• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "마켓플레이스"에 대한 통합 검색 내용이 117개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
[케이스 스터디] KAI의 언리얼 엔진 기반 차세대 시뮬레이션 에코시스템
비행 훈련부터 제품 개발·운영까지 아우르는 핵심 인프라를 목표로   최근 몇 년 사이 시뮬레이션 산업은 디지털 트윈, AI(인공지능), VR(가상현실)/AR(증강현실) 등 첨단 디지털 기술 중심으로 빠르게 재편되고 있다. KAI(한국항공우주산업)는 이러한 흐름에 발맞춰 언리얼 엔진을 도입함으로써 항공산업 전반에 걸친 디지털 혁신을 추진하고 있다. ■ 자료 제공 : 에픽게임즈   KAI는 KT-1 기본 훈련기, T-50 고등훈련기, 수리온 기동헬기, 송골매 무인기 등 다양한 항공우주 시스템을 자체적으로 설계 및 제작하며, 지난 40년간 항공산업 및 국방산업을 선도해 온 종합 항공우주 설루션 기업이다. 최근에는 소형무장헬기(LAH)와 차세대 전투기 KF-21 개발을 비롯해 위성과 발사체 총조립 등 우주 분야로도 사업을 확대하고 있다. KAI는 2024년 ‘언리얼 페스트 시애틀 2024(Unreal Fest Seattle 2024)’에 참가해 자사의 시뮬레이션 전략을 소개하는 세션을 진행했다. 이번 호에서는 이 발표 내용을 바탕으로 시뮬레이션 산업의 급변하는 흐름 속에서 KAI가 어떻게 대응하고 있는지, 언리얼 엔진을 중심으로 한 시뮬레이션 통합 전략과 실제 적용 사례, 그리고 향후 비전 등을 중심으로 KAI의 기술 혁신에 대해 살펴본다.   ▲ 이미지 출처 : ‘KAI의 언리얼 엔진 기반 차세대 시뮬레이션 에코시스템 | 언리얼 엔진’ 영상 캡처   시뮬레이션 산업의 변화와 KAI의 대응 최근 시뮬레이션 산업은 빠르게 발전하며 구조적인 변화를 겪고 있다. 클라우드 기반 시뮬레이션 도입으로 언제 어디서든 고성능 자원에 접근할 수 있게 되었고, 디지털 트윈, AI, 머신러닝 기술의 결합을 통해 시뮬레이션은 단순한 재현을 넘어 예측과 최적화를 수행할 수 있는 툴로 진화하고 있다. 또한 VR/AR/MR(혼합현실) 기술은 훈련의 몰입감과 현실감을 높여 실제 환경과 유사한 시뮬레이션을 가능하게 하고, 마이크로서비스 아키텍처를 기반으로 한 소프트웨어 설계는 유연성과 확장성을 높이고 있다. KAI는 이러한 디지털 전환에 적극 대응하기 위해 전통적인 레거시 시뮬레이션 시스템을 언리얼 엔진과 통합하고 있다. 핵심 전략은 세 가지이다. 첫째, 언리얼 엔진을 활용한 빠른 프로토타이핑으로 기술 검증과 적용 속도를 높이는 것이다. 둘째, 표준화된 인터페이스를 통해 기존 시스템과의 원활한 연동을 실현하는 것이다. 셋째, 지속 가능한 콘텐츠 개발을 위한 플랫폼 설계로 장기적인 생태계 구축을 추진하는 것이다. 이를 통해 KAI는 기존 자산의 가치를 극대화함과 동시에 급변하는 기술 환경에 유연하고 효율적으로 대응하고 있다.   언리얼 엔진이 변화하는 시뮬레이션 산업에 주는 영향 언리얼 엔진은 시뮬레이션 산업의 진화에 있어 중요한 역할을 하고 있다. 우선 고품질의 리얼타임 3D 그래픽을 통해 현실감 있는 몰입형 시뮬레이션 환경을 구현할 수 있어, 훈련과 테스트의 효율성을 높이고 있다. 또한 VR/AR/MR과의 통합 지원은 다양한 산업에서 실제 같은 체험 기반 학습을 가능하게 한다. 언리얼 엔진의 모듈형 아키텍처와 개방된 생태계는 기존 레거시 시스템과의 통합을 쉽게 하고, 새로운 기술이나 기능을 빠르게 적용할 수 있는 유연성을 제공한다. 특히 디지털 트윈, AI, 머신러닝 등 최신 기술과의 연계가 원활하여 복잡한 시스템의 설계, 유지보수, 운영 효율을 높일 수 있다. KAI와 같은 기업에게 언리얼 엔진은 단순한 툴을 넘어, 지속 가능한 시뮬레이션 콘텐츠를 개발하고 새로운 시뮬레이션 생태계를 구축하는 핵심 기술로 자리잡고 있다.   ▲ KAI의 시뮬레이터로 본 FA-50의 모습(이미지 출처 : KAI)   기존 시스템에 언리얼 엔진을 통합한 사례 KAI는 항공기 훈련 체계에 언리얼 엔진을 도입해 현실성과 효율을 갖춘 시뮬레이터를 개발하고 있다. 대표적으로 VR 시뮬레이터의 경우, 조종사가 풀 플라이트 시뮬레이터에 들어가기 전 VR 기기를 통해 절차와 조작 감각을 사전에 익힐 수 있도록 돕고 있다. 언리얼 엔진으로 실제 항공기와 동일한 가상 조종석을 구현해 이륙/착륙, 비상절차, 항전 장비 조작 등을 별도 교관 없이 반복 학습할 수 있도록 했다. 기존의 시뮬레이터는 실제 항공기 수준의 조작감과 훈련 효과를 제공하지만, 높은 구축 비용과 운영 비용, 전용 시설의 필요 등으로 대량 보급에 한계가 있었다. KAI는 이러한 문제를 보완하기 위해 VR 기술을 도입했다. 언리얼 엔진은 영상 발생 장치, 계기 패널, 입출력 장치 등을 대체한 것은 물론, VR HMD(헤드 마운트 디스플레이) 하나만으로 기존의 여러 장치를 필요로 하는 대형 시현 시스템의 효과를 구현할 수 있게 했다. 또한 KAI는 독자적인 역학 모델과 항전 시스템을 언리얼 엔진의 실시간 렌더링과 결합해 실제 조종과 유사한 수준의 훈련 환경을 제공하고 있다. GIS(지리 정보 시스템), DEM(수치 표고 모델) 등 초정밀지도 기반의 한반도 3D 지형을 재현해 조종사의 임무 지역 지형 학습까지 지원하고 있다. 정비 훈련 분야에서도 언리얼 엔진은 핵심 플랫폼으로 활용되고 있다. 2024년 I/ITSEC 전시회에서 공개된 FA-50 정비 훈련 시뮬레이터는 VR 환경에서 점검과 부품 교체를 실습할 수 있을 뿐만 아니라, 사용자가 직접 교육 과정을 만들 수 있도록 설계됐다. 이를 통해 기존 문서와 평면형 CBT(컴퓨터 기반 훈련), 반복 시나리오 기반의 실습 중심 교육의 한계를 극복할 대안을 제시했다. 또한 같은 행사에서 선보인 수리온 헬기 비행 시뮬레이터(VFT)는 디지털 트윈과 고해상도 시각화를 통해 실제 기체 성능과 지형 정보를 반영한 몰입형 훈련 환경을 제공했다.   ▲ FA-50 비행 시뮬레이션의 디스플레이 장면(이미지 출처 : KAI)   시뮬레이션·시스템 개발에서 언리얼 엔진의 기여도 언리얼 엔진 도입 이후 KAI의 시뮬레이션 제작 파이프라인에는 큰 변화가 있었다. 데이터스미스를 활용해 카티아 등 설계 도구의 3D 모델을 쉽게 불러올 수 있어, 실제 설계 기반의 가상 조종석과 기체 모델을 빠르게 구축하고 별도의 모델링 없이 제작 시간을 줄일 수 있었다. 또한 자체 개발한 비행역학 엔진과 항공전자 시뮬레이션 소프트웨어를 언리얼 엔진과 실시간으로 연동해, 백엔드 시스템과 시각화 프론트엔드를 효과적으로 통합함으로써 전반적인 생산성이 향상되었다. 특히 조종사가 시각과 청각 정보를 통해 상황을 판단하는 VR 시뮬레이터 개발에서는 언리얼 엔진의 렌더링, 사운드, 애니메이션 기능이 핵심 도구로 사용되었다. 물리 기반 렌더링(PBR)은 금속, 유리, 계기판 등 재질을 사실적으로 구현했으며, 파티클 시스템과 머티리얼 노드를 통해 연기, 공기 왜곡 등의 시각 효과도 유연하게 조정할 수 있었다. 사운드 역시 메타사운드를 통해 엔진 RPM이나 환경 변화에 따라 실시간으로 반응하며, 조종사에게 실제 비행과 유사한 감각을 제공했다. 또한 애니메이션 블루프린트를 활용해 조종간, 계기판, 비행 제어면 간 연동 애니메이션의 비주얼을 직관적으로 구현할 수 있었으며, 스카이 애트머스피어, 볼류메트릭 클라우드, 하이트 포그 등의 기능은 대기 표현과 공간 인식 훈련의 몰입감을 높였다. 지형 구현에서도 언리얼 엔진의 LWC(Large World Coordinates)를 통해 수천 km 단위의 지형에서도 고속 이동 시 정밀도를 유지할 수 있었고, 풀 소스 코드를 활용해 AI 훈련 체계에 맞는 좌표 변환, 시스템 연동, 정밀 지형 구조를 구현할 수 있었다. 이 과정에서 실제 지형 데이터, 항공 사진, 고도 정보를 언리얼 엔진에 통합했고, GIS, DEM 기반의 정밀 지형 정보를 효과적으로 활용해 복잡한 비행 경로, 저공 비행 훈련, 목표 탐색 등 고난도 시나리오도 현실감 있게 구현할 수 있었다. 그 결과 KAI는 초대형 지형 데이터, 초정밀 위치 기반 훈련, 외부 시스템과의 정밀한 좌표 연동을 모두 만족하는 차세대 항공기 시뮬레이터 플랫폼을 성공적으로 구축할 수 있었다. 이외에도 다양한 플러그인, 하드웨어 인터페이스, 형상 관리 툴 연동, 이제는 리얼리티스캔으로 변경된 리얼리티캡처, 마켓플레이스 등을 활용하여 프로젝트 확장성과 콘텐츠 제작 유연성이 높아졌다.   ▲ 애니메이션 블루프린트를 활용해 구현한 조종간(이미지 출처 : KAI)   대규모 전술 훈련을 위한 AI 에이전트를 언리얼 엔진에 도입 KAI는 차세대 전술 훈련 시뮬레이터 개발을 위해 강화학습 기반의 AI 에이전트를 실제 훈련 시나리오에 연동하는 작업을 진행 중이다. 특히, 복잡한 전장 환경에서는 다양한 무기 체계와 플랫폼이 동시에 운용되기 때문에, 이를 하나의 시뮬레이션 공간에서 유기적으로 연동하는 기술이 매우 중요하다. 기존 상용 시뮬레이터 설루션의 경우 외부 시스템 연동이나 커스터마이징에 제약이 많지만, 언리얼 엔진은 C++ 기반의 풀 소스 코드 접근이 가능해 이러한 한계를 극복할 수 있다. KAI는 이러한 개방성을 바탕으로 자체 개발한 AI 에이전트를 정밀하게 통합해, 복잡한 상호작용이 필요한 전술 훈련 시나리오에서도 실질적인 이점을 확보할 수 있었다. 