• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "마이크로 아키텍처"에 대한 통합 검색 내용이 1,695개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
Automotive Industry의 새로운 지평선에서(HL만도 배홍용 CTO) - 영상보기 & 내용 요약
HL만도 배홍용 CTO, 자동차 산업의 미래 심층 분석   PLM DX 베스트 프랙티스 컨퍼런스 2024에서  배홍용 만도 CTO가 'Automotive Industry의 새로운 지평선에서'라는 주제로 강연을 진행하며 자동차 산업의 거대한 변화를 예고했다. 62년 역사의 만도는 섀시, 자율주행, 로보틱스, 소프트웨어 분야를 융합하며 미래 모빌리티 시대를 위한 혁신을 주도하고 있다. 배 CTO는 급변하는 시장 상황 속에서 자동차 부품 산업이 직면한 도전과 기회, 그리고 미래 모빌리티의 핵심 트렌드를 심층적으로 분석했다. 전기차(EV) 대세론, 부품 생태계의 지각변동을 불러오다 배 CTO는 전기차 시장의 폭발적인 성장세를 강조하며, 2030년에는 EV가 자동차 시장의 절반을 넘어설 것으로 전망했다. 특히 글로벌 EV 시장에서 강력한 존재감을 드러내는 BYD를 언급하며, 완성차 업계뿐만 아니라 부품 산업 내 경쟁 심화를 예상했다. EV는 고전압 배터리, 전력 변환 시스템 등 새로운 부품 수요를 창출하는 반면, 내연기관 관련 부품 산업의 축소와 정비 시장의 변화를 불가피하게 만들 것이라고 진단했다. 자율주행, 기술적 난관 속에서도 로봇 택시를 중심으로 현실화될 전망 자율주행 기술의 발전은 미래 모빌리티의 핵심 동력이지만, 배 CTO는 높은 개발 비용, 엄격한 법규 제제, 그리고 아직 해결해야 할 기술적 과제들로 인해 레벨 3 이상의 자율주행 도입이 예상보다 더디게 진행되고 있다고 밝혔다. 하지만 그는 로봇 택시와 같은 특정 영역에서는 레벨 4 수준의 자율주행 기술이 상용화될 가능성이 높다고 예측하며, 자율주행차 시장이 개인 소유 모델과 공유 기반 사용자 모델로 나뉘어 발전할 것이라고 전망했다. 마이크로 모빌리티, 도심 이동의 새로운 해법으로 떠오르다 친환경적이면서도 짧은 거리를 효율적으로 이동할 수 있는 마이크로 모빌리티 시장의 성장 가능성에도 주목했다. 다만 국내에서는 아직 관련 규제가 명확하게 정립되지 않아 시장 활성화에 제약이 있을 수 있다고 지적했다. 소프트웨어 정의 차량(SDV), 자동차 산업의 패러다임 전환 배 CTO는 소프트웨어가 차량의 기능과 성능을 결정하는 SDV 시대가 본격적으로 개막할 것이라고 전망하며, 하드웨어와 소프트웨어의 융합 및 분리 전략이 중요하다고 강조했다. 만도는 이러한 변화에 발맞춰 SDV 관련 소프트웨어 및 하드웨어 솔루션 개발에 박차를 가하고 있으며, 다양한 앱 생태계를 구축할 수 있는 차량용 소프트웨어 앱스토어 사업에도 참여하고 있다고 밝혔다. SDV의 안전성과 신뢰성을 확보하기 위해서는 자동차 제조사, 부품 공급업체, 소프트웨어 기업 간의 긴밀한 협력이 필수적이라고 덧붙였다. 구독 경제와 텔레 오퍼레이션, 미래 모빌리티 서비스의 핵심 축으로 부상 자동차 구매 방식의 변화와 더불어 테슬라의 FSD와 같은 구독 기반 서비스 모델이 확산될 것이라고 예상했다. 또한 자율주행 기술의 한계를 극복하고 안전성을 확보하기 위한 텔레 오퍼레이션(원격 제어) 기술의 중요성을 강조하며, 이를 위해서는 고품질 통신 네트워크와 실시간 데이터 처리 기술 확보가 필수적이라고 설명했다. 친환경 부품과 AI 기술, 지속 가능한 모빌리티 시대를 열다 ESG 경영의 중요성이 강조되는 시대적 흐름에 발맞춰 자동차 부품 산업에서도 친환경 소재 개발과 재활용 기술 도입이 더욱 확대될 것이라고 전망했다. 또한 AI 기술이 자동차 부품의 연구 개발 효율성을 높이고 제품 혁신을 가속화하는 핵심 동력이 될 것이라고 강조하며, 만도는 AI 기반 설계 및 검증 시스템 개발에 적극적으로 투자하고 있다고 밝혔다. 인간 중심의 미래 모빌리티를 향하여 배 CTO는 자동차 산업이 과거의 틀을 벗어나 완전히 새로운 시대로 접어들고 있으며, 미래 모빌리티는 단순한 이동 수단을 넘어 즐거움과 편리함을 제공하고 환경까지 고려하는 '인간 중심'으로 발전해야 한다고 강조했다.   * 해당 내용 정리는 AI(구글 제미나이)의 도움으로 작성되었습니다. 상세 내용은 원본 영상을 통해 확인하시기 바랍니다.  발표자료 다운로드 https://www.cadgraphics.co.kr/newsview.php?pages=lecture&sub=lecture01&catecode=7&num=74990   #모빌리티 #자동차산업 #전기차 #자율주행 #SDV #친환경부품 #AI #만도 #자동차부품산업 #소프트웨어정의차량 #자동차트렌드
작성일 : 2025-05-06
아키텍처 모델과 1D 모델의 전략적 연계
MBSE를 위한 아키텍처-1D 모델 연계의 중요성 및 적용 전략 (1)   제조산업에서 설계 효율 향상과 개발 기간 단축을 위해 모델 기반 개발(MBD)을 적극 도입하고 있지만, 아키텍처 모델과 1D 모델 간의 연계 부족으로 인해 개발 단계에서 모델의 실질적인 활용과 의사결정 지원이 어려운 경우도 많다. 이번 호에서는 MBD의 성과를 높이기 위한 아키텍처 모델과 1D 모델의 체계적인 연계 방안을 제시하고, 이를 통한 설계 효율 및 개발 정확성 향상의 전략적 방향을 살펴본다.   ■ 오재응 한양대학교 명예교수, LG전자 기술고문   최근 제조산업은 제품의 개발 기간 단축과 다품종 생산이라는 트렌드에 대응하기 위해 개발의 효율성을 극대화하고 반복 설계를 최소화하는 방향으로 변화하고 있다. 이러한 흐름 속에서 모델 기반 개발(Model-Based Development : MBD)은 이미 많은 제조업체가 적극 추진하고 있으며, 이를 통해 설계 초기부터 제품의 동작을 예측하고 최적화할 수 있는 기반을 마련하고자 한다. 그러나 모델 기반 개발을 도입하고 실제로 모델을 구축했음에도 불구하고, 현업에서 모델이 제대로 활용되지 못하는 경우가 많다. 이는 구축된 모델이 단지 형식적으로 존재할 뿐, 제품 개발의 맥락 속에서 아키텍처적, 1D적 연결성을 갖추지 못해 실질적인 의사결정과 개발 단계에서 활용되지 못하고 있기 때문이다. 즉, 원래 의도한 목적이나 아키텍처적 요구와 연계되지 않은 모델이기 때문에, 사용자는 해당 모델이 ‘내 일에 어떻게 쓰이는지’를 이해하지 못하고 거리감을 느끼는 것이다. 이러한 문제를 극복하기 위해서는 아키텍처 모델과 1D 모델을 유기적으로 연계하고, 이를 기반으로 아키텍처 요구사항을 구체화할 수 있어야 한다. 아키텍처 모델이란 제품의 구조, 기능, 물리적 메커니즘 등 아키텍처적 개념을 설명하는 모델이며, 1D 모델은 이러한 개념을 수학적으로 해석하고 시뮬레이션 가능한 형태로 정형화한 것이다. 따라서 아키텍처 모델과 1D 모델 간의 연계는 제품 개발의 전체 V자 프로세스에서 핵심 역할을 하며, 상호보완적으로 작용하여 제품 성능 검증 및 요구사항 만족 여부를 평가하는 데 기여한다.   