• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "마이크로서비스"에 대한 통합 검색 내용이 66개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
가트너, 2026년부터 주목해야 할 10대 AI 전망 발표
가트너가 2026년부터 주목해야 할 최우선 AI 전략 전망 10가지를 발표했다. 이 전망은 ▲AI 시대의 인재 ▲AI 주권 ▲인시디어스 AI(Insidious AI) 등 세 가지 핵심 트렌드로 분류된다. 가트너는 2027년까지 생성형 AI와 AI 에이전트의 사용이 지난 30년간 생산성 도구 시장에 발생한 가장 큰 도전 과제가 될 것이며, 580억 달러 규모의 시장 재편을 촉발할 것이라고 전망했다. 생성형 AI의 발전에 따라 기업은 업무 효율을 높이기 위해 생성형 AI 혁신을 우선순위에 둘 것으로 보인다. 과거의 형식과 호환성은 중요성이 낮아져, 진입 장벽은 낮아지고 다양한 공급업체 간의 새로운 경쟁이 촉발될 것으로 전망된다. 일상적 생성형 AI의 비용 구조와 패키징은 시간이 지나면서 변화할 것으로 보인다. 업체들은 유료 기능을 무료로 전환하고, 무료 제품을 더 넓은 사용자층에 적합하도록 만들 것이다. 2027년까지 기업 채용 과정의 75%가 모집 단계에서 업무용 AI 역량 인증 및 테스트를 포함하게 될 것으로 예상된다. 기업은 표준화된 프레임워크와 맞춤형 설문조사를 통해 지원자의 AI 활용 능력을 진단하고, 인력 내 기술 격차를 해소할 수 있을 것이다. 이러한 추세는 정보 수집, 보존, 종합이 핵심인 직종에서 특히 두드러질 것이다. 생성형 AI 역량이 급여와 점점 더 밀접하게 연계됨에 따라, 지원자들은 AI 역량 개발에 더 큰 가치를 두게 될 것이다. 이에 따라 문제 해결, 생산성 향상, 합리적 의사결정 능력을 입증하는 것이 필수 요건으로 부상할 것으로 예상된다. 한편, 가트너는 2026년까지 생성형 AI 사용으로 인한 비판적 사고력 저하로 전 세계 기업의 50%가 채용 과정에서 ‘AI 프리(AI Free)’ 능력 평가를 요구할 것으로 보았다. 기업이 생성형 AI 활용을 확대함에 따라, 채용 절차는 독립적 사고 능력을 갖춘 지원자와 AI가 생성한 결과물에 지나치게 의존하는 지원자를 구분하는 방향으로 변화할 것으로 보인다. 모집 과정에서는 AI 도움 없이 문제 해결, 증거 평가 및 판단 능력을 입증하는 역량이 점점 더 중요한 평가 기준이 될 것이다. 인간의 추론 능력을 별도로 평가하기 위한 전문 테스트 방법과 플랫폼이 등장하면서, AI 프리 평가 도구 및 서비스에 대한 2차 시장이 형성될 가능성도 높다. 2027년까지 전 세계 국가의 35%가 고유한 컨텍스트 데이터를 활용하는 지역 특화 AI 플랫폼에 고착될 전망이다. 기술적, 지정학적 요인으로 인해, 기업들은 엄격한 규제, 언어적 다양성, 문화적 적합성에 대응하기 위해 AI 설루션을 특성화할 수밖에 없으며, 그 결과 AI 환경은 파편화될 것으로 보인다. 지역 간 차이가 증가됨에 따라 범용 AI 설루션은 점차 사라질 것으로 예상된다. 다국적 기업은 글로벌 시장에 통합형 AI를 배포함에 있어 복잡한 과제에 직면하게 될 것이며, 고유한 규제 준수와 데이터 거버넌스 요구 조건을 가진 다양한 플랫폼 파트너십을 관리해야 할 것이다. 가트너는 2028년까지 고객 대면 비즈니스 프로세스의 80%에 다중 에이전트 AI를 활용하는 기업이 시장을 장악할 것으로 보았다. 고객관계관리(CRM) AI가 일상적인 업무를 처리하고, 인간은 복잡하고 감정적 요소가 중요한 상호작용에 집중하는 하이브리드 AI 모델이 업계 표준으로 자리 잡을 것이다. 고객은 계속해서 거래 실행이나 제품 정보 확인에는 AI 지원 완전 셀프서비스를 선호하는 반면, 복잡한 문제 해결이나 청구 분쟁 등에서는 인간을 선호할 것이다. 최소한의 노력과 신속한 서비스에 대한 고객의 기대가 일반화되면서, CRM 프로세스에 다중 에이전트 AI를 도입하지 못한 기업은 경쟁 우위를 상실할 위험이 있다. 한편, 2028년에는 B2B 구매의 90%가 AI 에이전트를 통해 이루어지며, AI 에이전트 거래로 15조 달러 이상의 B2B 지출이 발생할 것으로 보인다. 새로운 생태계에서 검증 가능한 운영 데이터는 화폐처럼 작용하며, 디지털 신뢰 프레임워크와 검증 가능성을 필수 전제로 하는 데이터 기반 경제를 촉진할 것이다. 컴포저블 마이크로서비스, API 우선, 클라우드 네이티브, 헤드리스 아키텍처로 설계된 제품은 상당한 경쟁 우위를 확보할 것이다. AI 위험 예방책 부족으로 인한 ‘AI발 사고’ 관련 소송은 2026년까지 1000건을 돌파할 전망이다. AI 관련 안전 관리 실패로 인한 사고와 피해 사례가 증가함에 따라 규제 기관의 감시 및 통제 강화, 리콜, 법 집행 기관의 개입, 소송 비용 증가가 예상된다. 규제 감독이 강화되면서 조직은 법적 의무 준수를 넘어, AI 위험 예방책을 활용해 비즈니스 시스템의 안전성과 투명성을 최우선 과제로 삼아야 하는 압박에 직면하게 될 것이다. AI 사용과 의사결정 거버넌스 실패의 영향은 지역별 법적·규제 체계의 차이에 따라 달라지며, 이는 조직이 다양한 위험과 책임에 노출될 수 있음을 의미한다. 또한, 2030년에는 금전거래의 22%가 이용 약관을 내장한 형태로 프로그래밍할 수 있게 되어 AI 에이전트에게 경제적 주체성을 부여할 것으로 보인다. 프로그래머블 머니는 M2M(Machine-To-Machine) 협상, 자동화된 상거래, 시장 탐색, 데이터 자산 수익화를 가능하게 함으로써 새로운 비즈니스 모델을 창출하고, 공급망 관리와 금융 서비스와 같은 산업을 근본적으로 재편하고 있다. 실시간으로 프로그래밍 가능한 거래는 마찰 감소, 유동성 향상, 운영 비용 절감을 통해 효율성을 높이고, 궁극적으로 자율 비즈니스 운영의 부상을 뒷받침할 것이다. 그러나 프로그래머블 머니 플랫폼과 블록체인 인프라 간의 파편화된 기준과 상호운용성 부족은 시장의 성장을 저해하고, AI 에이전트와 기계 고객이 완전한 경제 주체로 기능하는 것을 제한할 것이다. 2027년까지 프로세스 중심 서비스 계약의 비용 대비 가치 격차는 에이전트 AI 재설계를 통해 적어도 50% 감소할 것으로 전망됐다. AI 에이전트는 숨겨진 지식을 발견하도록 진화하며, 이러한 지식과의 상호작용 자체가 프로세스의 핵심이 될 것이다. AI 에이전트가 활용하는 숨겨진 지식은 새로운 가치 자산으로 이어질 것으로 예상된다. 한편, 표준화된 워크플로가 문맥적 오케스트레이션으로 대체됨에 따라 지속적인 혁신 기반 가격 책정은 인건비에 의해 제한되지 않을 것이다. 가트너는 2027년까지 파편화된 AI 규제가 전 세계 경제의 50%로 확산하며, 50억 달러 규모의 규정 준수 투자를 일으키게 될 것으로 보았다. 2024년에만 1000건 이상의 AI 관련 법률이 제안됐지만, 어떤 법률도 AI를 일관되게 정의하지 못하고 있다. AI 거버넌스는 혁신을 촉진하는 동시에 장벽으로 작용할 수 있다. 기술의 잠재력을 터뜨리는 것은 AI 사용 능력이다. 안전한 미래를 위해 기업들은 기술 담당 리더들에게 항구적인 ‘법률 및 규제’ 마인드맵 구축을 요구하게 될 것이다. 한편 보안과는 별개로, 새로운 형태로 등장하고 진화하는 AI의 위험을 관리하기 위해 전담 인력과 전문 소프트웨어를 갖춘 AI 거버넌스 프로그램이 표준으로 자리잡게 될 것이다. 가트너의 다릴 플러머(Daryl Plummer) 수석 VP 애널리스트는 “급격한 기술 변화가 가져오는 위험과 기회는 인간의 행동과 선택에 점점 더 큰 영향을 미치고 있다”면서, “기업의 CIO와 경영진은 미래에 대비하기 위해 기술 변화뿐만 아니라 행동 양식 변화 또한 최우선 과제로 삼아야 한다”고 말했다.