이와 같은 통합은 단순히 AI를 활용하는 수준을 넘어, 인간 조종사와 AI가 동일한 시뮬레이션 환경에서 훈련하고 상호 작용할 수 있는 구조를 의미한다. 기존의 설루션으로는 구현하기 어려웠지만 KAI는 언리얼 엔진을 도입해 이를 실현할 수 있었다. 결과적으로 언리얼 엔진은 AI, 실시간 시뮬레이션, 데이터 피드백이 통합된 플랫폼을 제공하며, KAI의 차세대 전술 훈련체계 구현에 핵심 역할을 하고 있다.   ▲ 지형 데이터 통합으로 구현한 대규모 도시 지역 디지털 트윈(이미지 출처 : KAI)   향후 시뮬레이션 에코시스템의 방향과 KAI의 비전 향후 시뮬레이션 에코시스템은 개방성, 지속 가능성, 개인화를 중심으로 발전해 나갈 것이다. AI와 빅데이터를 기반으로 한 맞춤형 훈련 시스템, 클라우드 환경에서의 지리적 제약 없는 고성능 시뮬레이션 그리고 VR/AR, 웨어러블 기술 등을 활용한 몰입형 실시간 피드백 시스템이 표준이 되어갈 것으로 전망된다. 이러한 변화 속에서 KAI는 기술 통합형 플랫폼과 자체 시뮬레이션 에코시스템을 구축하며, 대한민국 시뮬레이션 산업의 지속 가능한 성장 기반을 마련할 예정이다. 언리얼 엔진을 단순한 개발 툴이 아닌 시뮬레이션 엔진으로 활용하며, 플랫폼을 중심으로 고퀄리티 콘텐츠를 빠르게 생산할 수 있는 시뮬레이션 콘텐츠 파이프라인을 개발 중이다. KAI의 비전은 국내를 넘어 글로벌 시뮬레이션 에코시스템과 연결되는 것이다. 언리얼 엔진의 개방성과 기술력을 바탕으로 산업 전반에 걸쳐 공유 가능한 시뮬레이션 플랫폼을 만들고, 이를 통해 다양한 산업, 기관, 개발자가 협력할 수 있는 건강하고 확장 가능한 에코시스템을 조성하는 것이 목표다. 이러한 방향성과 비전을 바탕으로, KAI는 시뮬레이션 기술을 단순한 훈련 도구를 넘어 제품 개발, 유지보수, 운영 효율 개선을 위한 핵심 인프라로 성장시키고자 한다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
메타휴먼 5.6 : 디지털 휴먼의 제작 워크플로 향상 및 생태계 확장
개발 및 공급 : 에픽게임즈 주요 특징 : 언리얼 엔진 통합 및 워크플로 간소화, 새로운 파라메트릭 보디 시스템, 신규 언리얼 엔진 의상 애셋, 고퀄리티 실시간 애니메이션 및 오디오 기반 애니메이션 제작 향상, 다양한 DCC 툴을 위한 플러그인 및 스타터 키트 모음 등   혁신적인 디지털 휴먼 툴세트인 메타휴먼(MetaHuman)이 얼리 액세스를 종료하고, 다양한 기능을 갖춘 새 버전을 출시했다. 에픽게임즈는 메타휴먼 5.6 출시를 통해 주요 기능을 새롭게 제공하는 한편, 메타휴먼의 활용 범위를 넓혀주는 새로운 라이선스 옵션과 통합 기능을 도입했다. 이제 메타휴먼 크리에이터는 언리얼 엔진에 통합되어 향상된 퀄리티는 물론 얼굴, 체형, 의상을 더욱 다양하게 확장할 수 있는 새로운 제작 워크플로를 제공한다. 메타휴먼 애니메이터 역시 업데이트되어 거의 모든 카메라 또는 오디오로 실시간 애니메이션을 생성하는 기능이 추가됐다.   그림 1. 이미지 출처 : ‘메타휴먼 시즐릴 | 언리얼 페스트’ 영상 캡처   메타휴먼 크리에이터 언리얼 엔진에서 메타휴먼 제작 메타휴먼 크리에이터가 이제 언리얼 엔진에 통합되어 크리에이터로부터 많은 요청을 받았던 기능을 제공한다. 더 이상 인스턴스를 기다리거나 제한된 세션 시간을 신경 쓸 필요가 없으며, 익스포트 과정이 신속한 어셈블리 단계로 대체되어 반복 작업이 더 빠르고 쉬워졌다. 파이프라인을 관리해야 하는 스튜디오의 경우 메타휴먼 크리에이터(MetaHuman Creator), 메타휴먼 애니메이터(MetaHuman Animator), 메시 투 메타휴먼(Mesh to MetaHuman)이 이제 하나의 애플리케이션으로 통합되면서, 캐릭터 제작 워크플로가 간소화되고 로컬 애셋 관리가 한층 유연해지는 이점을 누릴 수 있게 됐다. 또한, 메타휴먼 크리에이터 툴의 풀 소스 코드 액세스가 제공되어 캐릭터 제작 파이프라인의 필요에 맞춰 툴을 확장하고 커스터마이징할 수 있으며, 자동 리깅과 텍스처 합성을 제공하는 클라우드 서비스를 통해 로컬 에디터 내 제작 워크플로가 향상된다.   그림 2. ‘Creator your MetaHumans’ 영상 캡처(출처 : 언리얼 엔진 홈페이지)   새로운 파라메트릭 보디 시스템 메타휴먼 크리에이터의 직관적인 페이스 제작 툴이 이제 보디 제작에도 확장됐다. 새로운 파라메트릭 보디 시스템은 광범위한 실제 스캔 데이터를 바탕으로 거의 무한대로 사실적인 체형을 생성할 수 있으며, 페이스 제작 때와 마찬가지로 스컬프팅하고 결합할 수 있다. 또한 키, 가슴, 허리, 다리 길이 등 다양한 신체 치수를 조정하거나 제한할 수 있어, 온라인 패션 쇼핑 등 다양한 용도에 맞춰 특정 비율의 메타휴먼을 제작할 수 있다.   그림 3. ‘MetaHuman body editing’ 영상 캡처(출처 : 언리얼 엔진 홈페이지)   새로운 언리얼 엔진 의상 애셋 실제 사람처럼 메타휴먼도 의상이 필요하다. 그 선택의 폭 역시 넓을수록 좋다. 이제 DCC 앱에서 사실적인 메시 기반 의상을 제작하고, 새로운 언리얼 엔진 의상 애셋을 사용하여 메타휴먼을 위한 전체 의상 세트를 생성할 수 있다. 이 기능은 액세서리를 포함한 다양한 의상을 통합된 의상 애셋으로 구성할 수 있다. 다양한 신체 사이즈와 체형에 가장 잘 맞는 의상 애셋을 미리 제작할 수 있으며, 이는 캐릭터의 체형에 따라 자동으로 크기가 조정되므로 모든 신체에 맞는 의상을 생성한다. 의상은 메타휴먼 형식으로 패키징하여 팹 마켓플레이스와 제3자 마켓플레이스에서 구매하거나 판매할 수 있기 때문에, 누구나 사용할 수 있는 기성 메타휴먼 의상의 폭이 더욱 넓어진다.   그림 4. ‘MetaHuman clothing’ 영상 캡처(출처 : 언리얼 엔진 홈페이지)   향상된 비주얼 퀄리티 메타휴먼은 최고의 퀄리티와 사실감을 구현할 수 있도록 지속적으로 발전하고 있다. 이를 위해 메타휴먼 데이터베이스의 실제 스캔 데이터가 확장되어, 더욱 다양한 캐릭터 메시 셰이프와 텍스처를 제공한다. 또한 스캔 데이터의 캡처 및 처리 기능도 향상되어 잡티와 같은 디테일까지 더욱 사실적으로 표현할 수 있다. 그 결과, 메타휴먼 크리에이터로 더욱 실감 나는 얼굴 텍스처를 구현하고 한층 다양한 캐릭터를 만들 수 있으며, 메시 투 메타휴먼을 사용하면 임포트한 메시나 캡처된 영상과 더욱 일치하는 메타휴먼을 만들 수 있다.   그림 5. 이미지 출처 : 언리얼 엔진 홈페이지   메타휴먼 애니메이터 웹캠과 스마트폰으로 제작하는 고퀄리티 실시간 애니메이션 메타휴먼 애니메이터를 사용하면 대부분의 웹캠과 다양한 스마트폰을 비롯한 모노 카메라로 배우의 연기를 캡처하고 언리얼 엔진에서 실시간으로 메타휴먼에 애니메이션을 적용할 수 있다. 기존에 지원되던 스테레오 HMC와 아이폰뿐만 아니라 이제 일부 안드로이드 스마트폰을 포함해 언리얼 엔진 라이브 링크와 연동되는 모든 카메라를 지원한다. 실시간 작업이 가능하기 때문에 라이브 공연이나 즉각적인 피드백이 필요한 촬영 현장에서도 메타휴먼은 배우와 완벽하게 동기화된다. 오프라인 작업 역시 프로젝트 요구 사항에 적합한 환경에서 계속 사용할 수 있다.   그림 6. ‘MetaHuman real-time animation’ 영상 캡처(출처 : 언리얼 엔진 홈페이지)   향상된 오디오 기반 애니메이션 이제 오디오만으로 리얼타임 애니메이션을 생성할 수 있어, 라이브 연기를 더욱 손쉽게 구현할 수 있게 됐다. 또한 메타휴먼 애니메이터는 오디오 화자의 감정을 분석해 더욱 실감 나는 애니메이션을 생성할 수 있으며, 이를 수동으로 조정해 특정 상황에 맞게 공감할 수 있는 메타휴먼의 연기를 제작할 수 있다. 메타휴먼 애니메이터는 오디오 기반 연기에 실제와 같은 머리 움직임까지 구현하여 더욱 사실적인 결과물을 즉시 만들어 낸다. <그림 7>은 감정을 수동으로 조정할 수 있는 오디오 기반 애니메이션을 보여준다. 윗줄은 왼쪽부터 행복, 슬픔, 혐오를, 아랫줄은 왼쪽부터 화남, 놀람, 두려움을 나타낸다.   그림 7. ‘MetaHuman audio-driven animation’ 영상 캡처(출처 : 언리얼 엔진 홈페이지)   어디에서든 활용할 수 있는 메타휴먼 메타휴먼을 언리얼 엔진뿐만 아니라 다른 엔진이나 크리에이티브 소프트웨어에서 사용할 수 있도록 언리얼 엔진 EULA에 새로운 라이선스 옵션이 추가돼, 이제 메타휴먼을 더 다양한 곳에서 만나볼 수 있다. 자세한 내용은 라이선스 페이지에서 확인할 수 있다. 확장된 메타휴먼 에코시스템에는 다른 디지털 콘텐츠 제작 툴의 플러그인 및 스타터 키트 모음이 추가되고 있으며, 여기에는 팹 마켓플레이스 통합도 포함된다.   마야용 메타휴먼 이번 메타휴먼 5.6 출시를 통해 3래터럴의 모든 파이프라인을 누구나 사용할 수 있게 됐다. 리깅 전문가는 마야(Maya)용 메타휴먼을 사용해 캐릭터의 표정을 세밀하게 조정하고 더욱 사실적으로 연출할 수 있다. 또한, 다른 메타휴먼 툴 및 워크플로와의 호환성은 그대로 유지하면서 동시에 마야의 메시 편집 툴세트와 스컬프팅 툴로 메타휴먼 메시를 직접 조작해, 메타휴먼 데이터베이스의 제한을 넘어 독특한 스타일라이즈드 캐릭터나 유사 인간형 캐릭터를 제작할 수 있다.   그림 8. ‘MetaHuman for Maya’ 영상 캡처(출처 : 언리얼 엔진 홈페이지)   그룸 아티스트는 이 플러그인으로 마야의 기존 XGen 시스템에서 생성한 메타휴먼 호환 그룸을 Alembic 파일로 익스포트할 수 있다.   