• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "류용효"에 대한 통합 검색 내용이 433개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
[칼럼] AI 시대 제조업 생존 전략 : ‘듀얼 브레인’을 장착하라
현장에서 얻은 것 No. 21   “데이터의 양이 아니라 활용이다. 우리는 쌀을 먹지 않고 밥을 먹는다.” – 최재홍 교수(가천대)   거대한 전환점에 선 제조업 21세기, 우리는 산업 혁명의 물결이 AI(인공지능)라는 이름으로 다시금 거세게 밀려오는 시대를 살고 있다. 제조업은 그 최전선에 서 있다. 과거 증기기관, 전기, 컴퓨터가 생산 방식을 송두리째 바꿔놓았듯이, 이제 AI는 우리가 제품을 설계하고, 생산하고, 유통하며, 심지어 소비자와 소통하는 방식까지 근본적으로 재편하고 있다. 많은 제조업체는 이 변화의 물결 속에서 생존과 번영을 위한 새로운 전략을 모색하고 있다. 기존의 방식만으로는 더 이상 지속 가능한 성장을 기대하기 어렵다는 냉정한 현실에 직면하게 된 것이다. 이 거대한 전환점에서 우리는 AI를 어떻게 받아들이고 활용해야 할까? 단순히 자동화를 위한 도구로만 생각할 것인가, 아니면 그 이상의 잠재력을 가진 파트너로 인식할 것인가? 이선 몰릭 교수의 저서 ‘듀얼 브레인’은 이러한 질문에 대한 명쾌한 해답을 제시한다. 바로 AI를 인간의 ‘두 번째 뇌’로 활용하여 시너지를 창출하는 ‘듀얼 브레인’ 개념이다. 이번 호 칼럼은 ‘듀얼 브레인’의 핵심 인사이트를 바탕으로, AI 시대 제조업이 나아가야 할 생존 전략을 제시하고자 한다.   ▲ ‘듀얼 브레인’ 서평 맵(Map by 류용효컨셉맵연구소) (클릭하면 큰 이미지로 볼 수 있습니다.)   AI, 단순한 도구에서 두 번째 뇌로 “인간의 마음은 한계가 없으며, 그것은 스스로를 확장하는 방법을 끊임없이 찾아낸다.” – 이선 몰릭(‘듀얼 브레인’ 저자) 오랜 시간동안 제조업 현장에서 자동화는 주로 육체 노동의 효율을 높이는 데 초점을 맞추었다. 로봇 팔이 정밀하게 부품을 조립하고, 자동화된 설비가 제품을 대량 생산하였다. AI 역시 이러한 자동화의 연장선상에서 ‘똑똑한 도구’로 인식되는 경향이 강하였다. 그러나 ‘듀얼 브레인’이 강조하는 바는 AI가 단순한 도구를 넘어, 인간의 지적 활동을 확장하고 보완하는 ‘두 번째 뇌’가 될 수 있다는 점이다. 제조업 현장에서 AI는 더 이상 데이터를 수집하고 분석하여 보고서를 제공하는 수동적인 역할에 머무르지 않는다. AI는 설계 단계에서 수많은 변수를 고려하여 최적의 디자인을 제안하고, 생산 공정에서 예측 불가능한 오류를 사전에 감지하며, 품질 검사에서 인간이 놓칠 수 있는 미세한 결함을 찾아낸다. 이는 AI가 인간의 인지적 한계, 즉 방대한 데이터 처리 능력의 부재나 고정관념에서 벗어나지 못하는 사고의 경직성을 보완해 주기 때문에 가능한 일이다. 예를 들어, 신제품 개발에 있어 인간 디자이너는 오랜 경험과 직관으로 디자인을 구상한다. 하지만 AI는 방대한 고객 데이터, 시장 트렌드, 과거 성공 사례 등을 학습하여 인간이 상상하기 어려웠던 수십, 수백 가지의 디자인 대안을 즉시 제시할 수 있다. 또한, 각 디자인의 생산성, 재료비, 잠재적 소비자 반응까지 예측하여 제공함으로써 인간 디자이너의 의사결정을 획기적으로 개선한다. 이는 인간의 창의성과 AI의 분석 능력이 결합된 진정한 듀얼 브레인의 작동 방식이라 할 수 있다. 따라서 제조업은 AI를 단순히 공정을 자동화하는 기계로 볼 것이 아니라 R&D, 설계, 생산 관리, 품질 관리, 마케팅 등 모든 분야에서 인간의 지적 파트너이자 두 번째 뇌로 장착해야 한다. 이러한 관점의 전환이야말로 AI 시대 제조업이 생존하고 번영할 첫 걸음이 될 것이다.   듀얼 브레인 활용법 : 질문, 실험, 그리고 인간의 역할 “중요한 것은 질문하는 것을 멈추지 않는 것이다. 호기심은 그 자체로 존재 이유가 있다.” – 알베르트 아인슈타인 듀얼 브레인을 제조업에 효과적으로 장착하기 위해서는 몇 가지 핵심적인 활용법을 숙지해야 한다. 단순히 최신 AI 기술을 도입하는 것만으로는 충분하지 않다. 중요한 것은 ‘어떻게 AI와 협업할 것인가’이다. 