작성일 : 2025-10-23
유아이패스-엔비디아, 민감한 워크플로에 신뢰할 수 있는 에이전틱 자동화 제공
유아이패스가 엔비디아와의 협력을 발표하면서, 금융 사기 탐지나 의료 분야 환자 관리처럼 높은 신뢰가 요구되는 환경에서 기업 고객의 기존 자동화 워크플로를 AI 기능으로 강화할 수 있도록 지원한다고 밝혔다. 유아이패스의 에이전틱 자동화 역량과 엔비디아 네모트론(Nemotron) 공개 모델, 엔비디아 NIM을 결합해 기업은 자연어 처리, 이미지 해석, 예측 분석 등 엔터프라이즈급 AI 모델을 마이크로서비스 형태로 더욱 빠르고 손쉽게 배포할 수 있다. 이를 통해 민감한 워크플로에서 에이전틱 AI와 자동화를 효율적이고 정확하게 대규모로 도입할 수 있다.   이번 협력의 핵심은 유아이패스와 엔비디아 NIM, 네모트론을 연결하는 인티그레이션 서비스(Integration Service) 커넥터를 도입하는 것이다. 이를 통해 기업은 엔비디아 NIM을 활용해 생성형 AI 기능을 자사 애플리케이션과 서비스에 원활하고 신속하게 통합할 수 있어, 자동화 역량과 성능을 한층 강화할 수 있다. 이번 협력은 민감한 업무를 다루는 고객이 높은 신뢰가 요구되는 환경에서도 에이전트, 로봇, 인간 전문가를 활용해 엔드투엔드 비즈니스 프로세스를 자동화할 수 있도록 한다.   유아이패스는 서비스 커넥터 외에도 에이전틱 자동화 전반에서 새로운 기회를 모색하고 있다. 주요 영역에는 ▲AI 기반 에이전트를 효과적으로 조율하기 위한 에이전틱 오케스트레이션 고도화 ▲유아이패스의 자동화 전문성과 맞춤형 오픈소스 엔비디아 네모트론 모델 및 가속 컴퓨팅을 결합한 차별화된 에이전트 개발 ▲온프레미스와 에어갭(air-gapped) 환경까지 역량을 확장해 규제가 엄격한 산업에서도 AI를 안전하게, 대규모로 도입할 수 있도록 지원하는 것이 포함된다.   유아이패스의 그레이엄 쉘든(Graham Sheldon) 최고제품책임자(CPO)는 “사기 탐지나 의료 워크플로처럼 민감한 프로세스에는 강력하면서도 신뢰할 수 있는 AI가 필요하다”면서, “엔비디아 NIM 모델을 유아이패스 플랫폼에 통합함으로써, 고객은 엔터프라이즈급 거버넌스를 기반으로 자체 호스팅 모델을 배포하고 체계적으로 관리할 수 있다. 이를 통해 기업은 가장 중요한 프로세스에도 관리 체계와 투명성, 신뢰를 바탕으로 AI를 적용해 실질적인 비즈니스 성과를 창출할 수 있다”고 말했다.   엔비디아의 조이 콘웨이(Joey Conway) 엔터프라이즈 생성형 AI 소프트웨어 시니어 디렉터는 “기업들은 복잡하고 독자적인 운영을 위해 안전하고 신뢰할 수 있는 AI를 원한다”며, “엔비디아 네모트론 공개 모델과 NIM 마이크로서비스를 기반으로, 유아이패스는 규제 환경에서도 복잡한 활용 사례에 대응할 수 있으며, AI 에이전트를 활용해 고도화된 자동화 시스템을 신속히 구축할 수 있다”고 말했다.
작성일 : 2025-10-14
엔비디아, “새로운 오픈 모델과 시뮬레이션 라이브러리로 로보틱스 연구개발 가속화”
엔비디아가 오픈소스 뉴턴 물리 엔진(Newton Physics Engine)을 엔비디아 아이작 랩(NVIDIA Isaac Lab)에서 이용 가능하며, 로봇 기술을 위한 엔비디아 아이작 GR00T N1.6 추론 비전 언어 행동(vision language action : VLA) 모델과 새로운 AI 인프라를 함께 제공한다고 발표했다. 이들 기술은 개발자와 연구자에게 개방형 가속 로보틱스 플랫폼을 제공해 반복 작업을 가속화하고, 테스트를 표준화하며, 로봇의 추론과 훈련 통합을 지원한다. 아울러 로봇이 시뮬레이션에서 실제 환경으로 안전하고 안정적으로 기술을 이전할 수 있도록 돕는다. 로봇은 시뮬레이션 환경에서 더 빠르고 안전하게 학습할 수 있지만, 복잡한 관절, 균형, 움직임을 가진 휴머노이드 로봇은 오늘날 기존 물리 엔진의 한계를 시험한다. 전 세계 25만 명 이상의 로보틱스 개발자들은 정확한 물리 엔진을 필요로 하며, 이는 로봇이 시뮬레이션에서 학습한 기술을 현실 세계에서 안전하고 안정적으로 수행하기 위해 필수이다. 엔비디아는 리눅스 재단이 관리하는 GPU 가속 오픈소스 물리 엔진 뉴턴의 베타 버전을 공개했다. 이는 엔비디아 워프(Warp)와 오픈USD(OpenUSD) 프레임워크 기반으로, 엔비디아와 구글 딥마인드, 디즈니 리서치가 공동 개발했다. 뉴턴은 유연한 설계 및 다양한 물리 솔버와의 호환성을 갖췄다. 이를 통해 개발자가 눈이나 자갈 위를 걷거나, 컵과 과일을 다루는 등 매우 복잡한 로봇 동작을 시뮬레이션하고 이를 현실 세계에 성공적으로 적용할 수 있도록 지원한다.     휴머노이드가 물리적 환경에서 인간과 유사한 작업을 수행하기 위해서는 모호한 지시를 이해하고 이전에 경험하지 못한 상황에 대처할 수 있어야 한다. 곧 허깅 페이스에서 공개될 오픈소스 아이작 GR00T N1.6 로봇 파운데이션 모델의 최신 버전에는 피지컬 AI를 위해 개발된 오픈 맞춤형 추론 비전 언어 모델(VLM)인 엔비디아 코스모스 리즌(Cosmos Reason)이 통합될 예정이다. 코스모스 리즌은 로봇이 심층 사고를 하는 두뇌 역할을 담당하며 기존의 지식, 상식, 물리학을 활용해 모호한 지시를 단계별 계획으로 전환하고, 새로운 상황을 처리하며, 다양한 작업에 걸쳐 일반화할 수 있도록 한다. 코스모스 리즌은 현재 피지컬 리즈닝 리더보드(Physical Reasoning Leaderboard) 1위를 차지하고 있으며, 100만 회 이상 다운로드를 기록했다. 또한, 모델 훈련을 위한 대규모 실제 데이터, 합성 데이터를 선별하고 주석을 달 수 있다. 코스모스 리즌 1은 NIM에서 제공되며, 사용하기 쉬운 마이크로서비스 형태로 AI 모델 배포를 지원한다.  아이작 GR00T N1.6은 휴머노이드가 물체를 동시에 이동하고 조작할 수 있도록 해 상체와 팔의 자유도를 넓히고, 무거운 문을 여는 것과 같은 까다로운 작업을 수행할 수 있도록 한다. 개발자는 허깅 페이스의 오픈소스 엔비디아 피지컬 AI 데이터세트(Physical AI Dataset)를 사용해 아이작 GR00T N 모델을 사후 훈련할 수 있다. 이 데이터세트는 480만 회 이상 다운로드됐으며, 현재 수천 개의 합성 궤적과 실제 궤적 데이터를 포함한다. 또한, 엔비디아는 오픈소스 코스모스 월드 파운데이션 모델(WFM)의 신규 업데이트를 발표했다. 300만 회 이상 다운로드된 이 모델은 개발자가 텍스트, 이미지, 영상 프롬프트를 활용해 대규모로 피지컬AI 모델 훈련을 가속화할 수 있는 다양한 데이터 생성을 지원한다. 코스모스 프리딕트(Cosmos Predict) 2.5는 곧 출시될 예정이며, 세 가지 코스모스 WFM의 성능을 하나의 강력한 모델로 통합해 복잡성을 줄이고, 시간을 절약하며, 효율을 높인다. 또한 최대 30초의 긴 동영상 생성, 다중 뷰 카메라 출력을 지원해 더욱 풍부한 세계 시뮬레이션을 구현한다. 코스모스 트랜스퍼(Cosmos Transfer) 2.5는 곧 출시될 예정이며, 기존 모델 대비 3.5배 작으면서도 더 빠르고 높은 품질의 결과를 제공한다. 이제 사실적인 합성 데이터를 생성할 수 있으며, 그라운드 트루스(ground-truth) 3D 시뮬레이션 장면, 깊이, 세분화, 에지, 고해상도 지도와 같은 공간 제어 입력값을 활용할 수 있다.   로봇에게 물체를 잡는 법을 학습시키는 것은 로보틱스에서 가장 어려운 과제 중 하나다. 파지는 단순히 팔을 움직이는 것이 아니라 생각을 정밀한 동작으로 전환하는 것으로, 로봇이 시행착오를 통해 학습해야 하는 기술이다. 