• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "매핑"에 대한 통합 검색 내용이 488개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
인텔, “AI 설루션으로 LG이노텍의 생산 공정 효율 향상”
인텔은 LG이노텍이 자사의 기술을 활용해 인공지능(AI) 기반의 자동화 시스템을 구축하고 있다고 소개했다. 소재·부품 전문 기업인 LG이노텍은 휴대폰, 자동차 디스플레이, 스마트 기기 등에 들어가는 수십만 개의 초소형 부품을 완벽한 정확도와 무결점으로 복제하는 것을 목표로 삼고 있으며, 혁신 기술을 통해 이러한 목표를 달성하고자 한다.  LG이노텍의 구미 공장에서는 인텔 코어(Intel Core) 프로세서, 인텔 제온(Intel Xeon) 프로세서 및 인텔 아크(Intel Arc) 내장형 그래픽처리장치(GPU)가 조화를 이루며 작동한다. 이들 기술은 오픈비노(OpenVINO) 소프트웨어 툴킷으로 통합된다. LG이노텍은 생산 라인의 특정 단말기에서 규칙 기반 검사 및 딥러닝 기반 시스템을 사용해 제품 품질을 높여왔다. 여기서 나아가, LG이노텍은 제조 공정 전반에 걸쳐 AI를 광범위하게 적용하여 성능 저하 없이 완전 자동화된 시스템을 구축하고자 했다. 인텔은 지난 2024년 인텔 코어 및 제온 프로세서와 아크 외장형 GPU를 기반으로 하는 AI 기반 검사 시스템에 대한 구축 지원을 위해 LG이노텍과 논의를 시작했다. 핵심은 생산 공정에서 발생하는 데이터가 인텔 코어 CPU를 탑재한 PC로 스트리밍되며, 내장 GPU는 결함 데이터를 분석하는 데 비용 효율을 제공하는 것이다. 고해상도 이미지에서 다중 알고리즘을 실행하는 등 부하가 큰 워크로드는 인텔 아크 외장 GPU가 처리하게끔 했다. 시간이 지남에 따라 축적된 데이터셋은 인텔 제온 기반의 사전 학습 서버로 전송된다.      양사는 향후 협업을 통해 인텔 가우디 AI 가속기가 탑재된 서버를 활용한 사전 학습 워크로드 관리를 검토하고 있다. 이처럼 CPU를 기반으로 내장 및 외장 GPU로 가속화된 인텔 기반 기술 조합을 활용하여 AI 검사 시스템 구축 비용을 절감할 수 있었다는 것이 인텔의 설명이다. 인텔은 “아크 기반 외장 GPU를 도입하면서, 동급 성능의 타사 하드웨어 대비 성능에 비해 높은 비용 효율성을 달성했다. 이러한 비용 절감 효과는 규모의 경제를 더욱 극대화할 수 있는 기반이 되고 있다”고 전했다.  LG이노텍은 2024년 모바일 카메라 모듈 생산 라인에 인텔의 AI 비전 검사 설루션을 처음 적용했으며, 올해는 FC-BGA(flip-chip ball grid array)를 생산하는 구미4공장 등 국내 주요 생산 거점과 해외 생산라인에 단계적으로 확대 적용할 계획이다.  시스템 도입 당시에는 기존 딥러닝 환경이 특정 외장 그래픽 카드를 기반으로 구축되어 있어, 처음에는 통합 GPU 도입에 대한 우려가 있었다. 특히, 신규 GPU에 맞춰 기존 코드를 재작성하고 다시 매핑하는 것이 매우 어려울 것이라는 걱정이 있었만, 오픈비노(OpenVINO) 소프트웨어 툴킷을 활용해 우려를 해소할 수 있었다. 2018년 오픈비노 출시 이후, 인텔은 전 세계 개발자가 AI 기반 개발을 가속화할 수 있도록 지원해왔다. 오픈비노는 개발자가 한 번의 코드 작성으로 다양한 환경에 AI 모델을 배포할 수 있도록 돕는 오픈소스 AI 툴킷이다. LG 이노텍의 엔지니어들은 대량 생산 과정에서 공정이 변경되거나 원자재가 바뀔 때, 딥러닝 모델을 재학습하기 위해 AI 기반 워크로드에 최적화된 AI 가속기가 탑재된 인텔 제온 CPU 활용도 고려하고 있다. 제온 CPU는 병렬 연산 속도를 높이고, 인텔 AMX(Intel Advanced Matrix Extensions)라는 특수 내장 가속기를 지원해 제온 CPU에서 딥러닝 학습 및 추론 성능을 향상시킨다. 인텔은 제온 CPU와 별도 서드파티 GPU를 함께 사용하는 기존 방식에 비해 AI 기반 파인튜닝(Fine Tuning) 작업을 CPU로 처리함으로써 시스템 비용을 줄일 수 있을 것으로 기대하고 있다.
작성일 : 2025-08-26
데이터 분석에 로코드 설루션이 필요한 이유
로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (1)   이번 호부터 로코드(low code) 설루션을 활용하여 데이터 분석을 활용하는 방법에 대해 설명하고자 한다. 앞으로 4회에 걸쳐 데이터 분석을 위한 로코드 분석 설루션이 어떤 장점을 가지고 있으며 어떻게 활용될 수 있는지 살펴보고, 간단한 데이터 분석 예제를 따라해 보면서 활용하는 방법을 배워보도록 하겠다.   ■ 연재순서 제1회 데이터 분석에 로코드 설루션이 필요한 이유 제2회 데이터 분석 로코드 설루션을 배워보자 제3회 로코드를 활용하여 시뮬레이션 데이터 분석을 따라해 보자 제4회 데이터 분석 로코드 설루션을 클라우드로 확장해 보자   ■ 윤경렬 현대자동차 연구개발본부 책임연구원   ■ 김도희 잘레시아 DX 프로   머신러닝 및 딥러닝 기술의 급격한 발전에 힘입어 최근 몇 년사이에 데이터 분석 시장은 폭발적으로 성장해 왔다. 데이터의 분석을 통해서 패턴을 찾고 이를 통해 행동을 예측할 수 있는 사례는 많은 이들의 관심을 불러 일으켰고, 파이썬(Python) 언어와 관련 라이브러리의 사용법을 배우는 강좌도 덩달아 큰 인기를 누리게 되었다. 이는 지식의 저변 확대와 관련 산업의 활성화라는 측면에서 상당히 좋은 방향이지만, 실제 현장에서는 상대적으로 쉽다고 알려져 있는 파이썬 언어도 교육 강좌를 수강한 이후 막상 본인의 업무에 적용하려고 하면 적지 않은 어려움에 직면하게 된다. 이유는 파이썬 언어의 사용이 어려워서라기보다는 CDS(Citizen Data Scientist : 시민 데이터 과학자)에게는 익숙하지 않기 때문이다. 특히 프로그래밍 언어를 이용한 코딩은 텍스트에 기반한 정보이기 때문에 직관적이지 않고 시행착오를 반복해야 어느 정도 활용 레벨에 올라갈 수 있다. 