• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "마이크로서비스"에 대한 통합 검색 내용이 62개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
[케이스 스터디] KAI의 언리얼 엔진 기반 차세대 시뮬레이션 에코시스템
비행 훈련부터 제품 개발·운영까지 아우르는 핵심 인프라를 목표로   최근 몇 년 사이 시뮬레이션 산업은 디지털 트윈, AI(인공지능), VR(가상현실)/AR(증강현실) 등 첨단 디지털 기술 중심으로 빠르게 재편되고 있다. KAI(한국항공우주산업)는 이러한 흐름에 발맞춰 언리얼 엔진을 도입함으로써 항공산업 전반에 걸친 디지털 혁신을 추진하고 있다. ■ 자료 제공 : 에픽게임즈   KAI는 KT-1 기본 훈련기, T-50 고등훈련기, 수리온 기동헬기, 송골매 무인기 등 다양한 항공우주 시스템을 자체적으로 설계 및 제작하며, 지난 40년간 항공산업 및 국방산업을 선도해 온 종합 항공우주 설루션 기업이다. 최근에는 소형무장헬기(LAH)와 차세대 전투기 KF-21 개발을 비롯해 위성과 발사체 총조립 등 우주 분야로도 사업을 확대하고 있다. KAI는 2024년 ‘언리얼 페스트 시애틀 2024(Unreal Fest Seattle 2024)’에 참가해 자사의 시뮬레이션 전략을 소개하는 세션을 진행했다. 이번 호에서는 이 발표 내용을 바탕으로 시뮬레이션 산업의 급변하는 흐름 속에서 KAI가 어떻게 대응하고 있는지, 언리얼 엔진을 중심으로 한 시뮬레이션 통합 전략과 실제 적용 사례, 그리고 향후 비전 등을 중심으로 KAI의 기술 혁신에 대해 살펴본다.   ▲ 이미지 출처 : ‘KAI의 언리얼 엔진 기반 차세대 시뮬레이션 에코시스템 | 언리얼 엔진’ 영상 캡처   시뮬레이션 산업의 변화와 KAI의 대응 최근 시뮬레이션 산업은 빠르게 발전하며 구조적인 변화를 겪고 있다. 클라우드 기반 시뮬레이션 도입으로 언제 어디서든 고성능 자원에 접근할 수 있게 되었고, 디지털 트윈, AI, 머신러닝 기술의 결합을 통해 시뮬레이션은 단순한 재현을 넘어 예측과 최적화를 수행할 수 있는 툴로 진화하고 있다. 또한 VR/AR/MR(혼합현실) 기술은 훈련의 몰입감과 현실감을 높여 실제 환경과 유사한 시뮬레이션을 가능하게 하고, 마이크로서비스 아키텍처를 기반으로 한 소프트웨어 설계는 유연성과 확장성을 높이고 있다. KAI는 이러한 디지털 전환에 적극 대응하기 위해 전통적인 레거시 시뮬레이션 시스템을 언리얼 엔진과 통합하고 있다. 핵심 전략은 세 가지이다. 첫째, 언리얼 엔진을 활용한 빠른 프로토타이핑으로 기술 검증과 적용 속도를 높이는 것이다. 둘째, 표준화된 인터페이스를 통해 기존 시스템과의 원활한 연동을 실현하는 것이다. 셋째, 지속 가능한 콘텐츠 개발을 위한 플랫폼 설계로 장기적인 생태계 구축을 추진하는 것이다. 이를 통해 KAI는 기존 자산의 가치를 극대화함과 동시에 급변하는 기술 환경에 유연하고 효율적으로 대응하고 있다.   언리얼 엔진이 변화하는 시뮬레이션 산업에 주는 영향 언리얼 엔진은 시뮬레이션 산업의 진화에 있어 중요한 역할을 하고 있다. 우선 고품질의 리얼타임 3D 그래픽을 통해 현실감 있는 몰입형 시뮬레이션 환경을 구현할 수 있어, 훈련과 테스트의 효율성을 높이고 있다. 또한 VR/AR/MR과의 통합 지원은 다양한 산업에서 실제 같은 체험 기반 학습을 가능하게 한다. 언리얼 엔진의 모듈형 아키텍처와 개방된 생태계는 기존 레거시 시스템과의 통합을 쉽게 하고, 새로운 기술이나 기능을 빠르게 적용할 수 있는 유연성을 제공한다. 특히 디지털 트윈, AI, 머신러닝 등 최신 기술과의 연계가 원활하여 복잡한 시스템의 설계, 유지보수, 운영 효율을 높일 수 있다. KAI와 같은 기업에게 언리얼 엔진은 단순한 툴을 넘어, 지속 가능한 시뮬레이션 콘텐츠를 개발하고 새로운 시뮬레이션 생태계를 구축하는 핵심 기술로 자리잡고 있다.   ▲ KAI의 시뮬레이터로 본 FA-50의 모습(이미지 출처 : KAI)   기존 시스템에 언리얼 엔진을 통합한 사례 KAI는 항공기 훈련 체계에 언리얼 엔진을 도입해 현실성과 효율을 갖춘 시뮬레이터를 개발하고 있다. 대표적으로 VR 시뮬레이터의 경우, 조종사가 풀 플라이트 시뮬레이터에 들어가기 전 VR 기기를 통해 절차와 조작 감각을 사전에 익힐 수 있도록 돕고 있다. 언리얼 엔진으로 실제 항공기와 동일한 가상 조종석을 구현해 이륙/착륙, 비상절차, 항전 장비 조작 등을 별도 교관 없이 반복 학습할 수 있도록 했다. 기존의 시뮬레이터는 실제 항공기 수준의 조작감과 훈련 효과를 제공하지만, 높은 구축 비용과 운영 비용, 전용 시설의 필요 등으로 대량 보급에 한계가 있었다. KAI는 이러한 문제를 보완하기 위해 VR 기술을 도입했다. 언리얼 엔진은 영상 발생 장치, 계기 패널, 입출력 장치 등을 대체한 것은 물론, VR HMD(헤드 마운트 디스플레이) 하나만으로 기존의 여러 장치를 필요로 하는 대형 시현 시스템의 효과를 구현할 수 있게 했다. 또한 KAI는 독자적인 역학 모델과 항전 시스템을 언리얼 엔진의 실시간 렌더링과 결합해 실제 조종과 유사한 수준의 훈련 환경을 제공하고 있다. GIS(지리 정보 시스템), DEM(수치 표고 모델) 등 초정밀지도 기반의 한반도 3D 지형을 재현해 조종사의 임무 지역 지형 학습까지 지원하고 있다. 정비 훈련 분야에서도 언리얼 엔진은 핵심 플랫폼으로 활용되고 있다. 2024년 I/ITSEC 전시회에서 공개된 FA-50 정비 훈련 시뮬레이터는 VR 환경에서 점검과 부품 교체를 실습할 수 있을 뿐만 아니라, 사용자가 직접 교육 과정을 만들 수 있도록 설계됐다. 이를 통해 기존 문서와 평면형 CBT(컴퓨터 기반 훈련), 반복 시나리오 기반의 실습 중심 교육의 한계를 극복할 대안을 제시했다. 또한 같은 행사에서 선보인 수리온 헬기 비행 시뮬레이터(VFT)는 디지털 트윈과 고해상도 시각화를 통해 실제 기체 성능과 지형 정보를 반영한 몰입형 훈련 환경을 제공했다.   ▲ FA-50 비행 시뮬레이션의 디스플레이 장면(이미지 출처 : KAI)   시뮬레이션·시스템 개발에서 언리얼 엔진의 기여도 언리얼 엔진 도입 이후 KAI의 시뮬레이션 제작 파이프라인에는 큰 변화가 있었다. 데이터스미스를 활용해 카티아 등 설계 도구의 3D 모델을 쉽게 불러올 수 있어, 실제 설계 기반의 가상 조종석과 기체 모델을 빠르게 구축하고 별도의 모델링 없이 제작 시간을 줄일 수 있었다. 또한 자체 개발한 비행역학 엔진과 항공전자 시뮬레이션 소프트웨어를 언리얼 엔진과 실시간으로 연동해, 백엔드 시스템과 시각화 프론트엔드를 효과적으로 통합함으로써 전반적인 생산성이 향상되었다. 특히 조종사가 시각과 청각 정보를 통해 상황을 판단하는 VR 시뮬레이터 개발에서는 언리얼 엔진의 렌더링, 사운드, 애니메이션 기능이 핵심 도구로 사용되었다. 