후디니용 메타휴먼 후디니(Houdini)의 프로시저럴 툴세트를 활용해 메타휴먼을 위한 포니테일, 매듭, 둥근 올림머리, 땋은 머리, 도넛형 헤어와 같은 복잡한 헤어 스타일을 제작할 수 있다. 후디니용 메타휴먼 플러그인 및 스타터 키트로 후디니에서 메타휴먼 호환 그룸을 생성하고, Alembic 파일 포맷을 통해 언리얼 엔진으로 임포트해 메타휴먼에 손쉽게 적용할 수 있다.   그림 9. ‘MetaHuman for Houdini’ 영상 캡처(출처 : 언리얼 엔진 홈페이지)   팹에서 만나는 메타휴먼 모든 디지털 콘텐츠 크리에이터가 디지털 애셋을 검색, 공유, 구매 그리고 판매할 수 있는 에픽의 오픈 마켓플레이스인 팹(Fab)과 제3자 마켓플레이스에서 메타휴먼과 의상, 그룸 등 메타휴먼 호환 액세서리를 구매하고 판매할 수 있다. 5.6 이상의 버전에서 생성된 모든 메타휴먼은 동일한 공통 표준을 준수하기 때문에 여러 캐릭터에 애니메이션, 의상, 그룸을 재사용하고 공유할 수 있다. 이로써 누구나 어디에서든 사용할 수 있는 메타휴먼과 메타휴먼 호환 액세서리의 종류와 범위가 대폭 확대될 것으로 예상되며, 이를 통해 메타휴먼을 프로젝트에 더욱 빠르고 손쉽게 사용할 수 있을 것으로 전망된다.   그림 10. ‘MetaHuman on Fab’ 영상 캡처(출처 : 언리얼 엔진 홈페이지)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-08-04
건축 시각화, 제조, 영화, 시뮬레이션 등에서 활용 가능한 게임 엔진, 언리얼 엔진
건축 시각화, 제조, 영화, 시뮬레이션 등에서 활용 가능한 게임 엔진, 언리얼 엔진 개발   에픽게임즈, www.unrealengine.com/en-US 공급   에픽게임즈 코리아, www.unrealengine.com/ko 에픽게임즈는 인터랙티브 엔터테인먼트를 선도하며, 3D 엔진 기술을 제공하고 있다. 또한, 언리얼 엔진의 개발사로서, 세계 유수의 게임 제작뿐만 아니라 영화, TV, 건축, 자동차, 제조, 시뮬레이션 등 산업에서 사용되고 있다. 에픽게임즈의 언리얼 엔진(Unreal Engine)은 디지털 트윈 구현을 위해 뛰어난 리얼타임 렌더링, 데이터 통합 그리고 확장 가능한 생태계를 제공한다.  주요 기능 언리얼 엔진은 ▲ 대규모 트라이앵글 및 대규모 3D 모델 등 방대한 양의 오브젝트를 포함해 대규모 디지털 트윈 환경의 리얼타임 렌더링을 가능하게 하는 ‘나나이트’ ▲ 킬로미터 단위에 이르는 거대하고 디테일한 환경에서도 무한한 바운스 및 인다이렉트 스페큘러 리플렉션을 활용해 실시간 렌더링이 가능한 완전한 다이내믹 글로벌 일루미네이션 및 리플렉션 시스템 ‘루멘’ ▲ 대규모 3D 환경 생성을 자동화하여 개발 속도와 효율성을 크게 향상시킨다. 이를 통해 대규모 디지털 트윈 구현의 자동화가 가능한 ‘PCG(프로시저럴 콘텐츠 생성)’ ▲ 실시간 데이터 접근 및 시뮬레이션을 클라우드를 통해 직접 스트리밍할 수 있는 클라우드 기반 데이터 배포 기술 ‘픽셀 스트리밍’ 등의 기술을 제공한다. 또한, ▲ CAD/BIM 데이터를 언리얼 엔진으로 손쉽게 통합하는 ‘데이터스미스’와 복잡한 데이터 최적화를 워크플로를 통해서 간소화하는 ‘데이터프랩’과 같은 데이터 통합 및 최적화 기능 ▲ Cesium, ESRI와 같은 글로벌 GIS 솔루션의 데이터를 쉽게 가져올 수 있다.  이를 통해 GIS 데이터를 빠르고 정확하게 통합할 수 있어 대규모 디지털 트윈 구현이 용이하게 하는 기술 ‘레벨 지오레퍼런싱’ ▲ 커스터마이징과 확장 가능성을 극대화하는 ‘개방형 소스코드와 API’ ▲ 디지털 트윈 서비스에 필요한 실시간 IoT 데이터를 쉽게 통합할 수 있는 ‘IoT 프로토콜 통합’ 등의 기술도 언리얼 엔진에서 제공한다.  이와 함께, 에픽게임즈는 디지털 트윈 구현에 사용되는 손쉬운 시각화 툴인 트윈모션, 3D 스캔 솔루션인 리얼리티캡처 등 디지털 트윈을 구현하는 데 필요한 다양한 솔루션들이 포함된 강력한 에픽 에코시스템을 제공하고 있다. 통합 콘텐츠 마켓플레이스 팹(Fab) 스토어와 도시 샘플, 프로젝트 애니웨어, 프로젝트 앙투아네트, PCG 샘플, 프로젝트 힐사이드와 같은 샘플 프로젝트를 제공하여, 디지털 트윈 개발자들이 언리얼 엔진을 활용해 실제 디지털 트윈 프로젝트를 빠르게 개발하고 구현할 수 있도록 지원하고 있다. 상세 내용은 <디지털 트윈 가이드>에서 확인할 수 있습니다. 상세 내용 보러가기
작성일 : 2025-07-29
워크데이, 차세대 업무 환경을 위한 AI 에이전트 개발·협업 파트너 네트워크 발표
워크데이는 전 세계 파트너사가 워크데이의 에이전트 시스템 오브 레코드(ASOR)에 연결 가능한 AI 에이전트를 개발하고 협업할 수 있도록 지원하는 ‘워크데이 에이전트 파트너 네트워크(Workday Agent Partner Network)’를 공식 발표했다. 이번 네트워크에는 액센츄어, 어도비, 아마존웹서비스(AWS), 오디토리아.AI(Auditoria.AI), 컴파(Compa), 딜로이트, 글린(Glean), 구글 클라우드, IBM, 카이노스(Kainos), KPMG, 마이크로소프트, 패러독스(Paradox), PwC, 워크보드AI(WorkBoardAI) 등의 기업이 초기 파트너로 참여해 AI 에이전트가 업무 수행의 중심이 되는 미래 환경에서 고객의 성공적인 비즈니스 운영을 위해 공동 지원할 예정이다. 운영 효율화부터 완전히 새로운 업무 방식의 구현, 의사결정 지원에 이르기까지 다양한 역할을 수행하는 AI 에이전트는 이제 업무 수행의 필수 요소로 자리 잡고 있다. 이러한 새로운 현실은 조직 내 역할, 워크플로, 그리고 팀의 정의 자체를 새롭게 재편하고 있으며, 디지털 워커가 점점 더 중요한 구성원으로 부상함에 따라 기업은 인간 직원을 채용하고 관리하듯 AI 에이전트에 대해서도 채용, 관리, 컴플라이언스 확보, 성과 측정 등의 접근 방식을 새롭게 정의해야 할 시점에 이르렀다. AI 에이전트가 워크포스의 핵심 구성원으로 자리 잡음에 따라, 워크데이 에이전트 시스템 오브 레코드(ASOR)는 기업이 사람을 관리하듯 에이전트를 채용, 온보딩, 역할 부여, 성과 관리할 수 있는 다양한 도구를 제공한다. 워크데이 ASOR은 기업이 에이전트의 역할을 명확히 정의하고, 접근 가능한 데이터 범위를 설정하며, 수행 가능한 작업을 통제하고, 성과를 추적할 수 있도록 지원함으로써, 모든 인간과 에이전트 구성원이 동일한 비즈니스 목표를 갖도록 지원한다.  에이전트가 워크데이, 파트너사, 혹은 고객사, 어디에서 개발되었던지 간에, 워크데이 ASOR은 해당 에이전트가 안정적이고 효율적이며 책임감 있게 운영될 수 있도록 지원하고 있다.  워크데이는 파트너사들이 자사의 AI 에이전트를 워크데이 ASOR에 연결함으로써, 시스템 전반에 걸쳐 더욱 유기적이고 지능적이며 협업 중심적인 업무 환경을 구현할 수 있도록 지원할 예정이다. 워크데이는 이를 통해 조직이 업무의 효율성과 민첩성, 그리고 실행력을 크게 강화할 수 있다고 전했다. 예를 들어, 채용 담당자나 인사 매니저가 인터뷰 일정을 신속하게 조율해야 할 경우, 워크데이 ASOR 내의 패러독스(Paradox) 인터뷰 스케줄링 에이전트를 활용할 수 있다. 패러독스는 워크데이 채용(Workday Recruiting) 시스템과 직접 통합되어 있어, 사용자는 일정 조율부터 알림 발송, 후보자 질문에 대한 응답 등 인터뷰 전반에 걸친 과정을 지원하는 스케줄링 에이전트를 즉시 활용할 수 있다. 또한, 워크데이는 고객이 워크데이 및 에이전트 파트너 네트워크의 AI 에이전트를 ASOR 내에서 손쉽게 연결하고 통합 관리할 수 있도록 지원하는 ‘에이전트 게이트웨이(Agent Gateway)’도 함께 발표했다. 워크데이의 새로운 에이전트 게이트웨이는 파트너들이 자사의 AI 에이전트를 워크데이 ASOR에 보다 손쉽게 연동할 수 있도록 지원한다. 워크데이와 파트너사에서 개발한 에이전트는 모델 컨텍스트 프로토콜(MCP)과 에이전트 간 통신 프로토콜(A2A) 등 공통된 표준 프로토콜을 통해, 서로 협업하고 정보를 주고받을 수 있다. 워크데이는 에이전트 파트너 네트워크와 함께 제공하는 다양한 에이전트가 워크데이 마켓플레이스(Workday Marketplace)를 통해 공식적으로 제공된다고 전했다. 현재 워크데이 마켓플레이스를 통해 이용 가능한 일루미네이트(Illuminate) 기반 에이전트에는 ▲업무 프로세스 최적화 에이전트(Business Process Optimize Agent) ▲재무 감사 에이전트(Financial Audit Agent) ▲급여 에이전트(Payroll Agent) ▲채용 에이전트(Recruiting Agent) ▲인재 이동성 에이전트(Talent Mobility Agent) 등이 포함된다. 고객은 이들 에이전트를 워크데이 ASOR을 통해 간편하게 배포 및 관리할 수 있다. 워크데이의 매튜 브란트(Matthew Brandt) 글로벌 파트너 담당 수석 부사장은 “지난 20년간 워크데이는 단일화되고 안전한 플랫폼을 통해 조직이 인사업무와 재무업무를 효과적으로 관리할 수 있도록 지원해 왔다”며, “이제 AI 에이전트가 인간과 점차 협업하게 되면서,고객들은 인사와 재무, 그리고 에이전트를 모두 신뢰할 수 있는 하나의 플랫폼에서 통합 관리하기를 기대하고 있다. 이를 위해 워크데이는 엔터프라이즈 수준의 통제력을 유지하면서도 이러한 통합을 원활하게 실현할 수 있도록, 업계를 선도하는 기술 기업들과 긴밀히 협력하고 있다”고 말했다.