최근 이러한 문제를 해결하기 위해 로코드 분석 설루션(low code analysis solution)이 대안으로 시도되고 있으며 유의미한 결과를 보여주고 있다.   일반적인 데이터 분석 과정 데이터 분석은 보통 요청을 접수하는 것부터 시작되며, 이 단계에서는 무엇을 분석해야 하는지, 분석의 목적은 무엇인지 명확히 파악하는 것이 중요하다. 분석 대상과 기대하는 결과가 정해지면 그에 필요한 관련 데이터를 확보하게 된다. 이 때 데이터는 내부 시스템, 데이터베이스, 외부 파일 등 다양한 경로를 통해 수집될 수 있다. 다음은 확보한 데이터를 개괄적으로 파악하는 과정인데, 이 때 주요 칼럼과 데이터의 값을 확인하고 누락된 값 또는 이상치가 있는지 등을 점검하게 된다. 데이터의 품질을 빠르게 진단하는 이 단계는 이후 분석의 방향에 큰 영향을 미치게 되기 때문에 아주 중요하다. 이렇게 데이터의 상태를 파악하고 난 뒤에는 분석 전략을 수립하게 되는데, 여기서는 어떤 방식으로 데이터를 다루는 것이 좋을지, 어떤 분석 기법을 적용하는 게 좋을지를 구체적으로 준비하게 된다. 세 번째 단계로는 그 동안 수립한 분석 계획에 따라 본격적인 데이터 정제 작업을 시작하게 된다. 구체적으로는 전처리, 필터링, 파생 변수 생성 등의 작업을 포함하여 분석에 적합한 형태로 데이터를 정돈하는 단계로 볼 수 있다. 다음은 실제 분석을 수행하고 필요한 시각화를 통해 인사이트를 도출하는 것으로 통계 분석, 머신러닝 모델링, 상관관계 파악 등 다양한 방법이 이 부분에 포함된다. 마지막으로 분석 결과는 보고서 형태로 문서화하거나 대시보드로 시각화하여 공유되며, 이는 분석 요청자 또는 조직 내 이해관계자가 쉽게 결과를 활용하여 의사결정을 수행하도록 지원할 수 있다. 요청 접수 → 데이터 확보 → 데이터 검토(칼럼/누락/이상치 확인) → 분석 전략 수립 → 데이터 정제 및 가공 → 분석 수행 및 시각화 → 결과 공유   파이썬 코딩과 로코드 기반 분석의 비교 이제부터 본격적으로 데이터 분석을 진행하기 위해, 우리는 데이터 분석에 대한 요청을 받은 CDS라고 가정을 해 보자. 우리는 유관부서로부터 전력 판매량(Electric Power Sales) 예측에 대한 분석을 요청 받은 상태이고, 언제나처럼 기한은 촉박한 상황이다. 우리에게 주어진 데이터는 발전소 데이터, 기상 정보 데이터, 날짜 및 요일 데이터 등 세 가지로 다행스럽게도 소스 데이터는 엑셀 형태로 정리되어 입수한 상태이다. 우선 ‘발전소 데이터’를 살펴 보면 일자별로 특정 발전소에서 일일 발전량이 자세하게 표시되어 있다. 결국 첫 번째 데이터는 Electricity_sales로, 발전소 명칭, 측정 일자(년, 월, 일), 시간대별 전력 판매량으로 구성되어 있는데 이는 머신러닝에서 예측하게 될 Y값(종속변수)이 포함된 핵심 데이터 영역이다.   그림 1. 발전소 데이터   다음은 ‘기상 정보 데이터’로 일자별로 특정 지역의 날씨 정보가 정리되어 있다. 발전소 위치에 따른 기상 정보로 일시, 평균기온, 강수량, 풍속, 습도, 일사량 등의 정보가 담겨 있다.    그림 2. 기상 정보 데이터   마지막으로 ‘날짜 및 요일 데이터’는 일자별로 요일을 숫자로 매핑한 데이터이다. 날짜 데이터에 매핑 가능한 공휴일 정보가 담겨 있는 데이터 영역이다.   그림 3. 날짜 및 요일 데이터   결국 요청 받은 데이터 분석을 완료하기 위해서는 입수한 데이터에 전처리를 수행하고 이를 기반으로 다중 회귀 분석을 수행하여 머신러닝 예측 모델을 구성해야 한다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-08-04
로지텍, 이동성 강화한 AI 기반 올인원 화상회의 설루션 국내 출시
로지텍이 현대 업무 환경에 최적화된 AI 기술 기반의 간편한 올인원 화상회의 설루션 ‘랠리 보드 65(Rally Board 65)’를 국내 정식 출시했다고 밝혔다. ‘랠리 보드 65’는 AI 기반 오디오·비디오 기술을 65인치 터치스크린 디스플레이에 통합한 올인원 제품으로, 유연한 업무 방식과 다양한 협업 공간에 최적화되어 있다. 특히 이동식 카트를 통해 회의실은 물론 개방형 협업 공간까지 자유롭게 이동하며 신속하게 비디오 기능을 추가할 수 있어, 손쉽게 고품질 화상회의 환경을 구축할 수 있다. 테이블 스탠드, 벽걸이 마운트 등의 설치 옵션으로도 손쉽게 설치 가능하며, 4K 해상도와 위치 조절이 가능한 카메라를 통해 참가자 모두가 자연스러운 시선으로 몰입감 있는 회의를 경험할 수 있다.     이 제품에 탑재된 AI 비디오 기술 ‘라이트라이트 2(RightLight 2)’는 그리드 뷰, 그룹 뷰, 발표자 뷰 등 상황에 적합한 화면 구성을 지원해 대면 상호작용의 효율성을 높인다. 심도 매핑 센서를 활용해 초점 영역과 비초점 영역을 구분하며, 일반적인 배경 블러 처리 설정 보다 자연스러운 심도 효과를 구현해 회의의 집중도를 높인다. 여기에 AI 오디오 기술인 ‘라이트사운드 2(RightSound 2)’가 적용돼, 음성 크기나 거리에 관계없이 모든 목소리를 균형 있게 조정하고 키보드 타이핑, 클릭 등 소음 방해 요소를 제거해 선명한 음성을 전달한다. 또한, 로지텍의 원격 관리 설루션 ‘로지텍 싱크(Logitech Sync)’를 통해 랠리 보드 65를 포함한 다양한 로지텍 디바이스를 통합 관리할 수 있다. 공간 활용도, 온도, 미세먼지 등 회의실 환경 데이터를 수집·분석해 정교한 인사이트를 확보하고, 이를 기반으로 공간 운영의 최적화와 에너지 효율 개선 등 실질적인 의사결정에 활용 가능하다. 마이크로소프트 팀즈, 줌, 구글 밋 등 주요 화상회의 플랫폼과 호환성도 제공하며 안드로이드, PC, BYOD 환경에서도 유연하게 사용할 수 있다. 로지텍 코리아의 조정훈 지사장은 “랠리 보드 65는 AI 기술을 기반으로 언제 어디서나 최적의 화상회의 환경을 손쉽게 구축할 수 있도록 돕는 혁신적인 설루션”이라며, “로지텍은 앞으로도 변화하는 업무 환경에 맞춰 고객이 원하는 유연하고 효율적인 협업 환경을 제공하기 위해 노력하겠다”고 전했다.
