수리, 운영) 사업까지 연결하여 새로운 부가가치를 창출할 기회가 될 것”이라고 전망하면서, “이러한 설계/생산 디지털 전환이 장기적으로 제조산업의 경쟁력 강화에 크게 기여할 것이며, ERP, SCM, 데이터 플랫폼, AI 등 모든 연관 시스템과의 연결이 중요하다”고 덧붙였다.   기술 트렌드부터 사례까지, PLM·DX의 현재와 미래 짚다 ‘PLM/DX 베스트 프랙티스 컨퍼런스 2025’의 기조연설에 이어 오후 시간에는 ▲베스트 프랙티스 ▲트렌드/신기술/설루션 ▲ SDM(MES/MOM) 등 세 개의 트랙에서 18편의 발표가 진행됐다.   ■ 같이 보기 : [포커스] 기술 트렌드부터 사례까지, PLM·DX의 현재와 미래 짚다   또한, 부스 전시에서는 제조 혁신을 실현하기 위한 디지털 전환 및 인공지능 전환 설루션 기술이 다양하게 소개되어 참가자들의 눈길을 끌었다.   ▲ 다쏘시스템 부스   ▲ 마이링크 부스   ▲ 세원에스텍 부스   ▲ 쓰리피체인 부스   ▲ 씨이랩 부스   ▲ 아이지피넷 부스   ▲ 인코스 부스   ▲ 한화시스템 부스     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-07-01
[칼럼] 데이터 연결이 곧 경쟁력이다– 팔란티어의 미래 플랫폼 전략
트렌드에서 얻은 것 No.25   “과거를 연결하고, 미래를 실행하라.” – 류용효 기업은 늘 데이터를 말한다. 그러나 정작 데이터를 연결해 실행 가능한 인사이트를 만들어내는 기업은 드물다. 레거시 시스템으로 불리는 PLM, ERP, MES, CRM은 여전히 기업의 정보를 최일선에서 책임지고 있다. 팔란티어는 이 최일선의 정보로부터 디지털 스레드로 연결하듯이 ‘데이터 연결 기반 실행 플랫폼’을 제시한다. 이번 호에서는 팔란티어가 어떻게 온톨로지 개념으로 기업에게 새로운 시각을 가질 수 있도록 기업의 실행력을 혁신하는지 살펴본다. “가장 위험한 말은 ‘우리는 늘 이렇게 해 왔다’이다.” – 그레이스 호퍼   문제 제기 레거시 시스템(PLM, ERP, MES, CRM)만으로는 불확실한 미래 대응이 불가능해지는 이유가 있다. 전통적인 기업 IT 시스템은 계획(plan) – 생산(do) – 분석(check) – 개선(action)의 순환을 지원하기 위해 발전해 왔다. 대표적인 것이 PLM(제품 수명주기 관리), ERP(전사적 자원 관리), MES(생산 실행 시스템), CRM(고객 관계 관리)이다. 이들 시스템은 각자의 목적에 맞게 기업의 방대한 데이터를 수집하고 관리하지만, 서로 연결되어 실시간 실행까지 이어지지는 않는 근본적인 한계를 안고 있다. 이는 마치 부서마다 다른 언어를 사용하는 것과 같다. 제품 설계 부서와 제조 부서가 서로 다른 시스템, 다른 데이터 구조, 다른 용어를 사용하면서 진정한 협업과 실행은 요원해진다. 데이터는 많은데 연결과 실행이 안 되는 기업의 현실에서, 많은 기업이 이미 데이터를 축적하고 있다. 하지만 축적된 데이터는 실시간으로 연결되어 의미를 만들어내지 못하고, 결국 ‘묵혀두는 데이터 자산’으로 남는다. 경영진은 “우리에겐 데이터가 충분하다”고 말하지만, 정작 그 데이터를 기반으로 한 ‘즉각적 실행’은 불가능하다고 느끼는 경우가 대부분이다. 팔란티어가 주목한 것은 바로 이 ‘연결되지 않은 데이터’, ‘실행되지 않는 인사이트’의 문제였다. 그리고 그 해법을 데이터 연결(data integration)과 실행 자동화(operational AI)에서 찾았다. “데이터는 새로운 석유가 아니라 새로운 물이다.” – 앤드류 응   팔란티어가 등장한 이유 팔란티어는 원래 정보기관과 국방을 위해 태어났다. 9·11 테러 이후 정부 기관 간 데이터 연결 부재가 위기의 원인 중 하나였음을 인식한 미국 정부는, 흩어진 데이터를 연결해 테러를 사전에 예방할 수 있는 시스템을 원했다. 팔란티어는 이런 배경 속에서 데이터 통합과 분석, 실행의 기술을 고도화해 왔다. 이후 팔란티어는 정부기관을 넘어 기업 시장으로 눈을 돌렸다. 기업 역시 조직, 부서, 시스템 간 데이터 사일로에 갇혀 있었기 때문이다. 