작성일 : 2025-07-17
오라클, AWS 클라우드에서 자율운영 DB 실행하는 ‘데이터베이스앳AWS’ 출시
오라클과 아마존웹서비스(AWS)가 오라클 데이터베이스앳AWS(Oracle Database@AWS)의 공식 출시(GA)를 발표했다. 이제 AWS 클라우드 환경에서 OCI(오라클 클라우드 인프라스트럭처) 전용 인프라의 오라클 엑사데이터 데이터베이스 서비스(Oracle Exadata Database Service) 및 오라클 자율운영 데이터베이스(Oracle Autonomous Database)를 실행할 수 있다. 오라클 데이터베이스앳AWS는 AWS의 미국 동부 및 서부 리전에서 이용 가능하며, 대한민국 서울을 포함한 전 세계 20여 개 AWS 리전에서 추가로 출시될 예정이다. 기업 고객은 오라클 데이터베이스 워크로드를 AWS 환경에서 OCI 상에서 실행되는 오라클 데이터베이스앳AWS로 손쉽게 마이그레이션할 수 있으며, 오라클 리얼 애플리케이션 클러스터(RAC) 및 AI 벡터 기능이 내장된 최신 오라클 데이터베이스 23ai의 이점도 누릴 수 있다. 오라클 데이터베이스앳AWS에는 제로 ETL(추출, 변환 및 로드) 기능이 포함되어 있어 엔터프라이즈 오라클 데이터베이스 서비스와 AWS 애널리틱스(AWS Analytics) 서비스 간 데이터 통합이 간편해지고, 이로써 복잡한 데이터 파이프라인을 구축하고 관리할 필요가 없어진다. 이는 오라클 데이터베이스 서비스와 AWS 서비스 간 데이터 흐름을 원활하게 하며, 기업은 자사의 데이터를 AWS 분석, 머신러닝 및 생성형 AI 서비스와 결합해 애플리케이션을 추가로 개선할 수 있다. 이번 출시로 클라우드 내 데이터베이스 실행에 있어 기업 고객들의 선택지는 더욱 넓어졌으며, 기존의 AWS 내 오라클 데이터베이스 실행 옵션이 보완됐다. AWS의 G2 크리슈나무티(G2 Krishnamoorthy) 데이터베이스 서비스 부사장은 “기업은 애플리케이션 재설계 없이도 자사의 오라클 데이터베이스 워크로드를 오라클 데이터베이스앳AWS로 원활히 마이그레이션할 수 있다. 동시에 AWS의 글로벌 인프라가 제공하는 보안성과 복원 탄력성, 확장성도 누릴 수 있다”면서, “보안에 가장 민감한 세계 최대 규모 기업 조직의 상당수가 이미 AWS에서 오라클 워크로드를 실행하고 있다. 오라클 데이터베이스앳AWS는 기업이 AWS의 첨단 분석 및 생성형 AI 기능을 바탕으로 보다 손쉽게 데이터로부터 더 큰 가치를 창출하도록 돕는다”고 말했다. 카란 바타 OCI 수석 부사장은 “기업들은 지난 수십 년간 자사의 가장 가치 있는 데이터를 오라클 데이터베이스에 저장해 왔다”면서, “오라클 데이터베이스앳AWS는 AWS 환경의 OCI에서 오라클 데이터베이스 워크로드를 실행할 수 있게 해 준다. 덕분에 오라클 데이터베이스 23ai의 이점을 온전히 활용하여 애플리케이션 개발을 간소화하고, AI 및 네이티브 벡터 임베딩을 바탕으로 미션 크리티컬 워크로드를 실행할 수 있다. AWS의 고급 생성형 AI 및 분석 서비스와 결합된 오라클 데이터베이스앳AWS는 진정 주목할 만한 설루션”이라고 설명했다. 오라클 데이터베이스앳AWS는 OCI와 AWS 전반에 걸쳐 일관된 사용자 경험을 제공하며, 양사의 통합된 지원으로 데이터베이스 관리와 구매, 배포를 간소화할 수 있다. 이는 기업 고객이 신뢰하는 기업용 애플리케이션에 최적화된 참조 아키텍처 및 랜딩 존을 기반으로 설계되었다.  이 서비스를 활용하면 오라클 제로 다운타임 마이그레이션(Oracle Zero Downtime Migration)을 비롯한 마이그레이션 도구와의 호환성을 바탕으로 기존 오라클 데이터베이스의 클라우드 마이그레이션을 간소화 및 가속화할 수 있다. 그리고 오라클 RAC를 통한 워크로드의 고도의 복원력 및 확장성 상승, 여러 AWS 가용 영역(AWS Availability Zones)과 아마존 S3(Amazon S3)을 통한 백업 및 재해 복구가 가능하다. 또한, AWS 마켓플레이스(AWS Marketplace)를 활용한 간소화된 구매 경험을 누릴 수 있다. 기존 AWS 약정 및 BYOL(Bring Your Own License) 등 오라클 라이선스 혜택과 오라클 서포트 리워드(OSR) 등 할인 프로그램을 오라클 데이터베이스앳AWS와 함께 사용할 수 있다. 아마존 EC2(Amazon EC2), 아마존EKS(Amazon EKS), 아마존 ECS(Amazon ECS)와 AI 벡터 검색(AI Vector Search) 등 오라클 데이터베이스 기능을 결합하면 확장 가능한 새로운 마이크로서비스 기반 애플리케이션을 구축할 수 있고, 이를 통해 애플리케이션 인텔리전스를 개선하면서 신기능을 신속하게 시장에 출시할 수 있다. 오라클 데이터베이스앳AWS는 내장형 오라클 AI 벡터 검색을 지원하는 오라클 데이터베이스 23ai를 제공한다. 사용자는 특정 단어와 픽셀, 데이터 값이 아닌 개념적 콘텐츠를 기반으로 문서, 이미지, 관계형 데이터를 손쉽게 검색할 수 있다. AWS 관리 콘솔(AWS Management Console), AWS 명령줄 인터페이스(AWS Command Line Interface), API 등 익숙한 도구 및 손쉬운 워크로드 관리를 위한 모니터링 기능이 제공되며, 고급 분석, 머신러닝, 생성형 AI 서비스를 활용한 데이터 준비가 가능하다. 이외에도 AWS IAM(AWS Identity and Access Management), AWS 클라우드 포메이션(AWS CloudFormation), 아마존 클라우드워치(Amazon CloudWatch), 아마존 VPC 라티스(Amazon VPC Lattice), 아마존 이벤트브리지(Amazon EventBridge) 등 AWS 서비스와의 통합이 제공된다. 한편으로 오라클 E-비즈니스 스위트(Oracle E-Business Suite), 피플소프트(PeopleSoft), JD 에드워즈 엔터프라이즈원(JD Edwards EnterpriseOne), 오라클 EPM(Oracle Enterprise Performance Management), 오라클 리테일 애플리케이션(Oracle Retail Applications) 등 오라클 애플리케이션도 지원된다. 오라클 데이터베이스앳AWS는 현재 AWS 미국 동부(버지니아주 북부) 및 서부(오리건주) 리전에서 이용 가능하며, AWS의 클라우드 인프라를 활용하고 있다. 오라클 데이터베이스앳AWS 설루션은 대한민국의 서울을 포함해 캐나다(중부), 프랑크푸르트, 하이데라바드, 아일랜드, 런던, 멜버른, 밀라노, 뭄바이, 오사카, 파리, 상파울루, 싱가포르, 스페인, 스톡홀름, 시드니, 도쿄, 미국 동부(오하이오주), 미국 서부(캘리포니아주), 취리히를 포함해 20여 곳의 추가 AWS 리전에서도 출시를 앞두고 있다.