첫째, ‘질문하는 기술’의 중요성이다. AI, 특히 생성형 AI는 우리가 던지는 질문(프롬프트)에 따라 전혀 다른 결과물을 내놓는다. 제조업에서는 AI에게 ‘현재 생산 라인의 병목 현상을 파악하고 개선 방안을 제시하라’, ‘신소재 개발을 위해 특정 물성을 가진 분자 구조를 추천하라’, ‘고객 불만 데이터에서 제품 개선에 필요한 핵심 인사이트를 도출하라’와 같이 구체적이고 명확한 질문을 던질 수 있어야 한다. 추상적인 질문은 모호한 답변을 낳고, 결국 AI 활용의 효율을 떨어뜨릴 것이다. 질문의 질이 곧 AI 활용의 질을 결정한다는 사실을 명심해야 한다. 둘째, ‘실험적 사고’와 ‘빠른 반복’이다. AI는 완벽하지 않다. 때로는 잘못된 정보(환각 현상)를 생성하거나, 우리가 의도한 바와 다른 결과를 내놓기도 한다. 제조업에서는 이러한 AI의 특성을 이해하고, 두려워하지 않고 다양한 가설을 세워 AI와 함께 실험하는 태도가 중요하다. AI가 제시한 생산 최적화 방안이 실제로 효과가 있는지 소규모 테스트를 거치고, AI가 제안한 디자인을 프로토타입으로 제작하여 시장 반응을 살피는 등의 빠른 반복 과정이 필수이다. 실패를 통해 배우고, 그 학습을 바탕으로 다음 실험을 진행하는 애자일(agile) 방식이 듀얼 브레인 시대의 핵심 역량인 것이다. 셋째, ‘인간의 개입과 검증’이다. AI는 방대한 데이터를 기반으로 통계적인 결론을 도출하지만, 그 결과가 항상 현실의 복잡한 맥락이나 윤리적 판단에 부합하지는 않는다. 제조업에서는 AI가 제시한 생산 계획이 과연 현장의 인력 운용이나 안전 규정에 부합하는지, AI가 추천한 신소재가 환경 규제를 만족하는지 등을 인간 전문가가 반드시 검토하고 최종 결정해야 한다. AI의 결과물을 맹목적으로 신뢰하기보다는, 비판적인 시각으로 검증하고 인간의 경험과 지혜를 더하는 것이 듀얼 브레인을 완성하는 핵심 단계이다. AI는 강력한 보조 도구이지만, 최종적인 책임과 판단은 결국 인간의 몫인 것이다.   창의성과 생산성 증대 : 제조업의 새로운 경쟁력 “생산성은 우연이 아니다. 그것은 항상 탁월함에 대한 헌신, 지능적인 계획, 집중된 노력의 결과이다.” – 폴 마이어 듀얼 브레인 개념을 제조업에 적용함으로써 얻을 수 있는 가장 큰 이점은 바로 창의성과 생산성의 비약적인 증대이다. 이는 AI 시대 제조업의 새로운 경쟁력이 될 것이다. 창의성 증대 측면에서 제조업은 전통적으로 ‘효율’과 ‘정확성’을 강조해왔다. 그러나 AI는 이제 제조업의 ‘창의성’을 자극하는 촉매제가 되고 있다. 예를 들어, 제품 디자인 과정에서 AI는 기존 데이터를 기반으로 전혀 새로운 형태나 기능을 제안할 수 있다. 이는 인간 디자이너의 고정관념을 깨고 상상력을 자극하여 혁신적인 제품 개발로 이어진다. 또한, AI는 제조 공정 자체의 혁신에도 기여한다. AI 시뮬레이션을 통해 기존에는 불가능하다고 여겼던 새로운 생산 방식을 탐색하고, 재료의 낭비를 최소화하며, 에너지 효율을 극대화하는 창의적인 해결책을 찾아낼 수 있다. 이는 인간의 직관과 AI의 방대한 계산 능력이 결합되어 가능해지는 결과이다. 생산성 증대 측면은 더욱 명확하다. 제조업의 생산성 증대는 곧 비용 절감과 납기 단축으로 이어져 기업의 수익성에 직접 영향을 미친다. 듀얼 브레인 시스템은 다음과 같은 방식으로 생산성을 극대화할 것이다. 예측 유지보수 : AI가 설비의 미세한 진동, 온도 변화, 전력 소비량 등을 실시간으로 분석하여 고장을 예측하고 사전 유지보수를 가능하게 함으로써, 예기치 않은 생산 중단 시간을 획기적으로 줄일 것이다. 생산 공정 최적화 : AI는 복잡한 생산 라인에서 각 단계의 효율성을 분석하고, 병목 현상을 식별하며, 재고 관리와 물류 흐름을 최적화하여 생산 리드 타임을 단축시키고 생산량을 증대시킬 것이다. 품질 관리 혁신 : AI 기반의 비전 검사 시스템은 인간의 눈으로 감지하기 어려운 미세한 불량까지 정확하게 찾아내어 불량률을 낮추고 제품 품질을 일관되게 유지할 것이다. 데이터 기반 의사결정 : AI는 시장 동향, 고객 피드백, 공급망 데이터 등 방대한 정보를 분석하여 경영진의 전략적 의사결정을 지원하고, 이는 곧 더 빠르고 정확한 시장 대응으로 이어질 것이다. 이처럼 듀얼 브레인은 제조업의 고질적인 문제를 해결하고 나아가 새로운 가치를 창출하는 핵심 동력이 될 것이다.   