그리고 팔란티어는 이를 해결할 수 있는 네 가지 플랫폼을 제시했다. 바로 고담(Gotham), 파운드리(Foundry), 아폴로(Apollo) 그리고 AI 실행 플랫폼 AIP(Artificial Intelligence Platform)다. 고담은 데이터 연결과 분석을 통해 위협을 식별하고 행동을 지원하는 국방/정보기관용 플랫폼이다. 파운드리는 기업 내부 시스템의 데이터를 연결해 의사결정을 지원하는 산업/상업용 플랫폼이다. 아폴로는 이러한 플랫폼을 실시간 운영/배포/유지보수하는 클라우드 기반 운영 플랫폼이다. 그리고 AIP는 수집된 데이터를 바탕으로 인간의 개입 없이도 업무 실행을 자동화하는 차세대 AI 실행 플랫폼이다. 이처럼 팔란티어는 데이터의 ‘수집 – 해석 – 실행’ 전 과정을 아우르는 미래형 데이터 경영체계를 만들어 왔다.   ▲ 팔란티어 기업 전략 맵(Map by 류용효) (클릭하면 큰 그림으로 볼 수 있습니다.)   챗GPT의 도움을 받아 팔란티어의 기업 전략 맵을 만들었다. 팔란티어는 독특한 철학과 기술을 바탕으로 빠르게 주목받고 있지만, 여전히 많은 기업이 팔란티어가 정확히 무엇을 하는 기업인지, 기존 시스템과 어떻게 다르고 어떤 가치를 주는지를 이해하는 데 어려움을 느끼고 있다. 이에 팔란티어의 4대 플랫폼(고담, 파운드리, 아폴로, AIP)을 중심으로 팔란티어의 철학, 기술 구조, 실행 방식, 기존 레거시 시스템과의 연계 방안을 한눈에 볼 수 있도록 시각화한 것이 바로 이 기업 전략 맵이다. 맵을 통해 팔란티어의 전략적 차별성을 이해하고, 자사 비즈니스에 어떻게 적용할 수 있을지를 빠르게 검토할 수 있도록 돕는 것을 목적으로 한다. 복잡함은 적의 무기다. 단순함은 우리의 방패다.” – 에드워드 터플   핵심 전략 : 온톨로지 기반 경영 실행체계 기업의 ‘생각’을 ‘실행’으로 연결하는 과정에서, 팔란티어의 진정한 차별성은 단순한 데이터 분석이 아니다. 기업이 가진 데이터를 어떻게 경영 실행 체계로 연결할 것인가에 대한 해법을 제시한다는 데 있다. 이 핵심이 바로 온톨로지(ontology)다. 온톨로지는 데이터와 현실 세계를 연결하는 디지털 구조화 방법론이다. 쉽게 말해 기업의 모든 요소(제품, 설비, 공정, 사람, 조직, 규칙 등)를 개체, 속성, 관계, 규칙으로 구조화해 데이터를 살아 움직이는 경영 실행체계로 만드는 것이다. 개체(entity) : 제품, 부품, 고객, 공급업체, 직원, 설비 등 기업을 이루는 모든 요소 속성(attribute) : 각 개체의 성질과 특징(예 : 크기, 무게, 사양) 관계(relationship) : 개체 간의 연결과 상호작용(예 : 고객-주문, 제품-부품) 규칙(rule) : 업무를 실행하는 기준과 조건(예 : 승인 절차, 생산 순서) 온톨로지를 기반으로 하면 기업의 생각과 규칙을 데이터 위에 그대로 재현할 수 있고, 이를 바탕으로 모든 업무를 자동화하고 실행 가능한 시나리오로 전환할 수 있다. “인공지능은 인간의 사고를 대체하는 것이 아니라, 인간의 실행력을 확장하는 것이다.” – 사티아 나델라   AIP의 차별성 단순 AI가 아닌 업무 실행 중심 AI 플랫폼으로서의 역할로 볼 때, 팔란티어의 AIP는 단순한 AI 분석기가 아니다. 기업의 데이터를 학습하고 온톨로지 기반으로 업무 실행 시나리오를 자동화하는 것이 핵심이다. 예를 들어, 재고가 부족할 때 구매요청을 올리고 승인 절차를 거쳐 발주까지 자동으로 처리하는 일, 고객의 불만 접수를 모니터링하고 품질 개선팀과 연결해 사후조치를 지시하는 일, 이 모든 실행을 사람의 개입 없이 시스템이 스스로 판단해 실행하도록 만드는 것이 AIP의 목표다. 팔란티어 AIP는 이를 위해 다음과 같은 실행 능력을 제공한다.  실시간 데이터 연결 및 감시 경고 및 시뮬레이션 제시 최적의 실행 시나리오 자동 추천 정책에 따른 승인/실행 자동 처리 실행 내역 기록 및 학습 고도화 이런 실행력을 통해 기업은 데이터를 보는 것에 그치지 않고, 즉시 실행하는 조직으로 변신할 수 있다. “혁신은 과거를 버리는 것이 아니라, 과거를 재설계하는 것이다.” – 팀 브라운   레거시 시스템과의 통합 전략 PLM·ERP·MES 등 기존 시스템의 한계 극복 관점에서 볼 때, 팔란티어는 기존 IT 시스템을 대체하지 않는다. 