• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "모터"에 대한 통합 검색 내용이 719개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
프로세스 자동화Ⅱ - 모터 설계 최적화
최적화 문제를 통찰하기 위한 심센터 히즈 (7)   심센터 히즈(Simcenter HEEDS)는 제품 설계 과정에서 발생하는 다양한 문제에 대해서 최적화 방법론을 적용하고 올바른 결과를 도출하는 데에 도움을 준다. 이번 호에서는 모터의 성능 최적화를 위해 심센터 E-머신 디자인(Simcenter E-Machine Design)을 사용하여 모터 시뮬레이션의 자동화 워크플로를 구성하고 최적화를 진행하는 과정을 소개한다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   심센터 E-머신 디자인(EMD)은 전기기기(e-machine) 설계를 위한 통합 설루션이다. EMD는 모터 및 발전기 설계 과정에서 요구되는 다양한 토폴로지(topology)를 지원하고, 자동화된 전처리/후처리 환경, 전자계-열 연동 해석, 시스템 및 다분야 설계 연계를 위한 확장성을 제공한다.   그림 1   EMD는 대표적으로 <그림 2>와 같은 토폴로지(SM : 동기모터, IM : 유도모터, SRM : 스위치드 릴럭턴스 모터, DCM : 직류모터, AFM : 축 플럭스 모터)를 모두 지원해, 실제 산업 현장에서 필요한 다양한 형태의 전기기기 개발을 한 플랫폼에서 수행한다.   그림 2   설계 과정 전반에 걸쳐 자동화된 전처리(pre-processing)와 후처리(post-processing) 도구를 제공해, 모델 설정에서 결과 해석까지 반복적인 수작업 부담을 최소화한다. 사용자는 빠른 모델링, 자동 메시 할당, 결과 데이터의 즉시 시각화 등 효율적인 설계 프로세스를 구현할 수 있다.   그림 3   전자계 분석과 열 해석을 연동할 수 있으므로, 전자기적 성능뿐만 아니라 실제 운전 조건에서의 온도 및 열적 거동까지 정밀하게 평가한다. 필요에 따라 시스템 해석(Amesim, FMU 등)을 병행해 구동 특성 및 제어 연계 분석도 확장할 수 있다.   그림 4   EMD는 상세 전자기 해석(detailed Emag), 열 및 유동 해석(thermal CFD), 진동 소음(NVH) 해석, 구조 해석 등 지멘스 심센터(Siemens Simcenter) 포트폴리오 내의 다양한 다분야/다중물리 해석 설루션과 직접 연동할 수 있다. 이를 통해 실제 제품 설계 환경에서 요구되는 복잡한 다중물리 연계 및 시스템 수준 평가까지 단일 워크플로에서 처리가 가능하다.   그림 5   종합적으로, 심센터 EMD는 전기기기 설계의 생산성, 신뢰성, 확장성을 극대화하며, 설계 초기 단계부터 상세 검증, 및 시스템 통합까지 모든 프로세스를 통합적으로 지원하는 강력한 모터 설계 검증 설루션이다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
앤시스 2025 R2 : AI·스마트 자동화 기반의 차세대 디지털 엔지니어링 설루션
개발 및 공급 : 앤시스코리아 주요 특징 : 원클릭으로 전문 지식에 접근 가능한 AI 기반 어시스턴트 지원, AI+ 기능이 탑재된 7종 제품을 통한 시뮬레이션 효율 및 접근성 향상, 데이터 관리 및 워크플로 자동화 강화를 통한 AI 통합 효과 향상 등   앤시스는 자사 전 제품에 AI 기반 시뮬레이션 기능을 확대 적용한 최신 릴리스 ‘앤시스 2025 R2(Ansys 2025 R2)’를 발표했다. 앤시스 2025 R2는 시뮬레이션 속도와 접근성을 크게 향상시키는 동시에 강화된 솔버, 간소화된 워크플로, 파이썬(Python) 호환성 확대, 온디맨드 클라우드 컴퓨팅 지원 등을 통해 설계 유연성과 생산성을 높인다. 특히, 초기 설계 단계에서의 스마트한 의사결정을 가능하게 하여, 차세대 위성부터 데이터센터 설계에 이르기까지 다양한 산업 분야에서 실질적인 가치를 제공한다. 앤시스의 셰인 엠스윌러(Shane Emswiler) 제품 총괄 수석 부사장은 “앤시스의 시뮬레이션은 물리 기반 설계의 기준점이자 이론과 실험을 연결하는 가교 역할을 해왔다. 50년 이상의 고급 물리 해석 경험을 바탕으로, 앤시스 2025 R2는 더욱 스마트하고 빠르며 복잡한 시뮬레이션을 구현할 수 있도록 지원한다”면서, “모델·메타데이터·추적성·표준 기반의 데이터 활용을 통해 미래의 혁신적인 제품 개발을 위한 엔지니어링 역량을 강화할 것”이라고 강조했다. 앤시스 2025 R2는 AI 기반 다양한 도구와 기능을 통해 시뮬레이션 도입 장벽을 낮추고, 팀 간 협업을 촉진하며, 전사적인 생산성을 향상시켜 더 나은 결과를 창출할 수 있도록 지원한다.   ▲ 앤시스 2025 R2는 시뮬레이션 워크플로 전반의 생산성, 정확성, 인사이트를 향상시키는 AI 기반 기술을 새롭게 선보인다.   물리 기반 AI로 직관적인 시뮬레이션 앤시스 2025 R2는 AI 기반 가상 어시스턴트인 ‘앤시스 엔지니어링 코파일럿(Ansys Engineering Copilot)’을 포함한 다양한 신기능을 통해 시뮬레이션의 접근성과 설계 효율, 정확도를 높인다. 앤시스 엔지니어링 코파일럿은 앤시스 GPT(Ansys GPT), 앤시스 웹사이트, 수천 개의 기술 문서, 800개 이상의 이노베이션 강의, 글로벌 포럼, 지원 케이스 생성/추적 기능에 바로 접근할 수 있다. 