물리 기반 렌더링(PBR)은 금속, 유리, 계기판 등 재질을 사실적으로 구현했으며, 파티클 시스템과 머티리얼 노드를 통해 연기, 공기 왜곡 등의 시각 효과도 유연하게 조정할 수 있었다. 사운드 역시 메타사운드를 통해 엔진 RPM이나 환경 변화에 따라 실시간으로 반응하며, 조종사에게 실제 비행과 유사한 감각을 제공했다. 또한 애니메이션 블루프린트를 활용해 조종간, 계기판, 비행 제어면 간 연동 애니메이션의 비주얼을 직관적으로 구현할 수 있었으며, 스카이 애트머스피어, 볼류메트릭 클라우드, 하이트 포그 등의 기능은 대기 표현과 공간 인식 훈련의 몰입감을 높였다. 지형 구현에서도 언리얼 엔진의 LWC(Large World Coordinates)를 통해 수천 km 단위의 지형에서도 고속 이동 시 정밀도를 유지할 수 있었고, 풀 소스 코드를 활용해 AI 훈련 체계에 맞는 좌표 변환, 시스템 연동, 정밀 지형 구조를 구현할 수 있었다. 이 과정에서 실제 지형 데이터, 항공 사진, 고도 정보를 언리얼 엔진에 통합했고, GIS, DEM 기반의 정밀 지형 정보를 효과적으로 활용해 복잡한 비행 경로, 저공 비행 훈련, 목표 탐색 등 고난도 시나리오도 현실감 있게 구현할 수 있었다. 그 결과 KAI는 초대형 지형 데이터, 초정밀 위치 기반 훈련, 외부 시스템과의 정밀한 좌표 연동을 모두 만족하는 차세대 항공기 시뮬레이터 플랫폼을 성공적으로 구축할 수 있었다. 이외에도 다양한 플러그인, 하드웨어 인터페이스, 형상 관리 툴 연동, 이제는 리얼리티스캔으로 변경된 리얼리티캡처, 마켓플레이스 등을 활용하여 프로젝트 확장성과 콘텐츠 제작 유연성이 높아졌다.   ▲ 애니메이션 블루프린트를 활용해 구현한 조종간(이미지 출처 : KAI)   대규모 전술 훈련을 위한 AI 에이전트를 언리얼 엔진에 도입 KAI는 차세대 전술 훈련 시뮬레이터 개발을 위해 강화학습 기반의 AI 에이전트를 실제 훈련 시나리오에 연동하는 작업을 진행 중이다. 특히, 복잡한 전장 환경에서는 다양한 무기 체계와 플랫폼이 동시에 운용되기 때문에, 이를 하나의 시뮬레이션 공간에서 유기적으로 연동하는 기술이 매우 중요하다. 기존 상용 시뮬레이터 설루션의 경우 외부 시스템 연동이나 커스터마이징에 제약이 많지만, 언리얼 엔진은 C++ 기반의 풀 소스 코드 접근이 가능해 이러한 한계를 극복할 수 있다. KAI는 이러한 개방성을 바탕으로 자체 개발한 AI 에이전트를 정밀하게 통합해, 복잡한 상호작용이 필요한 전술 훈련 시나리오에서도 실질적인 이점을 확보할 수 있었다. 이와 같은 통합은 단순히 AI를 활용하는 수준을 넘어, 인간 조종사와 AI가 동일한 시뮬레이션 환경에서 훈련하고 상호 작용할 수 있는 구조를 의미한다. 기존의 설루션으로는 구현하기 어려웠지만 KAI는 언리얼 엔진을 도입해 이를 실현할 수 있었다. 결과적으로 언리얼 엔진은 AI, 실시간 시뮬레이션, 데이터 피드백이 통합된 플랫폼을 제공하며, KAI의 차세대 전술 훈련체계 구현에 핵심 역할을 하고 있다.   ▲ 지형 데이터 통합으로 구현한 대규모 도시 지역 디지털 트윈(이미지 출처 : KAI)   향후 시뮬레이션 에코시스템의 방향과 KAI의 비전 향후 시뮬레이션 에코시스템은 개방성, 지속 가능성, 개인화를 중심으로 발전해 나갈 것이다. AI와 빅데이터를 기반으로 한 맞춤형 훈련 시스템, 클라우드 환경에서의 지리적 제약 없는 고성능 시뮬레이션 그리고 VR/AR, 웨어러블 기술 등을 활용한 몰입형 실시간 피드백 시스템이 표준이 되어갈 것으로 전망된다. 이러한 변화 속에서 KAI는 기술 통합형 플랫폼과 자체 시뮬레이션 에코시스템을 구축하며, 대한민국 시뮬레이션 산업의 지속 가능한 성장 기반을 마련할 예정이다. 언리얼 엔진을 단순한 개발 툴이 아닌 시뮬레이션 엔진으로 활용하며, 플랫폼을 중심으로 고퀄리티 콘텐츠를 빠르게 생산할 수 있는 시뮬레이션 콘텐츠 파이프라인을 개발 중이다. KAI의 비전은 국내를 넘어 글로벌 시뮬레이션 에코시스템과 연결되는 것이다. 언리얼 엔진의 개방성과 기술력을 바탕으로 산업 전반에 걸쳐 공유 가능한 시뮬레이션 플랫폼을 만들고, 이를 통해 다양한 산업, 기관, 개발자가 협력할 수 있는 건강하고 확장 가능한 에코시스템을 조성하는 것이 목표다. 이러한 방향성과 비전을 바탕으로, KAI는 시뮬레이션 기술을 단순한 훈련 도구를 넘어 제품 개발, 유지보수, 운영 효율 개선을 위한 핵심 인프라로 성장시키고자 한다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
HPE, 엔비디아와 협력해 에이전틱·피지컬 AI 혁신 가속화
HPE는 기업이 AI를 도입하고 개발 및 운영하는 과정을 폭넓게 지원하는 ‘HPE 기반 엔비디아 AI 컴퓨팅(NVIDIA AI Computing by HPE)’ 포트폴리오의 주요 혁신 사항을 공개했다. HPE는 엔비디아 AI 엔터프라이즈(NVIDIA AI Enterprise)와의 통합을 한층 강화하고, 최신 엔비디아 AI 모델 및 엔비디아 블루프린트(NVIDIA Blueprints)를 HPE 프라이빗 클라우드 AI(HPE Private Cloud AI)에 탑재함으로써 개발자들이 AI 애플리케이션을 보다 간편하게 구축하고 운영할 수 있도록 지원하게 되었다고 전했다. 또한 HPE는 엔비디아 블랙웰(NVIDIA Blackwell) 기반 가속 컴퓨팅을 탑재한 HPE 프로라이언트 컴퓨트(HPE ProLiant Compute) 서버를 출하할 예정이며, 이를 통해 생성형 AI, 에이전틱 AI 및 피지컬 AI 워크로드를 향상된 성능으로 지원할 수 있을 것으로 보고 있다. 엔비디아 블랙웰 아키텍처를 탑재한 HPE 프로라이언트 컴퓨트 서버는 두 종류의 엔비디아 RTX PRO 서버 구성을 포함한다. HPE 프로라이언트 DL385 Gen11 서버는 신규 2U RTX PRO 서버 폼팩터의 공랭식 서버로, 엔비디아 RTX PRO 6000 블랙웰 서버 에디션 GPU를 최대 2개까지 지원한다. 이 제품은 기업의 증가하는 AI 수요를 충족해야 하는 데이터센터 환경에 최적화된 설계를 지향한다. HPE 프로라이언트 컴퓨트 DL380a Gen12 서버는 4U 폼팩터 기반으로, 엔비디아 RTX PRO 6000 GPU를 최대 8개까지 지원하며 2025년 9월 출시될 예정이다.   특히 HPE 프로라이언트 컴퓨트 Gen12 서버는 HPE iLO(Integrated Lights Out) 7의 실리콘 RoT(Root of Trust) 및 시큐어 인클레이브(Secure Enclave) 기반으로 한 다층 보안 기능을 갖추고 있으며, 위조 및 변조 방지 보호와 양자 내성 펌웨어 서명(quantum-resistant firmware signing) 기능을 통해 한층 강화된 보안 환경을 제공한다.   ▲ HPE 프로라이언트 DL380a Gen12 서버   또한, HPE 컴퓨트 옵스 매니지먼트(HPE Compute Ops Management)으로 지원되는 중앙 집중형 클라우드 네이티브 방식의 라이프사이클 자동화 기능은 서버 관리에 소요되는 IT 업무 시간을 최대 75%까지 줄이고, 서버당 연간 평균 4.8시간의 다운타임 감소 효과를 제공한다. 