오히려 기존 시스템과 연결해 진짜 가치를 끌어내는 역할을 한다. 기존의 PLM은 제품 설계를 관리하고, ERP는 자원을 관리하며, MES는 생산 현장을 통제한다. 하지만 이들 시스템은 서로 고립되어 있고, 실시간 실행까지 연결되지 않는다. 팔란티어는 이들 시스템과 데이터를 실시간으로 연결하고, 그 위에 온톨로지와 AIP를 얹어 ‘연결 – 해석 – 실행’을 하나로 엮는 경영 실행 체계를 만들어낸다. 이렇게 되면 기업은 기존 레거시 시스템의 한계를 넘어서 데이터 중심, 실행 중심 경영으로 전환할 수 있다. “미래를 예측하는 가장 좋은 방법은 미래를 직접 만들어가는 것이다.” – 앨런 케이   온톨로지 실전 적용 사례 팔란티어는 이미 글로벌 제조, 방산, 의료, 제약, 에너지 산업에서 수많은 사례를 쌓아 왔다. 대표적으로 다음과 같은 기업이 있다. 현대중공업은 선박 설계부터 건조, 납품, 유지보수까지 모든 데이터를 온톨로지로 연결해, 복잡한 협력사 네트워크를 실시간 모니터링하고 시뮬레이션 기반으로 운영을 최적화한다.  BMW는 차량 생산 과정의 부품, 공정, 품질 데이터를 연결해 생산 이상을 조기에 감지하고 공급망 리스크 대응 체계를 구축한다. 에어버스는 항공기의 설계 – 제조 – 정비 등 전체 과정을 온톨로지 기반으로 연결해 부품 이력 관리, 품질 관리, 유지보수 최적화를 실현한다. 이 외에도 수많은 하이테크 제조 기업이 제품 온톨로지, 공정 온톨로지, 고객 온톨로지, 공급망 온톨로지를 통해 실제 경영 성과를 높이고 있다. “지식은 힘이 아니다. 실행되는 지식이 힘이다.” – 데일 카네기   미래 전망과 기업의 선택 미래 경쟁력은 데이터 자산화 + 실행 자동화에 달렸다. 앞으로 기업의 경쟁력은 더 이상 얼마나 많은 데이터를 가지고 있느냐가 아니다. 그 데이터를 얼마나 잘 연결하고, 얼마나 빠르고 정확하게 실행하느냐에 달려 있다. 팔란티어는 데이터를 살아 있는 자산으로 만들고, 이 자산을 기반으로 실행 자동화까지 실현하는 미래형 경영 실행체계를 제시한다. 기업은 지금이야말로 “우리 데이터는 연결되어 있는가?”, “우리는 데이터를 실행까지 옮길 수 있는가?”를 진지하게 자문해야 할 시점이다. “가장 위험한 말은 ‘우리는 늘 이렇게 해 왔다’이다.” – 그레이스 호퍼    맺음말 팔란티어는 IT 설루션이 아닌 기업 경영 철학의 진화 도구이다. 팔란티어는 기업이 가진 데이터 경영 철학의 진화를 촉진하는 도구다. 과거의 방식을 고수할 것인가?, 연결과 실행 중심의 미래로 도약할 것인가? 앞으로 당신의 기업은 무엇을 연결하고, 무엇을 실행할 것인가?   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다. (블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-06-04
[칼럼] 로봇 기반 제조 자동화와 디지털 트윈
디지털 트윈과 산업용 메타버스 트렌드   영화 매트릭스가 개봉된 지 20년이 더 지난 2020년대에 이러한 가상 세상은 영화가 아닌 실제 산업 현장에서 구현되어 산업 혁신을 주도하고 있다. 바로 ‘디지털 트윈 (Digital Twin)’이다 이 글에서는 디지털 트윈의 의미와 제조 산업 특히 로봇 기반 자동화에서 디지털 트윈이 어떻게 제조현장을 혁신하는지 실증 사례를 기반으로 소개한다.   장영재 교수 / 카이스트  “헬기를 몰 줄 알아요?” 남자 요원이 동행한 여자 요원에게 물었다. “아니요. 아직은요. 잠시만 기다리세요.” 그리고 즉시 여자 요원은 무전로 본부에 연락해, 헬기 시뮬레이션 교육프로그램을 업로드 해달라 본부에 요청했다. 본부에서는 즉시 시뮬레이션 교육프로그램을 가속으로 돌려 헬기 조정 능력을 여자 요원의 머리에 업로드하였다. 여자요원은 불과 몇 초 사이에 수백시간 걸릴 헬기훈련을 마친 베터랑 헬기 조정사 능력을 가지게 되었다. 그리고 여자 요원은 외쳤다. “빨리 헬기를 몰고 도망칩시다!” 