마이크로소프트 애저(Microsoft Azure)의 니디 체펠(Nidhi Chappell) AI 인프라 부문 부사장은 “마이크로소프트 애저 AI 파운드리와 앤시스 GPT의 통합을 통해 엔지니어들은 핵심 정보에 신속하게 접근하고, 앤시스의 깊이 있는 엔지니어링 전문성을 활용함으로써 생산성을 높이고 혁신을 가속화할 수 있다”고 전했다. 2025 R2는 앤시스 포트폴리오 전반에 AI 기능을 추가했다. 이를 통해 충실도가 높은 시뮬레이션을 자동으로 생성, 검증 및 최적화하여 모델 생성 속도를 높이고, 수동 작업을 줄이며 인적 오류를 줄일 수 있다. 앤시스 엔지니어링 코파일럿은 앤시스 메카니컬(Ansys Mechanical), 앤시스 디스커버리(Ansys Discovery), 앤시스 플루언트(Ansys Fluent), 앤시스 HFSS(Ansys HFSS), 앤시스 일렉트로닉 데스크톱(AEDT), 앤시스 스케이드 원(Ansys Scade One), 앤시스 스피오스(Speos), 앤시스 맥스웰(Maxwell), 앤시스 옵티스랭(optiSLang), 앤시스 루메리컬(Ansys Lumerical) 등 주요 설루션에 통합되어 있으며, 클릭 한 번으로 축적된 엔지니어링 전문 지식에 대한 즉각적 접근 가능 HFSS 기반 방사 패턴 시뮬레이션의 연산 속도는 17배 향상, 위상 배열 안테나의 빔 조향 정확도 개선으로 5G/6G, 레이더 센서, 위성통신 등 고주파 애플리케이션 최적화 이러한 기능을 향상된 데이터 처리 및 자동화와 결합함으로써, 기업은 새로운 효율을 확보하고 보다 간소화되고 확장 가능한 워크플로를 구축할 수 있다.   데이터 처리 및 자동화를 통한 AI 활용 극대화 앤시스 2025 R2는 복잡한 데이터 처리 및 관리 작업을 간소화함으로써 디지털 엔지니어링의 생산성과 협업 수준을 높인다. 견고한 데이터 관리 체계를 기반으로 제품 수명주기 전반에 걸쳐 데이터를 최대한 활용하고, AI 모델 학습 및 신뢰성 높은 합성 데이터 생성을 지원한다. 또한, 모델 기반 시스템 엔지니어링(MBSE)의 기능이 한층 강화되어 팀 간 신뢰 기반 협업은 물론, 디지털 연속성과 조직 간 통합된 워크플로 체계를 안정적으로 유지할 수 있다. 파이썬 호환성 확장을 통해 워크플로 자동화와 데이터 관리 유연성이 강화되었으며, 반복 가능한 프로젝트 운영과 품질 향상에 기여하고 있다. 40개 이상의 파이썬(Python) 라이브러리를 포함한 파이앤시스(PyAnsys) 컬렉션은 신규 도구인 파이에스티케이(PySTK) 및 파이켐킨(PyChemkin)을 통해 앤시스 설루션과의 자동화 연동을 강화 및 다양한 산업 애플리케이션 내 생산성·효율성 강화 웹 기반 협업 플랫폼인 앤시스 메디니 사이버 보안(Ansys medini Cybersecurity) SE는 위협 분석 및 취약점 관리 자동화 통해 사이버 보안 리스크 최소화 SysML v2 기반 웹 플랫폼 앤시스 시스템 아키텍처 모델러(Ansys System Architecture Modeler : SAM)를 통한 소프트웨어·안전·시뮬레이션 통합, 포괄적 MBSE 구현 지원 스마트 자동화와 고도화된 데이터 관리 기술은, 조직 내 다양한 팀들 간의 유기적이고 효율적인 협업 환경을 구축하고, 고성능 연산 기반으로 도출된 인사이트는 실행 가능한 결과로 제안되어, 정확하고 신속한 의사결정을 지원한다. 대표 사례로, 에너지 효율형 모터 제어 설루션 분야의 글로벌 선도 기업인 댄포스 드라이브(Danfoss Drives)는 앤시스의 시뮬레이션을 활용해 복잡한 시스템 설계를 검증하고, 성능 최적화, 에너지 절감, 운영 신뢰성 향상 등 산업 전반의 지속 가능한 혁신적인 드라이브 기술을 구현하고 있다. 댄포스 드라이브의 가상 설계·테스트·최적화 총괄 책임자인 마이클 라우르센(Michael Laursen)은 “파이앤시스는 사용자 맞춤형 자동화, 시스템 통합, 확장성을 구현하는 핵심 도구이다. 개방형 생태계를 기반으로 다양한 툴을 유기적으로 연결하고 AI 기능을 접목함으로써 설계부터 최적화까지의 워크플로를 가속화할 수 있다”고 밝혔다. 또한 “앤시스 기술은 디지털 설계 프로세스를 고도화하는 동시에 빠르게 변화하는 산업 환경에 유연하게 대응할 수 있는 기반을 마련해줄 뿐만 아니라, 비용 절감과 제품 개발 기간 단축에도 실질적으로 기여하고 있다”고 전했다.   현실을 모사하는 고성능 물리 시뮬레이션 정교한 물리 모델과 시뮬레이션 기술은 복잡한 설계 과제를 해결하는 데 필수이다. 앤시스는 핵심 엔지니어링 역량을 지속적으로 고도화하며, 사용자가 보다 신속하게 시뮬레이션 결과를 도출하고 혁신 기회를 창출할 수 있도록 지원한다. 앤시스 메카니컬(Ansys Mechanical)의 신규 혼합 솔버는 대형 과도 모델의 연산 속도 향상 및 시간에 따른 열 변화 분석 지원 복잡한 적층형 전자 시스템 메싱 작업의 자동화 및 속도·정확도·사용성 향상, 신규 메싱 플로 기능을 통한 수작업 간소화 앤시스 록키(Ansys Rocky) 및 프리플로우(Ansys FreeFlow)를 통한 고급 다물리(multiphysics) 연성 해석 기능 제공, 열·유체-구조·전자기 결합을 포함한 상세 시뮬레이션 및 성능 최적화 지원 앤시스 파워X(Ansys PowerX) 디버깅 툴을 통한 반도체 전력 소자의 설계 시간 단축, 기생 성분 이슈의 신속한 식별, 설정 간소화 및 효율적인 2D 메싱 작업 지원 RF 전력 분야의 기업인 앰플리온은 앤시스의 고급 시뮬레이션 기술을 활용해 4G LTE 및 5G NR 인프라는 물론 산업, 과학, 의료, 방송, 항법, 안전 무선통신용으로 사용되는 고신뢰·고성능 GaN 및 LDMOS 설루션을 설계하고 있다. 