대상 워크로드에는 생성형 및 에이전틱 AI을 비롯해 로보틱스 및 산업용 사례 등 피지컬 AI, 품질 관리(QC) 모니터링 및 자율주행과 같은 비주얼 컴퓨팅, 시뮬레이션, 3D 모델링, 디지털 트윈, 그리고 각종 엔터프라이즈 애플리케이션이 포함된다. 한편, HPE는 올해 말 출시 예정인 차세대 ‘HPE 프라이빗 클라우드 AI’를 발표했다. 이 설루션은 엔비디아 RTX PRO 6000 GPU를 탑재한 HPE 프로라이언트 컴퓨트 Gen12 서버를 지원하며, GPU 세대 간의 원활한 확장성, 폐쇠망(air-gapped) 관리 및 엔터프라이즈 멀티 테넌시(multi-tenancy) 기능 등을 제공할 예정이다. HPE와 엔비디아가 공동 개발한 엔터프라이즈 턴키 AI 팩토리 설루션인 HPE 프라이빗 클라우드 AI는 에이전틱 AI를 위한 최신 버전의 엔비디아 네모트론(NVIDIA Llama Nemotron) 모델, 피지컬 AI 및 로보틱스를 위한 코스모스 리즌(Cosmos Reason) VLM(vision language model), 엔비디아 블루프린트 VSS 2.4 (NVIDIA Blueprint for Video Search and Summarization)를 지원하여 대규모 영상 데이터에서 인사이트를 추출하는 영상 분석 AI 에이전트를 구축할 수 있다. 또한, HPE 프라이빗 클라우드 AI는 최신 AI 모델을 위한 엔비디아 NIM 마이크로서비스, 엔비디아 블루프린트를 빠르게 배포할 수 있도록 맞춤형 설계되어, 고객들은 HPE AI 에센셜(HPE AI Essentials)를 통해 이를 간편하게 활용할 수 있다. 이와 함께 HPE 프라이빗 클라우드 AI는 엔비디아 AI 가속화 컴퓨팅, 네트워킹, 소프트웨어와의 깊은 통합을 바탕으로, 기업들이 데이터 통제를 유지하면서도 AI의 가치를 보다 신속하게 활용할 수 있도록 지원한다. 이를 통해 고객은 급증하는 AI 추론 수요를 효과적으로 관리하고 AI 생산 속도를 가속화할 수 있다. HPE 셰리 윌리엄스(Cheri Williams) 프라이빗 클라우드 및 플렉스 설루션 부문 수석 부사장 겸 총괄은 “HPE는 AI 시대를 맞아 기업들이 성공을 이룰 수 있도록 필요한 툴과 기술을 제공하는 데 전념하고 있다”면서, “엔비디아와의 협업을 통해 기술 혁신의 경계를 지속적으로 넓혀가며, 생성형 AI, 에이전틱 AI, 피지컬AI의 가치 실현을 포함해 엔터프라이즈 환경의 복잡하고 다양한 요구를 충족하는 설루션을 제공하고 있다. HPE 프로라이언트 서버와 HPE 프라이빗 클라우드 AI의 확장된 역량을 결합함으로써, 기업들이 AI 혁신의 다음 단계를 더욱 신속하고 신뢰 있게 수용할 수 있도록 지원하고 있다”고 밝혔다. 엔비디아의 저스틴 보이타노(Justin Boitano) 엔터프라이즈 AI 부사장은 “기업은 최신 AI 요구사항에 맞추기 위해 유연하고 효율적인 인프라가 필요하다”면서, “엔비디아 RTX PRO 6000 블랙웰 GPU를 탑재한 HPE 2U 프로라이언트 서버는 단일 통합형 기업용 플랫폼에서 거의 모든 워크로드를 가속화할 수 있도록 해줄 것”이라고 밝혔다.
작성일 : 2025-08-18
오라클, AWS 클라우드에서 자율운영 DB 실행하는 ‘데이터베이스앳AWS’ 출시
오라클과 아마존웹서비스(AWS)가 오라클 데이터베이스앳AWS(Oracle Database@AWS)의 공식 출시(GA)를 발표했다. 이제 AWS 클라우드 환경에서 OCI(오라클 클라우드 인프라스트럭처) 전용 인프라의 오라클 엑사데이터 데이터베이스 서비스(Oracle Exadata Database Service) 및 오라클 자율운영 데이터베이스(Oracle Autonomous Database)를 실행할 수 있다. 오라클 데이터베이스앳AWS는 AWS의 미국 동부 및 서부 리전에서 이용 가능하며, 대한민국 서울을 포함한 전 세계 20여 개 AWS 리전에서 추가로 출시될 예정이다. 기업 고객은 오라클 데이터베이스 워크로드를 AWS 환경에서 OCI 상에서 실행되는 오라클 데이터베이스앳AWS로 손쉽게 마이그레이션할 수 있으며, 오라클 리얼 애플리케이션 클러스터(RAC) 및 AI 벡터 기능이 내장된 최신 오라클 데이터베이스 23ai의 이점도 누릴 수 있다. 오라클 데이터베이스앳AWS에는 제로 ETL(추출, 변환 및 로드) 기능이 포함되어 있어 엔터프라이즈 오라클 데이터베이스 서비스와 AWS 애널리틱스(AWS Analytics) 서비스 간 데이터 통합이 간편해지고, 이로써 복잡한 데이터 파이프라인을 구축하고 관리할 필요가 없어진다. 이는 오라클 데이터베이스 서비스와 AWS 서비스 간 데이터 흐름을 원활하게 하며, 기업은 자사의 데이터를 AWS 분석, 머신러닝 및 생성형 AI 서비스와 결합해 애플리케이션을 추가로 개선할 수 있다. 이번 출시로 클라우드 내 데이터베이스 실행에 있어 기업 고객들의 선택지는 더욱 넓어졌으며, 기존의 AWS 내 오라클 데이터베이스 실행 옵션이 보완됐다. AWS의 G2 크리슈나무티(G2 Krishnamoorthy) 데이터베이스 서비스 부사장은 “기업은 애플리케이션 재설계 없이도 자사의 오라클 데이터베이스 워크로드를 오라클 데이터베이스앳AWS로 원활히 마이그레이션할 수 있다. 동시에 AWS의 글로벌 인프라가 제공하는 보안성과 복원 탄력성, 확장성도 누릴 수 있다”면서, “보안에 가장 민감한 세계 최대 규모 기업 조직의 상당수가 이미 AWS에서 오라클 워크로드를 실행하고 있다. 오라클 데이터베이스앳AWS는 기업이 AWS의 첨단 분석 및 생성형 AI 기능을 바탕으로 보다 손쉽게 데이터로부터 더 큰 가치를 창출하도록 돕는다”고 말했다. 카란 바타 OCI 수석 부사장은 “기업들은 지난 수십 년간 자사의 가장 가치 있는 데이터를 오라클 데이터베이스에 저장해 왔다”면서, “오라클 데이터베이스앳AWS는 AWS 환경의 OCI에서 오라클 데이터베이스 워크로드를 실행할 수 있게 해 준다. 덕분에 오라클 데이터베이스 23ai의 이점을 온전히 활용하여 애플리케이션 개발을 간소화하고, AI 및 네이티브 벡터 임베딩을 바탕으로 미션 크리티컬 워크로드를 실행할 수 있다. AWS의 고급 생성형 AI 및 분석 서비스와 결합된 오라클 데이터베이스앳AWS는 진정 주목할 만한 설루션”이라고 설명했다. 오라클 데이터베이스앳AWS는 OCI와 AWS 전반에 걸쳐 일관된 사용자 경험을 제공하며, 양사의 통합된 지원으로 데이터베이스 관리와 구매, 배포를 간소화할 수 있다. 이는 기업 고객이 신뢰하는 기업용 애플리케이션에 최적화된 참조 아키텍처 및 랜딩 존을 기반으로 설계되었다.  이 서비스를 활용하면 오라클 제로 다운타임 마이그레이션(Oracle Zero Downtime Migration)을 비롯한 마이그레이션 도구와의 호환성을 바탕으로 기존 오라클 데이터베이스의 클라우드 마이그레이션을 간소화 및 가속화할 수 있다. 