엔비디아 옴니버스(Omniverse) 플랫폼 기반의 아이작 랩 2.3 개발자 프리뷰의 새로운 정밀 파지(dexterous grasping) 워크플로는 다관절 손과 팔을 가진 로봇을 가상 환경에서 자동화된 커리큘럼으로 훈련시킨다. 이 과정은 간단한 작업부터 시작해 점차 복잡성을 높여간다. 해당 워크플로는 중력, 마찰, 물체의 무게 등 요소를 변경해 로봇이 예측 불가능한 환경에서도 기술을 습득하도록 훈련시킨다. 컵을 집거나 방을 가로질러 걷는 것과 같이 새로운 기술을 로봇에게 숙달시키는 것은 매우 어렵다. 또한, 이러한 기술을 실제 로봇에서 테스트하는 과정은 시간과 비용이 많이 요구된다. 이러한 어려움을 해결할 수 있는 방법은 시뮬레이션이다. 시뮬레이션은 로봇이 학습한 기술을 무수한 시나리오, 작업, 환경에서 테스트할 수 있는 방법을 제공한다. 그러나 개발자들은 시뮬레이션 환경에서도 현실 세계를 반영하지 못하고 단편적이고 단순화된 테스트를 구축하는 경우가 많다. 완벽하고 단순한 시뮬레이션 환경에서 학습한 로봇은 현실 세계의 복잡성에 직면하는 순간 실패할 가능성이 크다. 엔비디아와 라이트휠은 개발자가 시스템을 처음부터 구축하지 않고도 시뮬레이션 환경에서 복잡한 대규모 평가를 실행할 수 있는 오픈소스 정책 평가 프레임워크인 아이작 랩-아레나(Arena) 공동 개발 중이다. 이 프레임워크는 확장 가능한 실험과 표준화된 테스트를 지원하며 곧 공개될 예정이다. 엔비디아는 개발자들이 이러한 첨단 기술과 소프트웨어 라이브러리를 최대한 활용할 수 있도록, 까다로운 워크로드를 위해 설계된 AI 인프라를 발표했다. 엔비디아 GB200 NVL72는 엔비디아 그레이스(Grace) CPU 36개와 엔비디아 블랙웰(Blackwell) GPU 72개를 통합한 랙 규모 시스템으로, 주요 클라우드 공급업체들이 채택해 복잡한 추론과 피지컬 AI 작업을 포함한 AI 훈련과 추론을 가속화하고 있다. 엔비디아 RTX 프로 서버(RTX PRO Servers)는 훈련, 합성 데이터 생성, 로봇 학습, 시뮬레이션 전반의 모든 로봇 개발 워크로드를 위한 단일 아키텍처를 제공하며, RAI 연구소(RAI Institute)에서 도입 중이다. 블랙웰 GPU로 구동되는 엔비디아 젯슨 토르(Jetson Thor)는 로봇이 실시간 지능형 상호작용을 위한 다중 AI 워크플로 실행을 지원한다. 또한 실시간 로봇 추론으로 휴머노이드 로보틱스 전반에서 고성능 피지컬 AI 워크로드와 애플리케이션의 돌파구를 마련한다. 젯슨 토르는 피규어 AI, 갤봇(Galbot), 구글 딥마인드, 멘티 로보틱스, 메타(Meta), 스킬드 AI, 유니트리(Unitree) 등 파트너사에 도입 중이다. 엔비디아의 레브 레바레디언(Rev Lebaredian) 옴니버스, 시뮬레이션 기술 부문 부사장은 “휴머노이드는 피지컬 AI의 차세대 영역으로, 예측 불가능한 세상에서 추론하고, 적응하며, 안전하게 행동하는 능력이 필요하다. 이번 업데이트로 개발자들은 로봇을 연구 단계에서 일상 생활로 가져오기 위한 세 가지 컴퓨터를 갖게 됐다. 아이작 GR00T가 로봇의 두뇌 역할을 하고, 뉴턴이 신체를 시뮬레이션하며, 엔비디아 옴니버스가 훈련장이 된다”고 말했다.
작성일 : 2025-09-30
시스코, 실시간 비즈니스 인사이트 위해 AI 에이전트로 옵저버빌리티 강화
시스코가 고객의 회복 탄력성 강화를 위한 새로운 기준을 제시하는 AI 에이전트 기반의 ‘스플렁크 옵저버빌리티(Splunk Observability)’를 발표했다. 강화된 스플렁크 옵저버빌리티 포트폴리오는 다양한 환경의 옵저버빌리티를 통합하고, 실행 가능한 비즈니스 맥락을 제공하며, 전체 인시던트 대응 라이프사이클에 걸쳐 AI로 구동되는 에이전트를 배포하고, 성능과 품질도 동시에 모니터링한다. 스플렁크에 통합된 시스코 기술로 고객은 네트워크, 인프라, 애플리케이션 전반에 걸쳐 데이터 인사이트의 가시성과 상관관계를 확보해 디지털 자산 전체의 안정성을 높일 수 있다. AI 에이전트는 선도적인 옵저버빌리티 체계를 구축하는 방식을 바꾸고 있다. AI 지원 코딩이 본격화되면서 점점 더 적은 인력으로 애플리케이션이 개발되고 있으며, 동시에 AI 기반 애플리케이션과 AI 에이전트가 새롭게 등장하면서 모델이 의도한 대로 작동하는지, 비즈니스 목적과 비용에 부합하는지를 확인하기 위해 특화된 텔레메트리가 요구되고 있다. 이러한 변화에 대응하기 위해 기업은 다양한 환경을 아우르고 맥락을 이해할 수 있는 통합된 가시성을 확보해야 하며, 비즈니스에 미치는 영향을 기준으로 문제의 우선순위를 정할 수 있어야 한다. 스플렁크는 새로운 AI 에이전트 혁신으로 강화된 스플렁크 옵저버빌리티 포트폴리오를 통해 시스코의 AgenticOps 비전을 한 단계 더 발전시키고 있다. 이번 혁신은 AI 에이전트를 활용해 텔레메트리 수집과 알림 설정을 자동화하고, 문제를 탐지하며, 근본 원인을 파악하고, 해결 방안을 제안함으로써 ITOps 및 엔지니어링 팀이 혁신에 집중할 수 있도록 지원한다. 이러한 발전에는 ▲인시던트를 자동으로 분석하고 잠재적인 근본 원인을 제시하여 사용자가 문제에 신속하게 대응할 수 있도록 돕는 ‘AI 트러블슈팅 에이전트(AI Troubleshooting Agents)’ ▲자동화된 알림 상관관계를 쉽게 설정할 수 있도록 해, 알림 소음을 줄이고 그룹화된 알림에 대해 명확한 맥락을 파악할 수 있도록 지원하는 ‘이벤트 iQ (Event iQ)’ ▲이벤트 iQ의 AI 기반 알림 상관관계와 함께, 그룹화된 알림의 경향과 영향, 근본 원인 등을 자동으로 개요 형태로 제공하여 문제 해결 속도를 높이는 ’ITSI 에피소드 요약(ITSI Episode Summarization)’ 등이 포함된다. 기업이 애플리케이션에 AI와 대규모 언어 모델(LLMs)을 통합하고 AI 에이전트를 도입함에 따라, 기업은 AI가 의도한 대로 작동하는지 확인하기 위해 특화된 분석 기능이 필요하다. 스플렁크는 에이전트, LLM, AI 인프라를 포함한 AI 애플리케이션 스택 전반의 상태, 보안, 비용을 사전에 모니터링할 수 있도록 다양한 같은 기능을 제공한다. 여기에는 모델이 비즈니스 목표에 맞게 의도한 대로 작동하고 있는지, 적절한 비용으로 운영되는지를 확인하는 ‘AI 에이전트 모니터링(AI Agent Monitoring)’과 AI 인프라의 상태와 소비를 모니터링하고 비용을 효율적으로 관리할 수 있도록 지원하는 ‘AI 인프라 모니터링(AI Infrastructure Monitoring)’ 등이 포함된다.   한편, 시스코는 스플렁크 앱다이나믹스와 스플렁크 옵저버빌리티 클라우드의 강점을 결합해 3계층(three-tier) 및 마이크로서비스 환경 전반에서 통합된 경험을 제공하고 있다고 소개했다. 시스코 사우전드아이즈(Cisco ThousandEyes)와의 통합도 한층 강화해 ITOps, NetOps, 엔지니어링 팀이 네트워크가 애플리케이션 성능과 최종 사용자 경험에 미치는 영향을 정확히 파악할 수 있도록 지원하고 있다. 스플렁크 옵저버빌리티의 패트릭 린(Patrick Lin) 수석부사장 및 총괄은 “스플렁크의 미션은 명확하다. 기업이 AI 애플리케이션과 에이전트를 활용하고 가시성과 통제력을 유지하도록 지원하는 것”이라면서, “최신 스플렁크 옵저버빌리티 혁신은 기업이 핵심 애플리케이션과 디지털 서비스를 더 쉽게 선제적으로 모니터링하고, 문제가 커지기 전에 해결하며, 옵저버빌리티 투자에 걸맞은 성과와 가치를 얻을 수 있도록 지원한다”고 말했다.