그림 1. 아키텍처 모델 – 1D 모델 연계   <그림 1>은 이러한 개념을 시각적으로 설명한다. 초기의 아키텍처 설계 단계에서 아키텍처 요구와 구조를 정의한 뒤 이를 바탕으로 1D 모델이 생성되고, 시뮬레이션 및 해석을 통해 결과를 도출하며, 이 결과는 다시 상위의 아키텍처 요구사항에 대한 검증으로 이어진다. 이처럼 상향식-하향식 피드백 루프를 통해 아키텍처 모델과 1D 모델이 반복적으로 연계되어야 진정한 의미의 모델 기반 개발이 실현될 수 있다. 특히 설계자와 개발자는 1D 모델은 제품을 해석하고 튜닝하는 강력한 도구라고 인식하지만, ‘왜 이 설계를 했는가’, ‘서브시스템 간 구조는 어떻게 되는가’, ‘요구사항은 어떻게 충족되는가’와 같은 질문에는 답하지 못한다. 그 해답을 주는 것이 바로 아키텍처 모델(MBSE)이며, 이 두 모델을 연결해야만 설계의 정확성, 추적성, 협업성이 동시에 확보된다.   다양한 유형의 아키텍처적 측정 간의 관계   그림 2. ISO/IEC 15288 System Life Cycle Technical Processes & Life Cycle   ISO/IEC 15288(그림 2)은 시스템 수명주기 전반에 걸친 아키텍처 프로세스의 흐름과 체계를 정의한 국제 표준이다. 특히 이 표준은 모델 기반 시스템 엔지니어링(Model-Based Systems Engineering : MBSE) 관점에서 시스템 개발 활동을 구조화한 것으로, 시스템 수명 주기(V 모델)를 기반으로 요구 분석, 설계, 검증 및 확인, 유지보수 등 각 단계의 아키텍처적 활동과 그 상호 관계를 정립한다. 시스템 엔지니어링 활동을 통해 성공적인 시스템을 구축하기 위해서는 다양한 아키텍처적 성과 지표와 측정 지표가 필요하며, 이를 통해 시스템의 목표 달성 여부를 판단할 수 있다. 대표적인 지표로는 다음과 같은 세 가지가 있다. MOE(Measure of Effectiveness, 효과성 측정지표)는 시스템이 실제 운용 환경에서 얼마나 효과적으로 임무를 수행할 수 있는지를 평가하는 지표로, 주로 고객 요구사항이나 운용 목표 달성 여부에 초점을 맞춘다.  MOP(Measure of Performance, 성능 측정지표)는 시스템의 성능 수준을 수치적으로 정량화한 것으로, 설계 명세나 요구된 성능 기준을 얼마나 충족하는지를 평가한다.  TPM(Technical Performance Measure, 아키텍처 성과 측정지표)은 개발 과정 중 아키텍처 적인 목표 도달 여부를 지속적으로 모니터링하고 예측하는 데 사용되는 지표로, 시스템 개발 리스크를 조기에 식별하고 관리하는 데 활용된다. 이러한 측정 지표는 예측 차이나 실측 차이를 바탕으로 비교 분석할 수 있으며, 시스템 개발 단계에서 시스템의 위험 요인에 대한 조기 탐지와 개선 대책의 선제 적용이 가능하도록 지원한다. 이는 곧 사업의 비용 효율성 제고와 일정 준수에 기여하며, 전체 수명주기 동안 긍정적인 영향을 유도할 수 있다.  <그림 2>는 ISO/IEC 15288의 V-모델과 아키텍처적 측정 지표가 어떻게 연계되는지를 보여준다. 요구사항 도출과 검증, 설계와 확인 간의 대응 관계를 통해 아키텍처적 활동이 체계적으로 연결되며, 수명주기 전체에서 MOE, MOP, TPM이 통합적으로 작동하여 아키텍처적 리스크를 관리하고 시스템의 성공적인 구현을 가능하게 한다.      ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
CAD&Graphics 2025년 5월호 목차
  INFOWORLD   Editorial  17 로봇이 달리는 시대, 인간은 어디로 달려가는가?   Hot Window  18  캐드앤그래픽스 디지털 트윈 설문조사 분석 : 디지털 트윈에 대한 기대 속에 실질적 도입과 확산 위한 노력 필요   Case Study  24 노트르담 대성당의 영광스러운 복원을 선보인 언리얼 엔진 라이팅 리얼타임 3D 기술을 도입하여 한층 발전된 프로젝션 매핑 구현 27 미래 모빌리티를 위한 자율주행 시뮬레이터, 모라이 심 실시간 3D 엔진을 활용해 더욱 현실적인 시뮬레이션 구축   People & Company  30 AWS 황민선 파트너 세일즈 매니저, 에티버스 김준성 전무 AI와 산업 전문성 결합해 클라우드 기반 제조 혁신 도울 것   Focus  34 DN솔루션즈, 금속 3D 프린터 'DLX 시리즈'로 제조 혁신 선도한다 37 유니티, “게임을 넘어 다양한 산업으로, 3D 시각화와 AI 통해 혁신 지원” 40 델, ‘AI PC 시대’ 주도 선언… 통합 브랜드 제품 대거 출시   New Products  43 이달의 신제품   On Air 44 캐드앤그래픽스 CNG TV 지식방송 지상중계 공기업 BIM 적용 지침에 따른 설계·시공 프로세스 변화와 대응 전략 46 캐드앤그래픽스 CNG TV 지식방송 지상중계 디지털 공급망 관리로 산업 건설 프로젝트의 비효율 해소 47 캐드앤그래픽스 CNG TV 지식방송 지상중계 의료 AI를 활용한 가상현실 기반 임상 실습 교육 소개   Column 48 트렌드에서 얻은 것 No. 23 / 류용효 실용형 AI, 제조의 미래를 바꾸다   54 New Books    Directory  131 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA    Visualization  84 AI 크리에이터 시대 : 영상 제작의 새로운 패러다임 (2) / 최석영 AI 기반 크리에이티브 워크플로 혁신   AEC 56 새로워진 캐디안 2025 살펴보기 (6) / 최영석 유틸리티 기능 소개 Ⅳ 60 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 오픈마누스 AI 에이전트의 설치, 사용 및 구조 분석 68 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2026 (2) / 천벼리 오토캐드 전환 지원과 AI 기반 생산성   범용 CAD  71 오토캐드 2026의 새로운 기능과 개선사항 / 양승규 AI 기반 기능 및 성능이 향상된 오토캐드 2026   Reverse Engineering  78 시점 - 사물이나 현상을 바라보는 눈 (5) / 유우식 변화와 흐름의 관찰   Mechanical  91 산업 디지털 전환을 가속화하는 버추얼 트윈 (2) / 최윤정 카티아 VMU를 활용한 설계 검증 혁신 94 제품 개발 혁신을 가속화하는 크레오 파라메트릭 11.0 (12) / 박수민 도면 기호 생성하기   Analysis  100 앤시스 워크벤치를 활용한 해석 성공 사례 / 김혜영 앤시스 LS-DYNA의 리스타트 기능 및 활용 방법 104 최적화 문제를 통찰하기 위한 심센터 히즈 (3) / 이종학 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 110 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (21) / 나인플러스IT 차세대 자동차 설계를 위한 DNS, LES, RANS 시뮬레이션 115 MBSE를 위한 아키텍처–1D 모델 연계의 중요성 및 적용 전략 (1) / 오재응 아키텍처 모델과 1D 모델의 전략적 연계   PLM  126 BPMN을 활용하여 제품 개발의 소통과 협업 극대화하기 (3) / 윤경렬, 가브리엘 데그라시 비즈니스 프로세스 모델링을 배워보자       캐드앤그래픽스 당월호 책자 구입하기   캐드앤그래픽스 당월호 PDF 구입하기