AI 시대, 제조업 인간의 역할 재정립 “기계는 인간의 일을 대신할 수 있지만, 인간의 마음을 대신할 수는 없다.” – 스티븐 호킹 AI가 제조업 현장에 깊숙이 들어올수록, 많은 이들이 인간의 역할에 대한 불안감을 느끼는 것이 사실이다. 하지만 ‘듀얼 브레인’은 AI가 인간의 일자리를 완전히 대체하는 것이 아니라, 오히려 인간 고유의 역량을 더욱 빛나게 하고 그 역할을 재정립할 기회를 제공한다고 역설한다. 제조업 현장에서 AI는 반복적이고 위험하며, 데이터 기반의 정량적 분석에 특화된 업무를 수행하게 될 것이다. 그렇다면 인간은 어떤 역할을 해야 할까? 문제 정의 및 비판적 사고 : AI는 주어진 문제를 해결하는 데 유능하지만, 무엇이 진정한 문제인지 파악하고 AI가 도출한 결과에 대해 비판적으로 질문하며, 맥락을 이해하여 의미를 부여하는 것은 여전히 인간의 몫이다. 예를 들어, AI가 불량률 감소를 위한 수치적 해답을 제시할 수는 있지만, ‘이 불량이 고객에게 미치는 정서적 영향’이나 ‘기업의 장기적인 브랜드 이미지’와 같은 비정량적인 가치를 판단하고 정책을 결정하는 것은 인간 경영자의 역할인 것이다. 창의적 기획 및 혁신 : AI는 기존 데이터를 기반으로 새로운 조합을 만들 수는 있지만, 완전히 새로운 개념을 무에서 유로 창조하거나, AI의 한계를 뛰어넘는 파격적인 아이디어를 제안하는 것은 인간의 고유 영역이다. 제조업에서 다음 세대 먹거리를 기획하고 시장 판도를 바꿀 기술을 상상하는 것은 AI가 아닌 인간 전문가의 몫인 것이다. 감성 지능 및 공감 : 협상, 팀 빌딩, 고객과의 관계 형성 등 인간 상호작용이 필요한 부분에서는 AI가 인간의 감성을 이해하고 공감하는 데 한계가 있다. 제조업의 영업, 마케팅, 인력 관리 등에서는 여전히 인간의 감성 지능과 공감 능력이 필수인 것이다. 윤리적 판단과 책임 : AI는 데이터를 기반으로 작동하므로 윤리적 가치 판단이나 사회적 책임을 스스로 질 수 없다. 제조업 공정에서 발생할 수 있는 환경 문제, 노동자의 안전, 제품의 사회적 영향 등 윤리적 딜레마에 대한 최종 판단과 책임은 전적으로 인간에게 달려 있는 것이다. 따라서 AI 시대 제조업의 인재는 AI를 활용하는 ‘도구적 능력’을 넘어, AI가 할 수 없는 ‘인간 고유의 역량’을 더욱 갈고 닦아야 한다. 이는 AI를 두려워할 것이 아니라, 오히려 AI의 도움을 받아 자신만의 강점을 극대화하는 길을 모색해야 함을 의미한다.   미래를 위한 제언 : 제조업의 듀얼 브레인 로드맵 “미래를 예측하는 가장 좋은 방법은 미래를 창조하는 것이다.” – 피터 드러커 AI 시대 제조업의 생존과 번영은 듀얼 브레인을 얼마나 성공적으로 장착하느냐에 달려 있다. 이를 위한 몇 가지 제언을 하고자 한다. 첫째, CEO를 포함한 경영진의 인식 전환과 비전 공유가 필수이다. 듀얼 브레인 전략은 단순히 기술팀만의 과제가 아니다. 최고 의사결정권자가 AI를 기업의 핵심 전략 자산이자 ‘두 번째 뇌’로 인식하고, 전사적인 변화의 비전을 제시해야 한다. 기술 투자뿐만 아니라 인력 재교육 및 문화 변화를 위한 투자를 아끼지 않아야 한다. 둘째, 지속적인 학습과 실험 문화를 정착시켜야 한다. AI 기술은 빠르게 진화하고 있다. 어제의 최적해가 오늘의 최적해가 아닐 수 있다. 제조업체는 AI 기술 트렌드를 주시하고, 새로운 AI 도구를 끊임없이 실험하며, 실패를 두려워하지 않고 거기서 배우는 문화를 구축해야 한다. 작은 규모의 파일럿 프로젝트를 통해 AI 활용의 성공 경험을 쌓고, 이를 점차 확대해 나가는 방식이 효과적일 것이다. 셋째, 인력 재교육 및 역량 강화에 적극적으로 투자해야 한다. 기존 인력들이 AI를 두 번째 뇌로 활용할 수 있도록 AI 기초 교육, 데이터 리터러시, 프롬프트 엔지니어링 교육 등을 제공해야 한다. 동시에 AI가 대체하기 어려운 인간 고유의 역량 즉 비판적 사고, 창의성, 문제 해결 능력, 협업 능력 등을 강화하는 교육 프로그램도 병행해야 한다. 넷째, 데이터 기반의 의사결정 체계를 확립해야 한다. 듀얼 브레인은 결국 데이터에 기반한다. 제조업 현장의 모든 데이터(생산, 품질, 재고, 고객, 시장 등)를 통합적으로 수집하고 분석할 수 있는 인프라를 구축해야 한다. 이를 통해 AI가 더 정확하고 깊이 있는 통찰력을 제공할 수 있으며, 인간의 의사결정 역시 데이터에 기반하여 더욱 합리적으로 이루어질 수 있을 것이다. 