그리고 오라클 RAC를 통한 워크로드의 고도의 복원력 및 확장성 상승, 여러 AWS 가용 영역(AWS Availability Zones)과 아마존 S3(Amazon S3)을 통한 백업 및 재해 복구가 가능하다. 또한, AWS 마켓플레이스(AWS Marketplace)를 활용한 간소화된 구매 경험을 누릴 수 있다. 기존 AWS 약정 및 BYOL(Bring Your Own License) 등 오라클 라이선스 혜택과 오라클 서포트 리워드(OSR) 등 할인 프로그램을 오라클 데이터베이스앳AWS와 함께 사용할 수 있다. 아마존 EC2(Amazon EC2), 아마존EKS(Amazon EKS), 아마존 ECS(Amazon ECS)와 AI 벡터 검색(AI Vector Search) 등 오라클 데이터베이스 기능을 결합하면 확장 가능한 새로운 마이크로서비스 기반 애플리케이션을 구축할 수 있고, 이를 통해 애플리케이션 인텔리전스를 개선하면서 신기능을 신속하게 시장에 출시할 수 있다. 오라클 데이터베이스앳AWS는 내장형 오라클 AI 벡터 검색을 지원하는 오라클 데이터베이스 23ai를 제공한다. 사용자는 특정 단어와 픽셀, 데이터 값이 아닌 개념적 콘텐츠를 기반으로 문서, 이미지, 관계형 데이터를 손쉽게 검색할 수 있다. AWS 관리 콘솔(AWS Management Console), AWS 명령줄 인터페이스(AWS Command Line Interface), API 등 익숙한 도구 및 손쉬운 워크로드 관리를 위한 모니터링 기능이 제공되며, 고급 분석, 머신러닝, 생성형 AI 서비스를 활용한 데이터 준비가 가능하다. 이외에도 AWS IAM(AWS Identity and Access Management), AWS 클라우드 포메이션(AWS CloudFormation), 아마존 클라우드워치(Amazon CloudWatch), 아마존 VPC 라티스(Amazon VPC Lattice), 아마존 이벤트브리지(Amazon EventBridge) 등 AWS 서비스와의 통합이 제공된다. 한편으로 오라클 E-비즈니스 스위트(Oracle E-Business Suite), 피플소프트(PeopleSoft), JD 에드워즈 엔터프라이즈원(JD Edwards EnterpriseOne), 오라클 EPM(Oracle Enterprise Performance Management), 오라클 리테일 애플리케이션(Oracle Retail Applications) 등 오라클 애플리케이션도 지원된다. 오라클 데이터베이스앳AWS는 현재 AWS 미국 동부(버지니아주 북부) 및 서부(오리건주) 리전에서 이용 가능하며, AWS의 클라우드 인프라를 활용하고 있다. 오라클 데이터베이스앳AWS 설루션은 대한민국의 서울을 포함해 캐나다(중부), 프랑크푸르트, 하이데라바드, 아일랜드, 런던, 멜버른, 밀라노, 뭄바이, 오사카, 파리, 상파울루, 싱가포르, 스페인, 스톡홀름, 시드니, 도쿄, 미국 동부(오하이오주), 미국 서부(캘리포니아주), 취리히를 포함해 20여 곳의 추가 AWS 리전에서도 출시를 앞두고 있다.
작성일 : 2025-07-10
엔비디아, “모델 양자화로 스테이블 디퓨전 성능 높였다”
엔비디아가 양자화를 통해 스테이블 디퓨전 3.5(Stable Diffusion 3.5) 모델의 성능을 향상시켰다고 발표했다. 생성형 AI는 사람들이 디지털 콘텐츠를 만들고, 상상하며, 상호작용하는 방식을 혁신적으로 바꾸고 있다. 그러나 지속적으로 AI 모델의 기능이 향상되고 복잡성이 증가면서 더 많은 VRAM이 요구되고 있다. 예를 들어 기본 스테이블 디퓨전 3.5 라지(Large) 모델은 18GB 이상의 VRAM을 사용하므로 고성능 시스템이 아니면 실행이 어렵다. 엔비디아는 이 모델에 양자화를 적용하면 중요하지 않은 레이어를 제거하거나 더 낮은 정밀도로도 실행할 수 있다고 설명했다. 엔비디아 지포스(GeForce) RTX 40 시리즈와 에이다 러브레이스(Ada Lovelace) 세대 엔비디아 RTX PRO GPU는 FP8 양자화를 지원해 이러한 경량화된 모델을 실행할 수 있다. 또한 최신 엔비디아 블랙웰(Blackwell) GPU는 FP4도 지원한다.     엔비디아는 스태빌리티 AI(Stability AI)와 협력해 최신 모델인 스테이블 디퓨전 3.5 라지를 FP8로 양자화해 VRAM 사용량을 40%까지 줄였다. 여기에 엔비디아 텐서RT(TensorRT) 소프트웨어 개발 키트(SDK)를 통한 최적화로 스테이블 디퓨전 3.5 라지와 미디엄 모델의 성능을 2배로 끌어올렸다. 또한, 텐서RT가 RTX AI PC 환경을 위해 새롭게 설계됐다. 높은 성능과 JIT(Just-In-Time), 온디바이스 엔진 구축 기능을 더하고 패키지 크기를 8배 줄여 1억 대 이상의 RTX AI PC에 AI를 원활하게 배포할 수 있게 됐다. RTX용 텐서RT는 이제 개발자를 위한 독립형 SDK로 제공된다. 엔비디아와 스태빌리티 AI는 인기 있는 AI 이미지 생성 모델 중 하나인 스테이블 디퓨전 3.5의 성능을 높이고 VRAM 요구 사항을 낮췄다. 엔비디아 텐서RT 가속과 양자화 기술을 통해, 사용자는 엔비디아 RTX GPU에서 이미지를 더 빠르고 효율적으로 생성하고 편집할 수 있다. 스테이블 디퓨전 3.5 라지의 VRAM 한계를 해결하기 위해 이 모델은 텐서RT를 활용해 FP8로 양자화됐다. 그 결과, VRAM 요구량이 40% 줄어 11GB면 충분해졌다. 즉, 단 한 대의 GPU가 아닌 다섯 대의 지포스 RTX 50 시리즈 GPU가 메모리에서 모델을 동시에 실행할 수 있게 됐다. 또한 스테이블 디퓨전 3.5 라지와 미디엄 모델은 텐서RT를 통해 최적화됐다. 텐서RT는 텐서 코어를 최대한 활용할 수 있도록 설계된 AI 백엔드로, 모델의 가중치와 모델 실행을 위한 명령 체계인 그래프를 RTX GPU에 맞게 최적화한다.  FP8 텐서RT는 스테이블 디퓨전 3.5 라지의 성능을 BF16 파이토치 대비 2.3배 향상시키면서 메모리 사용량은 40% 줄여준다. 스테이블 디퓨전 3.5 미디엄의 경우, BF16 텐서RT는 BF16 파이토치 대비 1.7배 더 빠르다. FP8 텐서RT를 적용한 결과, 스테이블 디퓨전 3.5 라지 모델은 BF16 파이토치(PyTorch)에서 실행했을 때보다 성능이 2.3배 향상됐고, 메모리 사용량은 40% 감소했다. 스테이블 디퓨전 3.5 미디엄 모델도 BF16 텐서RT를 통해 BF16 파이토치 대비 1.7배 더 높은 성능을 발휘했다. 최적화된 모델은 현재 스태빌리티 AI의 허깅페이스(Hugging Face) 페이지에서 이용할 수 있다. 또한 엔비디아와 스태빌리티 AI는 스테이블 디퓨전 3.5 모델을 엔비디아 NIM 마이크로서비스 형태로도 출시할 계획이다. 이를 통해 크리에이터와 개발자는 다양한 애플리케이션에서 보다 쉽게 모델을 접근하고 배포할 수 있게 된다. 이 NIM 마이크로서비스는 오는 7월 출시될 예정이다.