작성일 : 2025-04-24
인텔, 소프트웨어 정의 차량 혁신 가속화 위한 차세대 SoC 및 파트너십 발표
인텔은 ‘상하이 모터쇼(Auto Shanghai)’에 처음 참가하면서, 멀티-공정 노드 칩렛 아키텍처 기반 차량용 2세대 인공지능(AI) 강화 소프트웨어 정의 차량(SDV : Software-Defined Vehicle) SoC(시스템온칩)을 공개했다. 이번 신형 SoC는 인텔리전트 커넥티드 차량에 대한 수요 증가에 발맞춰 설계되었으며, 완성차 업체에 확장 가능한 성능, 첨단 AI 기능 및 비용 효율을 제공한다. 또한, 인텔은 자동차 기술 기업인 모델베스트(ModelBest), 블랙세서미 테크놀로지(Black Sesame Technologies)와의 전략적 협업을 발표하며 자사의 자동차 생태계를 더욱 확장하고 있다고 소개했다. 이를 통해 인텔은 AI 기반 차량용 콕핏(Cockpit), 통합 첨단 운전자 보조 시스템(ADAS), 에너지 효율적인 차량 컴퓨팅 플랫폼 등에서의 혁신을 가속화할 계획이다. 2세대 인텔 SDV SoC는 멀티 노드 칩렛 아키텍처를 채택한 차량용 SoC로, 완성차 업체가 컴퓨팅, 그래픽, AI 기능을 필요에 따라 유연하게 구성할 수 있도록 지원한다. 이를 통해 개발 비용을 절감하고 제품 출시 기간을 단축할 수 있으며, 기능별로 최적화된 최고 수준의 실리콘을 결합한 아키텍처에 기반한다. 인텔은 2세대 SDV SoC가 ▲생성형 및 멀티모달 AI를 위한 최대 10배 향상된 AI 성능 ▲더욱 풍부한 HMI(인간-기계 간 인터페이스) 경험을 위한 최대 3배 향상된 그래픽 성능 ▲카메라 입력 및 이미지 처리 기능 강화를 위한 12개 카메라 레인 지원 등의 특징을 갖추었다고 밝혔다. 또한, 유연하고 미래 지향적인 설계를 바탕으로 완성차 업체가 첨단 기능을 바탕으로 제품 차별화를 실현하고, 차세대 사용자 경험을 제공하는 동시에 전력 소비와 비용도 최적화할 수 있도록 지원한다고 전했다.     한편, 인텔은 상하이 모터쇼 2025에서 주요 파트너들과의 신규 협업을 발표했다. 인텔은 SDV SoC와 인텔 아크(Intel Arc) 그래픽 기반으로 구동되는 모델베스트의 GUI 인텔리전트 에이전트를 통해 기기 자체에서 대규모 언어 모델(LLM)의 구현을 현실화하고 있다. 이 에이전트는 네트워크 연결 없이도 작동하는 AI 기반 음성 제어 및 사용자 맞춤형 경험을 가능하게 하며, 복잡한 상황에서도 자연어를 정확히 이해해 직관적인 콕핏 경험을 제공한다. 이번 협업은 모델베스트가 인텔의 AI PC 가속화 프로그램에서 거둔 성공을 기반으로 하며, 인텔 차량 플랫폼에서 즉시 활용 가능한 AI 경험을 최적화한 결과다. 또한, 블랙세서미 테크놀로지스의 ADAS 기술에 인텔의 SDV SoC와 차량용 인텔 아크 그래픽을 결합해 ADAS와 몰입형 콕핏 경험을 하나의 에너지 효율적인 중앙 컴퓨팅 플랫폼으로 통합하고 있다. 고속·저지연의 안정적인 연결을 기반으로, 끊김 없는 차량 내 경험을 구현할 계획이다. 인텔 오토모티브 총괄인 잭 위스트(Jack Weast) 팰로우는 “인텔은 2세대 SDV SoC를 통해 자동차 컴퓨팅의 패러다임을 새롭게 정의하고 있다. 칩렛 기술의 유연성과 인텔의 검증된 총체적 차량 접근 방식을 결합해, SDV 혁신을 실현해 나가고 있다. 에너지 효율성부터 AI 기반 사용자 경험까지, 업계가 직면한 실질적인 과제를 파트너와과 함께 해결하며 SDV 시대를 모두를 위한 현실로 만들고자 한다”고 밝혔다.
작성일 : 2025-04-24
AWS, 아마존 Q 디벨로퍼 한국어 지원 확장
아마존웹서비스(AWS)는 아마존 Q 디벨로퍼(Amazon Q Developer)의 언어 지원 확장을 발표했다. 이를 통해 국내 개발자들은 한국어를 활용하여 아마존 Q 디벨로퍼 내에서 아키텍처 논의, 문서 작성, 인터페이스 설계, 애플리케이션 구축 등 다양한 개발 업무를 수행할 수 있게 됐다. 아마존 Q 디벨로퍼는 개발자가 사용하는 언어로 코드를 이해하고 문서를 작성하며, 인터페이스를 설계할 수 있도록 돕는 생성형 AI 기반 어시스턴트이다. 또한 코드에 대한 실시간 피드백을 제공하여 단순한 위험 요소 식별을 넘어 문제의 원인을 명확히 설명하고 해결 방안을 제시함으로써 반복적인 개발 작업을 신속하게 수행할 수 있도록 돕는다. 이를 통해 개발자는 보다 안전하고 신뢰할 수 있는 코드를 효율적으로 구현할 수 있으며, 다양한 개발 업무에서 생산성과 품질을 동시에 향상시킬 수 있다. 이번 한국어 지원 확장을 통해 아마존 Q 디벨로퍼는 개발자들이 한국어를 포함한 다양한 언어로 복잡한 기술 개념에 대해 보다 원활하게 자신이 선호하는 언어로 대화할 수 있도록 지원한다. 특히 이번 언어 지원 확장은 개발자들이 반복적이고 수동적인 작업에 소비하는 시간을 줄이고, 보다 창의적인 문제 해결에 집중할 수 있는 환경을 제공한다. AI 에이전트와 자연어 인터페이스가 결합되며 보다 직관적인 개발 경험이 가능해짐에 따라, 개발자들은 대규모 기술 현대화와 같이 기존에는 실행이 어려웠던 작업에도 적극적으로 대응할 수 있게 된다. 이는 개발자가 문제를 인식하고 해결하는 방식에 근본적인 변화를 가져오고 있으며, 복잡한 업무를 보다 효율적이고 전략적으로 수행할 수 있도록 돕는다. 예를 들어, 영어 등 다른 언어로 작성된 소스코드나 주석을 이해해야 하는 상황에서 아마존 Q 디벨로퍼가 유용하게 쓰일 수 있다. 개발자들은 모국어가 아닌 영어로 작성된 코드나 주석에 대해 한국어로 아마존 Q 디벨로퍼에게 질문하고 설명을 요청할 수 있으며, 아마존 Q 디벨로퍼는 이를 한국어로 명확하게 설명 가능하다. 이러한 기능은 영어나 다른 언어로 된 코드를 이해하는 데 있어 언어 장벽을 낮추고, 글로벌 개발 환경에서의 코드 이해도를 효과적으로 높이는 데 기여한다. 국내 기업은 이번 언어 지원 확장을 통해 해외 기업과의 협업에서 커뮤니케이션 효율을 높이고, 업무 생산성을 실질적으로 향상시킬 수 있다. 또한 다양한 언어를 사용하는 글로벌 팀 간 협업을 보다 포용적이고 효과적으로 만들고 글로벌 개발 환경을 강화할 수 있다. 확장된 언어 기능은 통합 개발 환경(IDE)과 커맨드라인 인터페이스(CLI)에서 즉시 이용 가능하며, 향후 AWS 매니지먼트 콘솔(AWS Management Console)에서도 지원될 예정이다. 또한 프리(Free) 및 프로(Pro) 요금제 사용자 모두에게 확장된 언어가 제공된다.