작성일 : 2025-09-18
[케이스 스터디] KAI의 언리얼 엔진 기반 차세대 시뮬레이션 에코시스템
비행 훈련부터 제품 개발·운영까지 아우르는 핵심 인프라를 목표로   최근 몇 년 사이 시뮬레이션 산업은 디지털 트윈, AI(인공지능), VR(가상현실)/AR(증강현실) 등 첨단 디지털 기술 중심으로 빠르게 재편되고 있다. KAI(한국항공우주산업)는 이러한 흐름에 발맞춰 언리얼 엔진을 도입함으로써 항공산업 전반에 걸친 디지털 혁신을 추진하고 있다. ■ 자료 제공 : 에픽게임즈   KAI는 KT-1 기본 훈련기, T-50 고등훈련기, 수리온 기동헬기, 송골매 무인기 등 다양한 항공우주 시스템을 자체적으로 설계 및 제작하며, 지난 40년간 항공산업 및 국방산업을 선도해 온 종합 항공우주 설루션 기업이다. 최근에는 소형무장헬기(LAH)와 차세대 전투기 KF-21 개발을 비롯해 위성과 발사체 총조립 등 우주 분야로도 사업을 확대하고 있다. KAI는 2024년 ‘언리얼 페스트 시애틀 2024(Unreal Fest Seattle 2024)’에 참가해 자사의 시뮬레이션 전략을 소개하는 세션을 진행했다. 이번 호에서는 이 발표 내용을 바탕으로 시뮬레이션 산업의 급변하는 흐름 속에서 KAI가 어떻게 대응하고 있는지, 언리얼 엔진을 중심으로 한 시뮬레이션 통합 전략과 실제 적용 사례, 그리고 향후 비전 등을 중심으로 KAI의 기술 혁신에 대해 살펴본다.   ▲ 이미지 출처 : ‘KAI의 언리얼 엔진 기반 차세대 시뮬레이션 에코시스템 | 언리얼 엔진’ 영상 캡처   시뮬레이션 산업의 변화와 KAI의 대응 최근 시뮬레이션 산업은 빠르게 발전하며 구조적인 변화를 겪고 있다. 클라우드 기반 시뮬레이션 도입으로 언제 어디서든 고성능 자원에 접근할 수 있게 되었고, 디지털 트윈, AI, 머신러닝 기술의 결합을 통해 시뮬레이션은 단순한 재현을 넘어 예측과 최적화를 수행할 수 있는 툴로 진화하고 있다. 또한 VR/AR/MR(혼합현실) 기술은 훈련의 몰입감과 현실감을 높여 실제 환경과 유사한 시뮬레이션을 가능하게 하고, 마이크로서비스 아키텍처를 기반으로 한 소프트웨어 설계는 유연성과 확장성을 높이고 있다. KAI는 이러한 디지털 전환에 적극 대응하기 위해 전통적인 레거시 시뮬레이션 시스템을 언리얼 엔진과 통합하고 있다. 핵심 전략은 세 가지이다. 첫째, 언리얼 엔진을 활용한 빠른 프로토타이핑으로 기술 검증과 적용 속도를 높이는 것이다. 둘째, 표준화된 인터페이스를 통해 기존 시스템과의 원활한 연동을 실현하는 것이다. 셋째, 지속 가능한 콘텐츠 개발을 위한 플랫폼 설계로 장기적인 생태계 구축을 추진하는 것이다. 이를 통해 KAI는 기존 자산의 가치를 극대화함과 동시에 급변하는 기술 환경에 유연하고 효율적으로 대응하고 있다.   언리얼 엔진이 변화하는 시뮬레이션 산업에 주는 영향 언리얼 엔진은 시뮬레이션 산업의 진화에 있어 중요한 역할을 하고 있다. 우선 고품질의 리얼타임 3D 그래픽을 통해 현실감 있는 몰입형 시뮬레이션 환경을 구현할 수 있어, 훈련과 테스트의 효율성을 높이고 있다. 또한 VR/AR/MR과의 통합 지원은 다양한 산업에서 실제 같은 체험 기반 학습을 가능하게 한다. 언리얼 엔진의 모듈형 아키텍처와 개방된 생태계는 기존 레거시 시스템과의 통합을 쉽게 하고, 새로운 기술이나 기능을 빠르게 적용할 수 있는 유연성을 제공한다. 특히 디지털 트윈, AI, 머신러닝 등 최신 기술과의 연계가 원활하여 복잡한 시스템의 설계, 유지보수, 운영 효율을 높일 수 있다. KAI와 같은 기업에게 언리얼 엔진은 단순한 툴을 넘어, 지속 가능한 시뮬레이션 콘텐츠를 개발하고 새로운 시뮬레이션 생태계를 구축하는 핵심 기술로 자리잡고 있다.   ▲ KAI의 시뮬레이터로 본 FA-50의 모습(이미지 출처 : KAI)   기존 시스템에 언리얼 엔진을 통합한 사례 KAI는 항공기 훈련 체계에 언리얼 엔진을 도입해 현실성과 효율을 갖춘 시뮬레이터를 개발하고 있다. 대표적으로 VR 시뮬레이터의 경우, 조종사가 풀 플라이트 시뮬레이터에 들어가기 전 VR 기기를 통해 절차와 조작 감각을 사전에 익힐 수 있도록 돕고 있다. 언리얼 엔진으로 실제 항공기와 동일한 가상 조종석을 구현해 이륙/착륙, 비상절차, 항전 장비 조작 등을 별도 교관 없이 반복 학습할 수 있도록 했다. 기존의 시뮬레이터는 실제 항공기 수준의 조작감과 훈련 효과를 제공하지만, 높은 구축 비용과 운영 비용, 전용 시설의 필요 등으로 대량 보급에 한계가 있었다. KAI는 이러한 문제를 보완하기 위해 VR 기술을 도입했다. 언리얼 엔진은 영상 발생 장치, 계기 패널, 입출력 장치 등을 대체한 것은 물론, VR HMD(헤드 마운트 디스플레이) 하나만으로 기존의 여러 장치를 필요로 하는 대형 시현 시스템의 효과를 구현할 수 있게 했다. 또한 KAI는 독자적인 역학 모델과 항전 시스템을 언리얼 엔진의 실시간 렌더링과 결합해 실제 조종과 유사한 수준의 훈련 환경을 제공하고 있다. GIS(지리 정보 시스템), DEM(수치 표고 모델) 등 초정밀지도 기반의 한반도 3D 지형을 재현해 조종사의 임무 지역 지형 학습까지 지원하고 있다. 정비 훈련 분야에서도 언리얼 엔진은 핵심 플랫폼으로 활용되고 있다. 2024년 I/ITSEC 전시회에서 공개된 FA-50 정비 훈련 시뮬레이터는 VR 환경에서 점검과 부품 교체를 실습할 수 있을 뿐만 아니라, 사용자가 직접 교육 과정을 만들 수 있도록 설계됐다. 이를 통해 기존 문서와 평면형 CBT(컴퓨터 기반 훈련), 반복 시나리오 기반의 실습 중심 교육의 한계를 극복할 대안을 제시했다. 또한 같은 행사에서 선보인 수리온 헬기 비행 시뮬레이터(VFT)는 디지털 트윈과 고해상도 시각화를 통해 실제 기체 성능과 지형 정보를 반영한 몰입형 훈련 환경을 제공했다.   ▲ FA-50 비행 시뮬레이션의 디스플레이 장면(이미지 출처 : KAI)   시뮬레이션·시스템 개발에서 언리얼 엔진의 기여도 언리얼 엔진 도입 이후 KAI의 시뮬레이션 제작 파이프라인에는 큰 변화가 있었다. 데이터스미스를 활용해 카티아 등 설계 도구의 3D 모델을 쉽게 불러올 수 있어, 실제 설계 기반의 가상 조종석과 기체 모델을 빠르게 구축하고 별도의 모델링 없이 제작 시간을 줄일 수 있었다. 또한 자체 개발한 비행역학 엔진과 항공전자 시뮬레이션 소프트웨어를 언리얼 엔진과 실시간으로 연동해, 백엔드 시스템과 시각화 프론트엔드를 효과적으로 통합함으로써 전반적인 생산성이 향상되었다. 특히 조종사가 시각과 청각 정보를 통해 상황을 판단하는 VR 시뮬레이터 개발에서는 언리얼 엔진의 렌더링, 사운드, 애니메이션 기능이 핵심 도구로 사용되었다. 물리 기반 렌더링(PBR)은 금속, 유리, 계기판 등 재질을 사실적으로 구현했으며, 파티클 시스템과 머티리얼 노드를 통해 연기, 공기 왜곡 등의 시각 효과도 유연하게 조정할 수 있었다. 사운드 역시 메타사운드를 통해 엔진 RPM이나 환경 변화에 따라 실시간으로 반응하며, 조종사에게 실제 비행과 유사한 감각을 제공했다. 또한 애니메이션 블루프린트를 활용해 조종간, 계기판, 비행 제어면 간 연동 애니메이션의 비주얼을 직관적으로 구현할 수 있었으며, 스카이 애트머스피어, 볼류메트릭 클라우드, 하이트 포그 등의 기능은 대기 표현과 공간 인식 훈련의 몰입감을 높였다. 지형 구현에서도 언리얼 엔진의 LWC(Large World Coordinates)를 통해 수천 km 단위의 지형에서도 고속 이동 시 정밀도를 유지할 수 있었고, 풀 소스 코드를 활용해 AI 훈련 체계에 맞는 좌표 변환, 시스템 연동, 정밀 지형 구조를 구현할 수 있었다. 이 과정에서 실제 지형 데이터, 항공 사진, 고도 정보를 언리얼 엔진에 통합했고, GIS, DEM 기반의 정밀 지형 정보를 효과적으로 활용해 복잡한 비행 경로, 저공 비행 훈련, 목표 탐색 등 고난도 시나리오도 현실감 있게 구현할 수 있었다. 그 결과 KAI는 초대형 지형 데이터, 초정밀 위치 기반 훈련, 외부 시스템과의 정밀한 좌표 연동을 모두 만족하는 차세대 항공기 시뮬레이터 플랫폼을 성공적으로 구축할 수 있었다. 이외에도 다양한 플러그인, 하드웨어 인터페이스, 형상 관리 툴 연동, 이제는 리얼리티스캔으로 변경된 리얼리티캡처, 마켓플레이스 등을 활용하여 프로젝트 확장성과 콘텐츠 제작 유연성이 높아졌다.   ▲ 애니메이션 블루프린트를 활용해 구현한 조종간(이미지 출처 : KAI)   대규모 전술 훈련을 위한 AI 에이전트를 언리얼 엔진에 도입 KAI는 차세대 전술 훈련 시뮬레이터 개발을 위해 강화학습 기반의 AI 에이전트를 실제 훈련 시나리오에 연동하는 작업을 진행 중이다. 특히, 복잡한 전장 환경에서는 다양한 무기 체계와 플랫폼이 동시에 운용되기 때문에, 이를 하나의 시뮬레이션 공간에서 유기적으로 연동하는 기술이 매우 중요하다. 기존 상용 시뮬레이터 설루션의 경우 외부 시스템 연동이나 커스터마이징에 제약이 많지만, 언리얼 엔진은 C++ 기반의 풀 소스 코드 접근이 가능해 이러한 한계를 극복할 수 있다. KAI는 이러한 개방성을 바탕으로 자체 개발한 AI 에이전트를 정밀하게 통합해, 복잡한 상호작용이 필요한 전술 훈련 시나리오에서도 실질적인 이점을 확보할 수 있었다. 이와 같은 통합은 단순히 AI를 활용하는 수준을 넘어, 인간 조종사와 AI가 동일한 시뮬레이션 환경에서 훈련하고 상호 작용할 수 있는 구조를 의미한다. 기존의 설루션으로는 구현하기 어려웠지만 KAI는 언리얼 엔진을 도입해 이를 실현할 수 있었다. 결과적으로 언리얼 엔진은 AI, 실시간 시뮬레이션, 데이터 피드백이 통합된 플랫폼을 제공하며, KAI의 차세대 전술 훈련체계 구현에 핵심 역할을 하고 있다.   ▲ 지형 데이터 통합으로 구현한 대규모 도시 지역 디지털 트윈(이미지 출처 : KAI)   향후 시뮬레이션 에코시스템의 방향과 KAI의 비전 향후 시뮬레이션 에코시스템은 개방성, 지속 가능성, 개인화를 중심으로 발전해 나갈 것이다. AI와 빅데이터를 기반으로 한 맞춤형 훈련 시스템, 클라우드 환경에서의 지리적 제약 없는 고성능 시뮬레이션 그리고 VR/AR, 웨어러블 기술 등을 활용한 몰입형 실시간 피드백 시스템이 표준이 되어갈 것으로 전망된다. 이러한 변화 속에서 KAI는 기술 통합형 플랫폼과 자체 시뮬레이션 에코시스템을 구축하며, 대한민국 시뮬레이션 산업의 지속 가능한 성장 기반을 마련할 예정이다. 언리얼 엔진을 단순한 개발 툴이 아닌 시뮬레이션 엔진으로 활용하며, 플랫폼을 중심으로 고퀄리티 콘텐츠를 빠르게 생산할 수 있는 시뮬레이션 콘텐츠 파이프라인을 개발 중이다. KAI의 비전은 국내를 넘어 글로벌 시뮬레이션 에코시스템과 연결되는 것이다. 언리얼 엔진의 개방성과 기술력을 바탕으로 산업 전반에 걸쳐 공유 가능한 시뮬레이션 플랫폼을 만들고, 이를 통해 다양한 산업, 기관, 개발자가 협력할 수 있는 건강하고 확장 가능한 에코시스템을 조성하는 것이 목표다. 이러한 방향성과 비전을 바탕으로, KAI는 시뮬레이션 기술을 단순한 훈련 도구를 넘어 제품 개발, 유지보수, 운영 효율 개선을 위한 핵심 인프라로 성장시키고자 한다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
HPE, 엔비디아와 협력해 에이전틱·피지컬 AI 혁신 가속화
HPE는 기업이 AI를 도입하고 개발 및 운영하는 과정을 폭넓게 지원하는 ‘HPE 기반 엔비디아 AI 컴퓨팅(NVIDIA AI Computing by HPE)’ 포트폴리오의 주요 혁신 사항을 공개했다. HPE는 엔비디아 AI 엔터프라이즈(NVIDIA AI Enterprise)와의 통합을 한층 강화하고, 최신 엔비디아 AI 모델 및 엔비디아 블루프린트(NVIDIA Blueprints)를 HPE 프라이빗 클라우드 AI(HPE Private Cloud AI)에 탑재함으로써 개발자들이 AI 애플리케이션을 보다 간편하게 구축하고 운영할 수 있도록 지원하게 되었다고 전했다. 또한 HPE는 엔비디아 블랙웰(NVIDIA Blackwell) 기반 가속 컴퓨팅을 탑재한 HPE 프로라이언트 컴퓨트(HPE ProLiant Compute) 서버를 출하할 예정이며, 이를 통해 생성형 AI, 에이전틱 AI 및 피지컬 AI 워크로드를 향상된 성능으로 지원할 수 있을 것으로 보고 있다. 엔비디아 블랙웰 아키텍처를 탑재한 HPE 프로라이언트 컴퓨트 서버는 두 종류의 엔비디아 RTX PRO 서버 구성을 포함한다. HPE 프로라이언트 DL385 Gen11 서버는 신규 2U RTX PRO 서버 폼팩터의 공랭식 서버로, 엔비디아 RTX PRO 6000 블랙웰 서버 에디션 GPU를 최대 2개까지 지원한다. 이 제품은 기업의 증가하는 AI 수요를 충족해야 하는 데이터센터 환경에 최적화된 설계를 지향한다. HPE 프로라이언트 컴퓨트 DL380a Gen12 서버는 4U 폼팩터 기반으로, 엔비디아 RTX PRO 6000 GPU를 최대 8개까지 지원하며 2025년 9월 출시될 예정이다.   특히 HPE 프로라이언트 컴퓨트 Gen12 서버는 HPE iLO(Integrated Lights Out) 7의 실리콘 RoT(Root of Trust) 및 시큐어 인클레이브(Secure Enclave) 기반으로 한 다층 보안 기능을 갖추고 있으며, 위조 및 변조 방지 보호와 양자 내성 펌웨어 서명(quantum-resistant firmware signing) 기능을 통해 한층 강화된 보안 환경을 제공한다.   ▲ HPE 프로라이언트 DL380a Gen12 서버   또한, HPE 컴퓨트 옵스 매니지먼트(HPE Compute Ops Management)으로 지원되는 중앙 집중형 클라우드 네이티브 방식의 라이프사이클 자동화 기능은 서버 관리에 소요되는 IT 업무 시간을 최대 75%까지 줄이고, 서버당 연간 평균 4.8시간의 다운타임 감소 효과를 제공한다. 대상 워크로드에는 생성형 및 에이전틱 AI을 비롯해 로보틱스 및 산업용 사례 등 피지컬 AI, 품질 관리(QC) 모니터링 및 자율주행과 같은 비주얼 컴퓨팅, 시뮬레이션, 3D 모델링, 디지털 트윈, 그리고 각종 엔터프라이즈 애플리케이션이 포함된다. 한편, HPE는 올해 말 출시 예정인 차세대 ‘HPE 프라이빗 클라우드 AI’를 발표했다. 이 설루션은 엔비디아 RTX PRO 6000 GPU를 탑재한 HPE 프로라이언트 컴퓨트 Gen12 서버를 지원하며, GPU 세대 간의 원활한 확장성, 폐쇠망(air-gapped) 관리 및 엔터프라이즈 멀티 테넌시(multi-tenancy) 기능 등을 제공할 예정이다. HPE와 엔비디아가 공동 개발한 엔터프라이즈 턴키 AI 팩토리 설루션인 HPE 프라이빗 클라우드 AI는 에이전틱 AI를 위한 최신 버전의 엔비디아 네모트론(NVIDIA Llama Nemotron) 모델, 피지컬 AI 및 로보틱스를 위한 코스모스 리즌(Cosmos Reason) VLM(vision language model), 엔비디아 블루프린트 VSS 2.4 (NVIDIA Blueprint for Video Search and Summarization)를 지원하여 대규모 영상 데이터에서 인사이트를 추출하는 영상 분석 AI 에이전트를 구축할 수 있다. 또한, HPE 프라이빗 클라우드 AI는 최신 AI 모델을 위한 엔비디아 NIM 마이크로서비스, 엔비디아 블루프린트를 빠르게 배포할 수 있도록 맞춤형 설계되어, 고객들은 HPE AI 에센셜(HPE AI Essentials)를 통해 이를 간편하게 활용할 수 있다. 이와 함께 HPE 프라이빗 클라우드 AI는 엔비디아 AI 가속화 컴퓨팅, 네트워킹, 소프트웨어와의 깊은 통합을 바탕으로, 기업들이 데이터 통제를 유지하면서도 AI의 가치를 보다 신속하게 활용할 수 있도록 지원한다. 이를 통해 고객은 급증하는 AI 추론 수요를 효과적으로 관리하고 AI 생산 속도를 가속화할 수 있다. HPE 셰리 윌리엄스(Cheri Williams) 프라이빗 클라우드 및 플렉스 설루션 부문 수석 부사장 겸 총괄은 “HPE는 AI 시대를 맞아 기업들이 성공을 이룰 수 있도록 필요한 툴과 기술을 제공하는 데 전념하고 있다”면서, “엔비디아와의 협업을 통해 기술 혁신의 경계를 지속적으로 넓혀가며, 생성형 AI, 에이전틱 AI, 피지컬AI의 가치 실현을 포함해 엔터프라이즈 환경의 복잡하고 다양한 요구를 충족하는 설루션을 제공하고 있다. HPE 프로라이언트 서버와 HPE 프라이빗 클라우드 AI의 확장된 역량을 결합함으로써, 기업들이 AI 혁신의 다음 단계를 더욱 신속하고 신뢰 있게 수용할 수 있도록 지원하고 있다”고 밝혔다. 엔비디아의 저스틴 보이타노(Justin Boitano) 엔터프라이즈 AI 부사장은 “기업은 최신 AI 요구사항에 맞추기 위해 유연하고 효율적인 인프라가 필요하다”면서, “엔비디아 RTX PRO 6000 블랙웰 GPU를 탑재한 HPE 2U 프로라이언트 서버는 단일 통합형 기업용 플랫폼에서 거의 모든 워크로드를 가속화할 수 있도록 해줄 것”이라고 밝혔다.