다섯째, 외부 AI 전문 기업과의 협력을 고려해야 한다. 모든 AI 역량을 자체적으로 구축하는 것은 현실적으로 어렵고 비효율적일 수 있다. AI 설루션 제공 기업, 컨설팅 회사, 학계 등 외부 전문가 그룹과의 협력을 통해 필요한 AI 기술과 노하우를 빠르게 도입하고 내재화하는 전략도 필요할 것이다.   결론 : 듀얼 브레인, 제조업의 새로운 항해를 위한 나침반 “완벽한 계획을 기다리기보다 빠르게 실행하고(선지랄 후수습), 시장과 고객의 피드백을 통해 방향을 수정해 나가는 것이 중요하다.” – 최재홍 교수(가천대) AI 시대는 제조업에 거대한 도전인 동시에 전례 없는 기회이다. 이 기회를 잡기 위해서는 AI를 단순한 생산성 향상 도구로 여기는 구시대적 관점을 벗어나, 인간의 지적 능력을 확장하고 협력하는 듀얼 브레인으로 장착해야 한다. 인간의 비판적 사고와 창의성, 그리고 AI의 방대한 처리 능력이 결합될 때 제조업은 새로운 차원의 혁신과 경쟁력을 확보할 수 있을 것이다. 이제 제조업은 단순히 물건을 만드는 것을 넘어, 지능형 시스템과 인간 지능이 함께 작동하는 ‘코인텔리전스 제조(co-intelligence manufacturing)’의 시대로 진입하고 있다. 듀얼 브레인을 장착하고, AI와 함께 배우고 실험하며, 인간 고유의 가치를 더욱 빛내 나간다면, AI 시대의 제조업은 더욱 강력하고 지속 가능한 미래를 향해 성공적으로 항해할 수 있을 것이다. 이는 선택이 아닌 필수 생존 전략이 될 것이다. 최재홍 교수는 2025년 7월 9일 미모세(미래모빌리티세미나) 2025 키노트에서 이런 말을 남겼다. “오너는 될 때까지 하기 때문에 실패가 없다.” 이 말은 강연장에 모인 스타트업 그리고 상장사 CEO들에게 큰 영감과 감동을 주었다.   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다. (블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-08-04
미모셀 2025 세미나: AI 시대, 미래 모빌리티와 생존 전략을 논하다
미래 모빌리티 전문가 그룹 미모셀(미래 모빌리티 셀럽)이 주최한 '미모셀 2025 세미나'가 지난 7월 9일 마곡 이노시뮬레이션에서 성황리에 개최됐다. 이번 세미나는 자율주행과 'AI 시대'를 대비하는 미래 전략에 대한 깊이 있는 통찰을 제공했다. 이번 세미나에서는 최재홍 교수의 '디지털 AI 경제', 류용효 소장의 '컨셉맵, AI, 기업 혁신', 최지수 변호사의 'AI 시대, 회사와 경영자를 지키는 법', 류평수 부사장의 '글로벌 AI 데이터센터 동향과 NVIDIA AI 팩토리 전략', 조준희 대표의 '25년차 모빌리티 XR 기업의 고민' 등 다채로운 주제의 강연이 이어졌다.   최재홍 교수 -  AI, 한국 경제 310조 원 생산성 향상 잠재력 강조 최재홍 교수(가천대)는 AI를 '더 광범위하고 빠른 디지털 혁신'으로 정의하며, 한국이 AI 활용을 통해 2030년까지 연간 310조 원의 생산성 향상을 기대할 수 있으며, 전 세계적으로는 약 4경 원(22.3조 달러)의 경제적 가치를 창출할 잠재력이 있다고 설명했다. 또한, 데이터의 가치는 양이 아닌 가공과 활용에 달려 있으며, AI가 방대한 데이터를 가치 있는 서비스로 전환하는 핵심 기술임을 강조했다. 최 교수는 "앞으로 1~2년이 'AI 시대'의 주도권을 잡을 '마지막 골든 타임'이라며, 완벽한 계획보다 빠른 실행과 지속적인 피드백을 통한 개선이 중요하다고 역설했다. 류용효 소장 - 컨셉맵과 AI, 기업 혁신의 핵심 제시 류용효 소장(컨셉맵연구소, 디원 상무)은 복잡한 정보와 업무 절차를 시각화하는 컨셉맵이 불필요한 대화를 줄이고 업무 효율성과 투명성을 높이는 데 기여한다고 설명했다. 또한 대기업 프로젝트에서 컨셉맵을 활용하여 효율적인 의사소통과 문제 해결을 이끌어낸 사례를 소개했다. 류 소장은 AI 시대에는 혼자 모든 것을 해결하기보다 전문가와의 협업이 중요하며, "AI에게 일을 잘 시키는 사람이 능력 있는 사람"으로 평가받는 새로운 관점이 대두된다고 강조했다. 