작성일 : 2025-04-14
매스웍스, ‘매트랩 엑스포 2025 코리아’에서 소프트웨어 정의 시스템 기술 혁신 제시
매스웍스가 4월 8일 ‘매트랩 엑스포 2025 코리아(MATLAB EXPO 2025 Korea)’를 개최했다고 발표했다. 행사에는 1500명 이상의 국내외 기술 전문가, 매트랩(MATLAB)과 시뮬링크(Simulink) 사용 고객이 참석해 다양한 산업 분야의 최신 기술 및 엔지니어링 트렌드를 확인했다. 이번 행사는 매스웍스의 아비 네헤미아(Avi Nehemiah) 설계 자동화 소프트웨어 부문 총괄 디렉터와 한화로보틱스 정병찬 대표이사의 기조연설로 시작됐다. 아비 네헤미아 디렉터는 기조연설에서 소프트웨어 정의 시스템(Software-defined systems)의 가치와 구현 방법을 심도 있게 다뤘다. 발표에 따르면, 모델 기반 설계(Model-Based Design)를 통해 요구사항부터 아키텍처, 기능, 구현, 테스트까지 이어지는 디지털 스레드를 구축하고, AI와 데이터 기반 기능, 클라우드 활용을 통해 하드웨어 변경 없이도 새로운 기능을 제공할 수 있다. 이러한 접근 방식은 자동차, 산업 기계, 의료 시스템 등 다양한 산업 분야에서 제품의 가치를 높이고 사용자 경험을 향상시키는 핵심 요소로 자리잡았다. 정병찬 대표이사는 ‘로봇, 혁신으로 일상과 산업을 재창조하다’라는 제목의 기조연설에서 로봇 기술의 현재와 미래를 조망했다. 정병찬 대표이사에 따르면 로봇 기술이 제조업을 넘어 서비스, 의료, 농업 등 다양한 분야로 확장되고 있다. 발표에 따르면 이러한 확장은 인공지능과 로봇 기술의 발전과 결합되어 산업 생태계에 상당한 영향을 미칠 잠재력을 갖는다. 매트랩 엑스포 2025 코리아의 기술 세션은 알고리즘 개발 및 AI, 전동화, 모델 기반 설계, AI 응용 엔지니어링, 모빌리티, 무선 및 위성 등 6개 트랙으로 구성됐다. 삼성전자, 현대자동차, SK텔레콤, 한국전력연구원 등 국내 첨단 기술 기업들이 참가해 매트랩과 시뮬링크의 활용 사례를 공유했다.     행사장의 데모 부스에서는 다양한 산업 분야의 기술이 소개됐다. 자동차 분야에서는 모델 기반 설계의 데브옵스(DevOps) 환경 통합 설루션을 전시했다. 또한 매스웍스는 요구사항 관리부터 시스템 아키텍처 설계, 소프트웨어 개발과 검증까지의 CI 환경 구축 방안을 시연했다. 무선 분야에서는 언리얼 엔진을 활용한 사실적 위성 시나리오 시각화 사례에 대한 핸즈온 데모를 통해 AI 기반 모델링 기법을 체험할 수 있게 했다. 참석자들은 정적 및 동적 검증을 위한 통합 플랫폼인 폴리스페이스(Polyspace) 제품군을 통한 코드 기반 검증 과정도 확인할 수 있었다. 아카데믹 부스에서는 세종대학교, 단국대학교, 카이스트, 인하대학교, 전북대학교, 창원대학교, 한국공학대학교 등 여러 대학의 연구 사례가 소개되었는데, 그중 인하대학교 임베디드 제어 연구실(ECL)은 ‘신속 제어 프로토타이핑 시스템 및 첨단 제어 기술’을 발표했다. 인하대학교 ECL은 자체 개발한 경량 신속 제어 프로토타이핑 시스템(LW-RCP)을 활용해 시뮬링크 기반의 블록 다이어그램 프로그래밍으로 제어 시스템을 설계하고 실시간 제어기를 구현하는 방법을 설명했다. 특히 2단 도립진자 시스템의 실시간 제어 시연에서는 최적제어와 강화학습 기반 제어를 활용한 기술을 시연했다. 매스웍스코리아의 이종민 대표는 "이번 매트랩 엑스포는 참석자들과 함께 국내 엔지니어링 분야의 미래를 확인할 수 있는 뜻깊은 행사였다”면서, “매스웍스는 앞으로도 AI, 전동화, 모빌리티 등 다양한 산업 분야의 기술 발전을 지원해 국내 산업의 경쟁력 강화에 기여할 것"이라고 전했다.
작성일 : 2025-04-08
가트너, 비즈니스를 바꿀 초기 단계 혁신 기술 발표
가트너가 비즈니스 시스템을 변화시킬 12가지 혁신 기술을 발표했다. 가트너는 이러한 기술이 단기적으로는 경쟁 우위를 제공하며, 장기적으로는 비즈니스 표준으로 자리 잡을 것으로 전망했다. 또한, 향후 5년간 기술 리더는 이를 우선적으로 고려할 것을 제시했다. 가트너는 초기 단계에 머물고 있는 12가지 혁신 기술에 대해 개별적으로도 상당한 영향력을 갖지만, 상호 결합될 경우 새로운 비즈니스 모델을 창출하는 보다 광범위한 신규 설루션을 만들어낼 수 있다고 밝혔다. 예를 들어, 생성형 AI 기술의 발전은 지구 지능과 비즈니스 시뮬레이션 분야에서 새로운 설루션을 탄생시키고, 도메인 특화 언어 모델의 성장을 촉진하며, 더욱 고도화된 도구 개발로 이어질 것이다. 가트너가 제시하는 주요 기술 혁신 중 일부는 다음과 같다.     생성형 AI 기반 코드 아키텍처 : 자유 형식 텍스트 및 멀티미디어 입출력을 활용한 생성형 AI 설루션 시스템은 기존에 기업 애플리케이션에서 사용되던 사용자 인터페이스(UI)를 대체하고, 새로운 사용자 시나리오를 발굴할 것이다. 가트너는 2029년까지 기업 비즈니스 프로세스와 연계된 사용자 상호작용의 50% 이상이 대규모 언어 모델(LLM)을 이용해 기존 기업 애플리케이션의 UI 레이어를 우회할 것으로 전망했으며, 이는 현재 5% 미만에서 크게 증가한 수치다. 허위 정보 보안 : 허위 정보 보안은 기업이 직접 통제하지 않는 네트워크 외부에서 발생하는 위협에 초점을 맞춘 새로운 보안이다. 여기에는 딥페이크 탐지, 사칭 방지, 평판 보호 등 허위 정보로 인한 문제를 해결하는 다양한 기술이 포함된다. 이들 기술을 통해 기업은 신뢰할 수 있는 정보를 식별하고, 브랜드를 보호하며, 온라인에서의 존재감을 유지할 수 있다. 가트너는 허위 정보 보안을 위한 제품 및 서비스를 도입하는 기업이 2024년 5% 미만에서 2030년에는 절반 이상으로 증가할 것으로 예측했다. 지구 지능 : 지구 지능(Earth intelligence)은 위성, 항공, 지상 데이터를 AI로 분석함으로써 지구의 자산 및 활동을 모니터링하고 의사결정에 필요한 인사이트를 제공하는 기술이다. 가트너는 2028년까지 전 세계 주요 지구 표면 자산의 80%가 위성을 통해 실시간으로 파악될 것으로 전망했다. 지구 지능은 광범위한 적용 가능성으로 모든 산업과 기업에서 활용될 수 있다. 초기에는 국방 분야에서 가장 먼저 도입되었지만, 데이터 품질과 분석 기술의 발전에 힘입어 활용 영역이 빠르게 확대되고 있다. 현재 지구 지능 시장은 데이터 수집, 해석 및 분석, 산업별 인사이트 도출 기업으로 구성돼 있다. 가트너의 빌 레이(Bill Ray) 수석 VP 애널리스트는 “기술 리더는 선점 효과를 얻기 위해 12가지 혁신 기술을 활용할 수 있는 즉각적인 행동에 나서야 한다. 생성형 AI 기반 코드 아키텍처, 허위 정보 보안, 지구 지능과 같은 혁신적인 기술은 기업이 데이터 및 제품 제공 측면에서 경쟁 우위를 확보하는 데 필요한 차별성을 제공할 것”이라고 전했다.