앰플리온의 모델링 및 특성화 그룹 팀장인 비토리오 쿠오코(Vittorio Cuoco, Ampleon) 박사는 “전자기, 열, 기계 간의 복잡한 상호작용을 효과적으로 제어하며 RF 전력 제품을 설계하는 일은 매우 까다로운 과제”라며, “앤시스의 설루션은 이러한 복잡성을 정면으로 해결할 수 있는 정밀한 시뮬레이션을 제공해 설계 리스크를 줄이고 제품 신뢰성을 높이는 데 도움이 되며, 그 결과는 성능 향상, 에너지 절감, 그리고 더 높은 효율성이라는 측면에서 크다”라고 전했다. 이러한 가속화는 클라우드 기반 시뮬레이션의 유연성을 통해 한층 강화된다. 온디맨드 방식의 기술을 적극 활용함으로써, 기업은 디지털 전환을 보다 수월하게 실현할 수 있다.   클라우드 기반 시뮬레이션 통한 디지털 전환 가속 앤시스 2025 R2는 클라우드 기술, 고성능 컴퓨팅(HPC), GPU 최적화 인프라를 적극 활용하여 연산 효율과 시뮬레이션 확장성을 극대화한다. 이를 통해 고객은 더 많은 설계 가능성을 더 짧은 시간 안에 탐색할 수 있으며, 웹 기반 및 온디맨드 기능 확장을 통해 엔지니어는 필요한 툴에 손쉽게 접근할 수 있으며 데스크톱 환경을 넘어서는 개발 역량 확보가 가능해졌다. 앤시스 아이스팩(Ansys Icepak) 및 플루언트 GPU 솔버(Fluent GPU Solver)를 통한 전자 냉각 시뮬레이션 연산 속도 최대 2.5배 향상, 앤시스 플루언트(Ansys Fluent) 웹 인터페이스에서는 제한적 GPU 솔버 기반의 실시간 모니터링 기능 제공 앤시스 디스커버리(Ansys Discovery)의 메싱 기능 개선을 통한 시뮬레이션 신뢰도 및 품질 향상, GPU 기반의 셋업 속도 개선으로 더 빠르고 안정적인 해석 환경 구현 앤시스 클라우드 버스트 컴퓨팅(Ansys Cloud Burst Compute)의 온디맨드(on-demand) HPC 성능이 앤시스 스피오스(Speos) 및 루메리컬 FDTD(Lumerical FDTD) 포함한 6종 제품에 적용, 별도 설치나 IT 지원 없이 고성능 클라우드 환경 활용 가능     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
CAD&Graphics 2025년 9월호 목차
  18ㅤTheme. PLM과 AI로 가속화하는 제조 디지털 전환의 미래 Ⅱ 제조산업의 미래, 산업 AI 트렌드와 과제 / 조영임 AI 혁신을 기회로 : SAP의 통합형 PLM 전략 / 고건 미래 제조 패러다임의 전환 : SDM 기반 자율 제조의 도래 / 박한구 엔비디아 옴니버스만 가능한 디지털 트윈의 비즈니스 실현 / 김건우 패스트 포워드 디지털 전환과 제품 개발 / 윤중근 소프트웨어 정의 자동화가 바꾸는 산업의 미래 / 김건   Infoworld   Editorial 17ㅤAI 시대, 그래픽 산업과 한국 기업의 대응 전략은?   People&Company 39ㅤ헥사곤 매뉴팩처링 인텔리전스 성 브라이언 사장ㅤ시뮬레이션·디지털 트윈·AI 결합해 제품 개발의 미래 제시 42ㅤ한국기계가공학회 안동규 회장ㅤ뿌리기술로 미래 제조 혁신 이끈다   Case Study 44ㅤKAI의 언리얼 엔진 기반 차세대 시뮬레이션 에코시스템ㅤ비행 훈련부터 제품 개발·운영까지 아우르는 핵심 인프라를 목표로 47ㅤ가상 커미셔닝으로 산업 과제를 해결하는 스피라텍ㅤ개방형 커미셔닝과 협업 혁신으로 제조업을 재정의하다   Focus 50ㅤ넥스트콘 2025에서 만난 건설 디지털 전환의 미래   New Product 52ㅤ사용자 경험 혁신하는 3D CAD/CAE/CAM 소프트웨어ㅤZW3D 2026 57ㅤAI·스마트 자동화 기반의 차세대 디지털 엔지니어링 설루션ㅤ앤시스 2025 R2 60ㅤ이달의 신제품   On Air 63ㅤ캐드앤그래픽스 CNG TV 지식방송 지상중계ㅤAI로 혁신하는 3D 시각화와 산업의 미래   Column 70ㅤ디지털 지식전문가 조형식의 지식마당 / 조형식ㅤ인생 디지털 스레드 : 삶의 모든 ‘오늘’을 연결하는 새로운 패러다임 72ㅤ현장에서 얻은 것 No. 22 / 류용효ㅤ나만의 AI 에이전트 필살기 Ⅰ – 나만의 지식 지도를 그리다   64ㅤNew Books 66ㅤNews   Directory 123ㅤ국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 75ㅤ새로워진 캐디안 2025 살펴보기 (10) / 최영석ㅤ유틸리티 기능 소개 Ⅷ 78ㅤ데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2026 (6) / 천벼리ㅤ모바일 CAD 아레스 터치의 새로운 기능 116ㅤBIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱ㅤ바이브 코딩 지원 멀티 에이전트 코덱스의 사용법   Mechanical 80ㅤ제품 개발 혁신을 돕는 크레오 파라메트릭 12.0 (2) / 김성철ㅤ부품 모델링 개선 사항   Reverse Engineering 86ㅤ시점 - 사물이나 현상을 바라보는 눈 (9) / 유우식ㅤ작용, 반작용, 상호작용   Analysis 93ㅤ앤시스 워크벤치를 활용한 해석 성공 사례 / 박건ㅤ포토닉스 소자 시뮬레이션을 위한 앤시스 루메리컬 98ㅤ산업 디지털 전환을 가속화하는 버추얼 트윈 (6) / 이현충ㅤ시뮬리아 웨이브6를 활용한 환경 소음 시뮬레이션 100ㅤ로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (2) / 윤경렬, 김도희ㅤ데이터 분석 로코드 설루션을 배워보자 Ⅰ 106ㅤ최적화 문제를 통찰하기 위한 심센터 히즈 (7) / 이종학ㅤ프로세스 자동화 Ⅱ – 모터 설계 최적화 113ㅤ성공적인 유동 해석을 위한 케이던스의 CFD 기술 (25) / 나인플러스ITㅤ처리 시간이 10시간 미만인 LES 워크플로         캐드앤그래픽스 당월호 책자 구입하기   캐드앤그래픽스 당월호 PDF 구입하기