작성일 : 2025-06-18
HPE, 엔비디아와 협력해 AI 팩토리 포트폴리오 강화
HPE는 전체 AI 수명주기를 지원하고 기업, 서비스 제공업체, 공공기관, 연구기관 등 다양한 고객의 요구를 충족하는 ‘HPE 기반 엔비디아 AI 컴퓨팅(NVIDIA AI Computing by HPE)’ 설루션 포트폴리오를 강화한다고 발표했다. 이번 업데이트는 엔비디아 AI 엔터프라이즈(NVIDIA AI Enterprise)와의 통합을 강화하고, 가속 컴퓨팅을 통해 HPE 프라이빗 클라우드 AI(HPE Private Cloud AI)에 대한 지원을 확대했다. 또한 엔비디아 AI 데이터 플랫폼(NVIDIA AI Data Platform)용 HPE 알레트라 스토리지 MP X10000(HPE Alletra Storage MP X10000) 소프트웨어 개발 키트(SDK)를 새롭게 출시했다. 이와 함께 HPE는 엔비디아 RTX PRO 6000 블랙웰 서버 에디션(NVIDIA RTX PRO 6000 Blackwell Server Edition) GPU 및 엔비디아 엔터프라이즈 AI 팩토리(NVIDIA Enterprise AI Factory)의 검증된 설계에 기반한 컴퓨팅 및 소프트웨어 제품도 출시했다. 엔비디아와 공동 개발한 턴키 방식의 클라우드 기반 AI 팩토리인 ‘HPE 프라이빗 클라우드 AI(HPE Private Cloud AI)’는 통합된 AI 전략을 비즈니스 전반에 확산하고 수익성 높은 워크로드를 지원하며 리스크를 대폭 줄일 수 있도록 지원하는 전용 개발자 설루션을 포함하고 있다. 또한, 이는 AI 프레임워크, 사전 훈련 모델을 위한 엔비디아 NIM 마이크로서비스(NVIDIA NIM microservices) 및 SDK를 포함하는 엔비디아 AI 엔터프라이즈(NVIDIA AI Enterprise)의 피쳐 브랜치(Feature Branch) 모델 업데이트를 지원할 예정이다. 피쳐 브랜치 모델 지원을 통해 개발자는 AI 워크로드를 위한 소프트웨어 기능과 최적화 사항을 테스트하고 검증할 수 있다.  가드레일이 내장된 프로덕션 브랜치 모델에 대한 기존 지원과 더불어, HPE 프라이빗 클라우드 AI는 모든 규모의 기업이 개발자 시스템을 구축하고 이를 프로덕션-레디 에이전틱 및 생성형 AI 애플리케이션으로 확장하는 한편, 기업 전반에 걸쳐 안전한 다계층 접근 방식을 도입할 수 있도록 지원한다. HPE 알레트라 스토리지 MP X10000은 엔비디아 AI 데이터 플랫폼 레퍼런스 설계와 연동되는 SDK를 선보일 예정이다. HPE의 최신 데이터 플랫폼과 엔비디아의 맞춤형 레퍼런스 설계를 연결함으로써, 고객은 에이전틱 AI 구현을 위한 가속화된 성능과 인텔리전트 파이프라인 오케스트레이션을 활용할 수 있다. 이번 X10000 SDK는 HPE의 데이터 인텔리전스 전략 확대의 일환으로, 컨텍스트 기반의 AI-레디 데이터를 엔비디아 AI 생태계에 직접 통합할 수 있도록 지원한다. 이를 통해 기업은 엔비디아 가속 인프라 전반에서 수집, 추론, 훈련 및 지속적인 학습을 위한 비정형 데이터 파이프라인을 간소화할 수 있다. HPE는 SDK 통합을 통해 데이터 가치 극대화, AI 데이터 플랫폼의 효율 향상, 워크로드 요구사항에 맞는 구축 최적화 등의 이점을 얻을 수 있을 것으로 보고 있다. 엔비디아 H100 NVL, H200 NVL 및 L40S GPU를 탑재한 HPE 프로라이언트 컴퓨트 DL380a Gen12(HPE ProLiant Compute DL380a Gen12) 서버는 최근 MLPerf Inference : Datacenter v5.0 벤치마크의 GPT-J, Llama2-70B, ResNet50 및 RetinaNet을 포함한 10개 테스트에서 최고 수준의 성능을 기록했다. 이 AI 서버는 곧 최대 10개의 엔비디아 RTX PRO 6000 블랙웰 서버 에디션 GPU를 탑재하여 출시될 예정이며, 이를 통해 향상된 기능과 함께 에이전틱 멀티모달 AI 추론, 피지컬 AI, 모델 미세조정 뿐만 아니라 디자인, 그래픽 및 비디오 애플리케이션을 포함한 엔터프라이즈 AI 워크로드를 위한 탁월한 성능을 제공할 예정이다. HPE 프로라이언트 컴퓨트 DL380a Gen12는 공랭식 및 직접 수냉 방식(DLC)으로 제공되며, HPE 프로라이언트 컴퓨트 Gen12 포트폴리오에 탑재된 HPE iLO(Integrated Lights Out) 7은 실리콘 RoT(Root of Trust) 기반으로 한 내장된 보호 기능을 갖추고 있다. 또한, HPE 컴퓨트 옵스 매니지먼트(HPE Compute Ops Management)는 사전 알림 기능 및 예측적 AI 기반 인사이트를 통해 서버 환경을 위한 안전하고 자동화된 수명 주기 관리를 지원한다. HPE 옵스램프 소프트웨어(HPE OpsRamp Software)는 AI 워크로드 모니터링을 위한 차세대 엔비디아 RTX PRO 6000 블랙웰 서버 에디션 GPU까지 지원할 수 있는 AI 인프라 최적화 설루션으로 확장됐다. HPE 그린레이크 플랫폼(HPE GreenLake Platform) SaaS(서비스형 소프트웨어) 방식으로 구성되는 이 설루션은 기업 내 IT 팀이 하이브리드 환경 전반에 분산된 AI 인프라를 모니터링하고, 최적화를 통해 AI인프라 운영을 효율적으로 관리, 지원한다. HPE 옵스램프는 풀스택 AI 워크로드에서 인프라 옵저버빌리티, 워크플로 자동화, AI 기반 분석 및 이벤트 관리를 가능하게 하고, 엔비디아의 모든 인프라를 정밀하게 모니터링하는 한편, AI 인프라의 성능과 복원력을 모니터링할 수 있는 세분화된 측정 지표를 제공한다. HPE의 안토니오 네리(Antonio Neri) 사장 겸 최고경영자(CEO)는 “HPE는 엔비디아와의 협업을 통해 고객에게 지속적인 혁신과 실질적인 성과를 제공하고 있으며, 강력한 설루션을 기반으로 공동 개발한 첨단 AI 기술을 통해 기업이 AI 도입의 어느 단계에 있든 기업 전반에서 그 잠재력을 효과적으로 실현할 수 있도록 지원하고 있다”면서, “HPE는 오늘날의 요구를 충족하는 동시에, AI 중심의 미래를 함께 만들어가고 있다”고 밝혔다. 엔비디아의 젠슨 황(Jensen Huang) 창립자 겸 CEO는 “기업은 HPE 시스템을 활용해 최첨단 엔비디아 AI 팩토리를 구축함으로써 생성형 및 에이전틱 AI 시대에 최적화된 IT 인프라를 준비할 수 있다”면서, “엔비디아와 HPE는 데이터센터부터 클라우드, 에지에 이르기까지 인텔리전스를 확장 가능한 새로운 산업 자원으로 활용할 수 있도록 기업을 위한 기반을 함께 만들어가고 있다”고 밝혔다.