그리고 여자 요원은 능숙한 솜씨로 헬기를 몰고 남자요원과 함께 탈출한다. 1999년 개봉된 영화 매트릭스의 한 장면이다. 가상의 세상과 실제 세상을 오가며 과연 무엇이 진실이며 실제 (real)이란 무엇일까란 질문을 던지는 매우 철학적인 영화다 .  영화 매트릭스가 개봉된 지 20년이 더 지난 2020년대에 이러한 가상 세상은 영화가 아닌 실제 산업 현장에서 구현되어 산업 혁신을 주도하고 있다. 바로 ‘디지털 트윈 (Digital Twin)’이다. 본 특집에서는 디지털 트윈의 의미와 제조 산업 특히 로봇 기반 자동화에서 디지털 트윈이 어떻게 제조현장을 혁신하는지 실증 사례를 기반으로 소개한다.   1. 시뮬레이션과 디지털 트윈의 차이 우리나라 과학기술정보 통신부에서는 디지털 트윈을 다음과 같이 정의하고 있다.  “가상세계에서 실제 사물의 물리적 특징을 동일하게 반영한 쌍둥이 (Twin)을 3D 모델로 구현하고 제 사물과 실시간으로 동기화 및 시뮬레이션을 통해 관제, 분석, 예측 등 현실의 의사결정에 활용하는 기술” 그러나 이러한 정의만으로는 구체적으로 디지털 트윈을 파악하기에 모호하다. 시뮬레이션과 디지털 트윈의 차이가 무엇인지, 실시간 동기화가 왜 필요한지, 관제, 분석, 예측은 이미 다양한 방식으로도 가능한데 디지털 트윈이 제공하는 또 다른 가치가 있는지 설명이 부족하다. 최근 디지털 트윈 관련 이슈가 많다 보니 기업들도 앞 다투어 디지털 트윈을 기술을 확보했다는 등의 보도자료를 통해 기술 홍보를 하기도 한다. 이런 대부분은 공장의 가공 로봇이 움직임을 실시간 3D 애니메이션으로 구현해서 실제 로봇의 움직임을 컴퓨터에 시연하는 정도다. 그러나 이러한 시연을 보면 대부분 사람들의 반응은 “이것으로 무엇을 하지요?” “굳이 거액을 들여 실물의 움직임을 컴퓨터 그래픽으로 그대로 보여줄 필요 있나요? 그저 CCTV 하나 설치하면 컴퓨터에서 영상으로 볼 수 있는 것을 굳이 컴퓨터 그래픽 3D영상으로 구현할 필요가 있나요?” 등의 반응이다. 그렇다면 우선 시뮬레이션과 디지털 트윈의 차이가 무엇일까? 2. 디지털 트윈이 과연 무엇인가?   시뮬레이션은 가상의 시나리오를 기반으로 그 결과를 재현해 보는 것을 의미한다. 내가 A란 결정을 했을 때 그 결과가 어떻게 나올지를 유추해 보는 것이 시뮬레이션이다. 우리가 일반적으로 잘 알고 있는 시뮬레이션이 컴퓨터 시뮬레이션이다. 즉 컴퓨터가 구현한 상황에서 특정 의사결정에 대해 그 결과를 컴퓨터를 통해 산출하는 것이다. 컴퓨터 시뮬레이션 활용의 대표적인 예가 워 게임 (War Game)이다. 군에서는 전략전술 교본이나 전술, 그리고 무기 체계 설계를 할 때 컴퓨터를 통한 시뮬레이션을 활용한다. 평가나 실험을 위해 실제 전투나 전쟁을 치를 수 없기에 컴퓨터를 통해 가상의 적군과 전투를 하며 훈련을 하거나 전술 평가에 활용한다. 실제 컴퓨터 시뮬레이션 활용에 대한 연구가 가장 활발히 이뤄지는 분야가 국방 시뮬레이션 분야인 이유다.  우리 일상 생활에서도 이러한 시뮬레이션이 실제 많이 활용된다. 대표적인 예가 바로 자동차 네비게이션이다. 10년전 네비게이션을 떠올리면 전형적인 시뮬레이션 장비라 할 수 있다. 목적지를 입력하면 내 위치에서 목적지까지 수많은 대안 경로 중 최적 경로를 제안해 준다 . 그러나 당시 네비게이션은 실시간 교통정보를 경로 탐색에 담지 않았다. 그러다 보니 출퇴근 교통혼잡이나 사고로 인한 교통 체증과 같은 상황에서도 일반 상황과 동일한 이동경로 시간 산출과 경로를 제시하는 한계가 있었다. 최근 자동차 네비게이션이나 스마트폰 차량 맵은 실시간 교통정보를 포함해 다양한 대안 경로를 제시한다. 즉 실시간 GPS 정보를 통해 내 차량의 위치는 클라우드의 컴퓨터로 전송이 되고 또한 다양한 교통정보를 기반으로 실시간으로 대안경로를 찾고 도착시간을 지속해서 업데이트 한다. 그리고 내차의 이동 경로와 교통 상황은 사용자가 직관적으로 파악할 수 있도록 컴퓨터 그래픽으로 전달된다. 즉 실시간 교통정보를 기반으로 지속적인 업데이트된 경로를 제공하는 스마트폰 네비 앱이 디지털 트윈의 가장 대표적인 사례다. 학문에서는 디지털 트윈의 조건을 아래로 정의한다. 1. 