작성일 : 2025-06-23
엑스리얼, 새로운 XR 경험 위한 신규 프로젝트 발표
AR 글라스 제조사인 엑스리얼이 미국 캘리포니아 롱비치에서 개최되는 XR(확장현실) 전시회 ‘AWE USA 2025’에 참가한다고 밝혔다. 엑스리얼은 AWE 2025 행사의 첫날 기조연설을 통해 프로젝트 오오라(Project Aura), 엑스리얼 원 프로, 신규 AR 액세서리를 소개할 예정이다. 안드로이드 XR용 프로젝트인 오오라는 경량형 유선 연결, 시네마틱 디자인, AI 기술을 통해 넓은 시야각 경험을 제공한다. 엑스리얼의 경량 XR 하드웨어, 안드로이드 XR 소프트웨어, 공간 컴퓨팅에 최적화된 퀄컴 테크놀로지의 스냅드래곤 XR 칩셋이 결합된 기술력을 바탕으로 구현되었으며, 유선 XR 안경과 전용 컴퓨팅 기기로 구성된 단일 설루션이다. 이번 AWE 2025에서 퀄컴은 엑스리얼과 협력해 프로젝트 오오라의 전용 컴퓨팅 기기에 스냅드래곤 칩셋을 탑재할 것이라고 발표할 예정이다. 오오라에는 퀄컴 스냅드래곤 칩이 탑재되며, 엑스리얼의 X1 칩은 안경 본체에 탑재된다. 퀄컴 스냅드래곤과 X1은 프로젝트 아우라에 통합되고 최상의 성능을 제공하는 코프로세서로 기능하며, 프로젝트 아우라용 X1 칩은 실제로 더 새로운 버전인 X1S으로, 내부 성능이 더욱 강화됐다.     또한 엑스리얼은 곧 출시될 예정인 모둘형 카메라 엑스리얼 아이(XREAL Eye)도 공개한다. 엑스리얼 아이는 AR 글라스 엑스리얼 원(XREAL One) 및 엑스리얼 원 프로(XREAL One Pro)용 12MP 카메라로, 1인칭 시점 사진과 동영상을 촬영할 수 있다. 엑스리얼 아이는 엑스리얼 원 및 엑스리얼 원 프로에 6DOF 앵커링을 지원하도록 돕는다. 엑스리얼의 AR 글라스는 가벼운 무게와 편안한 착용감, 합리적인 가격을 내세운다. 여기에 더해 공간 컴퓨팅 기술을 토대로 한 첨단 광학 및 공간 감지 센서를 제공한다. 엑스리얼의 AR 글라스인 ‘에어’ 시리즈는 현재까지 약 35만여대라는 업계 최고의 출하량을 기록했다. 전 세계 AR 시장이 연평균 89%씩 성장하고 있는 가운데, 엑스리얼은 지난 3년간 연평균 320%의 성장률을 기록했다고 설명했다. 또한, 엑스리얼은 현재 멀티 모달 AI, 제스처 제어 및 매핑 기술 개발에도 집중하고 있다고 전했다.
작성일 : 2025-06-11
DJI, 기업용 플래그십 드론 플랫폼 매트리스 400 출시
DJI가 새로운 기업용 플래그십 드론 플랫폼인 ‘DJI 매트리스 400(DJI Matrice 400)’을 출시한다. 이 제품은 최대 59분의 비행 시간, 6kg의 페이로드, 라이다(LiDAR) 및 mmWave 레이더 기반의 정밀 장애물 감지 시스템 등 전반적인 성능이 향상되었다. DJI O4 엔터프라이즈(Enterprise) 영상 전송 시스템과 공중 릴레이 기능도 탑재해 영상 전송의 안정성과 효율성이 강화되었으며, 수색·구조, 송전선 점검, 대규모 매핑, 엔지니어링 및 건설 등 다양한 산업 목적 및 현장에 최적화되도록 설계되었다.     매트리스 400은 페이로드 탑재 상태에서도 최대 59분의 비행, 53분의 호버링이 가능하다. IP55 등급의 방진·방수 성능으로 -20℃에서 50℃까지의 극한 환경에서도 안정적인 운용이 가능하다. 라이다, mm-Wave 레이더, 저조도 풀 컬러 어안 비전 센서를 통해 야간 산악 지형의 고압선 과 같은 소형 장애물까지 감지하며, 최대 25m/s의 고속 비행 중에도 안정적으로 장애물을 피할 수 있다. 비전 포지셔닝 시스템은 복귀 지점이 업데이트되지 않아도 안정적인 복귀를 가능하게 한다. 또한 매트리스 400은 새로운 스마트 감지(Smart Detection), 스마트 AR 프로젝션(Smart AR Projection) 등 다양한 지능형 기능을 통해 작업 효율을 높인다. 예를 들어, Power Line AR 기능은 장애물을 인식해 조종기 화면에 시각화하여 회피를 돕는다. DJI O4 엔터프라이즈 전송 시스템은 최대 40km 거리에서 고품질 영상 전송을 가능하게 하며, 내장형 영상 중계 모듈은 네트워크 연결을 방해하는 요소가 많은 환경에서도 운영 범위를 크게 확장할 수 있다.  매트리스 400은 4개의 외부 E-Port V2를 통해 최대 7개의 페이로드를 동시에 장착할 수 있으며, 최대 탑재 하중은 6kg이다. 단일 및 듀얼 하향 짐벌 간 전환이 자유롭고, 세 번째 짐벌 포트도 지원한다. DJI 및 타사 페이로드와 호환되며, Zenmuse H30 시리즈, L2, P1, S1, V1, Manifold 3 등 넓은 호환성을 제공한다. DJI는 “사용자 동의 없이 사진·영상이 DJI와 공유되지 않으며, 미국 내 사용자는 비행 로그와 DJI 서버를 동기화할 수 없다”면서 강화된 보안 기능도 설명했다. 로컬 데이터 모드(Local Data Mode)를 활용하면 앱의 네트워크 연결을 차단하여 민감 데이터 보호가 가능하다. DJI의 크리스티나 장(Christina Zhang) 기업 전략 담당 수석 이사는 “DJI는 오랜 기간 동안 엔터프라이즈 드론을 통해 안정성, 효율성 및 신뢰성의 새로운 기준을 제시해왔다. 전 세계 다양한 산업 분야의 전문가들은 수색 및 구조 임무, 상황 인식, 상업적 작업에 DJI 드론을 적극 활용하고 있다”면서, “DJI 매트리스 400은 거의 한 시간에 달하는 비행 시간과 사람과 자산의 안전을 보장하는 지능형 기능을 통해 드론 기술의 한계를 다시 한 번 넓혔가고 있다”라고 말했다.