작성일 : 2025-07-10
세일즈포스, "슬랙 AI에서 한국어로 엔터프라이즈 검색 활용 가능"
세일즈포스는 지능형 생산성 플랫폼 ‘슬랙(Slack)’의 대표적인 기능인 ‘슬랙 AI’가 공식적으로 한국어를 지원한다고 밝혔다. 이제 국내 슬랙 유저도 연동된 애플리케이션 내 데이터를 슬랙에서 검색 및 활용할 수 있도록 지원하는 ‘엔터프라이즈 검색’ 기능을 사용할 수 있다. 슬랙 AI는 슬랙에 축적된 집단 지식을 기반으로 AI 기반 검색, 채널 요약, 스레드 요약 기능을 통해 사용자들이 필요한 정보를 보다 손쉽게 활용할 수 있도록 지원한다. 이를 통해 사용자는 원하는 답변을 빠르게 찾고, 대화의 흐름을 정리하며, 아이디어를 도출하는 전 과정을 보다 효율적으로 수행할 수 있다. 슬랙에 따르면 이번 공식 업데이트를 바탕으로 국내 사용자도 한국어로 ‘슬랙 AI’를 활용하여 대화, 회의 및 업무 관련 데이터 요약을 제공받을 수 있게 된 것은 물론, 생산성 향상을 위한 인사이트를 단일 워크플로 내에서 손쉽게 확보 및 공유할 수 있다. 또한 슬랙 AI는 협업 툴, 클라우드 기반 파일 저장소, 이메일 서버, 고객 관계 관리(CRM) 시스템, 코드 저장소, 특수 비즈니스 애플리케이션 등 다양한 조직 내 시스템과 연동되어 기업 내 모든 콘텐츠에 대한 검색과 활용을 지원한다. 슬랙 AI는 단순한 키워드 매칭을 넘어 검색어의 의미를 분석해 사용자가 실제로 찾고자 하는 정보를 정확하게 파악하고, 자연어 처리(NLP) 기술을 통해 대화형 질문도 원활하게 해석한다. 아울러 사용자의 역할, 검색 이력, 접근 권한 등의 개인화 요소와 정보의 관련성, 최신성을 반영해 가장 적절한 정보를 우선적으로 제공함으로써 업무 생산성과 정확성 향상에 기여할 수 있다.     ‘엔터프라이즈 검색’은 사용자의 업무, 목표, 배경 정보를 파악해 실시간으로 소스를 분석하거나 통합 시스템에서 다양한 소스의 데이터를 연결 및 통합하여 슬랙 내에서 데이터를 즉시 검색할 수 있도록 돕는 기능이다. 엔터프라이즈 검색은 슬랙의 ‘대화형 AI 검색’을 기반으로 하며, 아사나(Asana), 박스(Box), 깃허브(GitHub), 구글 드라이브(Google Drive), 지라(Jira) 등의 애플리케이션 및 드라이브와 연동이 가능하다. 슬랙에 따르면 실제로 평균적인 사무직 근로자는 정보 검색, 단순 반복적인 메시지 발송 등의 업무에 하루 평균 3분의 1의 시간을 할애한다. 반면 스탠포드 대학교의 연구에 따르면, 생성형 AI 기반의 지식 검색이나 자동화 기능을 사용할 경우 단순하고 반복적인 업무 시간을 60%까지 단축할 수 있다. 실제로 슬랙의 유저는 ‘엔터프라이즈 검색’ 기능과 ‘AI 에이전트’ 간의 시너지를 바탕으로 단순 반복 업무 시간은 줄이고, 필요한 데이터에 대한 접근성과 투명성을 높일 수 있다. 이 외에도 슬랙은 현재 자체 앱 마켓인 ‘슬랙 마켓플레이스(Slack Marketplace)’를 통해 ‘AI 기반 앱 생태계’를 강화해 나가고 있다고 밝혔다. 슬랙 마켓플레이스에서는 직원들이 슬랙 내 단일 워크플로 상에서 콘텐츠 디자인 및 협업을 지원하는 어도비 익스프레스(Adobe Express), 조직 내 데이터와 정보를 기반으로 질문에 답하고, 콘텐츠를 생성할 수 있는 아마존 큐 비즈니스(Amazon Q Business)를 포함하여 콘텐츠 초안 작성, 시장 조사, 영업 관리, 인적자원관리, 전산 등 다양한 업무 영역에서 활용 가능한 25개의 새로운 AI 앱을 사용할 수 있다. 세일즈포스 코리아의 손부한 대표는 “본격적으로 AI와 함께 일하는 시대가 도래하면서 슬랙은 실질적인 AI 혁신을 가속화하는 차세대 ‘업무 운영체제(Work OS)’이자 ‘에이전틱 인터페이스(Agentic Interface)’로서의 역할을 수행하고 있다”면서, “국내 유저들 또한 슬랙 AI와 엔터프라이즈 서치 기능을 본격적으로 활용할 수 있게 된 만큼, 앞으로도 실행 중심의 스마트 워크플레이스 구현을 지원하기 위한 노력을 아끼지 않을 것”이라고 전했다.
작성일 : 2025-06-11
에픽게임즈, 언리얼 엔진 5.6 출시
에픽게임즈는 다양한 툴세트와 기능을 새롭게 추가한 언리얼 엔진의 신규 업데이트 ‘언리얼 엔진 5.6’을 정식 출시했다고 발표했다. 이번 언리얼 엔진 5.6 업데이트는 ▲고퀄리티의 60FPS 오픈 월드 ▲더 빠른 애니메이션 제작 ▲언리얼 엔진에 통합된 메타휴먼 크리에이터 ▲간소화된 UX/UI 경험 ▲개발자 반복 작업 향상 ▲더 빠른 월드 제작을 위한 프로시저럴 툴 ▲향상된 시네마틱 및 퍼포먼스 캡처 워크플로 등에서 새로운 기능을 추가하고, 기존 기능을 향상시켰다. 언리얼 엔진 5.6은 고퀄리티의 60FPS 오픈 월드 구현을 위해 고사양 PC, 최신 콘솔, 모바일 디바이스에서 60FPS의 일관된 렌더링이 구현되는 게임을 개발하고 출시하는 데 필요한 최적화된 툴세트를 제공한다. 특히 ‘하드웨어 레이 트레이싱(HWRT)’ 시스템 개선으로 글로벌 일루미네이션 및 리플렉션 기술인 ‘루멘’의 성능이 향상되었으며, CPU 병목 현상을 제거해 더욱 복잡한 신(scene)도 60FPS의 프레임 속도를 유지할 수 있다. 또한, 새롭게 선보이는 기능인 ‘패스트 지오메트리 스트리밍 플러그인’을 통해 대량의 스태틱 지오메트리를 포함한 월드도 일정한 프레임 속도로 빠르게 로드할 수 있다. 비동기 피직스 스테이트 생성 및 제거 등 콘텐츠 스트리밍 기능 또한 향상되었다.     더 빠른 애니메이션 제작 부분에서는 보다 직관적이고 정확하게 제어 가능한 에디터 내 툴세트를 지원하기 위해 대대적인 업데이트가 이루어졌다. 완전히 재설계된 ‘모션 트레일’을 통해 액터와 캐릭터 제어 기능이 새롭게 통합되면서 뷰포트에서 애니메이션의 궤적과 간격을 직접 조정할 수 있다. 또한 ‘점선’, ‘시간 기반’, ‘속도/분포’ 모드 등 다양한 스타일과 ‘핀 고정’, ‘오프셋’, ‘스페이스’ 등의 기능을 통해 보다 정밀하게 애니메이션을 제어할 수 있다. ‘트윈 툴’도 새롭게 개편되어 컨트롤하거나 선택한 키에 대한 애니메이션을 더 빠르고 세밀하게 조정할 수 있게 되었으며, 새로운 단축키와 ‘오버슈트’, ‘타임 오프셋 슬라이더’ 등이 추가되어 사용자 편의성과 사용성 또한 향상되었다. 시퀀서 또한 업데이트되어 새로운 시퀀서 내비게이션 툴을 사용하면 복잡한 계층구조를 쉽게 탐색할 수 있으며, 실시간 오디오 스크러빙 기능으로 애니메이션, 대화, 이펙트 등을 정확하게 동기화하고 현지화된 오디오를 기반해 다양한 언어의 타이밍에 맞춰 시퀀스를 조정할 수 있다. 마지막으로, 실험 단계 기능으로 ‘스켈레탈 메시 에디터’ 내에서 모프 타깃을 만들고 스컬프팅할 수 있으며, ‘컨트롤 릭 피직스’를 통해 캐릭터 릭에 프로시저럴 피직스 모션을 손쉽게 추가하거나 ‘래그돌 피직스’ 기능으로 보다 사실감 있는 캐릭터 애니메이션을 구현할 수 있다. 메타휴먼 부분에서는 ‘메타휴먼 크리에이터’가 언리얼 엔진에 통합되며, ‘메타휴먼 애니메이터’도 더욱 향상된 기능을 제공한다. 특히 이번 업데이트를 통해 얼굴뿐만 아니라 체형도 거의 무한대로 생성 가능하며, 새로운 의상 애셋을 통해 메타휴먼에 자동으로 맞춰지는 완벽한 의상을 손쉽게 제작할 수 있다. 또한, 페이스와 보디에 대한 실제 스캔 데이터도 대폭 추가되어 더욱 다양한 고퀄리티의 캐릭터 제작이 가능해졌다. ‘메타휴먼 애니메이터’의 경우 이제 대부분의 웹캠, 스마트폰, 오디오에서 배우의 연기를 실시간으로 캡처할 수 있으며, DCC용 신규 플러그인과 ‘팹 마켓플레이스’와의 통합 등 에코시스템도 더욱 확장된다. 간소화된 UX/UI 경험 부분에서는 에디터 전반의 UX/UI가 새롭게 개편되어 더욱 직관적이고 빠른 워크플로를 지원한다. 새롭게 디자인된 콘텐츠 브라우저로 애셋 정리와 탐색이 훨씬 쉬워졌으며, 썸네일 크기의 조절과 가로 및 세로 방향 전환도 더욱 매끄럽게 조정할 수 있다. 또한, ‘뷰포트 툴바’의 섹션 메뉴와 ‘퀵 액세스 컨트롤’ 기능 개편으로 주요 툴에 더 빠르게 접근 가능하며, 상황에 맞춰 자동 조절되는 툴바, 선택 및 모델링 모드를 위한 전용 제어 기능 등 사용성 또한 향상되었다. 언리얼 엔진 5.6은 개발자의 효율적인 반복작업을 위해서 워크플로를 가속화하고, 타깃 플랫폼 및 디바이스에 더 빠르게 콘텐츠를 제공할 수 있는 다양한 툴을 추가했다. 새롭게 재설계된 ‘프로젝트 런처’ UI로 디바이스 실행 프로파일을 보다 빠르게 생성 및 관리할 수 있으며 빌드, 쿠킹, 디바이스 배포 구성 또한 빠르게 설정할 수 있다. ‘젠 스트리밍’을 베타로 전환해 전체 패키지 빌드 없이도 콘텐츠 테스트와 반복작업을 간소화해 생산성을 향상시켰다. 또한, 실험 단계의 ‘점진적 쿠킹’ 기능은 변경된 애셋만 분석 및 처리 가능해 반복 작업을 효율적으로 할 수 있다. 프로시저럴 툴 부분에서는 강력해진 PCG 프레임워크를 통해 복잡한 월드를 더욱 빠르고 효율적으로 제작할 수 있다. 인라인 상수를 지원하는 노드 그래프 UX와 새로운 3D 뷰포트를 통해 요소 생성 및 조작, 그리고 미리보기할 수 있으며, 노드 필터링 기능이 있는 맞춤형 그래프 템플릿으로 더 빠르게 반복작업을 할 수 있다. 특히 GPU 성능이 개선되어 복잡한 신에서도 인스턴스 처리가 안정적으로 이루어지고, CPU 오버헤드를 줄여 인스턴스 작업 시 강화된 유연성과 정밀성을 제공한다. PCG도 멀티스레딩 지원으로 전반적인 성능이 향상되며, 복잡한 대규모 환경에서도 더 빠른 처리와 반응 속도를 제공한다. 또한, ‘PCG 바이옴 코어 v2(Biome Core v2)’ 플러그인을 통해 바이옴을 더 빠르고 직관적으로 생성하고 업데이트할 수 있으며, 바이옴 별 ‘블렌딩’과 ‘바이옴 레이어링’ 기능으로 자연스러운 생물 환경을 보다 효율적으로 구축할 수 있다. 시네마틱 및 퍼포먼스 캡처 워크플로 부분에서는 새롭게 통합된 다양한 툴세트를 통해 제작 파이프라인 전반에 효율성을 더했다. 새로운 통합 설루션인 ‘모캡 매니저’로 언리얼 에디터 내에서 퍼포먼스 캡처 데이터를 시각화, 녹화 및 관리하고, 애셋 관리부터 모캡 스테이지 및 연기자/캐릭터 구성, 라이브 링크 데이터 미리보기 등 다양한 기능으로 제작의 효율을 높일 수 있다. ‘캡처 매니저’는 라이브 링크 허브와 통합되어 모바일 디바이스, 비디오 파일, 스테레오 헤드 마운트 카메라(HMC)에서 메타휴먼 테이크를 정밀하게 가져와 처리할 수 있어 서드파티 페이셜 캡처 시스템과의 호환성과 유연성이 강화되었다. 또한 새로운 파이프라인 친화적인 ‘시네마틱 어셈블리 툴세트(CAT)’가 추가되어 프로젝트 구성 전환, 시네마틱 템플릿 재사용 등 다양한 기능을 통해 샷 관리 파이프라인을 효율적으로 관리할 수 있다.
