• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "마케팅"에 대한 통합 검색 내용이 3,852개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
앤시스코리아, 의왕시 유니콘로드 입주사대상 스타트업 지원 프로그램 세미나 진행
앤시스코리아가 8월 28일 의왕시 포일어울림센터에서 ‘앤시스 스타트업 지원 프로그램 세미나’를 진행했다고 밝혔다. 이번 세미나는 앤시스코리아와 의왕시 유니콘로드가 함께 마련한 행사로, 유니콘로드 입주 기업의 기술 경쟁력 강화와 글로벌 프로그램 참여 기회를 확대하기 위해 마련됐다. 이날 행사에는 스타트업 관계자 약 20여 명이 참석했으며, 앤시스의 스타트업 지원 정책과 글로벌 협업 프로그램인 ASK(Ansys Startup Korea)에 대한 안내로 구성됐다. 특히 스타트업 프로그램 및 AEC(Ansys Elastic Currency)을 통한 라이선스 할인 혜택, 전시회 참여·영상 홍보 등 마케팅 협업 방안 그리고 앤시스 스타트업 커뮤니티를 통한 네트워킹 기회가 소개됐다. ASK 프로그램은 창업진흥원과 앤시스코리아가 공동 운영하는 글로벌 협업 프로그램으로 선발 기준과 참여 혜택, 수요조사 및 합격을 위한 컨설팅 등 구체적인 실행 전략이 이어졌다. 앤시스코리아는 이번 세미나를 통해 유니콘로드 입주 기업 중 ASK 프로그램 참여를 희망하는 기업을 선발하고 실질적인 시뮬레이션 컨설팅과 라이선스를 지원할 예정이다. 이를 통해 스타트업의 제품 개발 기간 단축 및 제조 프로세스 정립에 도움이 될 것으로 기대하고 있다. 앤시스코리아의 박주일 대표는 “국내 유망 스타트업들이 시뮬레이션 기술을 기반으로 제품 경쟁력을 높이고 빠르게 성장할 수 있도록 이번 세미나를 마련하게 됐다”면서, “앞으로도 지자체와의 협력을 통해 국내 스타트업 생태계 발전을 적극 지원할 것”이라고 말했다.  
작성일 : 2025-08-29
한국산업지능화협회, 입주기업의 성장·지원 위한 창업보육센터 개관
한국산업지능화협회는 ‘한국산업지능화협회 창업보육센터’를 가산디지털단지역 인근 가산테라타워 13층에 개관한다고 밝혔다.  한국산업지능화협회 창업보육센터는 입주기업 규모에 맞게 다양한 형태의 보육실(2인실, 3인실, 4인실, 6인실 등)을 보유하고 있고, 온라인 회의가 가능한 소회의실부터 40인석 규모의 대회의실, 최대 40명이 입실할 수 있는 교육장까지 갖췄다.  한국산업지능화협회는 “비즈니스에 필요한 인프라를 모두 갖춘 올인원 업무 공간으로, 단순 공간 지원 뿐만 아니라 입주기업의 성장을 위한 보육 지원 혜택과 협회의 회원사로서 누릴 수 있는 혜택까지 전방위적 지원을 함께 한다”고 소개했다.  24시간·365일 개방된 업무 공간은 사무가구 및 OA 시설을 제공하고 관리비를 무상 지원한다. 개별 냉·난방 시스템 에어컨 및 흡·배기 시스템을 설치했다. 보육 지원과 관련해서는 우수 초기 창업기업 투자 지원, 노무·세무·법률·특허·BM 등 전문가 1:1 멘토링, 우수 기업 VC 연계 및 TIPS 연계 지원, 스타트업 IR 대회 지원 등이 이뤄진다. 또한, 협회는 산업기술 동향 및 최신 R&D 정보를 제공하고, 입주사 대상으로 국내외 전시 및 콘퍼런스 할인, 홍보·마케팅 지원, 입주사 간 네트워킹 지원 등을 할 예정이다. 한국산업지능화협회 이상진 본부장은 “한국산업지능화협회는 금천 G-밸리 지역에서 기업의 사무 공간 제공뿐만 아니라 기업 성장의 동반자로서의 역할을 수행할 계획”이라며, “앞으로 창업보육센터를 통해 기업 창업 활성화와 일자리 창출에 기여하며, 산업지능화 생태계 조성의 핵심 거점으로 자리매김하겠다”고 밝혔다.  한국산업지능화협회 창업보육센터는 오는 12월까지 보육료 할인 프로모션을 실시한다. 자세한 사항은 한국산업지능화협회 홈페이지를 통해 확인할 수 있다.  
작성일 : 2025-08-27
캐디안-폴라리스오피스, AI 기반 CAD와 문서 시장 혁신 추진
인공지능 기반 CAD 개발사 캐디안이 오피스 소프트웨어 기업인 폴라리스오피스와 손잡고, 도면과 문서 시장의 AI 전환(AX)을 본격화한다고 밝혔다. 캐디안은 폴라리스오피스와 함께 ‘AI 기반 CAD 디지털 문서 혁신을 위한 전략적 업무협약’을 체결했다. 이번 협약은 양사의 기술력과 노하우를 바탕으로 도면 중심의 버티컬 AI(vertical AI) 기술을 공동 개발하고, 산업 맞춤형 AI 서비스를 확대하기 위한 협력의 일환이다. 폴라리스오피스는 클라우드 기반의 문서 작성, 편집, 공유 기능을 제공하는 글로벌 오피스 소프트웨어 기업으로, 전 세계 1억 3500만 명 이상의 사용자를 보유하고 있다. AI 기술과 협업 기능을 접목해 더욱 효율적인 업무 환경을 구현하고 있다. 캐디안은 지난 1998년 오토캐드를 대체하는 대안 CAD를 출시한 이후 기술력과 시장 경쟁력을 키워왔다. 최근에는 객체 인지(object detection)와 의미 분할(semantic segmentation) 등 AI 기반 설계 기술 개발에 주력하고 있다. 이번 협약을 통해 양사는 ▲산업별 맞춤형 설계·문서 워크플로 구축 ▲AI 기반 도면 및 문서 자동화 기술 개발 ▲오피스와 CAD 통합 서비스 공동 기획 ▲해외 시장 공동 진출 및 확대 등 다양한 협력을 추진할 계획이다. 특히 제조, 건설 등 도면과 문서가 유기적으로 연결되는 산업을 중심으로, 고객 맞춤형 AI 설루션을 제공할 계획이다. 캐디안 관계자는 “이번 협력을 통해 AI 기술이 CAD 실무에 실질적으로 기여할 수 있는 기반을 마련할 것”이라며, “기술 협업과 공동 마케팅을 강화해 공공 및 산업 전반에서 업무 효율을 높이는 실용적인 AI 설루션을 제공하겠다”고 밝혔다.  