작성일 : 2025-06-11
AWS, AI 기반 마이그레이션 서비스 ‘AWS 트랜스폼’ 출시
아마존웹서비스(AWS)가 기업의 마이그레이션 및 현대화 프로젝트를 가속화하기 위한 AI 기반 서비스인 AWS 트랜스폼(AWS Transform)을 출시했다. AWS 트랜스폼은 지난 AWS 리인벤트 2024에서 아마존 Q 디벨로퍼(Amazon Q Developer)의 변환 기능 중 하나로 선공개된 AI 기반 설루션이다. 이 설루션은 기업의 VM웨어, 메인프레임, 닷넷 워크로드와 관련된 현대화 작업을 자동화하고 복잡한 마이그레이션 작업을 간소화하여, 기존 방식 대비 최대 4배 빠르게 프로젝트를 완료할 수 있도록 지원한다. 또한, 기반 모델, 대규모 언어 모델(LLM), 머신러닝, 그래프 신경망, 자동화 추론 등 AWS의 AI 기술 인프라를 활용하여 기존 인프라, 애플리케이션, 코드 현대화 과정에서의 복잡성과 부담을 줄여준다. 또한 전문적인 트랜스포메이션 어시스턴트 역할을 하는 채팅 기반의 경험을 제공하여 목표 설정, 프로젝트 컨텍스트 공유, 비즈니스 계획 및 비용 절감 평가, 트랜스포메이션 계획 검토 및 조정, 코드 및 인프라 제안 검토 및 승인 등을 지원한다. 뿐만 아니라 통합 웹 환경에서 여러 부서의 팀들이 함께 작업을 검토하고, 진행 상황을 추적하며, 프로젝트 전반에 걸쳐 협업할 수 있게 함으로써 가장 복잡한 레거시 애플리케이션에 대한 트랜스포메이션 계획을 제어할 수 있도록 지원한다. AWS는 닷넷을 위한 AWS 트랜스폼 에이전트가 윈도우에서 리눅스로 닷넷 프레임워크(.NET Framework) 애플리케이션 포팅(porting)을 가속화하여 운영 비용을 최대 40%까지 절감한다고 소개했다. 이러한 비용 절감은 윈도우 서버 라이선싱 비용, 버전 업그레이드, 유지보수 및 지원 종료 문제를 줄이는 동시에 분석, 계획 및 리팩토링 전반에 걸친 트랜스포메이션 비용을 절감함으로써 이루어진다. 닷넷 에이전트(.NET Agent)를 통해 자연어로 채팅하여 트랜스포메이션 목표와 프로젝트 컨텍스트를 공유할 수 있으며, AWS 트랜스폼이 종속성을 분석하고, 과거 현대화 여정의 영역별 전문 지식을 적용하여 맞춤형 현대화 계획을 개발할 수 있다. 또한 자율적으로 코드를 변환하고, 단위 테스트를 실행하고, 트랜스포메이션 요약을 생성하며, 리눅스 환경에서 실행 가능한 상태로의 준비 여부를 검증할 수 있다. AWS 트랜스폼은 닷넷 프레임워크 애플리케이션 코드를 리눅스 환경에서 실행 가능한 상태로 준비된 크로스 플랫폼 닷넷으로 변환하고, 사설 패키지를 포팅하고, 단위 테스트 실행을 자동화한다. 또한 설명 가능한 변환 결정을 제공함으로써 애플리케이션의 성능과 확장성을 향상시킨다. 이 새로운 에이전트는 통합된 웹 경험을 통해 일관된 결과로 수백 개의 애플리케이션을 병렬로 변환시켜 팀 간의 협업을 간소화하고 대규모 현대화 프로젝트를 효율적으로 처리할 수 있도록 지원한다. AWS에 따르면, 메인프레임을 위한 AWS 트랜스폼 에이전트를 통해 전체 현대화 프로세스를 간소화하여 위험과 복잡성을 줄이면서 일정을 최대 50%까지 단축할 수 있다. 채팅 인터페이스를 통해 높은 수준의 현대화 목표를 정의하고 작업 계획을 협의할 수 있다. 준비가 되면 AWS 트랜스폼은 코볼(COBOL)과 JCL(Job Control Language)로 작성된 메인프레임 애플리케이션과 CICS(Customer Information Control System) 트랜잭션 관리자, BMS(Basic Mapping Support) 화면, DB2 데이터베이스, VSAM(Virtual Storage Access Method) 데이터 파일에 의존하는 애플리케이션을 처리한다. 종속성과 누락된 파일을 신속하게 식별하는 고급 코드 분석의 이점을 통해 하위 프로젝트 지연을 줄일 수 있다. 그래프 신경망을 사용하여 모놀리식(monolithic) 애플리케이션을 관리 가능한 모듈로 분해함으로써 중요한 비즈니스 로직을 보존하면서 타기팅된 현대화 접근 방식을 가능하게 한다. 프로젝트 전반에 걸쳐 AWS 트랜스폼은 AI 어시스턴트 역할을 하며, 진행 상황에서 학습하고 생성된 기술 문서를 기반으로 프로그램에 대한 질문에 답변한다. 애플리케이션을 리팩토링(refactoring)할 때, 향상된 정확도를 위해 상태 머신(state machines)과 상태 전이 그래프(state transition graphs)를 활용하여 코볼, JCL 및 DB2를 자바(Java)와 포스트그레(Postgres)로 변환할 수 있다. 애플리케이션을 재구상할 때는 수백만 줄의 코드에서 추출된 포괄적인 기술 문서, 비즈니스 규칙, 논리적 흐름을 얻을 수 있다. AI 에이전트의 지능형 오케스트레이션을 통해 상세한 문서로 기관 지식을 보존하면서 클라우드에서 메인프레임 애플리케이션을 더 빠르고, 단순하고, 안전하게 현대화할 수 있다. VM웨어를 위한 AWS 트랜스폼 에이전트는 인프라를 최적화하고 운영 오버헤드를 줄이면서 증가하는 VM웨어 라이선스 비용을 피할 수 있다. 채팅 인터페이스는 온프레미스 VM웨어 환경에 커넥터를 추가하거나 타사 도구에서 자산 인벤토리를 업로드하도록 안내한다. 목표를 지정한 후, 에이전트는 애플리케이션 검색, 종속성 매핑, 마이그레이션 계획, 네트워크 변환, 서버 마이그레이션 및 EC2 인스턴스 최적화와 같은 작업을 자동화한다. 사용자는 휴먼인더루프(human-in-the-loop) 메커니즘을 통해 아티팩트를 검토, 승인 및 편집할 수 있다. 그래프 신경망을 사용하여 네트워크 트래픽과 통신 패턴을 분석하여 종속성을 식별하고 최적의 마이그레이션 이행 계획(migration wave planning)을 자동으로 생성할 수 있다. VPC, 서브넷, 보안 그룹 및 트랜짓 게이트웨이를 포함한 복잡한 네트워크 구성을 AWS 클라우드 환경에 상응하는 구성요소로 변환할 수 있다. 또한 격리된 VPC 및 유연한 허브앤스포크(Hub-and-Spoke) 구성과 같은 향상된 기능을 통해 네트워크 마이그레이션 문제를 해결할 수 있다. 이를 통해 일반적으로 2주가 소요되던 전통적인 네트워크 구성 작업을, VM웨어를 위한 AWS 트랜스폼을 사용하면 1시간 안에 완료할 수 있으며, 일반적으로 몇 주의 분석이 필요한 마이그레이션 이행 계획을 15분 안에 완료할 수 있게 되었다.