작성일 : 2025-06-04
[포커스] AWS 서밋 서울 2025, “생성형 AI와 클라우드 혁신으로 산업 디지털 전환 가속화”
아마존웹서비스(AWS)가 5월 14일~15일 서울 코엑스에서 ‘AWS 서밋 서울 2025’를 진행했다. 4만여 명이 사전 등록한 이번 서밋에는 생성형 AI를 중심으로 다양한 산업 분야와 기술 주제에 대해 130개 이상의 강연이 진행됐고, 60개 이상의 고객사가 AWS 도입 경험과 성공 사례를 소개했다. 또한 현실에 적용 가능한 도구로서 생성형 AI 활용 사례를 체험할 수 있는 엑스포 등 다양한 프로그램이 진행됐다. ■ 정수진 편집장   생성형 AI와 클라우드 전환 중심의 시장 전략 AWS 코리아의 함기호 대표이사는 생성형 AI가 일상을 빠르게 변화시키고 있다고 짚었다. 연구 결과에 따르면 한국 기업의 54%가 2025년 IT 예산에서 생성형 AI를 최우선 투자 항목으로 꼽았다. 그리고 63%의 조직이 최고 AI 책임자(CAIO)를 임명하는 등, AI는 기업의 조직 구조에도 변화를 가져왔다. 생성형 AI의 도입 속도는 매우 빨라서 94%의 기업이 이미 도입했고, 85%는 활발한 실험을 진행 중이다. 하지만 이러한 실험이 실제 활용으로 이어지는 비율은 아직 절반 이하에 머물고 있는 것으로 나타났다.   ▲ AWS코리아 함기호 대표   AWS는 고객들이 클라우드 전환을 지속적인 혁신의 여정으로 인식하고 있다는 점에 주목하고 있다. 과거에는 클라우드가 단순히 비용 절감 수단 또는 일회성 프로젝트로 여겨졌지만, 이제는 비즈니스 민첩성과 경쟁력 확보를 위해 클라우드 네이티브 환경으로의 전환을 더욱 중요하게 생각하고 있다는 것이다. 함기호 대표이사는 “AWS는 이러한 변화와 함께 고객의 디지털 전환을 지속적으로 지원하고 있다”면서, 작년에 이어 올해도 생성형 AI와 IT 현대화를 주요 사업 전략으로 진행하고 있다고 소개했다. 그는 또한 한국 시장에 대한 지원과 성과에 대해서도 소개했다. 올해에는 AWS 마켓플레이스(AWS Marketplace)가 한국에 정식으로 출시되었다. 지난 3월에는 한국인터넷진흥원의 클라우드 보안 인증(CSAP) 3등급을 획득하여, 공공기관에 클라우드 서비스를 제공할 수 있게 되었다. 개발자를 위한 생성형 AI 서비스인 아마존 Q 디벨로퍼(Amazon Q Developer)가 4월부터 한국어 지원을 시작했다. 이외에도 AWS는 한국 기업이 파운데이션 모델(FM)을 개발하고 해외로 빠르게 진출할 수 있도록 지원을 이어갈 예정이다.   컴퓨팅/스토리지/보안 등 주요 클라우드 기술 요소 소개 AWS는 이번 서밋이 기술 중심에서 기술 경험 중심으로 초점을 옮겨, 생성형 AI를 포함한 자사의 기술이 실제 문제 해결에 어떻게 기여하는지 보여주는 데 초점을 맞추었다고 설명했다. 서밋의 첫째 날인 5월 14일 기조연설에서 AWS의 야세르 알사이에드(Yasser Alsaied) IoT 부문 부사장은 “AWS가 불가능해 보이는 것을 상상하고 만들 수 있도록 돕는 기술을 제공한다”고 소개했다. 그가 소개한 주요 기술은 보안, 확장성, 컴퓨팅, 스토리지 등이다. AWS는 칩부터 클라우드까지 모든 수준에서 보안을 구축하고 고객 데이터에 접근할 수 없도록 했다. 또한, 전 세계의 인프라 리전(region)과 가용 영역(availability zone)을 연결하는 600만 킬로미터 이상의 광케이블을 보유하고 있으며, 2024년에는 네트워크 백본 용량을 80% 늘렸다. AWS는 클라우드 기반으로 필요한 만큼 컴퓨팅 리소스를 사용할 수 있도록 지원하며 가상 서버, 컨테이너 등 다양한 옵션을 제공한다. 특히 생성형 AI와 같은 복잡한 워크로드를 위해서는 엔비디아와 협력하여 GPU 인스턴스를 출시했다. 알사이에드 부사장은 세계에서 가장 빠른 슈퍼컴퓨터를 개발하기 위한 프로젝트 세이바(Project Ceiba) 및 고수요의 GPU 컴퓨팅에 즉시 예측 가능하게 액세스할 수 있는 아마존 EC2 캐퍼시티 블록을 소개했으며, “자체 개발한 프로세서인 AWS 그래비톤4(AWS Graviton4)는 이전 세대 대비 45% 빠르고 에너지 소비를 60% 줄였다. AWS는 지난 2년간 데이터센터 CPU의 50% 이상을 그래비톤으로 교체했다”고 설명했다.   ▲ AWS 야세르 알사이에드 IoT 부문 부사장   스토리지 서비스인 아마존 S3(Amazon S3)에는 현재 400조 개 이상의 오브젝트가 저장되어 있다. 한편, AWS는 대규모 분석 데이터셋을 위한 툴인 아파치 아이스버그(Apache Iceberg)를 오픈소스로 공개했고, 오브젝트 크기, 스토리지 클래스, 통계 등의 시스템 메타데이터를 자동으로 생성해 대규모 데이터셋 관리의 오버헤드를 줄이는 S3 메타데이터 등 스토리지 관련 서비스를 제공한다. 알사이에드 부사장은 이러한 스토리지 기술이 대규모 데이터를 효율적으로 관리하고 활용하는 데 있어 중요하며, 이를 통해 혁신적인 설루션을 구축할 수 있다고 강조했다.   앱 현대화 및 비즈니스 혁신을 위한 AI 기술 알사이에드 부사장은 비즈니스 혁신을 돕는 AWS의 생성형 AI 및 관련 서비스에 대해서도 소개했다. 아마존 베드락(Amazon Bedrock)은 고객에게 폭넓은 파운데이션 모델(FM) 선택권을 제공해, 아마존 및 다양한 회사의 모델 가운데 개발하는 애플리케이션에 가장 적합한 모델을 선택할 수 있도록 돕는다. 베드락은 검색 증강 생성(RAG)을 지원해 더욱 관련성 높고 정확한 응답을 제공하며, 가드레일 포 아마존 베드락(Guardrails for Amazon Bedrock)을 통해 유해한 콘텐츠를 차단할 수 있다. 알사이에드 부사장은 AI 응답의 불확실성을 줄이는 데에 도움을 주는 자동화 추론 및 프롬프트에 적합한 모델을 선택할 수 있는 지능형 프롬프트 라우팅 등의 기능도 소개했다. 또한 알사이에드 부사장은 AI 및 에이전트 기술을 활용한 애플리케이션의 현대화 사례를 소개하면서, “AWS는 고객들이 마이그레이션 과제를 극복하도록 꾸준히 지원해왔으며, 마이그레이션을 자동화하는 서비스를 제공한다”고 전했다. “닷넷 코드 변환 서비스는 애플리케이션의 현대화 시간 및 윈도우 라이선스 비용을 줄일 수 있게 돕고, VM웨어 워크로드 변환 서비스는 네트워크 설정 변환 속도를 80배 높일 수 있다. 복잡한 메인프레임 애플리케이션의 변환도 에이전트의 도움으로 몇 달 만에 완료할 수 있다”는 것이 알사이에드 부사장의 설명이다.   ▲ AWS는 생성형 AI가 제조 산업의 복잡한 업무에 도움을 줄 수 있다고 소개했다.   제조 산업 디지털 전환을 위한 데이터 통합 및 AI 활용 이번 서밋은 이틀에 걸쳐 ‘인더스트리 데이(5월 14일)’와 ‘코어 서비스 데이(5월 15일)’로 진행됐다. 5월 14일에는 현대카드와 트웰브랩스가 기조연설에서 생성형 AI 관련 인사이트를 소개했고 기술 트렌드, 생성형 AI, 산업별 트랙 등 다양한 주제의 강연이 진행되었다. 15일에는 아마존의 워너 보겔스(Werner Vogels) CTO와 디팍 싱(Deepak Singh) 데이터베이스 및 AI 부사장, 삼성전자 서치영 상무, 티맵모빌리티 김재순 CTO가 기조연설을 진행했으며, 9개 트랙에서 50여 개의 세부 강연을 통해 생성형 AI, 머신러닝, 데이터 분석, 클라우드, 데이터베이스, 보안 및 거버넌스 등 서비스별 업데이트와 활용 사례가 소개되었다. 이 가운데 14일 진행된 제조 및 하이테크 트랙에서는 디지털 전환과 인공지능을 통한 제조산업의 혁신 전략을 짚고, 국내 기업들의 사례가 소개됐다. AWS 코리아의 박천구 솔루션즈 아키텍트 매니저는 변화하는 시장 환경에서 제조 기업이 직면한 문제로 “엔지니어링 디자인, 제조, 공급망, 운영 등 각 부서의 시스템이 사일로화되어 필요한 데이터를 제때 얻기 어렵다”는 점을 꼽았다. 그러면서 “이런 문제를 해결하기 위한 디지털 전환은 전통적인 제조에서 첨단 제조로 완전히 전환하는 것을 뜻하며, 긴 여정을 통해 비즈니스 가치를 실현할 수 있어야 한다”고 전했다. 특히 제조산업 디지털 전환의 핵심 요소로 AWS가 주목한 것은 데이터의 통합이다. 박천구 매니저는 “공장에는 많은 데이터가 있고 산업 데이터는 2년마다 두 배씩 늘어나는데, 특히 OT 데이터가 대다수를 차지한다. 디지털 전환의 성공은 OT에 중점을 두고 OT-IT 데이터를 효과적으로 통합하는 데에 달려 있다”면서, “이렇게 통합된 데이터를 잘 관리하고 빅데이터・AI 등과 결합해 활용할 수 있는 구조를 갖춤으로써 각 제조 단위 및 전체 공정의 최적화가 가능하다. 특히 올해는 생성형 AI를 통한 비즈니스 전환에 대한 고민이 본격화될 것으로 보이는데, 탄탄한 데이터 기반을 구축하는 것은 생성형 AI의 효과를 실현하는 필수 조건”이라고 짚었다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-06-04