작성일 : 2025-04-08
젠하이저, ‘NAB 2025’에서 차세대 무선 시스템 및 몰입형 오디오 설루션 공개
젠하이저가 미국 라스베이거스에서 열리는 세계 최대 방송장비 전시회 ‘NAB 2025’에 참가한다고 밝혔다. 이번 전시에서 젠하이저는 자회사인 방송·음향 장비 기업 노이만 및 디지털 오디오 시스템 제조업체 머징 테크놀로지와 함께 최신 오디오 기술을 선보인다. 젠하이저는 NAB 2025에서 새로운 방송용 마이크를 최초로 선보인다. 신제품은 선명한 음질과 내구성을 갖춘 고성능 마이크로, 방송국과 스튜디오에서 요구하는 정밀한 사운드를 제공한다. 이와 함께, 차세대 디지털 무선 오디오 시스템 ‘WMAS(Wireless Multichannel Audio System)’도 공개된다. WMAS는 넓은 주파수 대역을 활용해 여러 개의 무선 마이크 및 인이어 모니터(IEM)를 동시에 전송할 수 있는 기술로, 주파수 간섭을 최소화하면서 대규모 환경에서도 안정적인 오디오 운영을 지원한다. 또한, 젠하이저는 모든 주요 브랜드의 무선 오디오 시스템을 하나의 플랫폼에서 통합 관리할 수 있는 RF 관리 소프트웨어 ‘사운드베이스(SoundBase)’를 소개한다. 기존에는 방송 및 라이브 환경에서 다양한 브랜드의 무선 장비를 사용할 경우 각각의 전용 주파수 관리 도구를 따로 사용해야 했다. 하지만 사운드베이스는 브랜드에 관계없이 모든 주요 무선 시스템을 지원해, 사용자가 보다 직관적이고 효율적으로 주파수를 조정하고 실시간으로 장비 상태를 모니터링할 수 있도록 지원한다.   ▲ 노이만의 DAW 플러그인 RIME   노이만은 새로운 디지털 오디오 워크스테이션(DAW) 플러그인 ‘RIME(Reference Immersive Monitoring Environment)’를 선보인다. RIME는 젠하이저의 몰입형 오디오 브랜드 ‘앰비오(AMBEO)’의 독자적인 알고리즘을 적용해, 돌비 애트모스(Dolby Atmos) 7.1.4 등 최신 공간 음향 포맷을 헤드폰에서 정밀하게 모니터링할 수 있도록 지원하는 설루션이다. 이를 통해 음향 엔지니어와 콘텐츠 크리에이터는 별도의 스피커 없이도 몰입형 오디오 믹싱을 보다 정확하게 수행할 수 있다. 또한, 방송용 마이크 ‘BCM 104’ 및 ‘BCM 705’의 새로운 블랙 색상 모델도 공개될 예정이다. 머징 테크놀로지는 차세대 오디오 재생 및 쇼 컨트롤 시스템 ‘오베이션(Ovation) 11’을 선보인다. 오베이션은 방송, 라이브 이벤트, 박물관, 몰입형 전시 등 다양한 환경에서 정밀한 오디오 동기화 및 자동화된 재생을 제공하는 전문 설루션으로, 최신 버전에서는 더욱 직관적인 UX/UI와 향상된 믹서 기능을 지원한다. 또한, 머징은 ‘하피 Mk III’, ‘아누비스’, ‘MT 48’ 등의 오디오 인터페이스를 활용한 네트워크 기반의 오디오 제작 환경도 시연할 예정이다. 젠하이저 그룹 관계자는 “이번 NAB 2025에서 혁신적인 무선 오디오 시스템과 몰입형 사운드 설루션을 선보이게 되어 기대가 크다”면서, “특히 WMAS 기술과 사운드베이스의 RF 관리 설루션이 방송 및 오디오 전문가에게 많은 관심을 받을 것으로 기대된다”고 말했다.
작성일 : 2025-04-04
[칼럼] AI의 거대한 파도, 엔비디아가 만드는 미래
트렌드에서 얻은 것 No. 22    AI 시대, 우리는 어떤 미래를 만들어갈 것인가?” – 젠슨 황   AI의 거대한 파도, 엔비디아가 만드는 미래 엔비디아는 2024년과 2025년 GTC(GPU Technology Conference)에서 AI 기술을 통해 산업 전반에 걸친 변화를 이끌어가고 있다. 젠슨 황은 기조연설에서 기술 혁신이 사회적, 경제적 구조를 재편하는 ‘변화의 파도’라고 강조하며, 엔비디아가 그 중심에서 미래를 설계하고 있음을 확신시켰다.  엔비디아는 두 해 동안 AI 혁신을 가속화하며 다양한 제품과 플랫폼을 선보였다. 2024년에는 GB200 AI 플랫폼과 블랙웰(Blackwell) DGX B200 GPU를 통해 성능 향상에 초점을 맞췄다면, 2025년에는 블랙웰 울트라(Blackwell Ultra) 기반의 NVL72 등 차세대 하드웨어와 지속 가능성을 강조하며 더 큰 비전을 제시했다.   표 1. 2024년과 2025년 엔비디아의 주요 발표 비교   인공지능 혁명의 변곡점에서 인류는 늘 기술의 발전과 함께 새로운 시대를 맞이해 왔다. 산업혁명이 증기기관과 전기를 통해 생산 방식을 혁신했던 것처럼, 디지털 혁명은 인터넷과 스마트폰을 통해 세상을 연결했다. 그리고 지금, 우리는 또 하나의 거대한 변곡점에 서 있다. 바로 AI 혁명이다. 2025년 3월, 엔비디아의 GTC에서 젠슨 황 CEO는 기조연설을 통해 AI가 변화의 중요한 시점에 도달했음을 선언했다. 그는 AI가 단순한 도구를 넘어 ‘스스로 사고하고 결정하는 존재’로 발전하고 있으며, 이 거대한 변화가 기업, 산업, 그리고 인간의 삶 전반에 걸쳐 영향을 미칠 것이라고 강조했다. 이번 GTC 2025에서 가장 주목받은 키워드는 에이전틱 AI(agentic AI)와 추론 AI(reasoning AI)였다. 기존의 AI가 데이터를 분석하고 패턴을 찾는 데 주력했다면, 이제 AI는 자율적으로 목표를 설정하고 스스로 문제를 해결하는 방향으로 나아가고 있다. 이러한 변화는 단순한 업그레이드가 아니라, AI 산업 전반의 패러다임을 뒤흔드는 파도와 같다. 이러한 흐름 속에서 엔비디아는 블랙웰 GPU라는 차세대 칩을 공개하며, 인공지능 모델의 효율성을 비약적으로 향상시키는 새로운 하드웨어 시대를 열었다. 또한 옴니버스 클라우드 API(Omniverse Cloud API), AI 팩토리(AI Factories) 등의 개념을 통해 AI가 단순한 연구 도구가 아니라, 실제 산업을 자동화하고 혁신하는 핵심 인프라로 자리 잡아가고 있음을 보여주었다. 그렇다면 우리는 이러한 변화의 바람 속에서 어떤 선택을 해야 할까? AI 혁명의 파도를 넘는 기업과 뒤처지는 기업의 차이는 무엇일까? 엔비디아의 발표를 중심으로 AI 산업이 어디로 흘러가고 있는지, 그리고 그 변화 속에서 우리는 무엇을 준비해야 하는지를 하나씩 짚어보자. “AI가 단순한 연구 프로젝트에서 벗어나, 본격적인 산업 혁신의 중심으로 자리 잡는 것” – 젠슨 황   블랙웰, AI의 새로운 엔진 기술 혁신의 역사는 더 빠르고 더 강력하며 더 효율적인 도구를 만들려는 인간의 끝 없는 도전과 함께 발전해 왔다. AI 산업도 예외가 아니다. 