작성일 : 2025-05-23
엔비디아, 기업 생산성 강화하는 ‘네모 마이크로서비스’ 정식 출시
엔비디아가 에이전트 기반 AI 플랫폼 개발을 가속화하고 기업의 생산성을 높이는 ‘엔비디아 네모 마이크로서비스(NVIDIA NeMo microservices)’를 정식 출시했다고 밝혔다. 이번에 정식 출시된 엔비디아 네모 마이크로서비스는 기업 IT 부서가 데이터 플라이휠(flywheel)을 활용해 직원 생산성을 높일 수 있는 AI 팀원을 빠르게 구축하도록 지원한다. 이 마이크로서비스는 엔드 투 엔드 개발자 플랫폼을 제공한다. 이 플랫폼은 최첨단 에이전틱 AI(Agentic AI) 시스템의 개발을 가능하게 하고, 추론 결과, 비즈니스 데이터, 사용자 선호도에 기반한 데이터 플라이휠을 통해 지속적인 최적화를 지원한다. 데이터 플라이휠을 통해 기업 IT 부서는 AI 에이전트를 디지털 팀원으로 온보딩할 수 있다. 이러한 에이전트는 사용자 상호작용과 AI 추론 과정에서 생성된 데이터를 활용해 모델 성능을 지속적으로 개선할 수 있다. 이를 통해 ‘사용’을 ‘인사이트’로, ‘인사이트’를 ‘실행’으로 전환할 수 있다.     데이터베이스, 사용자 상호작용, 현실 세계의 신호 등의 고품질 입력이 지속적으로 제공되지 않으면 에이전트의 이해력은 약화된다. 그 결과, 응답의 신뢰성은 떨어지고 에이전트의 생산성도 저하될 수 있다. 운영 환경에서 AI 에이전트를 구동하는 모델을 유지하고 개선하기 위해서는 세 가지 유형의 데이터가 필요하다. 인사이트를 수집하고 변화하는 데이터 패턴에 적응하기 위한 추론 데이터, 인텔리전스를 제공하기 위한 최신 비즈니스 데이터, 모델과 애플리케이션이 예상대로 작동하는지를 판단하기 위한 사용자 피드백 데이터가 그것이다. 네모 마이크로서비스는 개발자가 이 세 가지 유형의 데이터를 효율적으로 활용할 수 있도록 지원한다. 또한, 네모 마이크로서비스는 에이전트를 구동하는 모델을 선별하고, 맞춤화하며, 평가하고, 안전장치를 적용하는 데 필요한 엔드 투 엔드 툴을 제공함으로써 AI 에이전트 개발 속도를 높인다. 엔비디아 네모 마이크로서비스는 ▲대규모 언어 모델(LLM) 미세 조정을 가속화해 최대 1.8배 높은 훈련 처리량을 제공하는 네모 커스터마이저(Customizer) ▲개인과 산업 벤치마크에서 AI 모델과 워크플로의 평가를 단 5번의 API 호출로 간소화하는 네모 이밸류에이터(Evaluator) ▲ 0.5초의 추가 지연 시간만으로 규정 준수 보호 기능을 최대 1.4배까지 향상시키는 네모 가드레일(Guardrails)을 포함한다. 이는 네모 리트리버(Retreiver), 네모 큐레이터(Curator)와 함께 사용돼, 맞춤형 엔터프라이즈 데이터 플라이휠을 통해 AI 에이전트를 구축하고, 최적화하며, 확장하는 과정을 기업이 보다 수월하게 수행할 수 있도록 지원한다. 개발자는 네모 마이크로서비스를 통해 AI 에이전트의 정확성과 효율성을 높이는 데이터 플라이휠을 구축할 수 있다. 엔비디아 AI 엔터프라이즈(Enterprise) 소프트웨어 플랫폼을 통해 배포되는 네모 마이크로서비스는 온프레미스 또는 클라우드의 모든 가속 컴퓨팅 인프라에서 엔터프라이즈급 보안, 안정성, 지원과 함께 손쉽게 운영할 수 있다. 이 마이크로서비스는 기업들이 수백 개의 전문화된 에이전트를 협업시키는 대규모 멀티 에이전트 시스템을 구축하고 있는 현재 정식 출시됐다. 각 에이전트는 고유의 목표와 워크플로를 가지고 있으며, 디지털 팀원으로서 복잡한 업무를 함께 해결하며 직원들의 업무를 보조하고, 강화하며, 가속화한다. 엔비디아 네모 마이크로서비스로 구축된 데이터 플라이휠은 사람의 개입을 최소화하고 자율성을 극대화하면서 데이터를 지속적으로 선별하고, 모델을 재훈련하며, 성능을 평가한다. 네모 마이크로서비스는 라마(Llama), 마이크로소프트 파이(Microsoft Phi) 소형 언어 모델 제품군, 구글 젬마(Google Gemma), 미스트랄 등 폭넓은 인기 오픈 모델을 지원한다. 또한, 기업은 엔비디아 가속 인프라, 네트워킹, 그리고 시스코, 델, HPE, 레노버(Lenovo) 등 주요 시스템 제공업체의 소프트웨어를 기반으로 AI 에이전트를 실행할 수 있다. 액센츄어(Accenture), 딜로이트(Deloitte), EY를 비롯한 거대 컨설팅 기업들 역시 네모 마이크로서비스를 기반으로 기업용 AI 에이전트 플랫폼을 구축하고 있다.