레드햇, “모델/AI 가속기/클라우드 전반에 걸쳐 엔터프라이즈 AI 배포 가속화 지원”
레드햇은 레드햇 AI 인퍼런스 서버(Red Hat AI Inference Server), 레드햇 AI 서드파티 검증 모델 및 라마 스택(Llama Stack)과 모델 컨텍스트 프로토콜(Model Context Protocol, 이하 MCP) API의 통합 그리고 엔터프라이즈 AI 포트폴리오 전반에 걸친 주요 업데이트를 통해 엔터프라이즈 AI에서 고객 선택권을 지속적으로 확대한다고 발표했다. 이러한 개발을 통해 레드햇은 조직이 AI 도입을 가속화하는 데 필요한 역량을 더욱 강화하는 동시에 하이브리드 클라우드 환경 전반에서 생성형 AI 제품 배포에 있어 고객에게 더 많은 선택과 신뢰를 제공한다. 포레스터(Forrester)에 따르면 오픈소스 소프트웨어는 기업 AI 활동을 가속화하는 촉매제가 될 것이다. AI 환경이 점점 더 복잡하고 역동적으로 성장함에 따라 레드햇 AI 인퍼런스 서버 및 서드파티 검증 모델은 효율적인 모델 추론과 레드햇 AI 플랫폼의 성능에 최적화된 검증 AI 모델 컬렉션을 제공한다. 레드햇은 라마 스택 및 MCP를 비롯한 생성형 AI 에이전트 개발을 위한 신규 API 통합을 더해 배포 복잡성을 해결하고 높은 제어력과 효율성으로 AI 이니셔티브를 가속화할 수 있도록 지원한다. 레드햇은 AI 포트폴리오에 새로운 레드햇 AI 인퍼런스 서버가 포함되면서, 하이브리드 클라우드 환경 전반에서 더 빠르고 일관되며 비용 효율적인 추론을 대규모로 제공할 것으로 보고 있다. 이 핵심 기능은 레드햇 오픈시프트 AI(Red Hat OpenShift AI) 및 레드햇 엔터프라이즈 리눅스 AI(Red Hat Enterprise Linux AI, 이하 RHEL AI)의 최신 출시에 통합되었으며, 독립형 설루션으로도 제공되어 지능형 애플리케이션을 더 효율적이고 유연하며 높은 성능으로 배포할 수 있다. 허깅페이스(Hugging Face)에서 제공되는 레드햇 AI 서드파티 검증 모델은 기업이 특정 요구사항에 적합한 모델을 쉽게 찾을 수 있도록 지원한다. 레드햇 AI는 검증된 모델 컬렉션과 배포 가이드를 제공해 모델 성능 및 결과 재현성(reproducibility)에 대한 고객 신뢰를 높인다. 레드햇으로 최적화된 일부 모델은 모델 압축 기술을 활용해 크기를 줄이고 추론 속도를 높여 자원 소비와 운영 비용을 최소화한다.  레드햇 AI는 메타(Meta)가 처음 개발한 라마 스택과 앤트로픽(Anthropic)의 MCP를 통합해 사용자에게 AI 애플리케이션 및 에이전트 구축과 배포를 위한 표준화된 API를 제공한다. 현재 레드햇 AI에서 개발자 프리뷰로 제공되는 라마 스택은 모든 생성형 AI 모델 전반에서 vLLM 추론, 검색 증강 생성(RAG), 모델 평가, 가드레일 및 에이전트 기능에 액세스할 수 있는 통합 API를 제공한다. MCP는 API, 플러그인, 데이터 소스를 연결하는 표준 인터페이스를 제공함으로써 에이전트 워크플로에서 외부 도구와의 통합을 지원한다. 레드햇 오픈시프트 AI(v2.20)의 최신 버전은 ▲최적화된 모델 카탈로그 ▲쿠브플로우 트레이닝 오퍼레이터(KubeFlow Training Operator) 기반의 분산 학습 ▲기능 저장소(Feature store) 등 생성형 AI 및 예측형 AI 모델을 대규모로 구축, 학습, 배포, 모니터링할 수 있는 추가 기능을 포함한다.  또한, RHEL AI 1.5는 레드햇의 기본 모델 플랫폼에 새로운 업데이트를 제공함으로써 대규모 언어 모델(LLM)의 개발, 테스트 및 실행을 지원한다. RHEL AI 1.5의 주요 기능은 ▲구글 클라우드 마켓플레이스(Google Cloud Marketplace) 가용성 제공 ▲스페인어, 독일어, 프랑스어 및 이탈리아어를 위한 향상된 다국어 기능 제공 등이다.   래드햇 AI 인스트럭트랩 온 IBM 클라우드(Red Hat AI InstructLab on IBM Cloud)서비스도 출시됐다. 이 신규 클라우드 서비스는 모델 맞춤화 과정을 더욱 간소화하여 확장성과 사용자 경험을 개선하며 기업이 고유한 데이터를 더 쉽고 높은 수준의 제어하에 활용할 수 있도록 지원한다.
작성일 : 2025-05-26
쌔스, SAS 이노베이트 2025, 인간-AI 협업 시대 여는 혁신 기술 공개
SAS, ‘SAS 이노베이트 2025’에서 인간-AI 상호작용 가능한 AI 에이전트 등 혁신 기술 공개   SAS(쌔스)가 5월 6일부터 9일(현지시간)까지 미국 플로리다주 올랜도에서 열린 연례 컨퍼런스 ‘SAS 이노베이트 2025(SAS Innovate 2025)’에서 최신 AI 및 데이터 분석 기술 혁신과 다양한 비즈니스 사례를 선보였다. SAS 이노베이트는 전 세계 산업 전문가와 오피니언 리더들이 한자리에 모여 인사이트를 공유하는 자리다. 투명한 의사결정을 위한 맞춤형 인간-AI 상호작용 지원 ‘AI 에이전트’ 공개 인간의 개입 없이 AI 시스템이 스스로 의사결정을 내리고 조치를 취하는 시대가 점차 다가오고 있다. 이러한 AI 에이전트의 빠른 발전에 발맞춰 SAS는 책임 있는 혁신(responsible innovation)을 기반으로 에이전틱 AI(agentic AI)의 미래를 구축하고 있다. SAS는 자사의 데이터 및 AI 플랫폼 SAS 바이야(SAS® Viya®)에서 구동되는 SAS 인텔리전트 디시저닝(SAS® Intelligent Decisioning)을 통해 AI 에이전트를 설계, 배포, 확장할 수 있도록 지원한다고 발표했다. 이는 인간과 AI 간의 자율성 균형을 맞추고, 의사결정 과정에 대한 설명 가능성과 거버넌스를 확보하는 데 중요한 역할을 할 것으로 기대된다. 의사결정 시 윤리적 기준을 반영하는 AI 에이전트 첨단 기술 리서치 기관인 더 퓨처럼 그룹(The Futurum Group)의 AI 소프트웨어 및 도구 부문 닉 페이션스(Nick Patience) 부사장은 "SAS의 에이전트 기반 AI 접근 방식은 자율적인 의사결정과 윤리적 거버넌스 간의 중요한 균형을 맞추고 있다"라며, "SAS의 지능형 에이전트는 단순한 기술적 진보를 넘어 책임감 있는 엔터프라이즈 AI 도입을 위한 실용적인 프레임워크로서, 이는 조직이 빠르게 진화하는 환경에서 경쟁 우위를 확보하는 데 필수적인 요소"라고 강조했다. SAS 바이야의 에이전틱 AI 프레임워크는 AI 에이전트의 설계 및 제공 방식을 정의하는 세 가지 핵심 요소를 기반으로 한다. 첫째, 의사결정이다. SAS는 강력한 결정론적 분석(deterministic analytics)과 대규모 언어 모델(LLM, Large Language Models)의 유연성 및 추론 능력을 결합한 하이브리드 접근 방식을 채택하고 있다. 이를 통해 SAS 고객은 규제 산업에서 요구되는 비즈니스 기준과 규칙을 준수하면서 더욱 정확하고 신뢰할 수 있는 결과를 도출하는 AI 에이전트를 구축할 수 있다. 둘째, 인간과 AI의 균형이다. SAS는 업무의 복잡성, 리스크, 비즈니스 목표에 따라 AI 에이전트의 자율성과 인간 개입 수준을 기업이 직접 조정할 수 있도록 지원한다. AI 에이전트는 반복적인 데이터 기반 작업에서 완전히 자율적으로 운영될 수 있으며, 인간은 감독, 윤리적 판단, 전략적 방향을 제시하는 역할을 수행할 수 있다. 셋째, 거버넌스다. SAS의 내장된 거버넌스 프레임워크를 활용하여 기업은 윤리 기준과 데이터 프라이버시를 준수하면서 비즈니스 가치 및 규제 심사에 부합하는 AI 에이전트를 구축할 수 있다. SAS 바이야가 이끄는 에이전틱 AI(agentic AI)의 미래 SAS 바이야는 데이터 수집 및 분석부터 AI 에이전트 구축, 배포, 모니터링에 이르기까지 AI 에이전트 여정의 모든 단계를 포괄적으로 지원한다. 또한, 지속적인 성과 추적, 거버넌스 및 보안을 보장하며, 제품 수명주기 전반에 걸쳐 효율적인 방식으로 AI 에이전트를 관리할 수 있도록 돕는다. SAS는 수십 년간 축적해온 신뢰성 있는 거버넌스 경험을 바탕으로 모든 에이전트에 감사 가능성(auditability), 편향 탐지, 규제 준수 기능을 제공한다. 향후 SAS는 에이전틱 AI 로드맵에 따라 SAS 바이야에 코파일럿 생산성 어시스턴트를 통합할 계획이라고 밝혔다. 