과거에는 단순한 이미지 분석과 음성 인식이 AI의 주요 활용 분야였다면, 이제는 스스로 학습하고 결정을 내리며 복잡한 문제를 해결하는 AI가 요구되고 있다. 하지만 이런 고도화된 AI 모델을 운용하려면 엄청난 연산 능력이 필요하며, 이를 뒷받침할 강력한 하드웨어가 필수이다. GTC 2025에서 젠슨 황이 가장 먼저 소개한 것은 블랙웰 GPU였다. 그는 “AI의 미래를 가속하는 가장 강력한 엔진”이라며, 블랙웰이 기존 호퍼(Hopper) 아키텍처를 넘어선 새로운 시대의 핵심 기술이라고 강조했다. 그렇다면 블랙웰 GPU는 무엇이 다를까? 블랙웰 GPU는 기존 호퍼 아키텍처 대비 연산 성능이 2배 이상 향상되었으며, 특히 대규모 AI 모델을 실행할 때의 전력 효율이 4배 증가했다. 이는 곧 더 적은 에너지로 더 강력한 AI 모델을 훈련하고 실행할 수 있다는 의미다. 젠슨 황은 연설에서 “블랙웰은 단순한 속도 개선이 아니라, AI 연구자들이 더 크고 복잡한 모델을 현실적으로 활용할 수 있도록 지원하는 플랫폼”이라고 설명했다. 이제 AI 연구자는 엄청난 비용을 감수하지 않고도 보다 정교한 생성형 AI, 실시간 데이터 처리, 고도화된 시뮬레이션 등을 구현할 수 있게 되었다. 엔비디아는 블랙웰 GPU와 함께 옴니버스 클라우드 API를 발표했다. 이는 단순한 클라우드 컴퓨팅 설루션이 아니라, AI 모델 개발 및 실행을 위한 강력한 협업 플랫폼이다. 옴니버스 클라우드 API는 데이터센터, AI 연구소, 기업의 IT 인프라를 하나의 거대한 AI 네트워크로 연결하여, 개발자들이 실시간으로 협업하고 AI 모델을 학습할 수 있도록 지원한다. 이는 특히 자율주행, 산업 자동화, 로보틱스 같은 분야에서 AI의 혁신 속도를 극적으로 끌어올릴 것으로 기대된다. 젠슨 황은 “AI 개발은 더 이상 한 기업이나 연구소만의 일이 아니다. 옴니버스 클라우드 API를 통해 전 세계의 AI 개발자가 하나로 연결될 것”이라며, AI 연구의 새로운 생태계를 제시했다. 또 한 가지 주목할 점은 AI 팩토리(인공지능 공장) 개념이다. 젠슨 황은 AI를 ‘새로운 산업 혁명의 동력’으로 표현하며, AI 팩토리가 데이터를 가공하고 AI 모델을 대량으로 생산하는 핵심 인프라가 될 것이라고 설명했다. 이 개념을 이해하려면 기존 제조업과 비교해보면 쉽다. 과거에는 자동차나 전자제품을 생산하는 공장이 경제의 중심이었지만, 미래에는 AI를 학습하고, 최적화하고, 배포하는 ‘AI 공장’이 가장 중요한 인프라가 될 것이다. 젠슨 황은 AI 팩토리가 AI 기반 자율주행, 로봇, 데이터 분석, 금융 모델링 등 다양한 산업에서 필수 역할을 하게 될 것이라고 강조했다. 블랙웰 GPU, 옴니버스 클라우드 API, AI 팩토리는 단순한 기술 발전이 아니다. 이들은 AI가 단순한 연구 프로젝트에서 벗어나 본격적인 산업 혁신의 중심으로 자리 잡는 것을 의미한다. 과거에도 GPU의 성능 향상이 AI 산업에 변화를 가져온 적이 있다. 2012년 알렉스넷(AlexNet)이 GPU 가속을 이용해 딥러닝의 가능성을 처음 보여줬고, 2017년 트랜스포머(transformer) 모델이 등장하며 자연어 처리 AI가 급격히 발전했다. 그리고 2025년에는 블랙웰이 AI의 자율성과 창의성을 한 단계 끌어올리는 전환점이 될 것이다. 젠슨 황이 기조연설에서 블랙웰을 소개하며 한 말이 특히 인상적이었다. “AI는 이제 단순한 도구가 아니라 스스로 사고하고 결정하는 존재로 나아가고 있다.” 이 말은 곧, 우리가 맞이할 AI의 미래가 이전과는 전혀 다른 차원이라는 것을 시사한다. 그리고 그 변화를 가속하는 엔진이 바로 블랙웰이다. “이제 AI는 단순한 계산기가 아니라, 실제로 ‘생각하고 판단하는 존재’가 되어야 한다.” – 젠슨 황   엔비디아가 던진 화두, 에이전틱 AI와 추론 AI AI 기술의 발전은 단순히 연산 능력을 향상시키는 것에 그치지 않는다. 더 중요한 것은 AI의 ‘사고 방식’이 바뀌고 있다는 점이다. 지금까지의 AI는 데이터를 학습하고 패턴을 인식하는 역할을 해왔다. 하지만 이제 AI는 스스로 목표를 설정하고, 상황에 맞게 판단하며, 능동적으로 문제를 해결하는 방향으로 진화하고 있다. GTC 2025에서 젠슨 황이 강조한 에이전틱 AI와 추론 AI는 바로 이러한 변화의 핵심 개념이다. 그는 이 두 가지 개념이 AI를 단순한 도구에서 ‘자율적 지능’으로 변화시키는 결정적 요소라고 설명했다. 그렇다면 에이전틱 AI와 추론 AI는 무엇이며, 어떤 변화를 가져올까? 에이전틱 AI의 핵심은 AI가 인간의 지시 없이도 능동적으로 목표를 설정하고, 실행할 수 있도록 만드는 것이다. 기존의 AI는 주어진 데이터와 명령에 따라 최적의 결과를 도출하는 ‘수동적’ 존재였다. 하지만 에이전틱 AI는 스스로 목표를 설정하고, 문제를 해결하는 ‘능동적’ 존재로 변하고 있다. 젠슨 황은 에이전틱 AI를 활용하면 인간이 직접 개입하지 않아도 AI가 알아서 문제를 해결하는 시대가 열린다고 강조했다. 추론 AI는 한 단계 더 나아가, AI가 단순한 패턴 인식을 넘어 논리적 사고를 수행할 수 있도록 만드는 기술이다. 기존 AI 모델은 데이터를 학습하고 특정 패턴을 기반으로 예측을 수행했지만, 그 과정에서 왜 이런 결론이 나왔는지 설명하지 못하는 경우가 많았다. 그러나 추론 AI는 AI가 논리적인 판단을 수행하고, 의사결정의 과정을 설명할 수 있도록 하는 것을 목표로 한다. 젠슨 황은 “이제 AI는 단순한 계산기가 아니라, 실제로 ‘생각하고 판단하는 존재’가 되어야 한다”며, 추론 AI가 향후 AI 발전의 핵심이 될 것이라고 강조했다. 젠슨 황이 강조한 에이전틱 AI와 추론 AI는 개별적인 개념이 아니라, 서로 결합될 때 가장 강력한 시너지를 발휘한다. 에이전틱 AI는 AI가 스스로 목표를 설정하고, 문제를 해결할 수 있도록 한다. 추론 AI는 AI가 단순한 계산이 아니라, 논리적 사고를 통해 최적의 결정을 내릴 수 있도록 한다. 이 두 가지가 결합되면, AI는 단순한 보조 도구를 넘어서 ‘진정한 지능(Artificial General Intelligence : AGI)’에 가까워질 것이다. 이러한 AI의 발전은 산업 전반에 걸쳐 거대한 변화의 파도를 일으킬 것이며, 기업들은 단순한 AI 도입을 넘어서 AI를 기업 전략의 중심으로 삼아야 하는 시점에 이르렀다. “AI 팩토리를 구축하여 AI 자체를 ‘생산하는 능력’을 가져야 한다.” – 젠슨 황   AI 팩토리, AI 혁명을 생산하는 공장 이제 AI는 단순한 소프트웨어가 아니라 하나의 ‘산업’으로 성장하고 있다. GTC 2025에서 젠슨 황이 강조한 개념 중 하나가 바로 AI 팩토리(인공지능 공장)이다. 