최지수 변호사 - AI 시대, 내부 정보 유출 리스크 관리 중요 최지수 변호사(법무법인 린)는 기술이나 정보 유출이 외부 해킹보다 내부 사람에 의해 발생하는 경우가 훨씬 빈번하다고 지적하며, NDA(비밀유지협약)만으로는 부족하고 문화, 시스템, 법률 장치가 함께 작동해야 함을 강조했다. 변호사가 문제가 발생한 후 수습하는 존재가 아니라 계약 검토, 인사/해고/징계 전 자문 등을 통해 수천만 원 규모의 리스크를 미리 막을 수 있는 '경영자의 동반자' 역할을 한다고 설명하고, "법을 잘 쓰는 리더가 회사를 지킨다"는 메시지를 전했다. 4. 류평수 부사장 -  AI 데이터센터, 'AI 팩토리'로 진화 류평수 부사장(슈퍼솔루션)은 AI 시대에 데이터센터가 단순한 저장소를 넘어 'AI 팩토리'로 변화하며, 토큰을 생성하여 수익을 창출하는 핵심 공간이 된다고 설명했다. AI 시대에서는 토큰이 돈이다. 또한, AI가 로봇, 자율주행차와 같은 피지컬 AI 시대로 빠르게 진화하고 있으며, 이를 대비하기 위해 데이터센터의 전력, 쿨링 등 고성능 인프라 고도화가 필수적임을 강조했다. NVIDIA는 AI 팩토리 개념으로 서버, 인프라, 클라우드를 통합 공급하며 시장을 주도하고 있다고 밝혔다. 조준희 대표 - 이노시뮬레이션, 제품 기반 사업으로 전환 모색  25년차 모빌리티 XR 기업인 조준희 대표(이노시뮬레이션)는 2017년 300억 매출 정점 이후 자율주행차 등장과 'AI 기술'  발전으로 그동안 겪었던 어려움에 대해서도 공유했다. 조 대표는 "이제 생존이 시작되는 시기다"라고 언급하며, 기존 프로젝트 중심의 사업에서 '카피 앤 페이스트' 방식의 대량 생산을 목표로 하는 제품 기반 사업으로의 전환을 모색 중이라고 밝혔다. 그는 "시장을 혼자 다 독식할 수 없다"는 철학 아래, 글로벌 파트너는 물론 경쟁사와도 협력하여 신규 시장에 진입하는 전략의 중요성을 강조했다. 세미나 후 이어진 네트워킹 시간에는 미래 모빌리티와 AI를 주제로 열띤 토론과 교류가 이어졌다. 이번 ‘미모셀 2025 세미나’는 AI가 경제, 일하는 방식, 협업 구조, 법률 이슈까지 전방위적으로 변화를 이끌고 있는 다양한 사례를 통해 나아갈 방향에 대한 비전을 제시해주었다.    미래 모빌리티 셀럽들의 첫번째 세미나, 2025 미모셀  
작성일 : 2025-07-29
CAD&Graphics 2025년 8월호 목차
  18 THEME . PLM과 AI로 가속화하는 제조 디지털 전환의 미래 Ⅰ   설계 데이터를 연결하다 : 퍼시스그룹의 디지털 트윈 기반 DX 전략 / 정연석 생성형 경험 기반 PLM을 통한 업무 혁신 : 다쏘시스템의 새로운 접근 / 김병균 현장이 원하는 디지털 트윈 : 최소 인프라, 최대 효과를 위한 접근법 / 송희삼 수주형 제조기업을 위한 PLM 연계 프로젝트형 생산 관리 DX / 김장순   Infoworld   Editorial 17 AI 에이전트와 함께 하는 제조업 혁신의 골든타임   Case Study 30 올림픽 금메달을 뒷받침한 3D 프린팅 혁신 금속 3D 프린팅으로 경기용 요트의 부품 제작 32 디지털 전환의 잠재력을 실현하는 메타버스 기술 성공적인 산업 메타버스 구현을 위한 필수 요소   New Product 36 2D CAD의 새로운 기준 제시하는 차세대 설계 플랫폼 ZWCAD 2026 42 디지털 휴먼의 제작 워크플로 향상 및 생태계 확장 메타휴먼 5.6 79 이달의 신제품   Focus 46 AI와 클라우드로 뻗어나가는 NX, 제품 개발의 혁신을 뒷받침한다 48 트림블 코리아, ‘파워팹’으로 철골 제작의 디지털화 및 효율 향상 지원 50 3D 콘텐츠 제작 시대, 어도비 서브스턴스가 펼치는 미래 52 3D 프린팅, 제조 혁신 이끌 생산 기술 될까…현실의 벽과 돌파구는? 54 SAP, 모든 설루션에 AI 탑재…“데이터 중심의 선순환 구조로 비즈니스 AI 혁신” 56 AWS, “다양한 기술로 국내 기업의 생성형 AI 활용 고도화 돕는다” 58 한국생산제조학회 2025 춘계학술대회, 생산제조 기술의 미래를 논의하다   On Air 60 캐드앤그래픽스 CNG TV 지식방송 지상중계 자율주행의 미래 : AI와 데이터 통합을 통한 지멘스 ADAS 혁신 62 캐드앤그래픽스 CNG TV 지식방송 지상중계 HP Z북 울트라, AI 워크스테이션의 새로운 기준 제시 63 캐드앤그래픽스 CNG TV 지식방송 지상중계 창의적 디자인의 미래, AI와 3D 프린팅에서 찾는다 64 캐드앤그래픽스 CNG