작성일 : 2025-08-19
오라클, OCI 생성형 AI 서비스에 구글 제미나이 모델 제공
오라클과 구글 클라우드는 구글의 최신 AI 모델인 제미나이(Gemini) 2.5부터 오라클 클라우드 인프라스트럭처(OCI) 생성형 AI 서비스를 통해 제공한다고 발표했다. 이를 통해 오라클 고객은 멀티모달 이해, 고급 코딩 및 소프트웨어 개발, 생산성과 업무 프로세스 자동화, 연구 및 지식 검색 등 다양한 활용 사례에서 AI 에이전트를 구축할 수 있게 됐다. 또한, 오라클과 구글 클라우드는 AI 관련 분야에서 협력을 강화할 계획이다. 오라클은 구글 클라우드의 버텍스 AI(Vertex AI)와의 새로운 통합을 통해 비디오 및 이미지, 음성,·음악 생성용 최첨단 모델과 MedLM 같은 산업 특화 모델을 포함한 제미나이 전체 모델 제품군을 OCI 생성형 AI 서비스에서 제공할 계획이다. 또한, 오라클 퓨전 클라우드 애플리케이션(Fusion Cloud Applications) 내에서도 버텍스 AI 기반 제미나이 모델을 선택 옵션으로 제공해, 금융 및 인사, 공급망, 영업, 서비스, 마케팅 등 주요 업무 프로세스에 AI 기능을 강화할 수 있도록 더 폭넓은 선택지를 제공할 예정이다. 오라클 고객은 보유 중인 오라클 유니버설 크레딧(Oracle Universal Credits)으로 제미나이 모델을 바로 사용할 수 있다. 구글 제미나이 모델은 최신성을 위해 구글 검색 데이터를 기반으로 응답을 보강하는 기능과 대규모 맥락 창(context windows), 강력한 암호화와 데이터 프라이버시 정책, 그리고 우수한 추론 능력을 앞세워 엔터프라이즈 환경에서 높은 성능을 발휘할 수 있게 했다. 오라클은 기업 데이터와 가까운 곳에서 최신 AI 기술을 제공하며, 보안 및 유연성, 확장성을 우선시한다. 이를 통해 산업 전반의 기업 고객이 생성형 AI와 에이전틱 AI를 적합한 비즈니스 시나리오에 즉시 적용할 수 있도록 돕는다. 또 전 세계 수천 명의 AI 개발자와 기업이 OCI의 경제적이고 특화된 AI 인프라를 활용해 대규모 및 고난도 AI 워크로드를 더 빠르게 실행하고 있다. OCI 베어메탈 GPU 인스턴스는 생성형 AI, 자연어 처리(NLP), 컴퓨터 비전, 추천 시스템 같은 애플리케이션을 구동할 수 있다. 구글 클라우드의 토마스 쿠리안(Thomas Kurian) CEO는 “선도적인 기업들은 이미 제미나이를 활용해 다양한 산업과 업무에서 AI 에이전트를 구동하고 있다”면서, “이제 오라클의 기업 고객은 오라클 환경에서 구글 클라우드의 대표 모델에 접근할 수 있어, 개발자 지원과 데이터 통합 작업 간소화, 그 외 다양한 기능을 수행하는 강력한 AI 에이전트를 배포하는 일을 훨씬 쉽게 시작할 수 있다”고 말했다. 오라클 클라우드 인프라스트럭처의 클레이 마고요크 사장은 “오라클은 기업 고객을 위해 엄선한 다양한 AI모델 선택지를 전략적으로 제공해 왔으며, 여기에는 공개 모델과 독점 모델이 모두 포함된다”라며, “OCI 생성형 AI 서비스에서 제미나이를 제공하는 것은 고객이 혁신을 추진하고 비즈니스 목표를 달성할 수 있도록 강력하고 안전하며 비용 효율적인 AI 설루션을 제공하겠다는 오라클의 의지를 반영하는 것”이라고 전했다.
작성일 : 2025-08-18
유니티, ‘제17회 유니티 어워즈’ 후보작 모집 시작
  유니티가 전 세계 개발자들의 혁신적이고 창의적인 프로젝트를 조명하는 ‘제17회 유니티 어워즈’의 후보작 모집을 시작했다. 유니티 어워즈는 창의성과 예술적·기술적 가치, 혁신성 등을 기준으로 게임 및 산업 분야의 우수 프로젝트를 선정한다. 유니티, 게임부터 산업까지 5개 부문 시상 올해는 게임, 에셋 스토어, 커뮤니티, 소셜 임팩트, 에듀케이션 등 총 5개 부문에서 후보작을 모집한다. 특히 게임 분야는 골든 큐브 어워드를 포함해 ▲베스트 데스크톱/콘솔 ▲베스트 모바일 ▲베스트 AR/VR ▲베스트 멀티플레이어 ▲베스트 2D 비주얼 ▲베스트 3D 비주얼 ▲베스트 기대작 등 8개 부문으로 나눠 공모를 진행한다. 출품 자격은 2024년 7월 1일부터 2025년 8월 31일까지 출시된 프로젝트다. 지난 ‘유나이트 서울 2025’에서 최다 득표를 기록한 HYEONU의 ‘찾았냥 – 사라진 고양이와 숨은 그림들(Hidden Cat)’은 후보작으로 노미네이트될 예정이다. 최종 후보작은 오는 10월에 공개되며, 약 2주간의 온라인 대중 투표를 거쳐 최종 수상작이 선정된다. 수상작은 12월에 열리는 ‘유니티 어워즈 쇼케이스’에서 발표되며, 수상자에게는 글로벌 및 국내 마케팅·홍보 기회가 주어진다. 후보작 모집은 9월 10일 오전 8시까지 유니티 어워즈 공식 플랫폼(awards.unity.com)을 통해 진행된다. 유니티코리아 송민석 대표는 “유니티 어워즈는 기술과 예술의 경계를 넘나들며 상상력의 세계를 확장하는 모든 창작자들의 ‘과정’을 기념하는 자리”라며, “유니티는 언제나 크리에이터의 편에 서서 개발 여정을 지원할 것”이라고 밝혔다. 한편, 지난 제16회 유니티 어워즈에서는 국내 유니티 크리에이터 프로젝트 28개가 입선작으로 선정되며 활약했다. 게임 부문에서는 ‘고양이 오마카세(Cat Garden)’가 최고의 2D 비주얼상을, 인더스트리 부문에서는 현대자동차의 ‘H-Meta: Meta Factory 환경 기반 VWMS 3D 물류 운영/측정 기술 자동화’ 프로젝트가 혁신상을 수상했다.  
작성일 : 2025-08-14
PTC와 엔비디아, CAD·PLM에 옴니버스 기술 통합…디지털 혁신 선도
PTC가 엔비디아와의 협력을 확대하며, 자사의 CAD 소프트웨어 '크레오(Creo)'와 PLM 솔루션 '윈칠(Windchill)'에 엔비디아 옴니버스(NVIDIA Omniverse) 기술을 통합한다고 발표했다. 이번 통합으로 제조 및 제품 기업들은 고성능 AI 인프라 하드웨어와 같은 복잡한 제품을 더욱 효율적으로 설계, 시뮬레이션하고 협업할 수 있게 될 전망이다. PTC는 또한 OpenUSD 얼라이언스(AOUSD)에 가입하며, AI 개발을 위한 개방형 표준과 데이터 상호운용성 강화에 대한 의지를 보였다.    PTC, 엔비디아 옴니버스와 손잡고 AI 인프라·차세대 제품 혁신 가속화 PTC 크레오·윈칠에 엔비디아 옴니버스 기술 통합 이번 협력의 핵심은 PTC의 솔루션과 엔비디아의 '실시간 시뮬레이션 플랫폼'을 연결하는 것이다. 윈칠은 옴니버스의 OpenUSD 및 RTX 라이브러리를 통해 고품질의 실시간 시뮬레이션 뷰포트를 구현한다. 이를 통해 사용자는 PLM 환경을 벗어나지 않고도 설계 데이터를 몰입형 3D 환경에서 시각화하고 실시간 협업을 할 수 있게 된다. 제품 개발 과정에서 엔지니어링, 마케팅 등 여러 부서는 버전 관리가 된 제품 정보를 실시간으로 공유하며 의사결정 속도를 높이고 개발 리스크를 줄일 수 있다. 특히, 설계 엔지니어는 복합 어셈블리를 실시간으로 분석하고 실제 작동 환경을 시뮬레이션하여 제품 품질을 향상시킬 수 있다. 이러한 디지털 트윈 워크플로우는 개발 프로세스를 가속화하고, 복잡한 3D 설계 콘텐츠에 대한 접근성을 높여 더 많은 사용자가 손쉽게 활용할 수 있도록 돕는다. 닐 바루아 PTC 사장 겸 CEO는 "AI 하드웨어처럼 복잡한 첨단 제품 개발에 있어 엔비디아와의 협력 강화는 매우 중요하다"며, "옴니버스 기술 통합을 통해 고객들이 실시간 시뮬레이션 환경에서 설계 데이터를 활용하고, 제품 수명주기 전반에 걸쳐 협업을 강화할 수 있을 것"이라고 말했다. 엔비디아 하드웨어 설계 파트너로서 협력 확대 이번 통합은 PTC가 엔비디아의 AI 하드웨어 개발을 지원해온 오랜 파트너 관계에서 비롯되었다. 엔비디아는 PTC의 크레오 및 윈칠 솔루션을 활용하여 제품 개발 프로세스를 정밀하고 효율적으로 진행해 왔다. 이제 PTC의 솔루션이 엔비디아 옴니버스 개발 플랫폼에 통합되고, 윈칠에 옴니버스 뷰포트가 내장되면서 실시간 시뮬레이션과 시각화가 개발 워크플로의 핵심 요소로 자리 잡게 되었다. 레브 레바레디안 엔비디아 옴니버스 및 시뮬레이션 기술 부문 부사장은 "PTC는 제조 설계 솔루션 분야의 글로벌 선도 기업으로, 옴니버스 기술을 통합함으로써 설계자와 제조 기업들이 개발 전 과정을 더욱 빠르고 정밀하게 수행할 수 있도록 지원할 것"이라며, "PTC의 OpenUSD 및 개방형 표준에 대한 노력은 글로벌 AI 인프라 산업의 연결과 통합을 가속화하는 데 기여할 것"이라고 강조했다.    