그는 AI 팩토리를 가리켜 ‘미래 산업의 심장’이라고 표현했다. 그렇다면 AI 팩토리란 무엇이며, 왜 중요할까? 이 개념이 가져올 변화는 무엇일까? 기존의 데이터센터는 단순한 컴퓨팅 인프라였다. 하지만 AI 팩토리는 데이터를 학습하고, AI 모델을 훈련하며, 새로운 AI 설루션을 ‘생산’하는 역할을 한다. 즉, AI가 AI를 만들어내는 공장이다. 젠슨 황은 AI 팩토리를 자동차 산업에 비유하며 설명했다. “과거에는 사람이 손으로 자동차를 조립했지만, 지금은 로봇이 자동차를 생산한다. AI도 마찬가지다. 미래에는 사람이 AI를 개발하는 것이 아니라, AI 팩토리에서 AI가 스스로 AI를 만들어내게 될 것이다.” 즉, AI 팩토리는 단순한 데이터 센터가 아니라 AI 혁명을 대량 생산하는 공장이 된다. 젠슨 황은 GTC 2025에서 "AI 팩토리를 구동하는 핵심 연산 장치는 블랙웰 GPU가 될 것"이라고 강조했다. AI 팩토리에서 생산되는 것은 반도체나 기계가 아니라 AI 자체다. 이 공장에서 에이전틱 AI, 추론 AI, 자율주행 AI, 생성형 AI 등이 대량으로 생산된다. 즉, AI 팩토리는 단순한 데이터 센터를 넘어 새로운 AI 산업의 허브가 된다. AI 팩토리가 등장하면 기업과 산업이 근본적으로 변화한다. 특히, 데이터를 기반으로 하는 모든 산업이 AI 팩토리를 도입할 가능56 · 성이 높다. 결국 AI 팩토리는 단순한 연구소가 아니라, 실제 AI 모델을 ‘대량 생산’하여 산업에 공급하는 핵심 인프라가 된다. 젠슨 황은 AI 팩토리의 등장이 단순한 기술 발전이 아니라 경제 패러다임의 변화라고 강조했다. 이제 기업은 단순히 AI를 도입하는 것을 넘어, AI 팩토리를 구축하여 AI 자체를 ‘생산하는 능력’을 가져야 한다. “AI를 도입하지 않는 기업은 도태될 것이다.” – 젠슨 황   AI의 도입, AI가 기업을 재설계한다 AI 혁명은 더 이상 선택이 아니다. GTC 2025에서 젠슨 황이 강조한 메시지는 명확했다. "AI를 도입하지 않는 기업은 도태될 것이다." 이제 AI는 기업 운영의 한 요소가 아니라 기업의 핵심 전략, 구조, 성장 엔진 자체로 변화하고 있다. 기업은 어떻게 AI를 도입하고 있으며, AI 도입이 비즈니스에 미치는 영향은 무엇일까? 과거 AI 도입은 단순한 자동화 도구 활용이었다. 그러나 이제 AI 도입(AI adoption)은 기업의 핵심 역량을 AI 중심으로 전환하는 과정이다. AI 도입은 이제 단순한 기술의 도입이 아니라, 기업의 전략과 문화 자체를 AI 중심으로 변화시키는 과정이다. AI 도입이 빠르게 진행될 수록, 기업들은 직접 AI를 개발하는 것이 아니라 필요한 AI 서비스를 구독하는 방식으로 활용하는 시대가 열리고 있다. AI 도입이 가속화되면서 기업들은 완전히 새로운 방식으로 운영되고 있다. 특히, 의사결정 구조, 업무 방식, 조직 문화가 AI 중심으로 변화하고 있다. 이제 AI는 단순한 도구가 아니다. AI 도입이 진행될 수록, 기업의 핵심 전략과 비즈니스 모델 자체가 AI 중심으로 변화하고 있다. 결국, AI 도입을 성공적으로 수행하는 기업만이 미래 시장에서 생존하고 성장할 수 있을 것이다.    표 2. 기존 기업 vs. AI 중심 기업의 차이점   AI는 혼자 발전할 수 없다. 모두가 함께 연결되어야 한다.” – 젠슨 황   네트워킹, AI 시대의 연결과 협업 AI가 기업의 핵심 전략이 되고 산업 전체가 AI 기반으로 재편되는 과정에서, 네트워킹(networking)의 중요성이 더욱 강조되고 있다. 과거 기업은 독립적으로 성장하는 전략을 취했지만, 이제 AI 시대에서는 기업 간 협력, 데이터 공유, AI 연구 협업이 필수이다. GTC 2025에서 젠슨 황은 이렇게 말했다. “AI는 혼자 발전할 수 없다. 모두가 함께 연결되어야 한다.” 그렇다면 AI 시대의 네트워킹은 어떻게 이루어지고 있으며, 어떤 기업이 AI 협업을 통해 새로운 가치를 창출하고 있을까? AI 네트워킹의 의미는 ‘AI는 연결을 필요로 한다’로 해석된다. AI 혁명이 가속화될 수록 기업들은 서로 연결될 필요가 있다.  즉, AI 네트워킹이란 기업들이 AI를 더 빠르고, 더 효율적으로, 더 윤리적으로 활용하기 위해 서로 협력하는 과정을 의미한다. AI 네트워킹을 실현하는 방식은 다양하지만, 현재 가장 중요한 세 가지 협력 모델을 살펴보자. AI 팜(AI farms)을 통해 개별 기업이 AI 인프라를 구축하는 부담을 줄이고, 더 빠르게 AI를 도입할 수 있다. AI 얼라이언스(AI alliance)를 통해 기업들은 경쟁이 아닌 협력을 기반으로 AI 혁신을 가속화하고 있다. 즉, AI 데이터 공유는 이제 개인정보 보호를 유지하면서도 기업들이 협력할 수 있는 새로운 방식으로 발전하고 있다. AI 네트워킹이 활성화됨에 따라, 기업들은 완전히 새로운 방식으로 연결되고 협력하고 있다. AI 시대에는 한 산업 내에서 경쟁하는 것이 아니라, 다양한 산업과 연결되는 것이 핵심 전략이 된다. 결과적으로, AI 네트워킹을 활용하는 기업들은 새로운 기회를 창출하고, 더 빠르게 AI 중심으로 전환하고 있다. “AI 혁명은 이제 되돌릴 수 없는 변곡점에 도달했다. 우리는 AI와 함께 새로운 미래를 설계해야 한다.” – 젠슨 황   AI 시대의 미래, 우리는 어디로 가는가 AI 혁명은 이제 단순한 기술 발전을 넘어 산업, 사회, 인간의 삶 자체를 근본적으로 변화시키고 있다. GTC 2025에서 젠슨 황은 말했다. “AI 혁명은 이제 되돌릴 수 없는 변곡점에 도달했다. 우리는 AI와 함께 새로운 미래를 설계해야 한다. ”그렇다면 AI의 미래는 어디로 향하고 있으며, 우리는 AI와 함께 어떤 세상을 만들어가야 할까? 에이전틱 AI와 추론 AI의 발전이다. 즉, AI가 단순한 ‘도구’가 아니라, 인간과 협력하는 ‘실제적인 파트너’가 되는 시대가 다가오고 있다. 기존의 AI는 패턴을 학습하는 방식이었다. 그러나 추론 AI는 스스로 논리적으로 사고하고 추론하는 능력을 갖춘다. 즉, AI가 더 이상 단순한 자동화 도구가 아니라, 지능적인 사고를 할 수 있는 존재로 변화하고 있다. AI가 점점 더 지능적으로 발전하면서, 우리는 ‘AI와의 관계를 어떻게 설정할 것인가’라는 근본적인 질문을 마주하게 되었다. 이제 AI는 단순한 도구를 넘어, 인간과 협력하여 새로운 가치를 창출하는 존재로 변화하고 있다. AI가 고도화될 수록 우리는 AI의 윤리적 문제와 사회적 책임에 대한 고민을 깊게 해야 한다. 