TV 지식방송 지상중계 제조업을 바꾸는 양자 컴퓨팅의 힘 66 캐드앤그래픽스 CNG TV 지식방송 지상중계 디지털 트윈 시대의 3D 자산 관리 혁신하는 유니티 애셋 매니저   Column 67 포괄적 디지털 트윈으로 제조 공장의 미래를 설계하다 / 오병준 70 디지털 지식전문가 조형식의 지식마당 / 조형식 스마트 디지털 트윈을 위한 디지털 온톨로지와 디지털 스레드 74 현장에서 얻은 것 No. 21 / 류용효 AI 시대 제조업 생존 전략 : ‘듀얼 브레인’을 장착하라   82 New Books   Directory 147 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 84 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2026 (5) / 천벼리 온라인 CAD 아레스 쿠도의 주요 기능 88 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 오픈소스 LLM 모델 젬마 3 기반 AI 에이전트 개발해 보기 97 새로워진 캐디안 2025 살펴보기 (9) / 최영석 유틸리티 기능 소개 Ⅶ 100 BIM 전문인력 양성을 위한 해법을 찾는다 / 함남혁 BIM 전문가 민간자격 국가공인 현황과 발전 방향   Visualization 104 AI 크리에이터 시대 : 영상 제작의 새로운 패러다임 (5) / 최석영 AI 기반 몰입형 사운드 디자인   Reverse Engineering 110 시점 – 사물이나 현상을 바라보는 눈 (8) / 유우식 확률과 통계   Mechanical 116 제품 개발 혁신을 돕는 크레오 파라메트릭 12.0 (1) / 박수민 크레오 파라메트릭 12의 개선된 인터페이스 기능   Manufacturing 122 생산 계획부터 운영까지 혁신하는 스마트 제조 / 이노쏘비 PINOKIO가 선보이는 스마트 공장 기술과 사례   Analysis 107 로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (1) / 윤경렬, 김도희 데이터 분석에 로코드 설루션이 필요한 이유 128 앤시스 워크벤치를 활용한 해석 성공 사례 / 이효행 바닥 충격음과 층간 소음 문제 해결을 위한 예측 모델 및 실험 분석 133 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (24) / 나인플러스IT 충실도 흐름 솔버로 항공 엔진의 시뮬레이션 정확도 업그레이드 136 최적화 문제를 통찰하기 위한 심센터 히즈 (6) / 이종학 프로세스 자동화 | – 구조 설계 최적화 142 산업 디지털 전환을 가속화하는 버추얼 트윈 (5) / 강주연, 임영빈 아바쿠스의 Contact Wear 기능을 활용한 마모 해석과 응용     캐드앤그래픽스 당월호 책자 구입하기   캐드앤그래픽스 당월호 PDF 구입하기
작성일 : 2025-07-25
[칼럼] AI 스터디그룹(데이터공작소)에서 답을 찾다
현장에서 얻은 것 No. 20   피곤했지만 놓칠 수 없는 기회, AI 스터디그룹(데이터공작소)에서 답을 찾다.”   AI 시대, 배움과 연결에서 찾은 성장 동력 일상에 지쳐 몸은 천근만근이었지만, 빠르게 변화하는 인공지능(AI) 시대에 뒤쳐질 수 없다는 생각에 발걸음을 재촉했다. 특히 AI 기술이 단순한 효율성 도구를 넘어 업무 방식과 산업 지형을 근본적으로 바꾸고 있다는 통찰 앞에 서니, 피로감은 부차적인 문제로 느껴졌다. 이러한 변화의 파고를 헤쳐나갈 답을 찾기 위해, 필자는 주말에 스터디하는 데이터공작소 TFT, 데이터 공작소의 매주 월요일 줌강의, 매달 모임과 자율주행 회사들의 특별한 만남인 미모셀, 지식을 공유하고 서로 도움을 주는 네트워크 모임인 한국미래융합연구원 등 AI 및 관련 기술 스터디 그룹의 문을 두드렸다. 이곳에서 만난 전문가들과의 지식 공유와 토론은 필자가 가진 궁금증을 해소하고 새로운 가능성을 탐색하는 데 귀중한 기회가 되었다. “배우는 법을 배우라.” − 데미스 허사비스(Demis Hassabis) CEO, 구글 딥마인드   ▲ 피곤했지만 놓칠 수 없는 기회, AI 스터디그룹   AI 에이전트와 MCP : AI의 실행력을 극대화하는 연결 고리 탐색 스터디 그룹에서 가장 주목받는 개념은 AI 에이전트였다. AI 에이전트는 환경을 인식하고 스스로 결정하며 목표를 달성하는 소프트웨어 개체로 정의된다. 