실물과 가상의 시스템이 거의 실시간 (near real-time)으로 연동되어야 한다. 2. 다양한 상황의 시나리오를 검토하고 대안을 제시할 수 있어야 한다. 3. 사용자의 의사결정을 지원하며 사용자가 쉽게 의사결정 상황을 직관적으로 파악할 수 있는 인터페이스를 제공해야 한다.   스마트폰 네비는 위 조건을 모두 만족한다. 실시간으로 차량의 위치가 GPS로 전송되고 교통정보도 활용한다는 점에서 1번 조건을 만족하며, 다양한 대안경로를 검토함으로 2번 조건을 만족하며, 사용자의 최적경로를 제안하며 이러한 경로를 그래픽으로 전달하는 방식으로 3번 조건을 만족한다. 즉 스마트폰 네비가 우리 생활의 디지털 트윈이라 할 수 있다. 이런 의미를 보면 굳이 디지털 트윈이 현실과 매우 흡사한 고퀄리티 네비를 제공해 줄 의무는 없고 3D그래픽을 제공하는 것도 조건은 아니다. 사람의 의사결정을 직관적으로 지원해 줄 수 있는 정도면 기능이 충분하다 할 수 있다. 3. 로봇 기반 제조 운영에서의 디지털 트윈   이러한 디지털 트윈 활용의 가장 대표적인 예가 제조 물류 자동화 시스템 설계 및 운영이다. 최근 제조 시스템의 가장 큰 변화 중의 하나는 컨베이어 벨트가 없는 자동화(Beltless Automation)로 표현되는 군집 로봇 기반 물류 자동화다. 1916년 포드 T모델이 컨베이어 방식으로 생산되며 제조 자동화 혁명을 가져왔다. 이후 컨베이어 벨트 기반 물류 자동화는 공장 자동화의 표준 생산이 되었다. 그러나 이러한 컨베이어 방식은 단일 품종 대량 생산에는 적합하지만 다품종 소량 생산과 같은 현대 소비 시장의 욕구를 충족하는 데는 한계가 있다. 차량 모델이 바뀔 때 마다 공장을 세우고 컨베이어 벨트와 설비 위치를 재 조정해야 하는 등 상당한 재투자가 필요하다. 카이스트 산업 및 시스템 공학과 졸업생들이 2020년에 창업하여 카이스트 및 네이버가 투자한 다임리서치는 디지털 트윈 기술을 기반으로 AGV나 ARM의 이동을 관제하고 제어하는 솔루션을 개발하여 LG전자뿐만 아닌 국내 반도체 및 2차전지 기업에 공급하고 있다.      상세 내용은 PDF로 제공됩니다.    
작성일 : 2025-05-09
[특별기고] 디지털 트윈 발전 전망
디지털 트윈과 산업용 메타버스 트렌드   데이터 기반 서비스 관점에서의 디지털 트윈의 역할은 실 체계에서 수집한 실제 데이터와 디지털 트윈 시뮬레이션으로 얻어진 가상 데이터의 융합을 통하여 실제 시스템 관련 문제 해결에 유용한 빅 데이터 생성이라 할 수 있다.  디지털 트윈 활용은 안정성에 부담이 적고 신속/가시적 성공사례 확보가 가능한 스마트시티, 스마트 팩토리, 스마트SOC(도로, 철도, 항만, 공항, 등) 등이 대상이지만 기술성숙도가 높아지고 안정성이 보장됨에 따라 자율주행, 의료/인공장기, 식물공장 등으로 확대될 전망이다.   ▲ 철도 네트워크의 디지털 트윈 구축하는 독일 디지털 철도(이미지 출처 : 엔비디아)   1. 디지털 전환과 디지털 트윈 디지털 전환(Digital Transformation: DX)은 비즈니스 전 과정에 ICT 기술을 도입하여 전사적 업무, 생산 기술, 제품 등을 디지털화 한 후 이를 기반으로 가상 실험이 가능한 디지털 환경을 구축하는 것이다.  디지털 전환의 궁극적 목적은 기업 이윤 극대화에 필요한 업부/생산 효율성 및 제품 부가 가치 증대를 위한 다양한 창의적 대안들을 가상 실험을 통해 평가한 후 그 결과를 비즈니스 전 과정에 활용하는 것이다. 예를 들어, 스마트 팩토리의 디지털 전환은 조달 시스템, 생산 시스템, 물류 시스템 등 스마트 팩토리 구성요소들의 자원 할당 및 운용에 대한 다양한 대안들을 가상 실험을 통해 평가할 수 있는 환경을 구축하여야 한다. 그렇다면, 비즈니스 전 과정을 가상 실험하기 위해서는 무엇이 필요할까?  가상 실험을 하기 위해서는 먼저 가상 실험 대상(예: 제조 공장)을 선정하고, 다음으로, 가상 실험 시나리오(예:새로운 제조 장비 도입)가 필요하며 시나리오를 수행할 모델(예: 제조 공정 시뮬레이션 모델)이 필요하다. 