이를 통해 사용자는 더욱 빠르고 스마트하게 수작업을 줄이고, 기업 논리에 기반하여 업무를 수행할 수 있을 것으로 기대된다. 더불어 SAS는 자사의 뛰어난 산업 전문성을 바탕으로 데이터 엔지니어링, 공급망 최적화 등 다양한 업종별 워크플로우에 쉽게 통합할 수 있는 사전 구성된(pre-packaged) 산업 특화 지능형 에이전트도 제공할 예정이다. 이는 기업들이 통제력과 신뢰성을 유지하면서 비즈니스 가치 실현을 가속화하는 데 기여할 것으로 보인다. 마리넬라 프로피(Marinela Profi) SAS 글로벌 AI 시장 전략 부문 리드는 “SAS 바이야는 단순히 행동하는 에이전트를 넘어, 분석, 비즈니스 규칙, 적응성에 기반하여 목적성 있는 의사결정을 내리는 에이전트를 구축한다”며, “거버넌스를 준수하며 의사결정에 집중한 SAS의 통합 프레임워크를 통해 AI 에이전트가 기업의 핵심 차별화 요소로 자리 잡을 것”이라고 전망했다. SAS, 비즈니스 병목 해소 위한 맞춤형 AI 모델 공개 SAS는 산업별 솔루션에 대한 10억 달러 투자의 일환으로 새로운 AI 모델 포트폴리오를 발표했다. 각 산업별로 즉시 적용 가능하거나, 고객 데이터를 기반으로 맞춤형 학습이 가능한 AI 모델들은 다양한 규모의 기업 환경에 쉽게 통합하여 사용할 수 있도록 설계되었다. 현재 제공 중인 주요 AI 모델로는 ▲(전 산업) AI 기반 개체 식별 및 문서 분석 모델 ▲(헬스케어) 약물 복약 순응도 위험 모델 ▲(제조) 전략적 공급망 최적화 모델 ▲(공공) 식량 지원 결제 무결성 모델 및 판매세 세금 규정 준수 모델 등이 있다. 올해에는 ▲(금융) 결제 및 카드 거래 판별 모델 ▲(헬스케어) 의료비 지급 적정성 검증 모델 ▲(제조) 근로자 안전 모니터링 모델 ▲(공공) 개인 소득세 납세 준수 모델 등 새로운 모델들이 추가로 출시될 예정이다. 뿐만 아니라 SAS는 데이터 과학자들이 데이터 레이크(data lake)를 구축하고 정교화하는 데 소요되는 시간을 단축하기 위해 데이터 준비 과정을 자동화하고, 모델이 실시간으로 작동할 수 있도록 지원하는 사전 구축된 AI 에이전트(AI agent)도 향후 제공할 계획이다. SAS, 에픽게임즈의 언리얼 엔진 기반 디지털 트윈으로 제조업 혁신 지원 SAS는 포트나이트로 유명한 미국 게임사 에픽게임즈(Epic Games)의 실시간 3차원(3D) 창작 툴인 언리얼 엔진(Unreal Engine)과 SAS의 강력한 AI 및 고급 분석 기술을 결합한 디지털 트윈(digital twin)을 통해 제조 산업의 핵심 프로세스 혁신을 지원하고 있다. 이를 통해 제조업체는 시뮬레이션된 가상 환경에서 새로운 전략을 실험하고 효과적인 방식을 실제 공정에 적용할 수 있게 된다. 미국 종합 제지 및 포장 제조 기업 조지아-퍼시픽(Georgia-Pacific)은 AGV(Automated Guided Vehicle: 무인운송차량) 운용을 포함한 기타 생산 프로세스를 최적화하기 위해 SAS 기술이 적용된 디지털 트윈을 활용하고 있다. SAS는 에픽게임즈가 개발한 모바일 앱 리얼리티스캔(RealityScan)을 활용하여 조지아-퍼시픽 서배너 공장의 실제와 똑같은(photorealistic) 렌더링 이미지를 캡처하고, 이를 언리얼 엔진에 통합했다. 언리얼 엔진과 결합된 SAS의 분석 기술은 실제 생산 라인에 영향을 주지 않고 공정을 정밀하게 조정할 수 있도록 지원하여, 비용 절감과 제품 품질 향상에 기여할 것으로 기대된다. 언리얼 엔진은 정교한 물리 시뮬레이션, 차세대 라이팅, 굴절 표면 효과를 제공하여 매우 사실적이고 세밀한 디지털 모델 구현을 가능하게 한다. 이를 통해 제조업체는 디지털 환경에서 공정을 시각화하고 상호작용하며, SAS의 고급 AI 기술과 결합되어 더욱 정확한 예측과 향상된 비즈니스 의사결정을 도출할 수 있다. 기업들은 시간과 비용이 많이 소요되는 실제 환경 테스트 없이 언리얼 엔진과 SAS의 분석 기술을 결합한 디지털 환경에서 정교하고 정확한 디지털 트윈을 활용하여 잠재적인 문제를 사전에 발견하고 해결할 수 있다. SAS, “글로벌 기업 5곳 중 3곳, 양자 AI 투자 및 도입 검토” SAS가 최근 실시한 글로벌 설문조사에 따르면, 양자 컴퓨팅(quantum computing)과 양자 AI(quantum AI)는 AI 이후의 차세대 혁신 기술로 주목받고 있으며, 전체 응답자의 60% 이상이 양자 AI에 적극적으로 투자하거나 도입을 검토 중인 것으로 나타났다. 동시에 비즈니스 리더들은 양자 AI 도입의 주요 장애 요인으로 ▲높은 비용(38%) ▲기술에 대한 이해 및 지식 부족(35%) ▲실제 적용 사례에 대한 불확실성(31%) 등을 지적했다. 이는 양자 AI에 대한 관심은 높지만, 실제 비즈니스에 활용하기 위해서는 명확한 로드맵과 실용적인 가이드가 필요하다는 점을 시사한다. SAS는 이러한 요구에 발맞춰 고객과의 파일럿 프로젝트, 양자 AI 연구, 양자 컴퓨팅 분야의 선도 기업들과의 협력을 통해 양자 기술의 효과적인 도입을 지원하고 있다. 특히 복잡한 양자 시장이나 물리학적 원리를 깊이 이해하지 않아도 누구나 양자 기술을 쉽게 이해하고 활용할 수 있도록 돕는 데 주력하고 있다. 현재 SAS는 양자 어닐링(quantum annealing) 시스템을 개발하는 디웨이브 퀀텀(D-Wave Quantum), 초전도 기반 양자 컴퓨팅을 선도하는 IBM, 중성 원자 기반 컴퓨팅 기술을 보유한 큐에라 컴퓨팅(QuEra Computing)과 협력하고 있으며, 이들의 기술을 자사 연구와 고객 프로젝트에 적극적으로 활용하고 있다.   SAS 바이야 혁신으로 속도·생산성·신뢰성 향상   이 외에도 SAS는 SAS 바이야(SAS® Viya®) 데이터 및 AI 플랫폼의 새로운 성능 향상을 발표했다. 이번 성능 개선은 최신 AI 기술 발전을 기반으로 인간의 생산성과 의사결정 능력을 확장하고 향상시키는 데 초점을 맞추었다. 새롭게 출시되었거나 곧 출시 예정인 SAS 바이야의 주요 기능은 다음과 같다. SAS 데이터 메이커(SAS Data Maker): 작년 비공개 프리뷰를 통해 처음 소개된 SAS의 안전한 합성 데이터 생성기 ‘SAS 데이터 메이커’는 조직이 데이터 개인 정보 보호 및 부족 문제를 해결하는 동시에 프로세스를 간소화하고 리소스를 절약하는 데 기여한다. SAS가 최근 합성 데이터 분야의 선두 기업인 헤이지(Hazy)의 주요 소프트웨어 자산을 인수하면서 개발 속도가 더욱 빨라졌으며, 2025년 3분기에 정식 출시될 예정이다. SAS 관리형 클라우드 서비스: SAS 바이야 에센셜즈(SAS Viya Essentials): 중소기업을 위해 올해 초 출시된 관리형 클라우드 서비스 패키지인 ‘SAS 바이야 에센셜즈’는 소규모로 즉시 사용 가능한 호스티드 관리형 서비스 형태로 제공되어 SAS 바이야 도입의 장벽을 낮춘다. SAS 바이야 코파일럿(SAS Viya Copilot): SAS 바이야 플랫폼에 내장된 AI 기반 대화형 어시스턴트인 ‘SAS 바이야 코파일럿’은 강력한 개인 비서 역할을 수행하여 개발자, 데이터 과학자 및 비즈니스 사용자 모두의 분석 작업 및 업무 효율성을 높인다. SAS 바이야 코파일럿은 현재 개별 초대를 통한 비공개 프리뷰로 제공되고 있으며, 2025년 3분기에 정식 출시될 예정이다. 초기 코파일럿 제품의 주요 기능에는 SAS 사용자를 위한 AI 기반 모델 개발 및 코드 지원이 포함된다. 애저 AI 서비스(Azure AI Services)를 기반으로 구축된 코파일럿은 SAS와 마이크로소프트 파트너십의 중요한 결과물이다. SAS 바이야 워크벤치(SAS Viya Workbench): 2024년에 출시된 SAS 바이야 워크벤치는 개발자, 데이터 과학자 및 모델러의 작업 속도와 효율성을 크게 향상시키는 클라우드 기반 코딩 환경이다. 비주얼 스튜디오 코드(Visual Studio Code) 또는 주피터 노트북(Jupyter Notebook)을 통해 SAS 또는 파이썬(Python) 코드를 사용하여 데이터 관리, 분석 및 모델 개발을 용이하게 수행할 수 있다. 2025년의 새로운 기능으로는 R 코딩 지원, SAS 엔터프라이즈 가이드(SAS Enterprise Guide) 개발 환경 지원이 추가되었으며, 기존 AWS 마켓플레이스뿐만 아니라 마이크로소프트 애저 마켓플레이스(Microsoft Azure Marketplace)에서도 이용 가능하게 되었다.  
작성일 : 2025-05-10