작성일 : 2025-08-31
엔텍시스템, AI 기반 모터 진단 솔루션으로 산업 예지보전 선도
전력 계측 및 AI 기반 모터 진단 솔루션 전문기업, 엔텍시스템   산업 현장에서 고장이나 생산이 중단될 수 있는 상황을 미리 예측해, 장비 가동 중지 등의 사태를 막는 예지보전의 중요성이 높아지고 있다. AI 기반 산업 진단 기술 전문기업 엔텍시스템(www.nteksys.com)은 전력 계측과 모터 진단 분야에서 20년 이상 축적된 기술력으로 산업 설비의 안전성과 효율성을 높이는 데 앞장서고 있다.   엔텍시스템 김영식 부사장   산업 현장의 숨은 위험 신호, AI가 먼저 알아챈다 2002년 설립된 엔텍시스템은 전력 계측 및 AI 기반 모터 진단 솔루션을 전문으로 제공하는 기술 기업이다. 전기 신호 분석과 머신러닝 기술을 융합해 설비의 이상을 조기에 탐지하고, 운영 최적화를 유도하는 ‘AI 예지정비’ 분야에서 독자적 위치를 구축해왔다. 주요 제품으로는 ▲멀티채널 미터(GEMS 3500 시리즈) ▲AI 모터 진단 시스템(GEMS 5500 시리즈) ▲전기실 온라인 진단 시스템(EMS) 등이 있다. 이 중 멀티채널 미터는 수배전반의 인입 및 분기 회로를 동시에 고정밀 측정하여 에너지 효율과 전력 품질 감시에 활용되고, AI 모터 진단 솔루션은 전기 신호를 분석해 이상 징후를 조기에 탐지하고 머신러닝 기반 예지보전으로 설비 안정성 및 운영 효율을 향상시킨다. 또 전기실 온라인 진단 시스템은 실시간 전력 감시와 변압기 진단을 가능케 하여 원격 모니터링과 이상 감지에 강점을 보이고 있다. 삼성전자·LG전자·포스코 등 100여 개 이상의 기업과 150여 개 공장에 솔루션을 공급해 온 엔텍시스템은  2024년에는 미국 메릴랜드 법인을 설립하며 본격적인 글로벌 시장 공략에도 나섰다. 이와 함께 CE, UL, FCC 등 국제 인증을 확보하여 글로벌 경쟁력을 강화하고 있다. 산업AI EXPO에서 혁신적인 AI 진단시스템과 산업현장 적용 사례 소개 이 회사는 9월 3일부터 5일까지 코엑스 마곡에서 열리는 2025 산업AI EXPO에 참가해 대표 제품인 ‘SV500’ 모터 진단 시스템과 클라우드 기반 SaaS 서비스를 선보이며, 산업계의 스마트 유지보수 전환을 본격화할 계획이다. 엔텍시스템이 산업AI EXPO 2025 참가를 결정한 배경에는 “AI 기술의 실효성과 방향성을 업계에 선도적으로 제시하고자 하는 의지”가 있다. “국내 산업 AI 생태계 확산을 위한 첫 이정표로서, AI 기술의 방향성과 산업 현장 적용 사례를 업계에 선도적으로 알릴 수 있는 중요한 기회라고 판단해 산업AI EXPO에 참가하게 되었다”는 엔텍시스템 관계자는 “이번 전시를 통해 이미 여러 산업 현장에서 적용 사례를 갖춘 솔루션인 SV500의 기술 신뢰성과 실제 효과를 널리 알리고 싶다”고 전했다. 엔텍시스템이 주력으로 전시할 SV500은 24비트 해상도와 8kHz 샘플링의 전류·전압 실시간 파형 분석을 기반으로 인버터와 모터 전기 신호를 정밀 분석한다. 또 디지털 트윈 기술을 활용한 이상 탐지와 토크·고조파 분석, 웹기반 대시보드 시각화로 현장 상태를 실시간 확인할 수 있다. 이와 함께 이 회사의 전시부스에서는 클라우드 기반 실시간 모터 진단 SaaS 서비스도 선보일 예정이다. 이 서비스는 모터 이상 탐지 및 진단, 시공간 제약 없이 진단 현황 확인, 원격 실시간 모니터링 기능을 제공하여 현장 유지보수 업무의 효율성을 극대화한다. “산업AI EXPO는 산업계와 AI 기술이 실질적으로 만나는 통합 플랫폼으로서 의미가 크다”는 김영식 부사장은 “제조, 에너지, 인프라 분야에서 디지털 전환이 가속되는 가운데, 기업 간 AI 적용 경험과 니즈를 공유하고 협력할 수 있는 소통의 장이 될 것”이라고 덧붙였다. 특히 엔텍시스템은 이번 EXPO 참가를 통해 ‘스마트 유지보수의 새로운 기준’을 제시하며, 다양한 산업 고객 및 파트너와 실질적인 비즈니스 협업을 확대하는 계기로 삼을 계획이다. 이를 위해 전시 기간 내 SV500 실물 데모를 운영하여 방문객들이 센서 설치와 웹 대시보드를 직접 체험하도록 할 예정이다. 맞춤형 AI 유지보수 솔루션으로 산업계 표준 제시 엔텍시스템의 향후 목표는 명확하다. 산업 현장에서 발생할 수 있는 다양한 모터 고장 패턴을 AI가 정확히 예측할 수 있도록 머신러닝 및 딥러닝 알고리즘을 고도화하고, 고객 맞춤형 유지보수 기능을 강화해 신뢰도 높은 예지보전 시스템을 완성하겠다는 것이다. 특히 사용자 맞춤 알람 임계값 설정 기능, 모바일 최적화 UI·UX 개선, 클라우드 기반 플랫폼 강화 등을 통해 산업 전반에 AI 유지보수 솔루션을 표준화해 나갈 계획이다. 더불어, 일본, 베트남, 중동 등지로의 해외 진출도 확대하며 글로벌 SaaS 플랫폼 기업으로의 도약을 준비 중이다.  