이러한 가상 실험을 위한 모델이 디지털 트윈이며 이런 이유로 많은 사람들이 디지털 트윈을 DX의 Key(Richard Marchall, 2017), DX의 Enablers(Reterto Saracco, 2019), DX의 Central(Vijay Ragjumathan, 2019), DX의 Steppingstone(Harry Forbes, 2020), DX의 Pillar(Fransesco Belloni, 2020)라고 지적하였다.   2. 디지털 트윈의 정의 디지털 트윈은 물리적 자산, 프로세스 및 시스템에 대한 복제본으로 정의[Wiki 사전]되며, 복제본이란 대상 체계의 운용 데이터, 지형/공간/형상 정보 및 동작/운용 법(규)칙을 컴퓨터 속에 디지털화 해 놓은 것을 의미한다. 예를 들면, 제조 공장의 디지털 트윈은 제조 공장의 운용 데이터, 제조 공장의 공간/형상 정보, 그리고 제조 장비 동작 및 공정 모델이 컴퓨터 속에 복제된 것이 될 것이다. 디지털 트윈과 대상 체계가 쌍둥이기 때문에 쌍둥이 중 누가 먼저 태어났느냐에 따라 디지털 트윈의 이름을 다르게 붙이기도 한다. 대상 체계가 존재하기 전에 만들어진 디지털 트윈을 디지털 트윈 프로토타입(Prototype) 그리고 대상 체계가 만들어진 후 복제된 디지털 트윈을 디지털 트윈 인스턴스(Instance)라고 부른다. 디지털 트윈 프로토타입은 대상 체계 설계 단계에서 활용되며 디지털 트윈 인스턴스는 대상 체계의 운용 분석에 활용되는 것이 일반적이다. 디지털 트윈 인스턴스(실 체계의 복제본)와 디지털 트윈 프로토타입(실 체계의 설계 모델)이 모두 존재할 수도 있지만 디지털 트윈 프로토타입 없이 디지털 트윈 인스턴스만 존재할 수도 있다. 디지털 트윈 프로토타입과 인스턴스가 모두 존재한다면 인스턴스는 프로토타입에 실 체계 운용 정보가 반영되어 진화(성장)된 트윈으로 볼 수 있다. 3. 디지털 트윈 구축 목적 디지털 트윈의 구축 목적은 대상 실 체계와 디지털 트윈을 연동 운용함으로써 실 체계 관련 이해 당사자에게 지혜 수준의 혁신적 서비스를 제공할 수 있는 핵심 도구/수단으로 활용하기 위함이다. 데이터 기반 서비스 관점에서의 디지털 트윈의 역할은 실 체계에서 수집한 실제 데이터와 디지털 트윈 시뮬레이션으로 얻어진 가상 데이터의 융합을 통하여 실제 시스템 관련 문제 해결에 유용한 빅 데이터 생성이라 할 수 있다. 융합 빅 데이터는 AI-통계/공학 분석도구들을 이용하여 실 세계의 구성요소인 자산, 사람, 운용 프로세스들의 다양한 결합에 대한 분석/예측 및 체계 운용 최적 대안(최적화)을 찾는데 활용될 수 있다. 아울러, 융합 빅 데이터는 실 세계를 가상 환경에서 현실감 있게 표출할 수 있는 다양한 장비/장치와 VR/AR/XR/메타버스 관련 ICT 기술과의 융합 인터페이스를 통해 오락, 관광, 교육 훈련, 체험 등에 활용될 수 있다.     디지털 트윈의 복제 대상은 실 체계의 운용 데이터, 공간/형상 정보 및 실 체계에 포함된 객체들의 행위 모델 등 3가지이다. 운용 데이터는 실 체계에 설치된 IoT 장비로부터 획득이 가능하다. 공간/형상 정보는 서비스 목적에 따라 GIS, BIM 혹은 3D CAD 중 한 가지 이상을 결합하여 사용한다. 객체 행위 모델은 다양한 시나리오를 가상 실험하기 위한 시뮬레이션 모델을 사용하지만 서비스 목적에 따라서는 운용 데이터를 학습한 데이터 모델을 사용할 수도 있다. 구성요소 중 일부만을 사용한 디지털 트윈은 나머지 구성요소를 사용하지 않음으로 인한 한계점에 봉착하게 된다. 예를 들면, 실 체계 운용 데이터 복제만으로 구성된 IoT 기반 디지털 트윈은 수집된 데이터를 분석할 수는 있지만, 실 체계를 시각화한 지형/공간 상에 데이터를 표출할 수 없을 뿐만 아니라 실 체계와는 다른 가상 데이터를 입력한 시뮬레이션을 수행할 수 없다. 마찬가지로, 지형/공간 정보 만으로 구성된 디지털 트윈은 실 체계에서 일어나는 지형/공간 정보의 변화를 실 시간으로 반영할 수 없으며 시뮬레이션을 통한 실 체계의 현상 분석 및 미래 예측이 불가능 하다.      