작성일 : 2025-08-18
오라클, AWS 클라우드에서 자율운영 DB 실행하는 ‘데이터베이스앳AWS’ 출시
오라클과 아마존웹서비스(AWS)가 오라클 데이터베이스앳AWS(Oracle Database@AWS)의 공식 출시(GA)를 발표했다. 이제 AWS 클라우드 환경에서 OCI(오라클 클라우드 인프라스트럭처) 전용 인프라의 오라클 엑사데이터 데이터베이스 서비스(Oracle Exadata Database Service) 및 오라클 자율운영 데이터베이스(Oracle Autonomous Database)를 실행할 수 있다. 오라클 데이터베이스앳AWS는 AWS의 미국 동부 및 서부 리전에서 이용 가능하며, 대한민국 서울을 포함한 전 세계 20여 개 AWS 리전에서 추가로 출시될 예정이다. 기업 고객은 오라클 데이터베이스 워크로드를 AWS 환경에서 OCI 상에서 실행되는 오라클 데이터베이스앳AWS로 손쉽게 마이그레이션할 수 있으며, 오라클 리얼 애플리케이션 클러스터(RAC) 및 AI 벡터 기능이 내장된 최신 오라클 데이터베이스 23ai의 이점도 누릴 수 있다. 오라클 데이터베이스앳AWS에는 제로 ETL(추출, 변환 및 로드) 기능이 포함되어 있어 엔터프라이즈 오라클 데이터베이스 서비스와 AWS 애널리틱스(AWS Analytics) 서비스 간 데이터 통합이 간편해지고, 이로써 복잡한 데이터 파이프라인을 구축하고 관리할 필요가 없어진다. 이는 오라클 데이터베이스 서비스와 AWS 서비스 간 데이터 흐름을 원활하게 하며, 기업은 자사의 데이터를 AWS 분석, 머신러닝 및 생성형 AI 서비스와 결합해 애플리케이션을 추가로 개선할 수 있다. 이번 출시로 클라우드 내 데이터베이스 실행에 있어 기업 고객들의 선택지는 더욱 넓어졌으며, 기존의 AWS 내 오라클 데이터베이스 실행 옵션이 보완됐다. AWS의 G2 크리슈나무티(G2 Krishnamoorthy) 데이터베이스 서비스 부사장은 “기업은 애플리케이션 재설계 없이도 자사의 오라클 데이터베이스 워크로드를 오라클 데이터베이스앳AWS로 원활히 마이그레이션할 수 있다. 동시에 AWS의 글로벌 인프라가 제공하는 보안성과 복원 탄력성, 확장성도 누릴 수 있다”면서, “보안에 가장 민감한 세계 최대 규모 기업 조직의 상당수가 이미 AWS에서 오라클 워크로드를 실행하고 있다. 오라클 데이터베이스앳AWS는 기업이 AWS의 첨단 분석 및 생성형 AI 기능을 바탕으로 보다 손쉽게 데이터로부터 더 큰 가치를 창출하도록 돕는다”고 말했다. 카란 바타 OCI 수석 부사장은 “기업들은 지난 수십 년간 자사의 가장 가치 있는 데이터를 오라클 데이터베이스에 저장해 왔다”면서, “오라클 데이터베이스앳AWS는 AWS 환경의 OCI에서 오라클 데이터베이스 워크로드를 실행할 수 있게 해 준다. 덕분에 오라클 데이터베이스 23ai의 이점을 온전히 활용하여 애플리케이션 개발을 간소화하고, AI 및 네이티브 벡터 임베딩을 바탕으로 미션 크리티컬 워크로드를 실행할 수 있다. AWS의 고급 생성형 AI 및 분석 서비스와 결합된 오라클 데이터베이스앳AWS는 진정 주목할 만한 설루션”이라고 설명했다. 오라클 데이터베이스앳AWS는 OCI와 AWS 전반에 걸쳐 일관된 사용자 경험을 제공하며, 양사의 통합된 지원으로 데이터베이스 관리와 구매, 배포를 간소화할 수 있다. 이는 기업 고객이 신뢰하는 기업용 애플리케이션에 최적화된 참조 아키텍처 및 랜딩 존을 기반으로 설계되었다.  이 서비스를 활용하면 오라클 제로 다운타임 마이그레이션(Oracle Zero Downtime Migration)을 비롯한 마이그레이션 도구와의 호환성을 바탕으로 기존 오라클 데이터베이스의 클라우드 마이그레이션을 간소화 및 가속화할 수 있다. 그리고 오라클 RAC를 통한 워크로드의 고도의 복원력 및 확장성 상승, 여러 AWS 가용 영역(AWS Availability Zones)과 아마존 S3(Amazon S3)을 통한 백업 및 재해 복구가 가능하다. 또한, AWS 마켓플레이스(AWS Marketplace)를 활용한 간소화된 구매 경험을 누릴 수 있다. 기존 AWS 약정 및 BYOL(Bring Your Own License) 등 오라클 라이선스 혜택과 오라클 서포트 리워드(OSR) 등 할인 프로그램을 오라클 데이터베이스앳AWS와 함께 사용할 수 있다. 아마존 EC2(Amazon EC2), 아마존EKS(Amazon EKS), 아마존 ECS(Amazon ECS)와 AI 벡터 검색(AI Vector Search) 등 오라클 데이터베이스 기능을 결합하면 확장 가능한 새로운 마이크로서비스 기반 애플리케이션을 구축할 수 있고, 이를 통해 애플리케이션 인텔리전스를 개선하면서 신기능을 신속하게 시장에 출시할 수 있다. 오라클 데이터베이스앳AWS는 내장형 오라클 AI 벡터 검색을 지원하는 오라클 데이터베이스 23ai를 제공한다. 사용자는 특정 단어와 픽셀, 데이터 값이 아닌 개념적 콘텐츠를 기반으로 문서, 이미지, 관계형 데이터를 손쉽게 검색할 수 있다. AWS 관리 콘솔(AWS Management Console), AWS 명령줄 인터페이스(AWS Command Line Interface), API 등 익숙한 도구 및 손쉬운 워크로드 관리를 위한 모니터링 기능이 제공되며, 고급 분석, 머신러닝, 생성형 AI 서비스를 활용한 데이터 준비가 가능하다. 이외에도 AWS IAM(AWS Identity and Access Management), AWS 클라우드 포메이션(AWS CloudFormation), 아마존 클라우드워치(Amazon CloudWatch), 아마존 VPC 라티스(Amazon VPC Lattice), 아마존 이벤트브리지(Amazon EventBridge) 등 AWS 서비스와의 통합이 제공된다. 한편으로 오라클 E-비즈니스 스위트(Oracle E-Business Suite), 피플소프트(PeopleSoft), JD 에드워즈 엔터프라이즈원(JD Edwards EnterpriseOne), 오라클 EPM(Oracle Enterprise Performance Management), 오라클 리테일 애플리케이션(Oracle Retail Applications) 등 오라클 애플리케이션도 지원된다. 오라클 데이터베이스앳AWS는 현재 AWS 미국 동부(버지니아주 북부) 및 서부(오리건주) 리전에서 이용 가능하며, AWS의 클라우드 인프라를 활용하고 있다. 오라클 데이터베이스앳AWS 설루션은 대한민국의 서울을 포함해 캐나다(중부), 프랑크푸르트, 하이데라바드, 아일랜드, 런던, 멜버른, 밀라노, 뭄바이, 오사카, 파리, 상파울루, 싱가포르, 스페인, 스톡홀름, 시드니, 도쿄, 미국 동부(오하이오주), 미국 서부(캘리포니아주), 취리히를 포함해 20여 곳의 추가 AWS 리전에서도 출시를 앞두고 있다.