작성일 : 2025-08-09
프로세스 자동화Ⅰ - 구조 설계 최적화
최적화 문제를 통찰하기 위한 심센터 히즈 (6)   심센터 히즈(Simcenter HEEDS)는 제품 설계 과정에서 발생하는 다양한 문제에 대해서 최적화 방법론을 적용하고 올바른 결과를 도출하는 데에 도움을 준다. 이번 호에서는 토크 암(torque arm)의 설계 최적화를 위해 히즈에서 심센터 3D(Simcenter 3D) 솔버를 연계하여 시뮬레이션 자동화 워크플로를 구성하고 최적화를 진행하는 예제를 소개한다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화   ■  이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   그림 1   <그림 1>은 실제 토크 암 제품 이미지와 적용된 위치 및 구조적 특성을 보여주는 예시로, 이 최적화 사례에서 다룬 실제 제품 및 설계 환경을 이해하는 데 참고하길 바란다. 이번 예제에서는 질량 최소화 및 구조적 제약 조건 만족이라는 실제 공학 설계 과제를 효율적으로 수행하는 데 히즈의 성능과 활용성을 살펴 볼 것이다. 이 사례에서 설계 최적화의 목표는 토크 암의 질량을 최소화하는 것이다. 단, 구조적 제약 조건을 반드시 만족해야 하는데, 이 때 구조적 무결성(structural integrity)을 유지하기 위해 응력 수준이 재료의 항복 응력(yield stress)을 넘지 않아야 하는 조건을 만족해야 한다. 이를 위해 설계 상에서 사전에 선정한 치수 변수를 범위 내에서 조정하게 된다. 최적화 설계 프로세스는 심센터 3D와 히즈 MDO를 활용하여 자동화된 워크플로 방식으로 진행된다. 즉, 심센터 3D에서 나스트란(Nastran) 솔버를 이용한 구조 해석 결과를 히즈가 자동으로 처리하고, 해당 결과를 평가하여 최적의 설계안을 찾는 방식이다.   프로세스 자동화(Process Automation) 다분야 설계 최적화(MDO : Multidisciplinary Design Optimization) 수행 시, 설계 및 분석 프로세스는 여러 소프트웨어 환경에서 이루어진다. 이런 환경에서 효율적인 데이터 교환 및 프로세스 연동이 필수이므로, 데이터를 신속하고 정확하게 받기 위해서는 직접 인터페이스 포털(Direct Interface Portal)이 필요하다. 히즈에서는 여러 공학 분야에서 흔히 사용하는 CAD 및 CAE 툴(아바쿠스, 앤시스, 카티아, 솔리드웍스, 매트랩, LS-다이나, 심센터, 파이썬 등)을 모두 지원하므로, 사용자는 기존에 보유한 다양한 소프트웨어를 그대로 활용하면서 히즈를 이용하여 최적화 작업을 자동화할 수 있다. 히즈가 제공하는 직접 인터페이스 포털 중 일부를 <그림 2>에 나타내었다. 포털을 사용하여 <그림 3>과 같이 구성하면 사용자가 수동으로 결과를 처리하고 데이터를 전환하는 번거로운 작업을 하지 않아도 된다. 이는 시간 소모 및 인적 오류 가능성을 줄이고, 작업 흐름을 더 효율적이고 빠르게 만든다. 워크플로의 자동화가 가능하기 때문에, 결과적으로 여러 분야의 시뮬레이션 모델이나 분석을 보다 빠르고 신뢰도 높게 수행하여 더 나은 설계 및 최적화 결과를 도출할 수 있다.   그림 2   그림 3   최적화 문제 정의   그림 4   설계 목적은 <그림 4>에 나타낸 토크 암의 질량을 최소화하는 것이다. 주어진 하중 조건은 25kN이며, 이 때 구조물이 교차 방향에서 받는 최대 응력이 항복 강도를 초과하지 않아야 한다.(최대 700MPa) 또한 최대 변형량이 4mm를 초과하지 않는다는 제약 조건도 함께 고려한다. 최적화에 적용할 주요 치수 변수는 <그림 5>와 같으며, 특히 두께(Thickness of Extrude)를 변수(T1)로 설정하여 최적화 문제를 규정했다.   그림 5     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-08-04
[칼럼] 포괄적 디지털 트윈으로 제조 공장의 미래를설계하다
제조업계는 품질 보장, 비용 절감, 폐기물 감소와 같은 과제에 직면하면서 디지털 전환을 가속화하고 있다. 이에 따라 많은 기업이 IoT(사물인터넷), 첨단 로보틱스 등 다양한 기술을 적극 도입하고 있으며, 그 중에서도 시뮬레이션 기술은 스마트 공장 구현의 핵심 요소로 주목받고 있다. 특히 디지털 트윈 기술은 업계의 복잡한 도전 과제를 효과적으로 관리하고, 기업의 경쟁력을 유지하는 데 중요한 역할을 하고 있다. 디지털 트윈은 제품 설계의 최적화와 생산 시스템의 강화를 모두 지원한다. 기업은 디지털 트윈을 활용해 물리적 프로토타입에 대한 의존도를 줄이고, 자원을 효율적으로 절약할 수 있다. 또한 디지털 트윈은 실제 물리적 대상과 동기화되어 지속적으로 업데이트되므로, 제조업체는 생산 라인과 공급망 등과 같은 동적인 요소에 민첩하게 대응할 수 있다. 