독립적으로 작동하며 목표를 향해 지속적으로 학습하고 개선하는 특징을 가진다. 데이터를 수집, 분석하고 최적의 행동을 선택하여 실행하는 방식으로 작동하며, 질문에 대한 하위 질문을 생성하고 리서치한 후 포괄적인 답변을 제공하거나 AI 요약 결과를 자동화하고 개선하는 등 다양한 기능을 수행할 수 있다. 일부는 다양한 도구를 사용하여 복잡한 작업을 수행하는 완전 자율 시스템으로 정의되기도 하고, 미리 정의된 워크플로를 따르는 규범적인 구현을 설명하기도 한다. 이러한 AI 에이전트의 역량을 극대화하는 핵심 기술로 MCP(Model Context Protocol)가 소개되었다. MCP는 LLM(Large Language Model) 애플리케이션과 외부 데이터 소스 및 다양한 도구 간의 원활한 통합을 가능하게 하는 개방형 프로토콜이다. 마치 USB-C가 다양한 전자기기를 연결하듯, MCP는 웹 서비스와 AI 에이전트를 연결하여 AI가 서비스에 직접 접근할 수 있도록 돕는 핵심 기술이다. 이를 통해 LLM은 단순히 텍스트를 생성하는 것을 넘어 현실의 도구들과 연결되며 이메일 작성 및 전송, 캘린더 약속 등록, 슬랙 메시지 전송, 파일 저장 및 정리, 소셜 미디어 검색 및 게시, 스프레드시트 데이터 정리, 줌 회의 예약 및 회의록 작성, 노션 자료 활용 등 다양한 작업을 실행할 수 있게 된다. 이는 에이전틱 AI(agentic AI) 발전의 중요한 요소로 강조되었다. 또한, MCP는 프레임워크나 벤더에 관계없이 에이전트 간 상호 운용 가능한 통신을 안전하게 지원하는 것을 목표로 한다. API와 MCP가 반드시 필요한 것은 아니지만, 엄청난 잠재력을 가지고 있다는 점이 강조되었다. API 연결은 개발자에게도 쉬운 일은 아니며 권한 부여 문제 등이 있기 때문에, MCP가 이를 더 쉽게 만들 수 있는지에 대한 고민도 있었다. “미래를 예측하는 최선의 방법은 미래를 창조하는 것.” − 정종기 박사, AI 비즈니스 전문가   바이브 코딩과 커서 : AI를 개발 동료로 활용하는 방법 AI 스터디에서는 개발의 패러다임 변화인 ‘바이브 코딩’에 대한 논의도 활발했다. 전통적인 코딩이 ‘개발자가 자신의 작업을 대신할 프로그램을 만드는 것’이라면, 바이브 코딩은 ‘AI가 자신의 작업을 대신할 프로그램을 만드는 것’이다. 이는 AI에게 개발을 외주로 맡기는 것과 유사한 개념으로 설명된다. 좋은 바이브 코더는 좋은 외주 의뢰자가 갖춰야 할 다섯 가지 역량을 AI에게 적용해야 한다. 내 문제를 풀기 위한 작업 정의(PRD, 유저 플로) AI가 잘 이해할 수 있게 의사소통(프롬프트, 지침) 프로그램을 잘 만들기 위한 리소스 지원(데이터, API, 실행/배포 환경) 프로그램이 의도대로 동작하는지 검수(자동화 테스트) 이 과정에서 모르는 것을 배워 점차 스스로 할 수 있게 되는 것이다. 커서(Cursor)는 이러한 ‘LLM-assisted IDE’ 개념을 제시하는 도구로 소개되었다. 복잡한 프로그래밍 지식, 문서, 오류 메시지 기반의 학습 곡선이나 사전 설계 중심의 신중한 개발 문화, 툴과 언어, 개발 환경의 복잡성 같은 문제 속에서 커서는 아이디어를 즉각 코드로 구현하고 비전문가의 접근성을 폭발적으로 증대시키며 LLM 기반의 빠른 실험과 피드백 루프를 가능하게 한다. 문법 대신 의도 전달과 맥락 중심으로 전환되는 패러다임의 변화를 지원한다. 데이터공작소 개발TFT(서울팀) 관련 세션에서는 커서를 활용한 실질적인 개발 프로세스가 시연되었다. 혼자서 다양한 역할을 수행하는 ‘솔로프리너’ 관점에서 기획부터 개발, 테스트, 배포, 모니터링, 마케팅까지 전 과정을 AI와 함께 진행하는 방법이 제시되었다. 커서를 통해 아이디어 구체화, 기획 문서 작성(PRD, 비즈니스 모델 캔버스), 프로젝트 관리(Task Master MCP를 활용한 작업 목록 생성, 복잡도 계산, 하위 태스크 분해), 실제 코드 작성, 그리고 문서화(Obsidian 연동) 등이 가능함을 보여주었다. 특히 개발 경험이 있는 발표자인 어니컴의 최성훈 팀장은 커서를 통해 불편하고 반복적인 작업의 상당 부분을 자동화하고, 단계별로 명확한 지시를 내리며 태스크 관리를 통해 AI가 맥락을 이해하도록 유도하는 장점을 강조했다. 