작성일 : 2025-04-25
알테어, 엔비디아 옴니버스 블루프린트와 통합해 실시간 디지털 트윈 협업 환경 구현
알테어가 자사의 클라우드 플랫폼인 ‘알테어원’에 엔비디아의 ‘옴니버스 블루프린트’를 통합했다고 밝혔다. 옴니버스 블루프린트는 엔비디아가 개발한 실시간 디지털 트윈 구축을 위한 참조 워크플로이다. 이번 통합으로 사용자는 복잡한 시뮬레이션과 디지털 트윈을 실시간으로 시각화하고 구축할 수 있으며, 별도의 설정 없이 다양한 사용자와 함께 협업할 수 있다.   이제 사용자는 알테어원 내에서 옴니버스 블루프린트를 즉시 활용할 수 있으며, 구축한 디지털 트윈은 클라우드와 온프레미스 환경 어디서든 손쉽게 배포할 수 있다. 알테어원은 모든 데이터를 메타데이터와 함께 체계적으로 관리해 설계 반복 시에도 유연하게 대응할 수 있도록 지원한다. 특히 알테어의 인공지능(AI) 기반 해석 설루션인 ‘알테어 피직스AI’를 함께 활용할 경우, 기존에 며칠씩 걸리던 물리 해석 작업을 수 초 내지는 수 분 내로 단축할 수 있다.   실시간 협업도 중요한 차별점이다. 사용자는 디지털 트윈 환경에서 여러 사용자와 동시에 설계를 진행하고, 가상 환경에서 실시간으로 시뮬레이션을 수행할 수 있다. 특히 3D 설계, AI, 레이 트레이싱 기술이 결합된 몰입형 업무 환경을 제공하며, 클라우드 기반의 고품질 렌더링과 스트리밍 기능을 통해 복잡한 시스템 통합도 간소화된다. 알테어는 충돌 및 낙하 테스트 등 고난도 해석 작업에서도 시뮬레이션 속도와 협업 효율을 높일 수 있을 것으로 보고 있다.   이번 협업은 엔비디아의 GPU 가속, NIM 마이크로서비스, 옴니버스 플랫폼 등 최신 기술을 기반으로 하며, 알테어는 이를 바탕으로 시뮬레이션, AI, 데이터 분석, 고성능 컴퓨팅(HPC) 등 자사의 핵심 역량을 단일 플랫폼에 집약해 디지털 엔지니어링의 새로운 표준을 제시할 계획이다.     엔비디아의 티모시 코스타 CAE 및 CUDA-X 부문 수석 디렉터는 “디지털 트윈 기술은 산업을 재편하고 있다”면서, “알테어 사용자는 이제 엔비디아의 첨단 기술을 기반으로 더욱 효율적이고 실질적인 디지털 엔지니어링을 구현할 수 있을 것”이라고 말했다.   알테어의 샘 마할링엄 최고기술책임자(CTO)는 “엔비디아의 블랙웰 가속기, AI, 옴니버스 기술을 알테어원에 통합함으로써 고객은 디지털 트윈과 시뮬레이션을 보다 빠르고 직관적으로 운영할 수 있게 됐다”면서, “이번 통합은 데이터, AI, 시뮬레이션을 하나의 워크플로로 연결해 디지털 엔지니어링 혁신을 실현하는 중요한 전환점이 될 것”이라고 강조했다.   한편 알테어는 옴니버스 블루프린트 통합 외에도 주요 제품에 엔비디아 기술을 적용해 성능 향상을 지속하고 있다. 알테어의 구조해석 설루션인 ‘알테어 옵티스트럭트’는 GPU 가속 라이브러리 cuDSS를 도입해 CPU 및 GPU에서 해석 성능을 개선했다. 또한 알테어의 주요 전산유체해석(CFD) 소프트웨어가 블랙웰 플랫폼에서 최대 1.6배의 속도 향상을 기록했고, 입자 해석 시뮬레이션 소프트웨어인 ‘알테어 이뎀’은 기존 32코어 CPU 대비 최대 40배 빠른 시뮬레이션 속도를 달성한 바 있다.
작성일 : 2025-03-27
오라클, 엔비디아 AI 엔터프라이즈 제공으로 분산형 클라우드 기능 확장
오라클이 오라클 클라우드 인프라스트럭처(OCI)에서 엔비디아 AI 엔터프라이즈(NVIDIA AI Enterprise)를 제공한다고 밝혔다. 엔비디아 AI 엔터프라이즈는 데이터 과학을 가속화하고 운영 환경에서 사용 가능한 AI의 개발 및 배포를 간소화하는 엔비디아의 종단간(end-to-end) 클라우드 네이티브 소프트웨어 플랫폼이다. 엔비디아 AI 엔터프라이즈는 소버린 AI를 지원하고 기업 고객이 엔비디아의 가속화되고 안전하며 확장 가능한 플랫폼에 쉽게 액세스할 수 있도록 하기 위해 OCI의 분산형 클라우드 어디에서나 사용할 수 있으며, 기업 고객은 기존 오라클 유니버설 크레딧(Oracle Universal Credits)을 통해서도 사용할 수 있다. OCI는 마켓플레이스를 통해 사용 가능한 여타 엔비디아 AI 엔터프라이즈 오퍼링과 달리 OCI 콘솔(OCI Console)을 통한 네이티브 제공 방식으로 서비스 배포 시간이 단축되며, 직접 청구 및 고객 지원이 가능하다. 사용자는 생성형 AI 모델의 배포 간소화를 지원하는 최적화된 클라우드 네이티브 추론 마이크로서비스 모음인 엔비디아 NIM(NVIDIA NIM) 마이크로서비스를 비롯한 160개 이상의 훈련 및 추론용 AI 도구에 빠르고 간편하게 액세스할 수 있다. 또한 다양한 분산형 클라우드 배포 옵션에 걸쳐 종단간 트레이닝 및 추론 기능 모음을 애플리케이션 구축 및 데이터 관리를 지원하는 OCI 서비스와 결합할 수 있다. 오라클은 OCI 콘솔을 통해 엔비디아 AI 엔터프라이즈를 OCI 퍼블릭 리전을 비롯해, 정부 클라우드와 소버린 클라우드, OCI 전용 리전(OCI Dedicated Region), 오라클 알로이(Oracle Alloy), OCI 컴퓨트 클라우드앳커스터머(OCI Compute Cloud@Customer) OCI 로빙 엣지 디바이스(OCI Roving Edge Devices) 등의 오라클 서비스에 신속 간단히 배포할 수 있도록 지원한다. 고객은 OCI의 분산형 클라우드 전반에서 엔비디아 AI 엔터프라이즈를 사용해 엔터프라이즈 AI 스택의 개발, 배포, 운영 과정에 적용되는 보안, 주권, 규정, 규제 준수 요건을 충족할 수 있다. 엔비디아 AI 엔터프라이즈는 OCI 쿠버네티스 엔진(OCI Kubernetes Engine)을 사용하는 GPU 인스턴스 및 쿠버네티스 클러스터용 배포 이미지로 제공될 예정이다. OCI AI 블루프린트(OCI AI Blueprints)는 AI 배포 가속화를 지원하기 위해 직접 소프트웨어 스택 관련 결정을 내리거나 인프라를 수동으로 프로비저닝하지 않고도 빠르게 AI 워크로드를 실행할 수 있는 노코드 배포 레시피를 제공한다. 엔비디아 GPU, NIM 마이크로서비스, 사전 패키징된 통합 가시성 도구 등에 대한 명확한 하드웨어 권장 사항을 제공하는 OCI AI 블루프린트를 사용하면 확장 배포를 위한 GPU 온보딩 시간을 몇 주에서 단 몇 분으로 단축할 수 있다. 오라클의 카란 바타 OCI 담당 수석 부사장은 “오라클은 고객이 OCI에서 AI 설루션을 가장 신속하게 개발 및 배포할 수 있도록 지원한다”면서, “OCI 상의 엔비디아 AI 엔터프라이즈를 활용하면 최신 AI 인프라 및 소프트웨어 혁신의 이점을 누리는 동시에 분산형 클라우드가 제공하는 다양한 배포 옵션을 유연하게 활용할 수 있다. 고객은 운영, 위치, 보안에 대한 제어 능력을 강화함으로써 업계 최고의 AI 설루션을 활용해 소버린 AI를 가속화할 수 있다”고 말했다. 엔비디아의 저스틴 보이타노(Justin Boitano) 엔터프라이즈 소프트웨어 제품 부사장은 “엔비디아 AI 엔터프라이즈는 개발자가 최신 AI 애플리케이션을 개발할 수 있는 구성 요소를 제공한다”면서, “오라클은 OCI 콘솔에 엔비디아 AI 엔터프라이즈를 통합함으로써 다양한 리전에서 생성형, 에이전틱, 물리적 AI의 개발과 배포를 가속화할 수 있는 원활한 환경을 제공할 것”이라고 말했다.