실시간 시뮬레이션 기능은 개선이 필요한 프로세스를 식별하고, 잠재적인 변경 사항을 사전에 테스트하며, 전체 시스템을 지속적으로 모니터링하는 데 기여한다. 지멘스의 포괄적 디지털 트윈은 물리 기반의 디지털 모델 세트로 구성되어 있으며, 제품과 생산의 전체 수명 주기와 공급망 전반에 걸쳐 다양한 측면을 일관되게 표현한다. 이 모델에는 전기, 기계, 제조 분야의 소프트웨어가 포함되어 있으며, 제품 수명 주기 전반에 걸쳐 일관성을 유지하면서도 생성과 관리에 필요한 부담을 최소화할 수 있다.   제품과 생산 전반을 아우르는 디지털 트윈의 통합 효과 제조업체는 포괄적 디지털 트윈을 활용함으로써 제품과 생산의 수명 주기를 각각 ‘제품용 디지털 트윈(digital twin for products)’과 ‘생산용 디지털 트윈(digital twin for production)’으로 원활하게 통합할 수 있다. 제품 측면에서는 제품용 디지털 트윈의 강력한 시뮬레이션 기능이 설계 주기를 단축하고, 프로토타이핑을 지원하며, 최종 제품의 품질을 향상시키는 데 기여한다. 한편, 생산용 디지털 트윈은 전체 공장의 설계와 최적화를 촉진해, 기계와 생산 라인을 보다 빠르고 효율적이며 친환경적으로 구축할 수 있도록 지원한다. 이는 생산 시스템 내에서 작업을 실행하는 가장 효율적인 방법을 결정함으로써 생산 일정을 최적화하는 데 도움을 준다. 이처럼 디지털 트윈의 두 가지 측면은 모두 기업의 운용 비용 절감을 지원한다. 제조업체는 제품용/생산용 디지털 트윈을 활용해 공장을 가상 환경에서 재현할 수 있으며, 이를 통해 실제 세계에서 많은 비용이 소요되는 재설계 작업을 수행하기 전에 기계와 시스템을 미리 최적화할 수 있다. 또한 기업은 시뮬레이션 기술을 활용해 고객과 함께 설계를 검토하고, 물리적 시스템의 전체 기능을 구체화할 수 있다. 국내에서도 많은 기업이 제품용/생산용 디지털 트윈을 도입해 제조 현장의 디지털 전환을 선도하고 있다. 예를 들어, LG이노텍은 자사 구미 사업장에 디지털 트윈 기술을 적용한 ‘드림 팩토리’를 구축했다. 이를 통해 가상 환경에서 반도체 기판 공정을 수백만 회 반복하며, 높은 수율과 품질을 단시간에 달성했다. 또한 디지털 트윈 기반의 라인 모니터링 시스템(LMS)을 통해 생산 라인, 제품 이동 경로, 재고 현황, 설비 이상 유무 등 전체 공장 상황을 실시간으로 모니터링하고 있다. GS칼텍스는 공장 건설 단계에서 확보한 3D 모델에 공정별 장치 설계도와 공정 도면 등 설비 정보를 적용해 자사 여수 공장의 디지털 트윈을 구축했다. 이를 통해 원유 입고부터 제품 출하까지의 생산 과정을 가상 공장에서 구현하고, 공정 단계별로 발생하는 비효율을 줄였다. 그 결과, 설비 관련 데이터를 찾는 시간이 기존 대비 약 30% 감소했으며, 현장 구조물 설치 등 공간 확인이 필요한 작업의 소요 시간도 약 70% 줄어든 것으로 나타났다.     산업 전반에서 확산되는 디지털 트윈의 가치 여러 산업 분야의 기업이 포괄적 디지털 트윈의 이점을 직접 경험하고 있다. 제품 설계업체부터 기계 제조업체에 이르기까지, 많은 고객이 디지털 트윈을 구현해 실질적인 가치를 창출하고 있다. 실제 사용 사례는 다음과 같다. 저비용 냉각 공기 흐름 최적화 AVG 경로 탐지 공장 레이아웃 증강 AI 기반 제품 개선 폐순환(closed-loop) 디지털 트윈 생성과 차세대 설계 최적화 지멘스의 포괄적 디지털 트윈은 제조업체가 많은 비용과 시간이 소요되는 설비 재작업을 방지할 수 있도록 지원한다. 디지털 트윈을 활용하면 물리적 프로토타입 기계를 배송하는 데 드는 추가 시간과 비용은 물론, 기계가 기대 성능에 미치지 못할 경우 발생하는 개조 비용까지 대폭 절감할 수 있다. 국내 제조업계에서도 지멘스의 기술을 기반으로 디지털 트윈을 적극적으로 구현하고 있다. DL모터스는 지멘스 엑셀러레이터(Siemens Xcelerator) 포트폴리오의 다양한 설루션을 도입한 대표 사례다. AI 지원 설계 설루션인 NX를 통해 기존 2D 설계를 3D로 전환했으며, PLM 설루션인 팀센터(Teamcenter)를 활용해 설계 데이터와 자재 명세서(BOM)의 열람, 배포, 관리가 가능한 환경을 구축했다. 이를 통해 시스템 응답 속도를 15~50배 가속화하고, 제품 설계를 혁신하며 제조 공정을 최적화했다. DL모터스는 지멘스와의 협력을 통해 디지털 전환을 앞당기며, 이륜차 업계의 디지털 트윈 구현을 선도하고 있다. 또한 HD현대는 공장 시뮬레이션을 위한 테크노매틱스(Tecnomatix)와 팀센터를 활용해 선박 생산의 전체 수명 주기를 아우르는 스마트 조선소 구축에 힘쓰고 있다. 지멘스와의 협력을 통해 설계와 생산 작업을 가시화하고, 건조 과정을 사전에 시뮬레이션하는 ‘인더스트리 메타버스’를 개발하고 있다. 