작성일 : 2025-07-10
엔비디아, “모델 양자화로 스테이블 디퓨전 성능 높였다”
엔비디아가 양자화를 통해 스테이블 디퓨전 3.5(Stable Diffusion 3.5) 모델의 성능을 향상시켰다고 발표했다. 생성형 AI는 사람들이 디지털 콘텐츠를 만들고, 상상하며, 상호작용하는 방식을 혁신적으로 바꾸고 있다. 그러나 지속적으로 AI 모델의 기능이 향상되고 복잡성이 증가면서 더 많은 VRAM이 요구되고 있다. 예를 들어 기본 스테이블 디퓨전 3.5 라지(Large) 모델은 18GB 이상의 VRAM을 사용하므로 고성능 시스템이 아니면 실행이 어렵다. 엔비디아는 이 모델에 양자화를 적용하면 중요하지 않은 레이어를 제거하거나 더 낮은 정밀도로도 실행할 수 있다고 설명했다. 엔비디아 지포스(GeForce) RTX 40 시리즈와 에이다 러브레이스(Ada Lovelace) 세대 엔비디아 RTX PRO GPU는 FP8 양자화를 지원해 이러한 경량화된 모델을 실행할 수 있다. 또한 최신 엔비디아 블랙웰(Blackwell) GPU는 FP4도 지원한다.     엔비디아는 스태빌리티 AI(Stability AI)와 협력해 최신 모델인 스테이블 디퓨전 3.5 라지를 FP8로 양자화해 VRAM 사용량을 40%까지 줄였다. 여기에 엔비디아 텐서RT(TensorRT) 소프트웨어 개발 키트(SDK)를 통한 최적화로 스테이블 디퓨전 3.5 라지와 미디엄 모델의 성능을 2배로 끌어올렸다. 또한, 텐서RT가 RTX AI PC 환경을 위해 새롭게 설계됐다. 높은 성능과 JIT(Just-In-Time), 온디바이스 엔진 구축 기능을 더하고 패키지 크기를 8배 줄여 1억 대 이상의 RTX AI PC에 AI를 원활하게 배포할 수 있게 됐다. RTX용 텐서RT는 이제 개발자를 위한 독립형 SDK로 제공된다. 엔비디아와 스태빌리티 AI는 인기 있는 AI 이미지 생성 모델 중 하나인 스테이블 디퓨전 3.5의 성능을 높이고 VRAM 요구 사항을 낮췄다. 엔비디아 텐서RT 가속과 양자화 기술을 통해, 사용자는 엔비디아 RTX GPU에서 이미지를 더 빠르고 효율적으로 생성하고 편집할 수 있다. 스테이블 디퓨전 3.5 라지의 VRAM 한계를 해결하기 위해 이 모델은 텐서RT를 활용해 FP8로 양자화됐다. 그 결과, VRAM 요구량이 40% 줄어 11GB면 충분해졌다. 즉, 단 한 대의 GPU가 아닌 다섯 대의 지포스 RTX 50 시리즈 GPU가 메모리에서 모델을 동시에 실행할 수 있게 됐다. 또한 스테이블 디퓨전 3.5 라지와 미디엄 모델은 텐서RT를 통해 최적화됐다. 텐서RT는 텐서 코어를 최대한 활용할 수 있도록 설계된 AI 백엔드로, 모델의 가중치와 모델 실행을 위한 명령 체계인 그래프를 RTX GPU에 맞게 최적화한다.  FP8 텐서RT는 스테이블 디퓨전 3.5 라지의 성능을 BF16 파이토치 대비 2.3배 향상시키면서 메모리 사용량은 40% 줄여준다. 스테이블 디퓨전 3.5 미디엄의 경우, BF16 텐서RT는 BF16 파이토치 대비 1.7배 더 빠르다. FP8 텐서RT를 적용한 결과, 스테이블 디퓨전 3.5 라지 모델은 BF16 파이토치(PyTorch)에서 실행했을 때보다 성능이 2.3배 향상됐고, 메모리 사용량은 40% 감소했다. 스테이블 디퓨전 3.5 미디엄 모델도 BF16 텐서RT를 통해 BF16 파이토치 대비 1.7배 더 높은 성능을 발휘했다. 최적화된 모델은 현재 스태빌리티 AI의 허깅페이스(Hugging Face) 페이지에서 이용할 수 있다. 또한 엔비디아와 스태빌리티 AI는 스테이블 디퓨전 3.5 모델을 엔비디아 NIM 마이크로서비스 형태로도 출시할 계획이다. 이를 통해 크리에이터와 개발자는 다양한 애플리케이션에서 보다 쉽게 모델을 접근하고 배포할 수 있게 된다. 이 NIM 마이크로서비스는 오는 7월 출시될 예정이다.
작성일 : 2025-06-18
HPE, 엔비디아와 협력해 AI 팩토리 포트폴리오 강화
HPE는 전체 AI 수명주기를 지원하고 기업, 서비스 제공업체, 공공기관, 연구기관 등 다양한 고객의 요구를 충족하는 ‘HPE 기반 엔비디아 AI 컴퓨팅(NVIDIA AI Computing by HPE)’ 설루션 포트폴리오를 강화한다고 발표했다. 이번 업데이트는 엔비디아 AI 엔터프라이즈(NVIDIA AI Enterprise)와의 통합을 강화하고, 가속 컴퓨팅을 통해 HPE 프라이빗 클라우드 AI(HPE Private Cloud AI)에 대한 지원을 확대했다. 또한 엔비디아 AI 데이터 플랫폼(NVIDIA AI Data Platform)용 HPE 알레트라 스토리지 MP X10000(HPE Alletra Storage MP X10000) 소프트웨어 개발 키트(SDK)를 새롭게 출시했다. 이와 함께 HPE는 엔비디아 RTX PRO 6000 블랙웰 서버 에디션(NVIDIA RTX PRO 6000 Blackwell Server Edition) GPU 및 엔비디아 엔터프라이즈 AI 팩토리(NVIDIA Enterprise AI Factory)의 검증된 설계에 기반한 컴퓨팅 및 소프트웨어 제품도 출시했다. 엔비디아와 공동 개발한 턴키 방식의 클라우드 기반 AI 팩토리인 ‘HPE 프라이빗 클라우드 AI(HPE Private Cloud AI)’는 통합된 AI 전략을 비즈니스 전반에 확산하고 수익성 높은 워크로드를 지원하며 리스크를 대폭 줄일 수 있도록 지원하는 전용 개발자 설루션을 포함하고 있다. 또한, 이는 AI 프레임워크, 사전 훈련 모델을 위한 엔비디아 NIM 마이크로서비스(NVIDIA NIM microservices) 및 SDK를 포함하는 엔비디아 AI 엔터프라이즈(NVIDIA AI Enterprise)의 피쳐 브랜치(Feature Branch) 모델 업데이트를 지원할 예정이다. 피쳐 브랜치 모델 지원을 통해 개발자는 AI 워크로드를 위한 소프트웨어 기능과 최적화 사항을 테스트하고 검증할 수 있다.  가드레일이 내장된 프로덕션 브랜치 모델에 대한 기존 지원과 더불어, HPE 프라이빗 클라우드 AI는 모든 규모의 기업이 개발자 시스템을 구축하고 이를 프로덕션-레디 에이전틱 및 생성형 AI 애플리케이션으로 확장하는 한편, 기업 전반에 걸쳐 안전한 다계층 접근 방식을 도입할 수 있도록 지원한다. HPE 알레트라 스토리지 MP X10000은 엔비디아 AI 데이터 플랫폼 레퍼런스 설계와 연동되는 SDK를 선보일 예정이다. HPE의 최신 데이터 플랫폼과 엔비디아의 맞춤형 레퍼런스 설계를 연결함으로써, 고객은 에이전틱 AI 구현을 위한 가속화된 성능과 인텔리전트 파이프라인 오케스트레이션을 활용할 수 있다. 이번 X10000 SDK는 HPE의 데이터 인텔리전스 전략 확대의 일환으로, 컨텍스트 기반의 AI-레디 데이터를 엔비디아 AI 생태계에 직접 통합할 수 있도록 지원한다. 이를 통해 기업은 엔비디아 가속 인프라 전반에서 수집, 추론, 훈련 및 지속적인 학습을 위한 비정형 데이터 파이프라인을 간소화할 수 있다. HPE는 SDK 통합을 통해 데이터 가치 극대화, AI 데이터 플랫폼의 효율 향상, 워크로드 요구사항에 맞는 구축 최적화 등의 이점을 얻을 수 있을 것으로 보고 있다. 엔비디아 H100 NVL, H200 NVL 및 L40S GPU를 탑재한 HPE 프로라이언트 컴퓨트 DL380a Gen12(HPE ProLiant Compute DL380a Gen12) 서버는 최근 MLPerf Inference : Datacenter v5.0 벤치마크의 GPT-J, Llama2-70B, ResNet50 및 RetinaNet을 포함한 10개 테스트에서 최고 수준의 성능을 기록했다. 