작성일 : 2025-03-27
엔비디아, NIM에서 딥시크-R1 지원 시작
엔비디아는 개발자가 활용할 수 있도록 딥시크-R1(DeepSeek-R1) 모델을 엔비디아 NIM 마이크로서비스 프리뷰로 제공한다고 밝혔다. 개발자들은 딥시크-R1 모델을 활용해 애플리케이션 프로그래밍 인터페이스(API)를 테스트하고 실험할 수 있으며, 이는 엔비디아 AI 엔터프라이즈(AI Enterprise) 소프트웨어 플랫폼의 일부인 NIM 마이크로서비스로 제공될 예정이다. 딥시크-R1은 최첨단 추론 기능을 갖춘 오픈 모델이다. 딥시크-R1과 같은 추론 모델은 직접적인 답변을 제공하는 대신 쿼리에 대해 여러 번의 추론 패스(inference passes)를 수행해 연쇄 사고, 합의, 검색 방법을 거쳐 최상의 답변을 생성한다. R1은 논리적 추론, 사고, 수학, 코딩, 언어 이해 등이 필요한 작업에 대해 높은 정확도와 추론 효율을 제공한다. 이러한 일련의 추론 패스를 수행해 최적의 답변에 도달하기 위해 추론을 사용하는 것을 테스트 타임 스케일링(test-time scaling)이라고 한다. 모델이 문제를 반복적으로 ‘사고’할 수 있게 되면 더 많은 출력 토큰과 더 긴 생성 주기가 생성되므로 모델 품질이 계속 확장된다. 딥시크-R1과 같은 추론 모델에서 실시간 추론과 고품질 응답을 모두 구현하려면 상당한 테스트 타임 컴퓨팅이 중요하므로 더 큰 규모의 추론 배포가 필요하다.     딥시크-R1 NIM 마이크로서비스는 단일 엔비디아 HGX H200 시스템에서 초당 최대 3872개의 토큰을 전송할 수 있다. 딥시크-R1 NIM 마이크로서비스는 업계 표준 API를 지원해 배포를 간소화한다. 기업은 가속 컴퓨팅 인프라에서 NIM 마이크로서비스를 실행해 보안과 데이터 프라이버시를 극대화할 수 있다. 또한, 기업은 엔비디아 네모(NeMo) 소프트웨어와 함께 엔비디아 AI 파운드리(AI Foundry)를 사용해 AI 에이전트를 위한 맞춤형 딥시크-R1 NIM 마이크로서비스를 생성할 수 있다. 딥시크-R1은 거대 전문가 조합 방식(Mixture-Of-Experts, MoE) 모델이다. 다른 인기 있는 오픈 소스 대규모 언어 모델(LLM)보다 10배 많은 6710억 개의 파라미터를 통합해 12만 8000개의 토큰이라는 인풋 컨텍스트 길이(input context length)를 지원한다. 또한 이 모델은 레이어당 많은 전문가를 활용한다. R1의 각 레이어에는 256명의 전문가가 있으며, 각 토큰은 평가를 위해 8명의 별도 전문가에게 병렬로 라우팅된다. R1에서 실시간 답변을 제공하려면 추론을 위해 모든 전문가에게 신속한 토큰을 라우팅하기 위해 높은 대역폭과 짧은 지연 시간의 통신으로 연결된 높은 컴퓨팅 성능을 갖춘 많은 GPU가 필요하다. 엔비디아 NIM 마이크로서비스에서 제공되는 소프트웨어 최적화와 결합해 NV링크(NVLink)와 NV링크 스위치(Switch)를 사용해 연결된 8개의 H200 GPU가 장착된 단일 서버는 초당 최대 3872개의 토큰으로 6710억 개의 파라미터로 구성된 전체 딥시크-R1 모델을 실행할 수 있다. 이러한 처리량은 모든 레이어에서 엔비디아 호퍼(Hopper) 아키텍처의 FP8 트랜스포머 엔진과 MoE 전문가 통신을 위한 900GB/s의 NV링크 대역폭을 사용함으로써 가능하다. 실시간 추론에는 GPU에서 모든 초당 부동 소수점 연산(FLOPS)의 성능을 끌어내는 것이 중요하다. 엔비디아는 “차세대 엔비디아 블랙웰(Blackwell) 아키텍처는 최대 20페타플롭의 피크 FP4 컴퓨팅 성능을 제공할 수 있는 5세대 텐서 코어(Tensor Core)와 추론에 특별히 최적화된 72-GPU NV링크 도메인을 통해 딥시크-R1과 같은 추론 모델의 테스트 시간 확장을 크게 향상시킬 것”이라고 전했다.
작성일 : 2025-02-05
엔비디아, AWS에 엔비디아 NIM 제공 확대해 AI 추론 향상 지원
엔비디아가 아마존웹서비스(AWS)의 AI 서비스 전반에 자사의 NIM 마이크로서비스를 확장한다고 발표하면서, 이를 통해 생성형 AI 애플리케이션을 위한 더 빠른 AI 추론과 짧은 지연 시간을 지원한다고 전했다. 12월 4일 열린 ‘리인벤트(re:Invent)’ 연례 콘퍼런스에서 AWS는 엔비디아와의 협업을 확대해 주요 AWS AI 서비스 전반에 걸쳐 엔비디아 NIM 마이크로서비스를 확장한다고 발표했다.  엔비디아 NIM 마이크로서비스는 이제 AWS 마켓플레이스(Marketplace), 아마존 베드록 마켓플레이스(Bedrock Marketplace), 아마존 세이지메이커 점프스타트(SageMaker JumpStart)에서 직접 제공된다. 이로 인해 개발자가 일반적으로 사용되는 모델에 대해 엔비디아 최적화 추론을 대규모로 배포하는 것이 더욱 쉬워졌다.     엔비디아 NIM은 AWS 마켓플레이스에서 제공되는 엔비디아 AI 엔터프라이즈 소프트웨어 플랫폼의 일부이다. 이는 개발자에게 클라우드, 데이터센터, 워크스테이션 전반에서 고성능 엔터프라이즈급 AI 모델 추론을 안전하고 안정적으로 배포하도록 설계된 사용하기 쉬운 마이크로서비스 세트를 제공한다. 사전 구축된 컨테이너는 엔비디아 트리톤 추론 서버(Triton Inference Server), 엔비디아 텐서RT(TensorRT), 엔비디아 텐서RT-LLM, 파이토치(PyTorch)와 같은 추론 엔진을 기반으로 구축됐다. 아울러 오픈 소스 커뮤니티 모델부터 엔비디아 AI 파운데이션(AI Foundation) 모델, 맞춤형 모델에 이르기까지 광범위한 범위의 AI 모델을 지원한다. NIM 마이크로서비스는 아마존 엘라스틱 컴퓨트 클라우드(Elastic Compute Cloud : EC2), 아마존 엘라스틱 쿠버네티스 서비스(Elastic Kubernetes Service : EKS), 아마존 세이지메이커를 비롯한 다양한 AWS 서비스에 배포할 수 있다. 개발자는 일반적으로 사용되는 모델과 모델 제품군으로 구축된 100개 이상의 NIM 마이크로서비스를 엔비디아 API 카탈로그에서 미리 볼 수 있다. 여기에는 메타의 라마 3(Llama 3), 미스트랄 AI의 미스트랄과 믹스트랄(Mixtral), 엔비디아의 네모트론(Nemotron), 스태빌리티 AI의 SDXL 등이 있다. 가장 일반적으로 사용되는 모델은 AWS 서비스에 배포하기 위한 자체 호스팅에 사용할 수 있으며, AWS의 엔비디아 가속 컴퓨팅 인스턴스에서 실행되도록 최적화돼 있다. 엔비디아는 다양한 산업 분야의 고객과 파트너가 AWS에서 NIM을 활용하며 시장에 더 빨리 진입하고, 생성형 AI 애플리케이션과 데이터의 보안과 제어를 유지하며, 비용을 절감하고 있다고 소개했다. 개발자는 고유한 필요와 요구사항에 따라 AWS에 엔비디아 NIM 마이크로서비스를 배포할 수 있다. 이를 통해 개발자와 기업은 다양한 AWS 서비스 전반에서 엔비디아에 최적화된 추론 컨테이너로 고성능 AI를 구현할 수 있다.
작성일 : 2024-12-06