작성일 : 2025-08-12
PTC, 엔비디아 옴니버스로 AI 인프라 및 복합 제품의 설계와 시뮬레이션 가속화
PTC는 엔비디아 옴니버스(NVIDIA Omniverse) 기술을 자사의 크레오(Creo) CAD 및 윈칠(Windchill) PLM 설루션에 통합하면서, 엔비디아와의 협력을 확대한다고 밝혔다. PTC는 옴니버스를 활용해 고성능 PCB, 고급 냉각 시스템, 대규모 데이터센터 장비와 같은 AI 인프라의 기본 하드웨어를 포함한 복잡한 제품의 설계, 시뮬레이션, 협업 방식을 혁신한할 수 있을 것으로 기대하고 있다. 또한 PTC는 오픈USD 얼라이언스(Alliance for OpenUSD : AOUSD)에 합류해, 개방적이고 상호 운용 가능한 3D 데이터 표준인 오픈USD에 대한 노력을 강화할 계획이다. 윈칠을 옴니버스의 사실적인 실시간 시뮬레이션 개발 플랫폼과 연결하면, 공유된 몰입형 환경에서 크레오 설계 데이터를 시각화하고 상호 작용할 수 있게 된다. PTC는 옴니버스 오픈USD 및 RTX 라이브러리를 사용하여 윈칠에 대화형 실시간 뷰포트를 구현하고, 사용자가 PLM 환경을 벗어나지 않고도 고충실도 3D 시뮬레이션에 접근할 수 있도록 지원한다. 이런 통합은 엔지니어링부터 마케팅까지 모든 사용자에게 추적 가능하고 버전 관리를 포함하는 제품 정보에 대한 접근을 제공하여, 팀이 더 빠른 의사 결정을 내리고 개발 위험을 줄일 수 있도록 한다. 엔지니어는 윈칠에서 직접 가져온 실시간 데이터를 사용하여 여러 분야의 조립품을 탐색하고 실제 성능을 시뮬레이션하며 기능 전반에 걸쳐 협업할 수 있다. 이러한 디지털 트윈 워크플로는 기업이 개발 프로세스를 가속화하고, 제품 품질을 높이며, 복잡한 3D 설계 콘텐츠에 대한 접근을 대중화할 수 있도록 지원한다. 이번에 발표된 통합은 AI 혁신을 주도하는 고성능 PCB부터 차세대 데이터센터 시스템에 이르기까지, PTC가 엔비디아의 첨단 하드웨어 공급을 지원해 온 역사에서 비롯되었다. 엔비디아는 PTC의 크레오와 윈칠 설루션을 활용하여 정밀성, 속도, 확장성을 바탕으로 제품 개발 프로세스를 간소화해왔다. 이제 이들 도구를 엔비디아 옴니버스 개발 플랫폼에 통합하고 옴니버스 뷰포트를 윈칠에 내장함으로써, 실시간 시뮬레이션과 몰입형 시각화를 개발 워크플로의 중심에 직접 도입하게 되었다. PTC는 이런 통합으로 기업이 공동 혁신의 속도와 품질을 향상시킬 수 있도록 지원하며, 생태계 전반의 다른 AI 하드웨어 파트너에게 이러한 기능을 확장하는 청사진이 될 것으로 기대하고 있다.     PTC의 닐 바루아(Neil Barua) 사장 겸 CEO는 “AI 하드웨어부터 산업 기계에 이르기까지 오늘날 가장 진보한 제품들은 그 어느 때보다 복잡하고 통합적이며 엔지니어링 집약적”이라면서, “엔비디아와 협력을 강화하고 오픈USD 얼라이언스에 합류함으로써 고객에게 실시간 몰입형 시뮬레이션 환경에서 설계 및 구성 데이터를 통합할 수 있는 능력을 제공하게 되었다. 옴니버스 기술을 크레오와 윈칠에 통합함으로써 팀은 개발을 가속하고 제품 품질을 개선하며 전체 제품 수명 주기에 걸쳐 더 효과적으로 협업할 수 있을 것”이라고 전했다. 엔비디아의 레브 레바레디안(Rev Lebaredian) 옴니버스 및 시뮬레이션 기술 부문 부사장은 “PTC는 제조 설계 설루션 분야의 글로벌 리더이다. PTC는 옴니버스 기술을 크레오와 윈칠에 통합함으로써 설계자와 제조업체가 개념 구상부터 생산까지 더 빠르고 정밀하게 진행할 수 있도록 지원한다”면서, "오픈USD와 개방형 표준에 대한 PTC의 노력은 설계에서 제조에 이르기까지 글로벌 AI 인프라 산업을 연결하고 통합하는 우리의 능력을 가속화할 것”이라고 밝혔다.