작성일 : 2025-05-20
[특별기고] 디지털 트윈 발전 전망
디지털 트윈과 산업용 메타버스 트렌드   데이터 기반 서비스 관점에서의 디지털 트윈의 역할은 실 체계에서 수집한 실제 데이터와 디지털 트윈 시뮬레이션으로 얻어진 가상 데이터의 융합을 통하여 실제 시스템 관련 문제 해결에 유용한 빅 데이터 생성이라 할 수 있다.  디지털 트윈 활용은 안정성에 부담이 적고 신속/가시적 성공사례 확보가 가능한 스마트시티, 스마트 팩토리, 스마트SOC(도로, 철도, 항만, 공항, 등) 등이 대상이지만 기술성숙도가 높아지고 안정성이 보장됨에 따라 자율주행, 의료/인공장기, 식물공장 등으로 확대될 전망이다.   ▲ 철도 네트워크의 디지털 트윈 구축하는 독일 디지털 철도(이미지 출처 : 엔비디아)   1. 디지털 전환과 디지털 트윈 디지털 전환(Digital Transformation: DX)은 비즈니스 전 과정에 ICT 기술을 도입하여 전사적 업무, 생산 기술, 제품 등을 디지털화 한 후 이를 기반으로 가상 실험이 가능한 디지털 환경을 구축하는 것이다.  디지털 전환의 궁극적 목적은 기업 이윤 극대화에 필요한 업부/생산 효율성 및 제품 부가 가치 증대를 위한 다양한 창의적 대안들을 가상 실험을 통해 평가한 후 그 결과를 비즈니스 전 과정에 활용하는 것이다. 예를 들어, 스마트 팩토리의 디지털 전환은 조달 시스템, 생산 시스템, 물류 시스템 등 스마트 팩토리 구성요소들의 자원 할당 및 운용에 대한 다양한 대안들을 가상 실험을 통해 평가할 수 있는 환경을 구축하여야 한다. 그렇다면, 비즈니스 전 과정을 가상 실험하기 위해서는 무엇이 필요할까?  가상 실험을 하기 위해서는 먼저 가상 실험 대상(예: 제조 공장)을 선정하고, 다음으로, 가상 실험 시나리오(예:새로운 제조 장비 도입)가 필요하며 시나리오를 수행할 모델(예: 제조 공정 시뮬레이션 모델)이 필요하다. 이러한 가상 실험을 위한 모델이 디지털 트윈이며 이런 이유로 많은 사람들이 디지털 트윈을 DX의 Key(Richard Marchall, 2017), DX의 Enablers(Reterto Saracco, 2019), DX의 Central(Vijay Ragjumathan, 2019), DX의 Steppingstone(Harry Forbes, 2020), DX의 Pillar(Fransesco Belloni, 2020)라고 지적하였다.   2. 디지털 트윈의 정의 디지털 트윈은 물리적 자산, 프로세스 및 시스템에 대한 복제본으로 정의[Wiki 사전]되며, 복제본이란 대상 체계의 운용 데이터, 지형/공간/형상 정보 및 동작/운용 법(규)칙을 컴퓨터 속에 디지털화 해 놓은 것을 의미한다. 예를 들면, 제조 공장의 디지털 트윈은 제조 공장의 운용 데이터, 제조 공장의 공간/형상 정보, 그리고 제조 장비 동작 및 공정 모델이 컴퓨터 속에 복제된 것이 될 것이다. 디지털 트윈과 대상 체계가 쌍둥이기 때문에 쌍둥이 중 누가 먼저 태어났느냐에 따라 디지털 트윈의 이름을 다르게 붙이기도 한다. 대상 체계가 존재하기 전에 만들어진 디지털 트윈을 디지털 트윈 프로토타입(Prototype) 그리고 대상 체계가 만들어진 후 복제된 디지털 트윈을 디지털 트윈 인스턴스(Instance)라고 부른다. 디지털 트윈 프로토타입은 대상 체계 설계 단계에서 활용되며 디지털 트윈 인스턴스는 대상 체계의 운용 분석에 활용되는 것이 일반적이다. 디지털 트윈 인스턴스(실 체계의 복제본)와 디지털 트윈 프로토타입(실 체계의 설계 모델)이 모두 존재할 수도 있지만 디지털 트윈 프로토타입 없이 디지털 트윈 인스턴스만 존재할 수도 있다. 디지털 트윈 프로토타입과 인스턴스가 모두 존재한다면 인스턴스는 프로토타입에 실 체계 운용 정보가 반영되어 진화(성장)된 트윈으로 볼 수 있다. 3. 디지털 트윈 구축 목적 디지털 트윈의 구축 목적은 대상 실 체계와 디지털 트윈을 연동 운용함으로써 실 체계 관련 이해 당사자에게 지혜 수준의 혁신적 서비스를 제공할 수 있는 핵심 도구/수단으로 활용하기 위함이다. 데이터 기반 서비스 관점에서의 디지털 트윈의 역할은 실 체계에서 수집한 실제 데이터와 디지털 트윈 시뮬레이션으로 얻어진 가상 데이터의 융합을 통하여 실제 시스템 관련 문제 해결에 유용한 빅 데이터 생성이라 할 수 있다. 융합 빅 데이터는 AI-통계/공학 분석도구들을 이용하여 실 세계의 구성요소인 자산, 사람, 운용 프로세스들의 다양한 결합에 대한 분석/예측 및 체계 운용 최적 대안(최적화)을 찾는데 활용될 수 있다. 아울러, 융합 빅 데이터는 실 세계를 가상 환경에서 현실감 있게 표출할 수 있는 다양한 장비/장치와 VR/AR/XR/메타버스 관련 ICT 기술과의 융합 인터페이스를 통해 오락, 관광, 교육 훈련, 체험 등에 활용될 수 있다.     디지털 트윈의 복제 대상은 실 체계의 운용 데이터, 공간/형상 정보 및 실 체계에 포함된 객체들의 행위 모델 등 3가지이다. 운용 데이터는 실 체계에 설치된 IoT 장비로부터 획득이 가능하다. 공간/형상 정보는 서비스 목적에 따라 GIS, BIM 혹은 3D CAD 중 한 가지 이상을 결합하여 사용한다. 객체 행위 모델은 다양한 시나리오를 가상 실험하기 위한 시뮬레이션 모델을 사용하지만 서비스 목적에 따라서는 운용 데이터를 학습한 데이터 모델을 사용할 수도 있다. 구성요소 중 일부만을 사용한 디지털 트윈은 나머지 구성요소를 사용하지 않음으로 인한 한계점에 봉착하게 된다. 예를 들면, 실 체계 운용 데이터 복제만으로 구성된 IoT 기반 디지털 트윈은 수집된 데이터를 분석할 수는 있지만, 실 체계를 시각화한 지형/공간 상에 데이터를 표출할 수 없을 뿐만 아니라 실 체계와는 다른 가상 데이터를 입력한 시뮬레이션을 수행할 수 없다. 마찬가지로, 지형/공간 정보 만으로 구성된 디지털 트윈은 실 체계에서 일어나는 지형/공간 정보의 변화를 실 시간으로 반영할 수 없으며 시뮬레이션을 통한 실 체계의 현상 분석 및 미래 예측이 불가능 하다.      디지털 트윈의 효율적인 활용을 위해서는 위의 세 가지 구성요소 모두를 개발 및 운용할 수 있는 통합 플랫폼이 바람직하지만 국내외적으로 표준화된 디지털 트윈 플랫폼은 존재하지 않는다. 디지털 트윈의 특성 상 3가지의 디지털 트윈 구성요소 각각을 개발하는 독립적인 플랫폼을 사용하여 구성요소를 개발한 후 이들을 연동하여 운용하는 것이 효율적이다.  구체적으로는, 먼저, 디지털 트윈 개발 목적에 맞게 운용 데이터를 수집하는 IoT 플랫폼, 지형/공간 정보를 구축하는 지형/공간정보 플랫폼 및 모델링 시뮬레이션 플랫폼들을 이용하여 각 구성요소를 개발한다. 