디지털 트윈의 효율적인 활용을 위해서는 위의 세 가지 구성요소 모두를 개발 및 운용할 수 있는 통합 플랫폼이 바람직하지만 국내외적으로 표준화된 디지털 트윈 플랫폼은 존재하지 않는다. 디지털 트윈의 특성 상 3가지의 디지털 트윈 구성요소 각각을 개발하는 독립적인 플랫폼을 사용하여 구성요소를 개발한 후 이들을 연동하여 운용하는 것이 효율적이다.  구체적으로는, 먼저, 디지털 트윈 개발 목적에 맞게 운용 데이터를 수집하는 IoT 플랫폼, 지형/공간 정보를 구축하는 지형/공간정보 플랫폼 및 모델링 시뮬레이션 플랫폼들을 이용하여 각 구성요소를 개발한다. 다음으로, 개발된 세 가지 구성요소를 실행하는 플랫폼들을 연동 운용하는 PoP(Platform of Platforms) 구조를 사용할 수 있다. PoP 구조는 디지털트윈의 목적에 부합되는 모든 디지털트윈을 개발/운용할 수 있는 플랫폼으로써 신뢰성 및 경제성(개발 기간 및 비용) 면에서 효율적인 구조이다. PoP 구조를 사용할 경우 플랫폼들 사이의 연동을 위한 데이터 모델과 API의 국제적인 표준화가 요구되며 데이터 모델의 표준은 대상 시스템에 따라 달라질 수 있다.  디지털 트윈을 실제 시스템에 대한 문제 해결 목적으로 사용하기 위해서는 대상 시스템에 대한 다양한 질문의 답을 디지털 트윈을 통해서 얻을 수 있는 서비스가 제공되어야 한다. OR 이론의 창시자 중 한 명으로 경영 과학 이론가인 R.L.Ackoff 교수는 사람이 생각하는 내용을 데이터, 정보. 지식, 지혜 등 4가지로 분류하였다. 데이터는 단순한 심벌(숫자나 문자)을 말하지만 정보는 ‘who’, ‘what’, ‘where’, ‘when’을 답할 수 있고, 지식은 ‘how’를 답할 수 있고, 지혜는 ‘why’를 답할 수 있어야 한다고 정의하였다. 디지털 트윈의 서비스 수준을 Ackhoff 교수의 분류법에 매핑 시킨다면 정보 수준 서비스는 시스템 분석(현상, 기능 등), 지식 수준 서비스는 시스템 예측(행위, 성능 등) 그리고 지혜 수준 서비스는 시스템 최적화(운용 최적화 등) 및 진단(수명 진단 등)에 해당한다. 예를 들어, 교통 시스템에 대한 다양한 질문을 답하기 위해 교통 디지털 트윈을 만들었다고 하자. 정보 서비스의 예는 현재 교통 시스템의 현상을 분석하는 것으로 어느 위치의 현재 시간대에 단위 시간당 교차로 통과 차량 대수가 얼마인지에 대한 답을 하는 서비스이다. 지식 서비스의 예는 현재 출발지에서 목적지까지의 소요 시간이 얼마가 되는지를 예측하는 질문에 대한 답을 하는 서비스이다. 지혜 서비스의 예는 현재 출발지에서 목적지까지의 소요 시간이 최소가 되는 최적화된 경로가 어떤 것인지의 질문에 대한 답을 하는 서비스이다.    4. 디지털 트윈의 구성요소 디지털 트윈의 3 가지 구성요소 중 행위 모델은 목적에 따라 데이터 모델과 시뮬레이션 모델로 대별된다. 데이터 모델은 실 체계에서 수집된 데이터들 사이의 상관관계를 기계학습하여 얻어진 모델(예: 인공신경망)로서 지식 서비스를 위한 시스템 행위 예측에 한계점을 가지고 있다. 구체적으로, 데이터 모델은 학습된 데이터 영역에서는 미래 예측이 가능하지만 학습된 영역 밖의 데이터에 대한 예측은 불가능 하다. 뿐만 아니라 학습 시와 예측 시의 시스템 운용 조건이 달라질 경우에도 예측이 불가능하다. 앞서 예시한 교통 디지털 트윈으로 데이터 모델을 사용할 경우 학습 시 도로 상황(운행 시간, 사고 발생 유무 등)이 예측 시 도로 상황과 동일하지 않으면 소요 시간 예측의 정확도가 보장되지 않는다. 더욱이, 시스템 변수 사이의 상관 관계로 표현된 데이터 모델은 변수 사이의 인과 관계가 필요한 시스템의 최적화 및 고장 진단 등에는 활용할 수 없다. 이러한 데이터 모델의 서비스 한계를 극복하기 위해서는 시뮬레이션 모델을 사용할 수 있다. 시뮬레이션 모델은 구축은 대상 시스템에 대한 도메인 지식과 이를 표현하는 지배 법칙에 대한 수학적/논리적 표현 방법을 이해해야 하므로 데이터 모델에 비해 고 비용이 요구된다. 따라서, 디지털 트윈의 행위 모델은 대상 시스템의 서비스 목적과 수준에 따라 다르게 선택될 수 있다.    5. 