작성일 : 2025-08-07
오픈소스 LLM 모델 젬마 3 기반 AI 에이전트 개발해 보기
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 최근 이슈인 AI 에이전트(agent) 개발 시 필수적인 함수 호출(function call) 방법을 오픈소스를 이용해 구현해 본다. 이를 위해 구글에서 공개한 젬마 3(Gemma 3) LLM(대규모 언어 모델)과 역시 오픈소스인 LLM 관리도구 올라마(Ollama)를 활용하여 간단한 AI 에이전트를 로컬 PC에서 개발해본다. 아울러, 이런 함수 호출 방식의 한계점을 개선하기 위한 설루션을 나눔한다.   ■  강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   이번 호의 글은 다음 내용을 포함한다. AI 에이전트 구현을 위한 사용자 도구 함수 호출 방법 올라마를 통한 젬마 3 사용법 채팅 형식의 프롬프트 및 메모리 사용법 그라디오(Gradio) 기반 웹 앱 개발   그림 1. AI 에이전트 내부의 함수 호출 메커니즘(Akriti, 2025)   이 글의 구현 코드는 다음 링크에서 확인할 수 있다. AI_agent_simple_function_call   젬마 3 모델의 특징 젬마 3는 구글이 개발해 2025년 3월 10일에 출시한 LLM이다. 차세대 경량 오픈 멀티모달 AI 모델로, 텍스트와 이미지를 동시에 처리할 수 있는 기능을 갖추고 있다. 이 모델은 다양한 크기와 사양으로 제공되어 단일 GPU 또는 TPU 환경에서도 실행 가능하다. 젬마 3는 1B, 4B, 12B, 27B의 네 가지 모델 크기로 제공되며, 각각 10억, 40억, 120억, 270억 개의 파라미터를 갖추고 있다. 1B 모델은 텍스트 전용으로 32K 토큰의 입력 컨텍스트를 지원하고, 4B/12B/27B 모델은 멀티모달 기능을 지원하며 128K 토큰의 입력 컨텍스트를 처리할 수 있다. 이는 이전 젬마 모델보다 16배 확장된 크기로, 훨씬 더 많은 양의 정보를 한 번에 처리할 수 있게 해 준다. 이 모델은 텍스트와 이미지 데이터를 동시에 처리하고 이해하는 멀티모달 기능을 제공한다. 이미지 해석, 객체 인식, 시각적 질의응답 등 다양한 작업을 수행할 수 있으며, 텍스트 기반 작업에 시각적 정보를 효과적으로 활용할 수 있도록 지원한다.   그림 2. 출처 : ‘Welcome Gemma 3 : Google's all new multimodal, multilingual, long context open LLM(Hugging Face)’   그림 3. 출처 : ‘Welcome Gemma 3 : Google's all new multimodal, multilingual, long context open LLM(Hugging Face)’   젬마 3는 140개 이상의 언어를 지원하여 전 세계 다양한 언어 사용자를 대상으로 하는 AI 애플리케이션 개발에 매우 유리하다. 사용자는 자신의 모국어로 젬마 3와 상호작용할 수 있으며, 다국어 기반의 텍스트 분석 및 생성 작업도 효율적으로 수행할 수 있다. 이 모델은 다양한 작업 수행 능력을 갖추고 있다. 질문–답변, 텍스트 요약, 논리적 추론, 창의적인 텍스트 형식 생성(시, 스크립트, 코드, 마케팅 문구, 이메일 초안 등), 이미지 데이터 분석 및 추출 등 광범위한 자연어 처리 및 컴퓨터 비전 관련 작업을 수행할 수 있다. 또한, 함수 호출 및 구조화된 출력을 지원하여 개발자가 특정 작업을 자동화하고 에이전트 기반의 경험을 구축하는 데 도움을 준다. 젬마 3는 다양한 도구 및 프레임워크와 원활하게 통합된다. Hugging Face Transformers, Ollama, JAX, Keras, PyTorch, Google AI Edge, UnSloth, vLLM, Gemma. cpp 등 다양한 개발 도구 및 프레임워크와 호환되어 개발자들이 자신이 익숙한 환경에서 젬마 3를 쉽게 활용하고 실험할 수 있다. 이 모델은 다양한 벤치마크 테스트에서 동급 모델 대비 최첨단 성능을 입증했다. 특히, Chatbot Arena Elo Score에서 1338점을 기록하며, 여러 오픈 소스 및 상용 모델보다 높은 성능을 보였다.  젬마 3는 오픈 모델로, 개방형 가중치를 제공하여 사용자가 자유롭게 조정하고 배포할 수 있다. 캐글(Kaggle)과 허깅 페이스(Hugging Face)에서 다운로드 가능하며, Creative Commons 및 Apache 2.0 라이선스를 따름으로써 개발자와 연구자에게 VLM 기술에 대한 접근성을 높여준다.   개발 환경 개발 환경은 다음과 같다. 미리 설치 및 가입한다. 오픈 LLM 관리 도구 올라마 : https://ollama.com/download/ windows LLM 모델 젬마 3 : https://ollama.com/search dashboard 웹 검색 도구 Serper 서비스 가입 : https://serper.dev/ 설치되어 있다면 다음 명령을 터미널(윈도우에서는 도스 명령창)에서 실행한다. ollama pull gemma3:4b     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-08-04
[케이스 스터디] 성공적인 산업 메타버스 구현을 위한 필수 요소
디지털 전환의 잠재력을 실현하는 메타버스 기술   이번 호에서는 산업 분야 메타버스의 발전을 이끄는 요인과 그 잠재력에 대해 알아보고, 디지털 전환의 중요성과 이를 실현하는 기술을 살펴보고자 한다. 또한, 실제 성공 사례를 통해 산업 분야 메타버스를 즉시 시작해야 하는 세 가지 이유를 제시한다. ■ 자료 제공 : 유니티 코리아     메타버스는 주로 게임, 엔터테인먼트, 소셜 네트워크, 가상 경제 같은 소비자 지향적 활동을 위해 구상되었으며, 현재 로블록스(Roblox), 디센트럴랜드(Decentraland), 호라이즌 월즈(Horizon Worlds) 등의 플랫폼에서 관련 콘텐츠를 찾아볼 수 있다. 반면에 제조, 자동차, 물류 등의 산업 분야에서는 효율과 생산성, 혁신 등에 메타버스를 응용하는 방안을 주목한다. 산업 분야의 메타버스는 디지털 트윈, 시뮬레이션, 실시간 협업 등의 툴을 통합하여 운영과 설계, 교육을 개선한다. 유니티의 헤닝 린(Henning Linn) 인더스트리 고객 성공 담당 시니어 디렉터는 “산업 분야 메타버스는 데이터 연결성과 접근성을 새로운 차원으로 인도하며, 가속화된 연결을 통해 한 시스템에서 다른 시스템으로 데이터를 전송하는 방식을 개선한다”고 전했다.   