다음으로, 개발된 세 가지 구성요소를 실행하는 플랫폼들을 연동 운용하는 PoP(Platform of Platforms) 구조를 사용할 수 있다. PoP 구조는 디지털트윈의 목적에 부합되는 모든 디지털트윈을 개발/운용할 수 있는 플랫폼으로써 신뢰성 및 경제성(개발 기간 및 비용) 면에서 효율적인 구조이다. PoP 구조를 사용할 경우 플랫폼들 사이의 연동을 위한 데이터 모델과 API의 국제적인 표준화가 요구되며 데이터 모델의 표준은 대상 시스템에 따라 달라질 수 있다.  디지털 트윈을 실제 시스템에 대한 문제 해결 목적으로 사용하기 위해서는 대상 시스템에 대한 다양한 질문의 답을 디지털 트윈을 통해서 얻을 수 있는 서비스가 제공되어야 한다. OR 이론의 창시자 중 한 명으로 경영 과학 이론가인 R.L.Ackoff 교수는 사람이 생각하는 내용을 데이터, 정보. 지식, 지혜 등 4가지로 분류하였다. 데이터는 단순한 심벌(숫자나 문자)을 말하지만 정보는 ‘who’, ‘what’, ‘where’, ‘when’을 답할 수 있고, 지식은 ‘how’를 답할 수 있고, 지혜는 ‘why’를 답할 수 있어야 한다고 정의하였다. 디지털 트윈의 서비스 수준을 Ackhoff 교수의 분류법에 매핑 시킨다면 정보 수준 서비스는 시스템 분석(현상, 기능 등), 지식 수준 서비스는 시스템 예측(행위, 성능 등) 그리고 지혜 수준 서비스는 시스템 최적화(운용 최적화 등) 및 진단(수명 진단 등)에 해당한다. 예를 들어, 교통 시스템에 대한 다양한 질문을 답하기 위해 교통 디지털 트윈을 만들었다고 하자. 정보 서비스의 예는 현재 교통 시스템의 현상을 분석하는 것으로 어느 위치의 현재 시간대에 단위 시간당 교차로 통과 차량 대수가 얼마인지에 대한 답을 하는 서비스이다. 지식 서비스의 예는 현재 출발지에서 목적지까지의 소요 시간이 얼마가 되는지를 예측하는 질문에 대한 답을 하는 서비스이다. 지혜 서비스의 예는 현재 출발지에서 목적지까지의 소요 시간이 최소가 되는 최적화된 경로가 어떤 것인지의 질문에 대한 답을 하는 서비스이다.    4. 디지털 트윈의 구성요소 디지털 트윈의 3 가지 구성요소 중 행위 모델은 목적에 따라 데이터 모델과 시뮬레이션 모델로 대별된다. 데이터 모델은 실 체계에서 수집된 데이터들 사이의 상관관계를 기계학습하여 얻어진 모델(예: 인공신경망)로서 지식 서비스를 위한 시스템 행위 예측에 한계점을 가지고 있다. 구체적으로, 데이터 모델은 학습된 데이터 영역에서는 미래 예측이 가능하지만 학습된 영역 밖의 데이터에 대한 예측은 불가능 하다. 뿐만 아니라 학습 시와 예측 시의 시스템 운용 조건이 달라질 경우에도 예측이 불가능하다. 앞서 예시한 교통 디지털 트윈으로 데이터 모델을 사용할 경우 학습 시 도로 상황(운행 시간, 사고 발생 유무 등)이 예측 시 도로 상황과 동일하지 않으면 소요 시간 예측의 정확도가 보장되지 않는다. 더욱이, 시스템 변수 사이의 상관 관계로 표현된 데이터 모델은 변수 사이의 인과 관계가 필요한 시스템의 최적화 및 고장 진단 등에는 활용할 수 없다. 이러한 데이터 모델의 서비스 한계를 극복하기 위해서는 시뮬레이션 모델을 사용할 수 있다. 시뮬레이션 모델은 구축은 대상 시스템에 대한 도메인 지식과 이를 표현하는 지배 법칙에 대한 수학적/논리적 표현 방법을 이해해야 하므로 데이터 모델에 비해 고 비용이 요구된다. 따라서, 디지털 트윈의 행위 모델은 대상 시스템의 서비스 목적과 수준에 따라 다르게 선택될 수 있다.    5. 디지털 트윈의 발전 전망  디지털 트윈의 향후 발전 전망은 문제 해결과 가상 체험 및 빅 데이터 분야로 대별할 수 있다. 문제 해결 분야에서 디지털 트윈의 대상은 분석, 예측, 최적화/진단 대상이 되는 모든 시스템 분야로서 산업(제조, 생산, 물류, 식물공장 등), 공공(교통, 환경, 금융 등), 의료(진단, 인공장기, 가상수술 등), 재난안전(안전점검, 피해분석, 대피훈련 등), 국방(군사훈련, 국방분석, 무기체계 획득 등)등을 포함한다.  현재 디지털 트윈 활용은 안정성에 부담이 적고 신속/가시적 성공사례 확보가 가능한 스마트시티, 스마트 팩토리, 스마트SOC(도로, 철도, 항만, 공항, 등) 등이 대상이지만 기술성숙도가 높아지고 안정성이 보장됨에 따라 자율주행, 의료/인공장기, 식물공장 등으로 확대될 전망이다.  가상 체험 분야는 디지털 트윈이 실 세계 혹은 가상 세계를 움직이는 다양한 시나리오를 정형화한 지배 법칙(모델)을 실행(시뮬레이션)하는 수단으로 활용될 전망이다. 이러한 지배법칙 실행은 실제 세계와 가상 세계의 구별 없는 가상 체험을 목표로 하는 메타버스의 서비스 콘텐츠를 제공한다. 따라서, 메타버스 발전을 위해서 메타버스의 서비스 컨텐츠를 제공하는 디지털 트윈 발전이 필수적으로 향후 메타버스와 디지털 트윈은 동시에 발전할 전망이다.  빅 데이터 분야에서는 디지털 트윈의 가상 실험을 통해 실 체계에서는 물리적/경제적 이유로 수집 불가능한 다양한 빅 데이터를 생성하는데 활용될 전망이다. 유의미한 빅 데이터 생성을 위해서는 실 체계에서 수집 가능한 데이터를 사용하여 디지털 트윈 모델의 검증이 선행된 후 실 체계에서 수집 불가능한 데이터 생성을 위한 가상 실험이 설계되어야 한다. 디지털 트윈을 사용한 빅 데이터 생성은 시스템 기능 검증, 예지 진단 및 기계학습 등과 같은 부가가치가 높은 데이터 생성에 집중되어 미래 데이터 구독 시장 활성화에 기여할 전망이다.   김탁곤 명예교수  KAIST 전기전자공학부  
작성일 : 2025-05-05
[케이스 스터디] 노트르담 대성당의 영광스러운 복원을 선보인 언리얼 엔진 5 라이팅
리얼타임 3D 기술을 도입하여 한층 발전된 프로젝션 매핑 구현   화재로 큰 피해를 입은 파리의 노트르담 대성당이 5년에 걸친 복원 끝에 재개관했다. 복원된 성당을 더욱 돋보이게 한 프로젝션 매핑 작업은 언리얼 엔진의 실시간 렌더링 기술을 활용해 역사적 건축물을 사실적이고 정교하게 되살린 혁신적인 사례로 주목받고 있다. ■ 자료 제공 : 에픽게임즈   ▲ 이미지 제공 : 코스모 AV    2019년 4월, 파리의 상징인 노트르담 대성당에서 끔찍한 화재가 발생했다. 건물 처마 밑에서 시작된 불길은 곧 첨탑과 목조 지붕 대부분을 집어삼키며 다음 날 아침까지 밤새 타올랐다. 이후 장대한 복원 프로젝트가 진행되었으며, 5년에 걸쳐 1200명 이상의 인원이 재건에 힘을 쏟았다. 채석장 작업자와 목수, 모르타르 제조자, 석공 등 숙련된 장인이 고용되어 12세기 건축 당시와 똑같은 재료와 기법으로 대성당을 재건했다.  2024년 12월, 잿더미에서 부활한 노트르담 대성당의 재개관식이 TV 시청 황금 시간대에 방송되었다. 프랑스 텔레비지옹(France Télévisions)은 복원된 대성당의 영광스러운 모습을 선보이기 위해 비디오 매핑 회사인 코스모 AV(Cosmo AV)에 의뢰했고, 코스모 AV는 프로젝션 매핑 전문가 앙투안 부르구앵(Antoine Bourgouin)에게 재개관식을 위한 멋진 건축 라이팅을 제작해 달라고 요청했다.   ▲ 이미지 제공 : 코스모 AV   언리얼 엔진을 사용한 프로젝션 매핑 지난 2010년, 앙투안 부르구앵은 거대한 트롱프뢰유를 보여줄 캔버스로 건물을 사용하는 데 처음 관심을 갖게 되었다. 트롱프뢰유는 ‘눈속임’이라는 뜻의 프랑스어로, 2차원 표면에 3차원 공간과 물체를 표현하는 극사실적인 착시 기법을 나타내는 미술 용어다. 이는 주로 회화에서 관람자가 그림 속의 사물이나 공간을 실제처럼 인식하도록 속이는 기법을 일컫는다. 초기에는 이러한 종류의 작업을 구현할 수 있는 툴이 시중에 없어, 건물의 윤곽과 규모에 맞는 비주얼을 제작하려면 직접 컴퓨터 프로그램을 개발해야 했다. 하지만 부르구앵은 비디오 프로젝터 컨트롤러와 같은 역할을 하는 소프트웨어인 모듈로 플레이어(Modulo Player)를 사용하여 벽이나 건물과 같은 표면에 영상을 투영하여 재생하고, 각 표면에 맞게 영상을 정밀하게 변형시키고 조정할 수 있도록 했다. 특히, 부르구앵은 이 과정에 리얼타임 기술을 도입하여 프로젝션 매핑 기술을 더욱 발전시키고 있다. 전통적인 비디오 매핑은 사전 녹화된 영상을 투영하는 방식이었지만, 부르구앵은 언리얼 엔진을 사용해 개발한 비주얼을 실시간으로 건물에 투영한다. 이러한 혁신적인 아이디어로 그는 플레이어의 스마트폰을 게임 패드처럼 사용하는 비디오 게임을 제작하겠다는 아이디어로 메가그랜트를 지원하게 되었다. 이러한 아이디어를 실현하고자 부르구앵은 코스모 AV의 CEO이자 인텐스시티(IntensCity)의 공동 설립자인 피에르 이브 툴로(Pierre-Yves Toulot)를 만났다.    ▲ 이미지 제공 : 코스모 AV   3D 모델에 라이팅 매핑 코스모 AV는 프랑스 국영 텔레비전 방송사인 프랑스 텔레비지옹으로부터 노트르담 대성당 재개관을 위한 프로젝션 매핑 비주얼 제작을 의뢰받았다. 그 요청 중 하나는 대성당의 외관을 돋보이게 할 아름다운 라이팅 연출을 제작하는 것이었다. 툴로와 부르구앵은 이전에도 비슷한 프로젝트에서 협업한 적이 있었는데, 특별하면서도  우아함이 필요한 작업에서는 뛰어난 전통 건축 라이팅 디자이너인 장 프랑수아 투샤(Jean-François Touchard)의 기술을 활용했다. 툴로가 노트르담 프로젝트에 부르구앵과 투샤를 합류시킨 것은 당연한 결정이었다. 먼저 부르구앵은 노트르담 대성당의 3D 스캔 모델을 언리얼 엔진으로 가져왔고, 이 과정은 FBX 파일을 임포트하는 것만큼이나 간단했다. 부르구앵은 “언리얼 엔진과 나나이트(Ninite) 기술 덕분에 이제는 임포트한 메시의 폴리곤 밀도에 더 이상 신경 쓰지 않아도 된다. 노트르담 모델은 400만 개의 트라이앵글로 구성된 메시 구조였지만, 현재 언리얼 엔진에서는 이 정도의 폴리곤 수를 아주 쉽게 처리할 수 있다”고 말했다. 나나이트는 언리얼 엔진 5의 가상화된 지오메트리 시스템으로, 성능에 미치는 영향을 최소화하면서 방대한 양의 폴리곤으로 구성된 디테일한 3D 모델을 제작할 수 있다. 이 시스템은 활용해 대성당의 매우 정밀한 메시를 렌더링하는 데 쓰였으며, 가장 작은 디테일까지 정확하게 구현할 수 있었다. 팀은 대성당의 모든 디테일을 강조하기 위해 3D 모델에 옴니 라이트, 스포트 라이트, 렉트 라이트 등 500개의 라이트를 배치했다. 이 라이트는 강도와 온도, 색상이 조화를 이루도록 하는 것이 중요했다. 부르구앵은 “조작해야 하는 라이트의 수량이 이 프로젝트에서 가장 큰 과제였다. 하지만 즉석에서 바로 만든 블루프린트를 사용하고 라이트 액터에 태그를 지정하여 다른 그룹을 나누는 방식으로 매우 원활하게 작업할 수 있었다”고 설명했다. 툴로는 아트 디렉터 역할을 했고, 장 프랑수아는 대성당의 디테일한 부분에 대한 라이팅을 실제로 구현하는 데 전문성을 발휘했다. 팀은 조각상마다 두세 개의 스포트 라이트를 배치하고 그림자를 세심하게 조작하여 조각상의 형태와 입체감을 강조했다. 또한, IES(Illuminating Engineering Society)의 라이트 프로파일을 사용해 3D 라이팅이 실제 라이트처럼 각 아치와 발코니, 기타 건축 요소의 디테일과 정확하게 일치하도록 했으며, 깊이를 강조하기 위해 라이트 온도를 조정했다. 라이팅 구성을 이미지로 렌더링한 다음 모듈로 플레이어 시스템과 연결된 30대의 고광도 파나소닉(Panasonic) 비디오 프로젝터를 사용하여 노트르담 대성당에 투영했다.   ▲ 이미지 제공 : 코스모 AV   메가라이트와 루멘 활용 노트르담 프로젝트에서 팀은 사전 녹화된 영상을 대성당에 투영할 예정이었지만, 리얼타임 기술을 사용하면서 라이팅 디자인에서 많은 이점을 얻을 수 있었다. 라이팅이 실제 건물에서 어떻게 보일지 테스트하기 위해 팀은 현장에서 언리얼 엔진으로 3D 모델을 바로 업데이트하여, 대성당에서 즉시 결과를 확인하고 필요에 따라 조정할 수 있었다. 부르구앵은 언리얼 엔진으로 작업을 완성할 수 있었던 주요 이유로 나나이트와 결합된 강력한 라이팅 시스템의 성능을 꼽았다. 부르구앵은 “라이트 수가 많은 하이 폴리곤 메시에서 직관적인 편집 방식(WYSIWYG)으로 원활하게 작업할 수 있었다. 이로써 기존의 3D 모델링 소프트웨어에서처럼 렌더링 결과를 상상할 필요가 없었다”고 말했다. 또한 최근 언리얼 엔진 5.5에 출시된 강력한 신규 기능인 메가라이트에 대해서도 높이 평가했다. 메가라이트는 아티스트가 신(scene)에 다이내믹 섀도를 드리우는 수백 개의 라이트를 추가할 수 있게 해주는 실험적인 도구다. 언리얼 엔진의 다이내믹 글로벌 일루미네이션 및 리플렉션 기능인 루멘과 함께 사용하면 매우 사실적인 라이팅을 구현할 수 있다. 부르구앵은 “메가라이트는 상당히 유용한 기능 중 하나였다. 실시간으로 그림자를 유지하면서 수백 개의 라이트로 작업할 수 있었다. 루멘을 보완하는 환상적인 기능”이라고 말했다.   되찾은 노트르담의 영광 툴로, 장 프랑수아와 함께 한 부르구앵의 라이팅 작업은 파리에서 가장 유명한 기념물 중 하나인 대성당의 재개관식에서 중요한 역할을 했다. 언리얼 엔진 덕분에 팀은 복원가들의 놀라운 작업을 빛내고 노트르담 대성당의 영광스러운 모습을 선보일 수 있었다. 부르구앵은 “파리의 노트르담 대성당은 프로젝션 매핑 작업을 하는 사람들이라면 누구나 꿈꾸는 건물 중 하나다. 이 작업에 기여할 수 있32 · 어서 정말 큰 영광이었다”라고 말했다.      ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
CAD&Graphics 2025년 5월호 목차