결과적으로, 각국이 AI 규제와 발전 전략을 다르게 설정하면서 AI 패권 경쟁이 더욱 치열해지고 있다. AI는 단순한 기술이 아니라, 인류가 새로운 방식으로 사고하고 일하고 살아가는 방식을 바꾸는 거대한 전환점이 되고 있다. “AI는 이제 단순한 도구가 아니라, 스스로 사고하고 결정하는 존재로 나아가고 있다.” – 젠슨 황   변화의 바람을 넘어, AI와 함께 새로운 항해를 시작하다 AI 혁명은 거대한 바람이 아니라, 이제는 우리가 타고 항해해야 할 파도다. 과거에는 변화가 두려운 것이었다. 그러나, AI와 함께라면 우리는 변화 속에서도 새로운 기회를 창출할 수 있다. 엔비디아 GTC 2025에서 젠슨 황이 던진 질문을 기억하자. “AI 시대, 우리는 어떤 미래를 만들어갈 것인가?” 이제 우리는 AI와 함께 새로운 항해를 시작할 준비를 해야 한다.   그림 1. 엔비디아 기업 성장 맵(GTC 2024, 2025, Map by 류용효) (클릭하면 큰 이미지로 볼 수 있습니다.)   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다. (블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-04-02
엔비디아, AI와 그래픽 융합 가속화하는 데이터센터 GPU ‘RTX PRO 6000 블랙웰 서버 에디션’ 발표
엔비디아가 GTC 2025에서 ‘엔비디아 RTX PRO 6000 블랙웰 서버 에디션(NVIDIA RTX PRO 6000 Blackwell Server Edition)’을 발표했다. RTX PRO 6000 블랙웰 서버 에디션은 비주얼 컴퓨팅과 엔터프라이즈 AI를 위해 구축된 첫 번째 블랙웰 기반 데이터센터 GPU이다. 이는 모든 산업에서 높은 성능을 요구하는 AI, 그래픽 애플리케이션을 신속하게 처리할 수 있도록 설계됐다. 이전 세대인 에이다 러브레이스(Ada Lovelace) 아키텍처 기반 L40S GPU에 비해 RTX PRO 6000 블랙웰 서버 에디션 GPU는 다양한 엔터프라이즈 워크로드에서 성능이 크게 향상된다. 예를 들어, 에이전틱 AI(Agentic AI) 애플리케이션을 위한 대규모 언어 모델(LLM) 추론 처리량은 최대 5배 증가되고, 유전체 염기서열 분석은 약 7배로 가속화되며, 텍스트-비디오 생성은 3.3배, 렌더링 속도는 2배 이상 빨라진다. RTX PRO 6000 블랙웰 서버 에디션은 워크스테이션과 서버 GPU로 이뤄진 엔비디아 RTX PRO 블랙웰 시리즈에 속한다. 이번 엔비디아 GTC에서 발표된 RTX PRO 라인업은 여러 산업의 AI와 창의적인 워크로드를 지원하는 데스크톱, 랩톱, 데이터센터 GPU로 구성된다. 여러 분야의 기업들은 RTX PRO 6000 블랙웰 서버 에디션을 통해 데이터 분석, 엔지니어링 시뮬레이션, 생성형 AI, 비주얼 컴퓨팅과 같은 워크로드에서 높은 성능을 구현할 수 있다. 여기에는 건축, 자동차, 클라우드 서비스, 금융 서비스, 게임 개발, 의료, 제조, 미디어, 엔터테인먼트, 소매업 등의 산업이 포함된다. 콘텐츠 제작, 반도체 제조, 유전체 분석 기업들은 이미 컴퓨팅 집약적인 AI 지원 워크플로를 가속화하기 위해 RTX PRO 6000 블랙웰 서버 에디션의 기능을 활용하고 있다.     RTX PRO 6000 블랙웰 서버 에디션은 데이터센터 환경에서 연중무휴 24시간 운영할 수 있게 설계된 수동 냉각 장치 형태로, 강력한 RTX AI와 그래픽 기능을 제공한다. 96GB의 초고속 GDDR7 메모리와 멀티 인스턴스 GPU(MIG)를 갖춘 RTX PRO 6000은 최대 4개의 완전히 격리된 인스턴스로 분할될 수 있다. 각 인스턴스는 24GB의 메모리를 사용할 수 있어, AI 워크로드와 그래픽 워크로드를 동시에 실행할 수 있다. RTX PRO 6000은 엔비디아 컨피덴셜 컴퓨팅(Confidential Computing)을 통해 안전한 AI를 구현하는 범용 GPU이다. 이는 강력한 하드웨어 기반 보안으로 AI 모델과 민감한 데이터를 무단 접근으로부터 보호한다. 이에 따라 물리적으로 격리된 신뢰할 수 있는 실행 환경을 제공해 데이터를 사용하는 동안 전체 워크로드를 보호한다. 또한, RTX PRO 6000은 엔터프라이즈급 배포에서 효과적으로 사용될 수 있도록 고밀도 가속 컴퓨팅 플랫폼으로 구성돼 분산 추론 워크로드를 수행할 수 있다. 더불어 엔비디아 vGPU 소프트웨어를 통해 가상 워크스테이션을 제공하며, AI 개발과 고도의 그래픽 애플리케이션을 구동하는 데 사용될 수 있다. RTX PRO 6000 GPU는 광범위한 AI 모델에 걸쳐 강력한 추론 성능을 제공하며, 복잡한 가상 환경의 사실적인 실시간 레이 트레이싱을 가속화한다. 여기에는 5세대 텐서 코어(Tensor Core), 4세대 RT 코어, DLSS 4, 통합된 미디어 파이프라인, FP4 정밀도를 지원하는 2세대 트랜스포머 엔진(Transformer Engine) 등 최신 블랙웰 하드웨어와 소프트웨어 혁신이 포함된다. 기업들은 RTX PRO 6000 블랙웰 서버 에디션 GPU에서 엔비디아 옴니버스(Omniverse)와 엔비디아 AI 엔터프라이즈(AI Enterprise) 플랫폼을 대규모로 실행할 수 있다. 이를 통해 이미지와 비디오 생성, LLM 추론, 추천 시스템, 컴퓨터 비전, 디지털 트윈, 로보틱스 시뮬레이션 등의 에이전틱 AI, 물리 AI 애플리케이션 개발과 배포를 더욱 원활하게 진행할 수 있다. 엔비디아는 RTX PRO 6000 블랙웰 서버 에디션을 탑재한 플랫폼이 5월부터 전 세계 파트너를 통해 출시될 예정이라고 소개했다. 클라우드 서비스 제공업체와 GPU 클라우드 제공업체 중에서는 아마존 웹 서비스(AWS), 구글 클라우드, 마이크로소프트 애저, IBM 클라우드, 코어위브, 크루소, 람다, 네비우스, 벌처가 최초로 RTX PRO 6000 블랙웰 서버 에디션을 탑재한 인스턴스를 제공할 계획이다. 시스코, 델 테크놀로지스, 휴렛팩커드 엔터프라이즈(HPE), 레노버, 슈퍼마이크로는 RTX PRO 6000 블랙웰 서버 에디션을 탑재한 서버를 제공할 예정이다. 이 외에도 어드밴텍, 애티나, 에이브레스, 애즈락랙, 에이수스, 컴팔, 폭스콘, 기가바이트, 인벤텍, MSI, 페가트론, 퀀타 클라우드 테크놀로지(QCT), 미텍 컴퓨팅, 네이션게이트, 위스트론, 위윈 등의 기업도 이 서버를 제공할 계획이다.
작성일 : 2025-03-21