든든한 토대를 마련하는 산업 분야 메타버스 산업 분야 메타버스는 몰입형 3D 기술과 실제 기업용 애플리케이션을 혼합하는 방법이다. 주된 용도는 비즈니스의 내부 프로세스에 사용하거나 고객의 참여를 유도하는 것이다. 산업 분야 메타버스는 기업에게 디지털 작업 공간이 되며, 현실 공간에서 써야 할 시간이나 비용을 절약하면서 테스트와 디자인을 거쳐 운용 방안을 개선할 수 있다. 공장, 기계 또는 시스템의 첨단 디지털 시뮬레이션, 즉 가상의 모형이 생긴다고 생각해 보자. 디지털 3D 공간에서 여러 팀이 협력하여 문제를 해결하고 작업자를 교육하거나 프로세스를 최적화할 수 있다. 산업 분야 메타버스는 형태나 규모의 제약에서 벗어나 제품을 선보일 수 있는 가상 쇼케이스가 되기도 하며, 한층 새로운 수준으로 고객의 참여를 유도하는 수단이 되기도 한다. 고객이 어디서나 가상 환경을 통해 제품을 체험할 수 있는 몰입형 플랫폼을 제공할 수 있으므로 참여도와 구매 가능성이 높아진다. 산업 분야 메타버스에서는 VR(가상현실), AR(증강현실), XR(확장현실) 같은 툴을 사용하여 이러한 가상 세계에 몰입할 수 있는 환경을 제공한다. 그 기반이 되는 실시간 3D 기술을 활용해 센서, IoT(사물인터넷), 글로벌 제품 카탈로그, 소재 정보를 비롯한 현실 세계의 데이터를 연동할 수 있다. 이 모든 것을 하나로 엮으면 실시간으로 가상 세계에서 환경이나 제품을 정확하게 표현할 수 있다. 산업 분야 메타버스를 통해 몰입형 3D 기술을 실제 정보와 결합하면 더 스마트하게 작업하고, 비용을 절감하며, 고객 참여를 유도하고, 보다 안전하고 신속하게 의사 결정을 내리는 데 도움이 된다.   산업 분야 메타버스에 대한 주목도가 높아지는 이유 PwC의 2024년 운영 디지털 트렌드 설문 조사에 따르면, 운영 및 공급망을 담당하는 임원 10명 중 거의 7명(69%)은 기술 투자가 전반적으로 기대치를 충족하지 못한다고 답했다. 산업 분야의 기업들은 다음과 같은 과제에 직면하고 있다.  빠르게 변화하는 시장에 대응 : 기술과 비즈니스 모델은 빠르게 발전하고 있으며, 산업 분야의 기업은 경쟁력을 유지하기 위해 미래를 향한 비전을 제시하고 새로운 기술에 투자해야 한다. 분산된 조직 간 협업 및 전략적 의사 결정 지원 : 인력은 다양한 지역과 시간대에 흩어져 있으며, 직원과 임원 모두 저마다 시간대가 달라 협업하기가 쉽지 않다. 전사적 차원에서 단절된 데이터 파악 : 그 어느 때보다 많은 데이터가 디지털화되고 클라우드에 저장되어 접근성이 높아졌지만, 대부분의 조직에서 데이터는 여전히 상당 부분 고립되어 있다. 사용자가 데이터와 상호 작용하고 데이터를 이해할 수 있도록 지원 : 복잡한 데이터 세트를 다른 데이터 세트와 통합하고, 사람들이 그 안에 담긴 맥락과 의미를 파악할 수 있도록 데이터를 시각화해야 한다.   산업 분야 메타버스가 지닌 혁신적인 잠재력 산업 분야 메타버스가 다양한 유형의 비즈니스에 적합한 이유는 무엇일까? 교육, 고객 경험, 협업 툴, 영업 및 마케팅 실무와 같은 실질적인 응용 사례에 집중하면 그 가능성은 무궁무진하다. 몇 가지 가능한 사례를 살펴보겠다.   운영 프로세스 간소화 목표 : 기존 프로세스, 워크플로, 시스템을 진단한다. 응용 사례 : 정유소에서 공장 전체의 디지털 트윈을 제작한다. 유지 관리 담당자는 가상 환경에서 디지털 트윈을 탐색하고, 그 구성 요소와 상호 작용하고, 유지 관리 작업을 시뮬레이션할 수 있다. 여기에는 마모된 부분이 있는지 파악하고, 수리 절차를 계획하고, 모든 안전 프로토콜이 준수되었는지 확인하는 작업이 포함된다. 장점 : 더 효과적으로 계획을 수립하고 휴먼 에러를 줄일 수 있으므로 유지 관리 다운타임 및 비용이 대폭 감소한다.   비즈니스 모델 전환 목표 : 기존 비즈니스 모델에서 더 혁신적인 모델로 전환 응용 사례 : 중장비 제조업체가 PaaS(Product-as-a-Service) 모델로 전환한다. PaaS 모델을 도입하면 고객은 제품 사용 비용을 한 번에 전부 지불하는 대신 사용한 만큼만 지불하면 된다. 기업은 장비의 디지털 트윈을 구축하고 실제 기계의 IoT 센서와 동기화함으로써 성능, 사용량, 마모 관련 데이터에 액세스할 수 있다. 고객은 장비를 구매하지 않고 사용량(예 : 작동 시간, 생산 산출량)을 기준으로 요금을 납부할 수 있다. 장점 : 제조업체는 PaaS 모델을 통해 반복적인 수입이 발생하는 새로운 수익원을 창출하여 재무적 예측 가능성을 높일 수 있다.   업종 전환 목표 : 새로운 지역, 업종 또는 프로젝트 모색 응용 사례 : 건설 회사가 디지털 기술을 사용해 건물의 설계, 건축, 관리 방식을 혁신하는 3D 프로젝트 모델을 구축함으로써 효율성과 지속 가능성, 비용 절감을 전체적으로 개선한다. 장점 : 실제 건설을 시작하기 전에 잠재적인 문제를 탐지하면 비용을 절감하고, 오류를 최소화하며, 프로젝트 일정을 줄일 수 있다.   인력과 조직 문화의 변화 목표 : 직원의 협업과 혁신을 촉진하고 민첩성 강화 응용 사례 : 다양한 지역에 떨어져 있는 여러 팀이 마치 같은 현장에 있는 것처럼 서로 보고 들을 수 있는 가상 3D 회의실에서 실시간으로 협업하고, 다 함께 제품의 3D 디지털 버전을 검토한다. 장점 : 직원 간의 커뮤니케이션을 개선하고, 더욱 빠르게 의사 결정을 내리고, 프로젝트를 완료하는 데 걸리는 시간을 단축한다.   고객과 파트너의 경험 혁신 목표 : 고객에게 더 흥미로운 경험 제공 응용 사례 : 자동차 제조업체가 고객에게 집에서 차량을 자세히 살펴보고 원하는 대로 커스터마이즈해 볼 수 있는 3D 가상 쇼룸을 제공한다. 고객은 실시간으로 차량의 기능을 사용해 보고, 차량의 색상, 인테리어 옵션, 액세서리를 변경하고, 모든 각도에서 변경에 따른 차이를 확인할 수 있다. 장점 : 자동차 제조업체는 고객이 더욱 많은 정보를 바탕으로 의사 결정을 내릴 수 있도록 도와주며, 고객 만족도와 참여 수준이 높아진다.   디지털 전환이 중요한 이유 기업이 소프트웨어와 전자 제품을 통해 기능과 사용자 경험을 개선할 방안을 모색하는 한편 지속 가능한 설루션에 대한 관심이 증가함에 따라, 많은 산업 분야에서 스마트 제품과 커넥티드 제품이 점점 더 다양하게 보급되고 있다. 공급망 관리, 인력 역학, 지속 가능한 혁신을 둘러싼 과제들로 인해 불확실성이 늘어나지만, 동시에 창의적인 솔루션을 통해 기업이 경쟁 우위를 확보할 기회가 생겨나기도 한다. 이러한 압박과 어려움으로 인해 기업은 운영 방식뿐 아니라 시장에 출시하는 제품과 서비스도 혁신해야 하는 상황에 놓였다. 실시간 3D 렌더링, AI, 클라우드 컴퓨팅이 발전하면서 산업 분야 메타버스에는 새로운 길이 열렸다. 