  INFOWORLD   Editorial  17 로봇이 달리는 시대, 인간은 어디로 달려가는가?   Hot Window  18  캐드앤그래픽스 디지털 트윈 설문조사 분석 : 디지털 트윈에 대한 기대 속에 실질적 도입과 확산 위한 노력 필요   Case Study  24 노트르담 대성당의 영광스러운 복원을 선보인 언리얼 엔진 라이팅 리얼타임 3D 기술을 도입하여 한층 발전된 프로젝션 매핑 구현 27 미래 모빌리티를 위한 자율주행 시뮬레이터, 모라이 심 실시간 3D 엔진을 활용해 더욱 현실적인 시뮬레이션 구축   People & Company  30 AWS 황민선 파트너 세일즈 매니저, 에티버스 김준성 전무 AI와 산업 전문성 결합해 클라우드 기반 제조 혁신 도울 것   Focus  34 DN솔루션즈, 금속 3D 프린터 'DLX 시리즈'로 제조 혁신 선도한다 37 유니티, “게임을 넘어 다양한 산업으로, 3D 시각화와 AI 통해 혁신 지원” 40 델, ‘AI PC 시대’ 주도 선언… 통합 브랜드 제품 대거 출시   New Products  43 이달의 신제품   On Air 44 캐드앤그래픽스 CNG TV 지식방송 지상중계 공기업 BIM 적용 지침에 따른 설계·시공 프로세스 변화와 대응 전략 46 캐드앤그래픽스 CNG TV 지식방송 지상중계 디지털 공급망 관리로 산업 건설 프로젝트의 비효율 해소 47 캐드앤그래픽스 CNG TV 지식방송 지상중계 의료 AI를 활용한 가상현실 기반 임상 실습 교육 소개   Column 48 트렌드에서 얻은 것 No. 23 / 류용효 실용형 AI, 제조의 미래를 바꾸다   54 New Books    Directory  131 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA    Visualization  84 AI 크리에이터 시대 : 영상 제작의 새로운 패러다임 (2) / 최석영 AI 기반 크리에이티브 워크플로 혁신   AEC 56 새로워진 캐디안 2025 살펴보기 (6) / 최영석 유틸리티 기능 소개 Ⅳ 60 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 오픈마누스 AI 에이전트의 설치, 사용 및 구조 분석 68 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2026 (2) / 천벼리 오토캐드 전환 지원과 AI 기반 생산성   범용 CAD  71 오토캐드 2026의 새로운 기능과 개선사항 / 양승규 AI 기반 기능 및 성능이 향상된 오토캐드 2026   Reverse Engineering  78 시점 - 사물이나 현상을 바라보는 눈 (5) / 유우식 변화와 흐름의 관찰   Mechanical  91 산업 디지털 전환을 가속화하는 버추얼 트윈 (2) / 최윤정 카티아 VMU를 활용한 설계 검증 혁신 94 제품 개발 혁신을 가속화하는 크레오 파라메트릭 11.0 (12) / 박수민 도면 기호 생성하기   Analysis  100 앤시스 워크벤치를 활용한 해석 성공 사례 / 김혜영 앤시스 LS-DYNA의 리스타트 기능 및 활용 방법 104 최적화 문제를 통찰하기 위한 심센터 히즈 (3) / 이종학 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 110 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (21) / 나인플러스IT 차세대 자동차 설계를 위한 DNS, LES, RANS 시뮬레이션 115 MBSE를 위한 아키텍처–1D 모델 연계의 중요성 및 적용 전략 (1) / 오재응 아키텍처 모델과 1D 모델의 전략적 연계   PLM  126 BPMN을 활용하여 제품 개발의 소통과 협업 극대화하기 (3) / 윤경렬, 가브리엘 데그라시 비즈니스 프로세스 모델링을 배워보자       캐드앤그래픽스 당월호 책자 구입하기   캐드앤그래픽스 당월호 PDF 구입하기
작성일 : 2025-04-24
[무료강좌] 엔지니어링 데이터 기반으로 하이엔드 시각화 혁신하기
산업 디지털 전환을 가속화하는 버추얼 트윈 (1)   소셜 미디어의 부상으로 인해 다양한 마케팅 콘텐츠에 대한 수요가 급격히 증가하면서, 제품을 표현하는 방식도 기하급수적으로 늘어나고 있다. 기존의 CGI(Computer Generated Imagery) 방식은 새로운 비주얼 모델을 처음부터 제작해야 하므로 이러한 속도를 따라가기 어렵다. 또한, 제품을 직접 제작하고 촬영하는 방식은 많은 시간과 비용이 소요된다. 이에 따라 기업들은 제작 효율을 극대화하고, 보다 신속하고 확장 가능하며 비용 효율적인 콘텐츠 생산을 위해 혁신적인 기술을 모색하고 있다. 이번 호에서는 3D익사이트(3DEXCITE) Tech-stack이 이러한 요구 사항을 충족하기 위해 어떻게 설계 모델을 직접 콘텐츠로 변환하고 생성형 AI(Gen-AI) 기반 시각화(비주얼라이제이션)를 활용하는지 알아보겠다.   ■ 조희원 다쏘시스템의 테크니컬 컨설턴트로, 3년째 3DEXCITE 브랜드 기술 부문을 담당하고 있다. 홈페이지 | www.3ds.com/ko   ■ 남솔아 다쏘시스템의 3DEXCITE 브랜드 세일즈 익스퍼트 스페셜리스트로, 5년째 클라우드 및 제조소프트웨어 IT 영업 & 사업개발 부문에 종사하고 있다. 홈페이지 | www.3ds.com/ko   그림 1   3D익사이트와 버추얼 트윈 3D익사이트는 설계자가 설계한 제품 CAD 모델을 그대로 이용하여 콘텐츠를 위한 버추얼 트윈을 생성한다. 효율적인 데이터 변환 프로세스를 통해 카티아(CATIA)와 같은 설계 프로그램에서 생성된 엔지니어링 데이터를 상용 데이터로 변환시키므로, 버추얼 트윈은 제품을 100% 정확하게 표현할 수 있다. 이 프로세스는 하이엔드 시각적 해상도를 유지하면서 지적 재산을 보호할 수 있도록 설계 데이터를 변경하는 역할을 한다.   3D익사이트의 데이터 변환 과정 엔지니어링 제품 데이터 통합 • 다양한 CAD 데이터를 수집 및 통합 • 카티아, 에노비아(ENOVIA), 시뮬리아(SIMULIA) 데이터 활용 머티리얼(Material) 라이브러리 준비(그림 2) • 표준화된 머티리얼 라이브러리 구축   그림 2   데이터 준비 작업 생성(그림 3) 의미적 데이터 식별 및 테셀레이션 수행   그림 3    데이터 준비 작업 처리(그림 4) 제품 데이터 오픈 및 매개변수 구성   그림 4   제품 정확성 강화(그림 5) 실제 제품 특성을 반영하여 머티리얼 할당 및 매핑   그림 5   모델 성능 평가(그림 6) FPS, 메모리 사용량, 폴리곤 수 분석   그림 6    제품 정확성 검토(그림 7)  가상 리뷰 환경에서 최종 검토 수행   그림 7    최종 제품 내보내기 3DXML 및 STEP 형식으로 최적화된 데이터 제공 Commercial Twin 제작 완료(그림 8) AR, VR, 실시간 플랫폼을 위한 몰입형 경험 제공   그림 8     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-04-02