디지털 트윈의 발전 전망  디지털 트윈의 향후 발전 전망은 문제 해결과 가상 체험 및 빅 데이터 분야로 대별할 수 있다. 문제 해결 분야에서 디지털 트윈의 대상은 분석, 예측, 최적화/진단 대상이 되는 모든 시스템 분야로서 산업(제조, 생산, 물류, 식물공장 등), 공공(교통, 환경, 금융 등), 의료(진단, 인공장기, 가상수술 등), 재난안전(안전점검, 피해분석, 대피훈련 등), 국방(군사훈련, 국방분석, 무기체계 획득 등)등을 포함한다.  현재 디지털 트윈 활용은 안정성에 부담이 적고 신속/가시적 성공사례 확보가 가능한 스마트시티, 스마트 팩토리, 스마트SOC(도로, 철도, 항만, 공항, 등) 등이 대상이지만 기술성숙도가 높아지고 안정성이 보장됨에 따라 자율주행, 의료/인공장기, 식물공장 등으로 확대될 전망이다.  가상 체험 분야는 디지털 트윈이 실 세계 혹은 가상 세계를 움직이는 다양한 시나리오를 정형화한 지배 법칙(모델)을 실행(시뮬레이션)하는 수단으로 활용될 전망이다. 이러한 지배법칙 실행은 실제 세계와 가상 세계의 구별 없는 가상 체험을 목표로 하는 메타버스의 서비스 콘텐츠를 제공한다. 따라서, 메타버스 발전을 위해서 메타버스의 서비스 컨텐츠를 제공하는 디지털 트윈 발전이 필수적으로 향후 메타버스와 디지털 트윈은 동시에 발전할 전망이다.  빅 데이터 분야에서는 디지털 트윈의 가상 실험을 통해 실 체계에서는 물리적/경제적 이유로 수집 불가능한 다양한 빅 데이터를 생성하는데 활용될 전망이다. 유의미한 빅 데이터 생성을 위해서는 실 체계에서 수집 가능한 데이터를 사용하여 디지털 트윈 모델의 검증이 선행된 후 실 체계에서 수집 불가능한 데이터 생성을 위한 가상 실험이 설계되어야 한다. 디지털 트윈을 사용한 빅 데이터 생성은 시스템 기능 검증, 예지 진단 및 기계학습 등과 같은 부가가치가 높은 데이터 생성에 집중되어 미래 데이터 구독 시장 활성화에 기여할 전망이다.   김탁곤 명예교수  KAIST 전기전자공학부  
작성일 : 2025-05-05
PTC, 생성형 AI 및 공공부문 제품 출시로 온쉐이프의 모멘텀 지속
PTC는 클라우드 네이티브 CAD 및 제품 데이터 관리(PDM) 플랫폼인 온쉐이프(Onshape)의 모멘텀을 이어가기 위해 두 가지 신규 제품을 발표했다. PTC가 선보인 신제품은 설계 생산성과 전문성을 향상시키는 지능형 생성형 AI 기반 도우미인 ‘온쉐이프 AI 어드바이저(Onshape AI Advisor)’와 미국 정부 기관 및 방위 산업체의 ITAR(국제무기거래규정) 및 EAR(수출관리규정) 준수 요구를 충족하도록 설계된 ‘온쉐이프 거버먼트(Onshape Government)’이다. 두 제품은 설계자와 엔지니어가 보다 효율적으로 작업하고, 실시간으로 협업하며, 고품질의 제품을 더 빠르게 시장에 출시할 수 있도록 지원한다. 온쉐이프 AI 어드바이저는 CAD 워크플로, PDM 모범 사례, 플랫폼 기능에 대한 AI 기반의 전문 가이드를 제공하여 사용자가 설계 프로세스를 가속화할 수 있도록 돕는다. 아마존 베드록(Amazon Bedrock) 기반으로 개발된 이 제품은 기존 CAD 시스템에서의 전환, 설계 최적화, 작업 효율 향상에 기여한다.     온쉐이프 거버먼트는 미국 연방 및 주 정부 기관, 방산 계약업체, 규제 대상 프로젝트를 수행하는 조직의 규정 준수 요구를 지원하기 위해 설계된 온쉐이프의 맞춤형 버전이다. 미국 내 AWS GovCloud로 호스팅되며, ITAR 및 EAR 같은 규제를 준수하는 동시에 온쉐이프의 강점인 실시간 협업, 버전 관리, 접근성 등을 그대로 제공한다. PTC의 데이비드 카츠먼(David Katzman) 온쉐이프 및 아레나 총괄 매니저는 “온쉐이프 거버먼트와 온쉐이프 AI 어드바이저는 모든 산업군의 다양한 고객이 제품 개발 프로세스를 혁신하도록 돕는 우리의 미션을 실현하는 최신 사례다. 우리는 규제가 엄격한 항공우주 및 방위 시장에서도 클라우드 네이티브 CAD 및 PDM의 이점을 확장하고 있으며, 설계 전반에 걸쳐 AI의 지원을 제공함으로써 온쉐이프를 더욱 접근성 높고 사용자 친화적인 플랫폼으로 발전시키고 있다”고 전했다.
작성일 : 2025-04-24