미래의 성공을 위해 기업은 더 탄력적이고 민첩해져야 하며, 역동적으로 변하는 환경에 대한 적응력을 높여야 한다. 그러려면 디지털 전환과 산업 분야 메타버스를 핵심 요소로 채택해야 한다. 린 시니어 디렉터는 “데이터가 디지털화되었다고 해서 연동되었다는 것은 아니다. 예를 들면 제품의 동작을 설명하는 데이터라고 하더라도 제품 데이터와는 연동되지 않을 수 있다. 동작을 시뮬레이션하려면 수동으로 데이터를 연결해야 한다. 산업 분야 메타버스는 데이터 사일로(silo)를 연결하며, 이는 디지털 전환을 통해 실현할 수 있다”고 짚었다.   실시간 3D : 산업 분야 메타버스의 기반 기술 현재 디지털 전환을 시작하는 조직에 중요한 혁신 중 하나는 바로 실시간 3D이다. 실시간 3D는 컴퓨터로 생성되어 단순히 보는 것에 그치지 않고, 직접 체험할 수 있는 3D 이미지를 만들고 표시하는 기술이다. 그 이름에서 알 수 있듯이 이 이미지는 실시간으로 업데이트된다. 즉, 사용자의 행동에 따라 바로 바뀌는 것이다. 실시간 3D는 원래 비디오 게임을 제작하기 위해 개발되었지만 이제는 산업 분야에서도 널리 응용되고 있으며, 가상 세계가 사용자 행동에 즉각적으로 반응하는 몰입형 인터랙티브 경험의 근간이 된다.   검증된 실시간 3D 응용 사례 고도로 발전한 고성능 실시간 3D 기술은 이미 존재한다. 제조업체, 사치품 소매 업체, 자동차 제조 업체 등 다양한 기업들이 이미 실시간 3D 기술을 활용하고 있다. 다음은 몇 가지 예시이다.   단일 에셋 라이브러리로 XR 제작 과정을 간소화 글로벌 과학 및 임상 연구 회사인 써모피셔사이언티픽(Thermo Fisher Scientific)은 디지털 트윈, 영업 지원, 교육, 기능성 게임 같은 설루션을 제공하기 위해 단일 소스의 3D 애셋을 활용하는 XR 기반 플랫폼을 구축했다. 이 XR 플랫폼의 성과는 다음과 같다. 애셋 파이프라인 효율 250% 향상 로코드/노코드 비주얼 스크립팅을 통한 개발 시간 단축   ▲ 이미지 출처 : 써모피셔사이언티픽   사이버 공간에 오프라인 매장 경험을 구현 파리의 럭셔리 가죽 제품 브랜드 카뮤포네(Camille Fournet)는 섬세한 디자인과 장인 정신으로 잘 알려져 있지만, 실시간 3D를 사용하여 고객의 경험을 향상하는 데 앞장선 브랜드이기도 하다. 이 기업에서는 고객이 매장에서 누리는 럭셔리한 경험을 온라인에도 똑같이 제공하고자 했다. 유니티를 기반으로 스마트픽셀(SmartPixels)에서 제작한 실시간 3D 제품 컨피규레이터 덕분에 카뮤포네는 다음과 같은 성과를 거뒀다. 탐색에서 구매로 이어지는 전환 수 5배 증가 고객 참여도 66% 상승   ▲ 이미지 출처 : 스마트픽셀   교육 비용을 절감 칼스 주니어(Carl’s Jr.)는 미국에 뿌리를 둔 패스트푸드 체인으로, 30개국에서 1100개가 넘는 식당을 운영한다. 만 명에 달하는 직원 대부분이 서로 멀리 떨어져 다양한 지역에서 근무하고 있다. 안전, 위생 및 고객 서비스에 대한 높은 기준을 유지하려면 지속적이고 일관된 신입 직원 교육이 필수이다. 칼스주니어는 AR 기반의 자기 주도형 인력 교육을 통해 다음과 같은 성과를 달성했다. 교육 비용 73% 절감 고객 만족도 43% 증가   ▲ 이미지 출처 : 비저너리스 777(Visionaries 777)   지금 산업 분야 메타버스를 시작해야 하는 세 가지 이유 디지털 기술은 빠르게 발전하고 있다. 산업 분야의 기업이 뒤처지지 않으려면 더 전략적으로, 더 장기적인 관점에서 변화를 예측해야 한다. 경쟁력 확보 : 경쟁 업체는 이미 실시간 3D를 활용할 방법을 모색하고 있고, 움직임이 더딘 조직을 빠르게 앞지를 것이다. 실시간 3D에 대한 고객의 수요와 기대치가 모두 증가하고 있으며, 고객이 원하는 것을 제공하지 않는 조직은 고객 이탈을 겪게 될 것이다. 인재 확보 : 최고의 인재, 특히 기술 인력은 늘 부족하며 수요가 많다. 새로운 기술을 도입하여 디지털 전환을 추진하는 기업은 기술 커뮤니티의 이목을 끌 수 있다. 혁신 실현 : 복잡한 3D 데이터에 대한 보편적인 액세스 권한을 제공하고 전 세계의 관계자가 협업할 수 있도록 지원하면 작업자가 더욱 생산적이고 효과적인 동시에 보다 빠르게 작업할 수 있다.   향후 전망 살펴보기 기술의 융합 그 자체인 산업 분야 메타버스의 목표는 가상 세계와 증강현실을 서로 연결하는 것이다. 유연함이라는 본질 덕분에 기술과 활용 사례가 발전함에 따라 그 정의도 계속 변화할 것이다. 기업은 IoT, AI, XR 같은 디지털 전환 툴을 연동하여 공장, 공급망, 제품을 세밀한 부분까지 그대로 재현함으로써 몰입도 높은 산업 분야 메타버스 애플리케이션을 제작할 수 있다. 이 가상 모형은 실시간 모니터링, 예측형 유지 관리, 시나리오 테스트, 교육, 협업 등을 가능케 한다. 결론적으로, 산업 분야 메타버스는 기존 프로세스를 개선하는 것을 넘어서 더욱 민첩하고 지속 가능하며 혁신적인 산업으로 향하는 혁신의 기틀이 되고 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-08-04
[칼럼] AI 시대 제조업 생존 전략 : ‘듀얼 브레인’을 장착하라
현장에서 얻은 것 No. 21   “데이터의 양이 아니라 활용이다. 우리는 쌀을 먹지 않고 밥을 먹는다.” – 최재홍 교수(가천대)   거대한 전환점에 선 제조업 21세기, 우리는 산업 혁명의 물결이 AI(인공지능)라는 이름으로 다시금 거세게 밀려오는 시대를 살고 있다. 제조업은 그 최전선에 서 있다. 과거 증기기관, 전기, 컴퓨터가 생산 방식을 송두리째 바꿔놓았듯이, 이제 AI는 우리가 제품을 설계하고, 생산하고, 유통하며, 심지어 소비자와 소통하는 방식까지 근본적으로 재편하고 있다. 많은 제조업체는 이 변화의 물결 속에서 생존과 번영을 위한 새로운 전략을 모색하고 있다. 기존의 방식만으로는 더 이상 지속 가능한 성장을 기대하기 어렵다는 냉정한 현실에 직면하게 된 것이다. 이 거대한 전환점에서 우리는 AI를 어떻게 받아들이고 활용해야 할까? 단순히 자동화를 위한 도구로만 생각할 것인가, 아니면 그 이상의 잠재력을 가진 파트너로 인식할 것인가? 이선 몰릭 교수의 저서 ‘듀얼 브레인’은 이러한 질문에 대한 명쾌한 해답을 제시한다. 바로 AI를 인간의 ‘두 번째 뇌’로 활용하여 시너지를 창출하는 ‘듀얼 브레인’ 개념이다. 이번 호 칼럼은 ‘듀얼 브레인’의 핵심 인사이트를 바탕으로, AI 시대 제조업이 나아가야 할 생존 전략을 제시하고자 한다.   ▲ ‘듀얼 브레인’ 서평 맵(Map by 류용효컨셉맵연구소) (클릭하면 큰 이미지로 볼 수 있습니다.)   