양사는 2023년에 체결한 ‘설계-생산 일관화 제조혁신 플랫폼 공동개발을 위한 업무협약’을 바탕으로, 선박 제조 과정의 모든 데이터를 하나의 플랫폼에서 관리하는 디지털 자동화 생산 체계 구축을 위해 협력하고 있다.   산업 혁신을 이끄는 디지털 트윈의 미래 가치 포괄적 디지털 트윈은 제조 공장의 잠재력을 극대화하는 핵심 기술로 자리매김하고 있다. 디지털 전환과 디지털 트윈을 통한 지속적이고 적극적인 최적화는 비용을 효과적으로 관리하면서 제품과 생산의 효율성을 향상시키는 데 기여한다. 디지털 트윈의 장점은 여기에 그치지 않는다. 시뮬레이션 기술은 소프트웨어 정의 자동화와 생산 시스템을 기반으로 산업계가 산업용 메타버스를 구축하도록 이끌고 있다. 산업용 메타버스는 사용자가 물리적 자산의 가상 표현과 실시간으로 상호작용할 수 있는 디지털 환경으로, 기업은 이를 통해 거리의 제약을 극복하고 협업을 촉진할 수 있으며, 문제와 프로세스를 보다 깊이 이해하고 최적의 설루션을 도출할 수 있다. 이러한 흐름에 발맞춰 정부의 산업 디지털화 정책도 국내 산업의 디지털 트윈 도입을 적극 지원하고 있다. 산업통상자원부는 지난 5월, 산업단지 입주기업의 AI와 디지털 설루션 활용을 지원하는 현장 방문 프로그램인 ‘산업단지 AX 카라반’을 출범했다. 올해에는 10개의 인공지능 전환 실증 산업단지가 선정될 예정이며, 디지털 트윈 기반 스마트 공장 구축을 위한 실증 사업이 본격화될 전망이다. 지역 차원에서도 디지털 트윈 도입을 위한 움직임이 활발하게 전개되고 있다. 2023년에 지멘스는 경상북도, 김천시와 함께 경북 제조산업에 디지털 트윈 기술을 지원하는 업무협약을 체결했다. 지멘스는 지역 산업 현장에 디지털 설루션을 제공해 산업 생태계를 혁신하고, 디지털 트윈 분야의 신규 사업을 발굴하며, 전문 인재를 양성하는 다양한 사업에 협력하고 있다. 이처럼 디지털 트윈은 민간과 공공을 막론하고 차세대 산업 혁신을 이끌 중추 기술로 주목받고 있다. 포괄적 디지털 트윈은 향후 제조업 경쟁력을 좌우할 핵심 동력으로서, 산업 생태계 내부의 협력을 촉진하고 지속 가능한 혁신을 실현하는 데 중요한 역할을 하게 될 것이다.    ■ 오병준 지멘스 디지털 인더스트리 소프트웨어 한국지사장이다. 30여년 이상 한국의 여러 글로벌 IT 기업을 거치며 성공적 비즈니스 및 기술 전문성을 구축해 왔다. 지멘스 디지털 인더스트리 소프트웨어 한국지사장으로 선임되기 전 SAS 코리아 대표이사를 지냈으며, 오라클 코리아, 테라데이터 코리아, IBM 코리아 임원으로 재직한 바 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-08-04
로크웰 오토메이션, 기아 차체 공장의 자동화 시스템 현대화 지원
로크웰 오토메이션은 기아 슬로바키아 법인의 차체 공장에 최신 서보(servo) 기술을 구현해 핵심 생산 설비인 리프터(lifter)의 안정성과 디지털 운영 역량을 강화할 것이라고 밝혔다. 이번 프로젝트는 차량 조립 공정에서 차체 부품을 들어 올리고 정밀하게 위치를 제어하는 리프터 시스템의 노후 장비를 로크웰 오토메이션의 Allen-Bradley Kinetix 5700 서보 드라이브와 MPL 서보 모터로 업그레이드하는 것이 핵심이다. 서보 시스템은 로크웰 오토메이션의 PLC(프로그래머블 로직 컨트롤러) 및 네트워크 아키텍처와 통합돼 설정 변경, 부품 교체, 소프트웨어 마이그레이션, 버전 관리 등 반복적이고 복잡한 유지보수 작업을 간소화한다. 이번에 업그레이드되는 차체 공장 리프터는 서보 모터와 드라이브를 기반으로 작동하며, 기아의 유럽 전략 모델인 씨드와 스포티지 생산 라인에 적용된다. 기아 슬로바키아 법인은 이를 통해 가동 시간의 탄력성은 물론 최신 통신 네트워크 기반의 디지털 하드웨어를 도입함으로써, 운영 효율과 안정성을 강화할 수 있을 것으로 기대하고 있다.     기아 슬로바키아 법인의 차체 정비 담당 부관리자인 피터 홀루부치크(Peter Holubčík)는 “리프터는 생산 공정에서 매우 중요한 설비인 만큼, 공정 중단 없이 정밀성과 더불어 안정성이 높은 작업수행이 요구된다”면서, “설정 변경이나 정비를 위한 일시적인 가동 중단 시에도 빠른 작업 복귀가 가능해야 하는데, 로크웰 오토메이션의 새로운 서보 및 PLC 시스템은 이를 가능하게 해 유지보수 시간이 줄고, 프로그래밍 및 제어 안정성은 더욱 강화하게 해줄 것”이라고 밝혔다. 로크웰 오토메이션의 EMEA(유럽·중동·아프리카) 지역 전략 고객 및 영업 부문 부사장인 마크 보텀리(Mark Bottomley)는 “제조 환경에서 수명이 다한 설비나 구형 부품은 예기치 않은 고장과 생산 중단의 위험을 높이며, 자동차 산업처럼 린(lean) 생산, 적시생산(JIT : Just-In-Time) 환경의 기업에는 특히 심각한 리스크가 될 수 있다”며, “이번 현대화 프로젝트는 단순한 교체를 넘어, 디지털 기반 생산체계 전환이라는 더 큰 가치를 제공하게 될 것”이라고 강조했다.