이 AI 서버는 곧 최대 10개의 엔비디아 RTX PRO 6000 블랙웰 서버 에디션 GPU를 탑재하여 출시될 예정이며, 이를 통해 향상된 기능과 함께 에이전틱 멀티모달 AI 추론, 피지컬 AI, 모델 미세조정 뿐만 아니라 디자인, 그래픽 및 비디오 애플리케이션을 포함한 엔터프라이즈 AI 워크로드를 위한 탁월한 성능을 제공할 예정이다. HPE 프로라이언트 컴퓨트 DL380a Gen12는 공랭식 및 직접 수냉 방식(DLC)으로 제공되며, HPE 프로라이언트 컴퓨트 Gen12 포트폴리오에 탑재된 HPE iLO(Integrated Lights Out) 7은 실리콘 RoT(Root of Trust) 기반으로 한 내장된 보호 기능을 갖추고 있다. 또한, HPE 컴퓨트 옵스 매니지먼트(HPE Compute Ops Management)는 사전 알림 기능 및 예측적 AI 기반 인사이트를 통해 서버 환경을 위한 안전하고 자동화된 수명 주기 관리를 지원한다. HPE 옵스램프 소프트웨어(HPE OpsRamp Software)는 AI 워크로드 모니터링을 위한 차세대 엔비디아 RTX PRO 6000 블랙웰 서버 에디션 GPU까지 지원할 수 있는 AI 인프라 최적화 설루션으로 확장됐다. HPE 그린레이크 플랫폼(HPE GreenLake Platform) SaaS(서비스형 소프트웨어) 방식으로 구성되는 이 설루션은 기업 내 IT 팀이 하이브리드 환경 전반에 분산된 AI 인프라를 모니터링하고, 최적화를 통해 AI인프라 운영을 효율적으로 관리, 지원한다. HPE 옵스램프는 풀스택 AI 워크로드에서 인프라 옵저버빌리티, 워크플로 자동화, AI 기반 분석 및 이벤트 관리를 가능하게 하고, 엔비디아의 모든 인프라를 정밀하게 모니터링하는 한편, AI 인프라의 성능과 복원력을 모니터링할 수 있는 세분화된 측정 지표를 제공한다. HPE의 안토니오 네리(Antonio Neri) 사장 겸 최고경영자(CEO)는 “HPE는 엔비디아와의 협업을 통해 고객에게 지속적인 혁신과 실질적인 성과를 제공하고 있으며, 강력한 설루션을 기반으로 공동 개발한 첨단 AI 기술을 통해 기업이 AI 도입의 어느 단계에 있든 기업 전반에서 그 잠재력을 효과적으로 실현할 수 있도록 지원하고 있다”면서, “HPE는 오늘날의 요구를 충족하는 동시에, AI 중심의 미래를 함께 만들어가고 있다”고 밝혔다. 엔비디아의 젠슨 황(Jensen Huang) 창립자 겸 CEO는 “기업은 HPE 시스템을 활용해 최첨단 엔비디아 AI 팩토리를 구축함으로써 생성형 및 에이전틱 AI 시대에 최적화된 IT 인프라를 준비할 수 있다”면서, “엔비디아와 HPE는 데이터센터부터 클라우드, 에지에 이르기까지 인텔리전스를 확장 가능한 새로운 산업 자원으로 활용할 수 있도록 기업을 위한 기반을 함께 만들어가고 있다”고 밝혔다.
작성일 : 2025-05-23
엔비디아, 기업 생산성 강화하는 ‘네모 마이크로서비스’ 정식 출시
엔비디아가 에이전트 기반 AI 플랫폼 개발을 가속화하고 기업의 생산성을 높이는 ‘엔비디아 네모 마이크로서비스(NVIDIA NeMo microservices)’를 정식 출시했다고 밝혔다. 이번에 정식 출시된 엔비디아 네모 마이크로서비스는 기업 IT 부서가 데이터 플라이휠(flywheel)을 활용해 직원 생산성을 높일 수 있는 AI 팀원을 빠르게 구축하도록 지원한다. 이 마이크로서비스는 엔드 투 엔드 개발자 플랫폼을 제공한다. 이 플랫폼은 최첨단 에이전틱 AI(Agentic AI) 시스템의 개발을 가능하게 하고, 추론 결과, 비즈니스 데이터, 사용자 선호도에 기반한 데이터 플라이휠을 통해 지속적인 최적화를 지원한다. 데이터 플라이휠을 통해 기업 IT 부서는 AI 에이전트를 디지털 팀원으로 온보딩할 수 있다. 이러한 에이전트는 사용자 상호작용과 AI 추론 과정에서 생성된 데이터를 활용해 모델 성능을 지속적으로 개선할 수 있다. 이를 통해 ‘사용’을 ‘인사이트’로, ‘인사이트’를 ‘실행’으로 전환할 수 있다.     데이터베이스, 사용자 상호작용, 현실 세계의 신호 등의 고품질 입력이 지속적으로 제공되지 않으면 에이전트의 이해력은 약화된다. 그 결과, 응답의 신뢰성은 떨어지고 에이전트의 생산성도 저하될 수 있다. 운영 환경에서 AI 에이전트를 구동하는 모델을 유지하고 개선하기 위해서는 세 가지 유형의 데이터가 필요하다. 인사이트를 수집하고 변화하는 데이터 패턴에 적응하기 위한 추론 데이터, 인텔리전스를 제공하기 위한 최신 비즈니스 데이터, 모델과 애플리케이션이 예상대로 작동하는지를 판단하기 위한 사용자 피드백 데이터가 그것이다. 네모 마이크로서비스는 개발자가 이 세 가지 유형의 데이터를 효율적으로 활용할 수 있도록 지원한다. 또한, 네모 마이크로서비스는 에이전트를 구동하는 모델을 선별하고, 맞춤화하며, 평가하고, 안전장치를 적용하는 데 필요한 엔드 투 엔드 툴을 제공함으로써 AI 에이전트 개발 속도를 높인다. 엔비디아 네모 마이크로서비스는 ▲대규모 언어 모델(LLM) 미세 조정을 가속화해 최대 1.8배 높은 훈련 처리량을 제공하는 네모 커스터마이저(Customizer) ▲개인과 산업 벤치마크에서 AI 모델과 워크플로의 평가를 단 5번의 API 호출로 간소화하는 네모 이밸류에이터(Evaluator) ▲ 0.5초의 추가 지연 시간만으로 규정 준수 보호 기능을 최대 1.4배까지 향상시키는 네모 가드레일(Guardrails)을 포함한다. 이는 네모 리트리버(Retreiver), 네모 큐레이터(Curator)와 함께 사용돼, 맞춤형 엔터프라이즈 데이터 플라이휠을 통해 AI 에이전트를 구축하고, 최적화하며, 확장하는 과정을 기업이 보다 수월하게 수행할 수 있도록 지원한다. 개발자는 네모 마이크로서비스를 통해 AI 에이전트의 정확성과 효율성을 높이는 데이터 플라이휠을 구축할 수 있다. 엔비디아 AI 엔터프라이즈(Enterprise) 소프트웨어 플랫폼을 통해 배포되는 네모 마이크로서비스는 온프레미스 또는 클라우드의 모든 가속 컴퓨팅 인프라에서 엔터프라이즈급 보안, 안정성, 지원과 함께 손쉽게 운영할 수 있다. 이 마이크로서비스는 기업들이 수백 개의 전문화된 에이전트를 협업시키는 대규모 멀티 에이전트 시스템을 구축하고 있는 현재 정식 출시됐다. 각 에이전트는 고유의 목표와 워크플로를 가지고 있으며, 디지털 팀원으로서 복잡한 업무를 함께 해결하며 직원들의 업무를 보조하고, 강화하며, 가속화한다. 엔비디아 네모 마이크로서비스로 구축된 데이터 플라이휠은 사람의 개입을 최소화하고 자율성을 극대화하면서 데이터를 지속적으로 선별하고, 모델을 재훈련하며, 성능을 평가한다. 네모 마이크로서비스는 라마(Llama), 마이크로소프트 파이(Microsoft Phi) 소형 언어 모델 제품군, 구글 젬마(Google Gemma), 미스트랄 등 폭넓은 인기 오픈 모델을 지원한다. 또한, 기업은 엔비디아 가속 인프라, 네트워킹, 그리고 시스코, 델, HPE, 레노버(Lenovo) 등 주요 시스템 제공업체의 소프트웨어를 기반으로 AI 에이전트를 실행할 수 있다. 액센츄어(Accenture), 딜로이트(Deloitte), EY를 비롯한 거대 컨설팅 기업들 역시 네모 마이크로서비스를 기반으로 기업용 AI 에이전트 플랫폼을 구축하고 있다.
작성일 : 2025-04-25