AI, 단순한 도구에서 두 번째 뇌로 “인간의 마음은 한계가 없으며, 그것은 스스로를 확장하는 방법을 끊임없이 찾아낸다.” – 이선 몰릭(‘듀얼 브레인’ 저자) 오랜 시간동안 제조업 현장에서 자동화는 주로 육체 노동의 효율을 높이는 데 초점을 맞추었다. 로봇 팔이 정밀하게 부품을 조립하고, 자동화된 설비가 제품을 대량 생산하였다. AI 역시 이러한 자동화의 연장선상에서 ‘똑똑한 도구’로 인식되는 경향이 강하였다. 그러나 ‘듀얼 브레인’이 강조하는 바는 AI가 단순한 도구를 넘어, 인간의 지적 활동을 확장하고 보완하는 ‘두 번째 뇌’가 될 수 있다는 점이다. 제조업 현장에서 AI는 더 이상 데이터를 수집하고 분석하여 보고서를 제공하는 수동적인 역할에 머무르지 않는다. AI는 설계 단계에서 수많은 변수를 고려하여 최적의 디자인을 제안하고, 생산 공정에서 예측 불가능한 오류를 사전에 감지하며, 품질 검사에서 인간이 놓칠 수 있는 미세한 결함을 찾아낸다. 이는 AI가 인간의 인지적 한계, 즉 방대한 데이터 처리 능력의 부재나 고정관념에서 벗어나지 못하는 사고의 경직성을 보완해 주기 때문에 가능한 일이다. 예를 들어, 신제품 개발에 있어 인간 디자이너는 오랜 경험과 직관으로 디자인을 구상한다. 하지만 AI는 방대한 고객 데이터, 시장 트렌드, 과거 성공 사례 등을 학습하여 인간이 상상하기 어려웠던 수십, 수백 가지의 디자인 대안을 즉시 제시할 수 있다. 또한, 각 디자인의 생산성, 재료비, 잠재적 소비자 반응까지 예측하여 제공함으로써 인간 디자이너의 의사결정을 획기적으로 개선한다. 이는 인간의 창의성과 AI의 분석 능력이 결합된 진정한 듀얼 브레인의 작동 방식이라 할 수 있다. 따라서 제조업은 AI를 단순히 공정을 자동화하는 기계로 볼 것이 아니라 R&D, 설계, 생산 관리, 품질 관리, 마케팅 등 모든 분야에서 인간의 지적 파트너이자 두 번째 뇌로 장착해야 한다. 이러한 관점의 전환이야말로 AI 시대 제조업이 생존하고 번영할 첫 걸음이 될 것이다.   듀얼 브레인 활용법 : 질문, 실험, 그리고 인간의 역할 “중요한 것은 질문하는 것을 멈추지 않는 것이다. 호기심은 그 자체로 존재 이유가 있다.” – 알베르트 아인슈타인 듀얼 브레인을 제조업에 효과적으로 장착하기 위해서는 몇 가지 핵심적인 활용법을 숙지해야 한다. 단순히 최신 AI 기술을 도입하는 것만으로는 충분하지 않다. 중요한 것은 ‘어떻게 AI와 협업할 것인가’이다. 첫째, ‘질문하는 기술’의 중요성이다. AI, 특히 생성형 AI는 우리가 던지는 질문(프롬프트)에 따라 전혀 다른 결과물을 내놓는다. 제조업에서는 AI에게 ‘현재 생산 라인의 병목 현상을 파악하고 개선 방안을 제시하라’, ‘신소재 개발을 위해 특정 물성을 가진 분자 구조를 추천하라’, ‘고객 불만 데이터에서 제품 개선에 필요한 핵심 인사이트를 도출하라’와 같이 구체적이고 명확한 질문을 던질 수 있어야 한다. 추상적인 질문은 모호한 답변을 낳고, 결국 AI 활용의 효율을 떨어뜨릴 것이다. 질문의 질이 곧 AI 활용의 질을 결정한다는 사실을 명심해야 한다. 둘째, ‘실험적 사고’와 ‘빠른 반복’이다. AI는 완벽하지 않다. 때로는 잘못된 정보(환각 현상)를 생성하거나, 우리가 의도한 바와 다른 결과를 내놓기도 한다. 제조업에서는 이러한 AI의 특성을 이해하고, 두려워하지 않고 다양한 가설을 세워 AI와 함께 실험하는 태도가 중요하다. AI가 제시한 생산 최적화 방안이 실제로 효과가 있는지 소규모 테스트를 거치고, AI가 제안한 디자인을 프로토타입으로 제작하여 시장 반응을 살피는 등의 빠른 반복 과정이 필수이다. 실패를 통해 배우고, 그 학습을 바탕으로 다음 실험을 진행하는 애자일(agile) 방식이 듀얼 브레인 시대의 핵심 역량인 것이다. 셋째, ‘인간의 개입과 검증’이다. AI는 방대한 데이터를 기반으로 통계적인 결론을 도출하지만, 그 결과가 항상 현실의 복잡한 맥락이나 윤리적 판단에 부합하지는 않는다. 제조업에서는 AI가 제시한 생산 계획이 과연 현장의 인력 운용이나 안전 규정에 부합하는지, AI가 추천한 신소재가 환경 규제를 만족하는지 등을 인간 전문가가 반드시 검토하고 최종 결정해야 한다. AI의 결과물을 맹목적으로 신뢰하기보다는, 비판적인 시각으로 검증하고 인간의 경험과 지혜를 더하는 것이 듀얼 브레인을 완성하는 핵심 단계이다. AI는 강력한 보조 도구이지만, 최종적인 책임과 판단은 결국 인간의 몫인 것이다.   창의성과 생산성 증대 : 제조업의 새로운 경쟁력 “생산성은 우연이 아니다. 그것은 항상 탁월함에 대한 헌신, 지능적인 계획, 집중된 노력의 결과이다.” – 폴 마이어 듀얼 브레인 개념을 제조업에 적용함으로써 얻을 수 있는 가장 큰 이점은 바로 창의성과 생산성의 비약적인 증대이다. 이는 AI 시대 제조업의 새로운 경쟁력이 될 것이다. 창의성 증대 측면에서 제조업은 전통적으로 ‘효율’과 ‘정확성’을 강조해왔다. 그러나 AI는 이제 제조업의 ‘창의성’을 자극하는 촉매제가 되고 있다. 예를 들어, 제품 디자인 과정에서 AI는 기존 데이터를 기반으로 전혀 새로운 형태나 기능을 제안할 수 있다. 이는 인간 디자이너의 고정관념을 깨고 상상력을 자극하여 혁신적인 제품 개발로 이어진다. 또한, AI는 제조 공정 자체의 혁신에도 기여한다. AI 시뮬레이션을 통해 기존에는 불가능하다고 여겼던 새로운 생산 방식을 탐색하고, 재료의 낭비를 최소화하며, 에너지 효율을 극대화하는 창의적인 해결책을 찾아낼 수 있다. 이는 인간의 직관과 AI의 방대한 계산 능력이 결합되어 가능해지는 결과이다. 생산성 증대 측면은 더욱 명확하다. 제조업의 생산성 증대는 곧 비용 절감과 납기 단축으로 이어져 기업의 수익성에 직접 영향을 미친다. 듀얼 브레인 시스템은 다음과 같은 방식으로 생산성을 극대화할 것이다. 예측 유지보수 : AI가 설비의 미세한 진동, 온도 변화, 전력 소비량 등을 실시간으로 분석하여 고장을 예측하고 사전 유지보수를 가능하게 함으로써, 예기치 않은 생산 중단 시간을 획기적으로 줄일 것이다. 생산 공정 최적화 : AI는 복잡한 생산 라인에서 각 단계의 효율성을 분석하고, 병목 현상을 식별하며, 재고 관리와 물류 흐름을 최적화하여 생산 리드 타임을 단축시키고 생산량을 증대시킬 것이다. 품질 관리 혁신 : AI 기반의 비전 검사 시스템은 인간의 눈으로 감지하기 어려운 미세한 불량까지 정확하게 찾아내어 불량률을 낮추고 제품 품질을 일관되게 유지할 것이다. 데이터 기반 의사결정 : AI는 시장 동향, 고객 피드백, 공급망 데이터 등 방대한 정보를 분석하여 경영진의 전략적 의사결정을 지원하고, 이는 곧 더 빠르고 정확한 시장 대응으로 이어질 것이다. 