작성일 : 2025-07-03
실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석
최적화 문제를 통찰하기 위한 심센터 히즈 (5)   심센터 히즈(Simcenter HEEDS)는 제품 설계 과정에서 발생하는 다양한 문제에 대해서 최적화 방법론을 적용하고 올바른 결과를 도출하는 데에 도움을 준다. 이번 호에서는 심센터 히즈에서 해석 모델의 정확도를 높이기 위한 캘리브레이션(calibration) 분석에 대해 살펴본다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 및 사례 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 및 사례 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 및 사례 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 및 사례 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화 및 사례   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   지난 호까지 연재 내용에서는 스칼라 값을 최대화하거나 최소화하는 데에 최적화의 중점을 두었다. 그러나 목표 성능 곡선을 시뮬레이션 데이터와 실험 데이터의 일치 또는 규정된 제품 사양의 일치와 같이 목표 성능 곡선을 일치시키는 것이 목표인 경우가 많다. 그리고 제품 설계에서 시뮬레이션은 시간과 비용을 절약하며 성능 예측을 가능하게 하지만 시뮬레이션 결과는 종종 실험 측정 데이터와의 오차를 보인다.  이러한 오차는 여러 가지 원인에 기인한다. 첫째, 모델링 과정에서의 가정 및 이상화로 인해 실제 물리적 현상을 완벽하게 반영하지 못할 수 있다. 둘째, 재료 물성치나 경계 조건과 같은 입력 데이터의 불확실성 또는 부정확성이 결과에 영향을 미친다. 마지막으로, 해석 소프트웨어의 수치 해석 한계로 인해 미세한 차이가 발생할 수 있다. 이러한 오차를 줄이지 않고서는 시뮬레이션 결과에 대한 신뢰성을 확보하기 어렵다. <그림 1>에서는 변형 속도에 민감한 폴리머 거동을 시뮬레이션으로 구현하기 위해 four-term Prony series의 Neo-Hookean 재료 모델에서 사용되는 5개의 재료 상수를 최적화하여, 재료의 실제 거동과 가장 잘 일치하는 계수를 식별하는 사례를 나타낸다.   그림 1   이러한 오차를 줄이기 위해 캘리브레이션(calibration) 분석이 필요하며, 이를 통해 모델의 정확도를 향상시킬 수 있다. 심센터 히즈의 ‘Curve Fit’ 기능을 활용하면 효율적인 최적화를 통해 캘리브레이션 과정을 자동화할 수 있다. 이번 호에서는 1차원 스프링-댐퍼 모델의 진폭 감쇄 곡선을 참조 곡선과 일치시키기 위해 심센터 히즈를 사용한 최적화 방법을 소개한다.   예제 - 1차원 스프링-댐퍼 모델 <그림 2>는 예제로 사용된 1차원 스프링-댐퍼 모델을 나타낸다.   그림 2   예제는 다음과 같은 변수를 가진다. 여기서 스프링 상수 k와 감쇠 계수 c는 시스템의 동적 특성을 결정하는 중요한 변수로 작용한다.  m = 1.0 # mass(kg)  k = 10.0 # spring constant(N/m)  c = 0.5 # damping coefficient(Ns/m)  F = 10.0 # external force(N) 파이썬(Python)을 사용하여 변위(x), 속도(v)를 (dx/dt = v), (dv/dt = (-c v - k x + F)/m) 관계로 10초 시간에 대해 진폭을 계산하며 결과를 <그림 3>과 같이 확인할 수 있다.   그림 3     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-07-01
슈나이더 일렉트릭 코리아, 반도체 및 장비 제조사 대상 이노베이션 데이 개최
슈나이더 일렉트릭이 반도체 산업 고객 및 장비 제조사를 대상으로 ‘이노베이션 데이’ 행사를 오는 7월 8일 개최한다고 밝혔다. 최근 국내 반도체 산업은 첨단 공정 중심의 고도화는 물론, ESG 대응을 위한 에너지 전환과 생산 인프라의 디지털 최적화에 대한 요구가 빠르게 증가하고 있다. 특히 AI, HPC(고성능 컴퓨팅) 등 연산 집약형 수요 확대에 따라 팹(fab)의 전력 사용량은 폭증하고 있으며, 이에 따라 전력 운영의 안정성과 효율성 확보가 산업 전반의 핵심 과제로 부상하고 있다. 이러한 흐름 속에서 생산 현장의 실시간 에너지 모니터링, 지능형 예지 정비, 전력 인프라의 고효율화는 경쟁력 확보를 위한 필수 요소로 주목받고 있다. 이러한 산업 흐름에 맞춰, 슈나이더 일렉트릭은 최신 기술과 인사이트를 공유하는 오프라인 기술 세미나를 진행하여 반도체 산업 내 에너지 운영 효율 향상, 디지털화, 그리고 탈탄소 전환을 위한 전략과 설루션을 제시할 예정이다. 이번 이노베이션 데이에서는 총 7개의 기술 세션과 함께 슈나이더 일렉트릭의 최신 에너지 및 자동화 기술을 직접 만나볼 수 있는 이노베이션 허브 관람 등이 진행된다. 슈나이더 일렉트릭 코리아의 전문가들이 직접 진행하는 발표 세션에서는 ▲반도체 생산 공정의 효율을 높이기 위한 에너지 모니터링 설루션 ▲탈탄소 전환 수립 및 달성을 위한 반도체 산업 전략 제안 ▲머신러닝 기반 모터 실시간 분석과 EOCR 신제품 ▲고효율 모터 제어 기술 ▲디지털 원격 모니터링 및 화재 예방 설루션 ▲HMI 및 AI 기반 제어 기술 ▲가변속 전력 구동 시스템을 활용한 예지보전 기능 등 실제 산업 현장에 적용 가능한 고도화된 기술이 다뤄진다.     또한 행사장에는 반도체 업계를 위한 슈나이더 일렉트릭의 최신 기술을 직접 체험할 수 있는 ‘이노베이션 허브(Innovation Hub : Experience in Real)’ 전시존이 마련된다. 이 전시존은 지속가능성(sustainability), 에너지 효율성(efficiency), 공정 연속성 보장(resiliency) 등 총 3개의 테마존으로 구성되어 참관객들은 각 존에서 실제 산업 현장에 필요한 핵심 기술을 집중적으로 살펴보고, 자사 환경에 최적화된 설루션을 구체적으로 검토할 수 있다. 먼저, 지속가능성 존에서는 탄소 배출 감축을 위한 지속가능성 컨설팅, 재생에너지 및 에너지 효율 향상 프로그램, 그리고 탄소 중립 전략 수립을 위한 데이터 기반 통합 모니터링 설루션이 소개된다. 특히 친환경 조달 및 PPA 컨설팅 등 공급망 전반의 지속가능성 확보를 위한 방안이 함께 전시된다. 에너지 효율성 존은 반도체 생산 공정의 시스템 최적화와 머신러닝 기반 스마트 운영을 중심으로 구성된다. 생산 라인의 효율을 높이고, 에너지 사용의 가시성을 확보할 수 있도록 데이터 기반 에너지 모니터링 설루션과 부하 관리 기술이 시연될 예정이다. 마지막으로 공정 연속성 보장 존에서는 고품질 전력 보장을 통한 다운타임 최소화와 안전 확보를 위한 기술이 전시된다. AI 기반의 실시간 예지 정비 시스템, 열 및 화재 감지 기술을 통한 인력 및 인프라 보호, 인프라 네트워크 최적화 및 응답력 향상 설루션 등을 직접 경험할 수 있다. 슈나이더 일렉트릭 코리아 파워 프로덕트 사업부의 김은지 본부장은 “이번 세미나는 슈나이더 일렉트릭이 보유한 글로벌 에너지 기술과 디지털 혁신 역량을 바탕으로, 반도체 업계 고객이 당면한 에너지 수요, 생산 효율, 지속 가능성에 대한 고민을 함께 나누고 해결 방안을 제시하는 뜻깊은 자리”라며, “앞으로도 슈나이더 일렉트릭은 산업별 고객 니즈에 맞춘 맞춤형 기술 세미나와 지속 가능한 파트너십 프로그램을 통해, 에너지 혁신과 디지털 전환을 선도해 나갈 계획”이라고 전했다.
작성일 : 2025-06-19