이처럼 듀얼 브레인은 제조업의 고질적인 문제를 해결하고 나아가 새로운 가치를 창출하는 핵심 동력이 될 것이다.   AI 시대, 제조업 인간의 역할 재정립 “기계는 인간의 일을 대신할 수 있지만, 인간의 마음을 대신할 수는 없다.” – 스티븐 호킹 AI가 제조업 현장에 깊숙이 들어올수록, 많은 이들이 인간의 역할에 대한 불안감을 느끼는 것이 사실이다. 하지만 ‘듀얼 브레인’은 AI가 인간의 일자리를 완전히 대체하는 것이 아니라, 오히려 인간 고유의 역량을 더욱 빛나게 하고 그 역할을 재정립할 기회를 제공한다고 역설한다. 제조업 현장에서 AI는 반복적이고 위험하며, 데이터 기반의 정량적 분석에 특화된 업무를 수행하게 될 것이다. 그렇다면 인간은 어떤 역할을 해야 할까? 문제 정의 및 비판적 사고 : AI는 주어진 문제를 해결하는 데 유능하지만, 무엇이 진정한 문제인지 파악하고 AI가 도출한 결과에 대해 비판적으로 질문하며, 맥락을 이해하여 의미를 부여하는 것은 여전히 인간의 몫이다. 예를 들어, AI가 불량률 감소를 위한 수치적 해답을 제시할 수는 있지만, ‘이 불량이 고객에게 미치는 정서적 영향’이나 ‘기업의 장기적인 브랜드 이미지’와 같은 비정량적인 가치를 판단하고 정책을 결정하는 것은 인간 경영자의 역할인 것이다. 창의적 기획 및 혁신 : AI는 기존 데이터를 기반으로 새로운 조합을 만들 수는 있지만, 완전히 새로운 개념을 무에서 유로 창조하거나, AI의 한계를 뛰어넘는 파격적인 아이디어를 제안하는 것은 인간의 고유 영역이다. 제조업에서 다음 세대 먹거리를 기획하고 시장 판도를 바꿀 기술을 상상하는 것은 AI가 아닌 인간 전문가의 몫인 것이다. 감성 지능 및 공감 : 협상, 팀 빌딩, 고객과의 관계 형성 등 인간 상호작용이 필요한 부분에서는 AI가 인간의 감성을 이해하고 공감하는 데 한계가 있다. 제조업의 영업, 마케팅, 인력 관리 등에서는 여전히 인간의 감성 지능과 공감 능력이 필수인 것이다. 윤리적 판단과 책임 : AI는 데이터를 기반으로 작동하므로 윤리적 가치 판단이나 사회적 책임을 스스로 질 수 없다. 제조업 공정에서 발생할 수 있는 환경 문제, 노동자의 안전, 제품의 사회적 영향 등 윤리적 딜레마에 대한 최종 판단과 책임은 전적으로 인간에게 달려 있는 것이다. 따라서 AI 시대 제조업의 인재는 AI를 활용하는 ‘도구적 능력’을 넘어, AI가 할 수 없는 ‘인간 고유의 역량’을 더욱 갈고 닦아야 한다. 이는 AI를 두려워할 것이 아니라, 오히려 AI의 도움을 받아 자신만의 강점을 극대화하는 길을 모색해야 함을 의미한다.   미래를 위한 제언 : 제조업의 듀얼 브레인 로드맵 “미래를 예측하는 가장 좋은 방법은 미래를 창조하는 것이다.” – 피터 드러커 AI 시대 제조업의 생존과 번영은 듀얼 브레인을 얼마나 성공적으로 장착하느냐에 달려 있다. 이를 위한 몇 가지 제언을 하고자 한다. 첫째, CEO를 포함한 경영진의 인식 전환과 비전 공유가 필수이다. 듀얼 브레인 전략은 단순히 기술팀만의 과제가 아니다. 최고 의사결정권자가 AI를 기업의 핵심 전략 자산이자 ‘두 번째 뇌’로 인식하고, 전사적인 변화의 비전을 제시해야 한다. 기술 투자뿐만 아니라 인력 재교육 및 문화 변화를 위한 투자를 아끼지 않아야 한다. 둘째, 지속적인 학습과 실험 문화를 정착시켜야 한다. AI 기술은 빠르게 진화하고 있다. 어제의 최적해가 오늘의 최적해가 아닐 수 있다. 제조업체는 AI 기술 트렌드를 주시하고, 새로운 AI 도구를 끊임없이 실험하며, 실패를 두려워하지 않고 거기서 배우는 문화를 구축해야 한다. 작은 규모의 파일럿 프로젝트를 통해 AI 활용의 성공 경험을 쌓고, 이를 점차 확대해 나가는 방식이 효과적일 것이다. 셋째, 인력 재교육 및 역량 강화에 적극적으로 투자해야 한다. 기존 인력들이 AI를 두 번째 뇌로 활용할 수 있도록 AI 기초 교육, 데이터 리터러시, 프롬프트 엔지니어링 교육 등을 제공해야 한다. 동시에 AI가 대체하기 어려운 인간 고유의 역량 즉 비판적 사고, 창의성, 문제 해결 능력, 협업 능력 등을 강화하는 교육 프로그램도 병행해야 한다. 넷째, 데이터 기반의 의사결정 체계를 확립해야 한다. 듀얼 브레인은 결국 데이터에 기반한다. 제조업 현장의 모든 데이터(생산, 품질, 재고, 고객, 시장 등)를 통합적으로 수집하고 분석할 수 있는 인프라를 구축해야 한다. 이를 통해 AI가 더 정확하고 깊이 있는 통찰력을 제공할 수 있으며, 인간의 의사결정 역시 데이터에 기반하여 더욱 합리적으로 이루어질 수 있을 것이다. 다섯째, 외부 AI 전문 기업과의 협력을 고려해야 한다. 모든 AI 역량을 자체적으로 구축하는 것은 현실적으로 어렵고 비효율적일 수 있다. AI 설루션 제공 기업, 컨설팅 회사, 학계 등 외부 전문가 그룹과의 협력을 통해 필요한 AI 기술과 노하우를 빠르게 도입하고 내재화하는 전략도 필요할 것이다.   결론 : 듀얼 브레인, 제조업의 새로운 항해를 위한 나침반 “완벽한 계획을 기다리기보다 빠르게 실행하고(선지랄 후수습), 시장과 고객의 피드백을 통해 방향을 수정해 나가는 것이 중요하다.” – 최재홍 교수(가천대) AI 시대는 제조업에 거대한 도전인 동시에 전례 없는 기회이다. 이 기회를 잡기 위해서는 AI를 단순한 생산성 향상 도구로 여기는 구시대적 관점을 벗어나, 인간의 지적 능력을 확장하고 협력하는 듀얼 브레인으로 장착해야 한다. 인간의 비판적 사고와 창의성, 그리고 AI의 방대한 처리 능력이 결합될 때 제조업은 새로운 차원의 혁신과 경쟁력을 확보할 수 있을 것이다. 이제 제조업은 단순히 물건을 만드는 것을 넘어, 지능형 시스템과 인간 지능이 함께 작동하는 ‘코인텔리전스 제조(co-intelligence manufacturing)’의 시대로 진입하고 있다. 듀얼 브레인을 장착하고, AI와 함께 배우고 실험하며, 인간 고유의 가치를 더욱 빛내 나간다면, AI 시대의 제조업은 더욱 강력하고 지속 가능한 미래를 향해 성공적으로 항해할 수 있을 것이다. 이는 선택이 아닌 필수 생존 전략이 될 것이다. 최재홍 교수는 2025년 7월 9일 미모세(미래모빌리티세미나) 2025 키노트에서 이런 말을 남겼다. “오너는 될 때까지 하기 때문에 실패가 없다.” 이 말은 강연장에 모인 스타트업 그리고 상장사 CEO들에게 큰 영감과 감동을 주었다.   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다. (블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-08-04