그는 커서를 쓰면서 처음에는 AI가 코딩을 짜는 것을 도와주는 정도라고 생각했고, 코드를 다 안 봐도 알아서 다 짜 주는 줄 알았다고 했다. 하지만 실제로 해 보니 절대 그렇지는 않았고, 다만 불편하거나 반복적인 작업에서는 충분히 활용 가치가 있음을 느꼈다고 했다. AI와 소통하며 생각을 체계화하고 문서화하며 원하는 것을 구체화하고 실행 계획을 짜서 이뤄가는 과정을 보였다고 했다. 그는 커서 하나로 A부터 Z까지 다 해 볼 수 있겠다는 느낌을 받았고, 솔로프리너를 목표로 하는 사람들은 연구해 볼 만하다고 개인적인 의견을 덧붙였다. AI에게 외주를 맡기는 개념이기 때문에 사람이 명확하게 문제 정의를 하고, 의사소통하며, 검수하는 역할이 중요하다고 언급했다. 또한, 커서가 굉장히 많은 도움을 주었다고 말했다. 개발자는 커서를 통해 코드의 문제점이나 개선 포인트를 찾는 데 도움을 받을 수 있고, 혼자 개발하면서 보조적인 도움이 필요할 때 효과적일 수 있다고 했다. 또한 자동 PR 요약이나 커밋 메시지 작성 등 깃(Git)과의 연동도 잘 되는 장점이 있었다. 오랜 개발 경험을 가지고 있는 양선희 대표는 필자의 숙원 고민거리를 반나절만에 해결해 주었다. 디자인씽킹 기법 중 첫 번째인 공감대 형성의 템플릿을 시스템화시켜 주었다. 클로드(Claude)로 대화하듯이 고민거리를 얘기하고 프로그램 기획, 개발, 테스트 등을 통해 언제든지 실행 가능한 설루션으로 만들어 주었고 소스도 공유했다. 보안 분야를 다루면서 다양한 경험을 통해서 항상 정리를 잘 하고 번뜩이는 아이디어를 내는 NSHC 장주현 이사와 AI인터시스 신동욱 대표는 AI 일타 강사이다. 항상 새로운 기술, 주제를 뚝딱 만들어내고 강의도 잘 한다. 최근에는 개발, 교육을 병행하느라 전국을 일일 생활권으로 두고 있다. 신동욱 대표의 회사에서 핵심 인재인 정성석 상무는 차세대 유망주인데, 알고 보니 고등학교 후배였다. 세상은 넓고 할 일은 많지만, 오늘 이 모임이 있기까지 도움을 준 데이터마이닝 이부일 대표는 유튜브 R릴에오를 통해 데이터 통계 분석 기법을 유튜브로 알렸다. 2022년 콘셉트맵 캘린더 9월호의 주인공으로 모신 인연으로 SNS에서 자주 소통하고 온/오프라인으로 인연을 이어가고 있다. “결국 실행되는 지식만이 힘이다.” − 데일 카네기   노트북LM : 개인 맞춤형 학습 및 연구 파트너 활용 또 다른 유용한 AI 도구인 노트북LM(NotebookLM)은 맞춤형 AI 리서치 어시스턴트이자 AI 기반 학습 및 연구 파트너로 소개되었다. 노트북LM의 가장 큰 강점은 사용자가 제공한 소스 내에서만 정보를 검색하고 답변을 생성하여, 환각 현상을 줄이는 데 도움을 준다는 것이다. PDF, 구글 드라이브 문서, 웹사이트 링크, 유튜브 링크, 마크다운 등 다양한 형태의 소스를 학습할 수 있으며, 특히 유튜브 공개 동영상 URL을 소스로 사용할 수 있는 점은 챗GPT에서 제공하는 프로젝트 기능과의 차별점으로 언급되었다. 노트북LM의 주요 기능으로는 학습 자료(소스) 내 정보 검색 및 답변 생성, 소스 요약(핵심 내용 추출), 추가 탐색, 메모 추가 및 소스 전환, AI 오디오 오버뷰(팟캐스트 형태의 요약 청취), 오버뷰, 마인드 맵(소스 기반 개념 및 관계 구조화), 생성 맞춤 설정, 학습 가이드, FAQ 생성, 브리핑 문서, 타임라인(시간적 순서 정리), 소스 검색, 심화 질문 및 분석 등이 있다. AI 오디오 오버뷰 기능은 두 명의 팟캐스트가 대화 형식으로 소스 내용 중 중요한 부분을 6~7분 분량의 팟캐스트로 만들어 주며, 원하는 내용에 초점을 맞추어 생성할 수도 있다. 시각 장애인에게도 좋은 서비스로 생각된다고 언급되었다. FAQ 기능은 우리가 생각하지 못했던 질문을 많이 만들어 준다고 했다. 마인드 맵 기능은 주어진 소스를 기반으로 개념과 관계를 시각화하는 데 상당히 잘 작동한다고 했다. 타임라인 기능은 소스에 있는 여러 이벤트를 시간 순서대로 정리해 주는데 정말 훌륭하다고 했다. 활용 사례로는 새로운 개념 이해, 핵심 자료 수집, 스터디 메이트 역할(학습 계획 관리, 질문/답변 학습, 복습, 약점 보완, 동기 부여), 모의 시험 및 문제 풀이, 창의력 및 사고력 훈련, 논문 관련 작업(주제 선정, 배경 탐색, 선행 연구 정리, 개념 정립, 논리 구성, 글쓰기 초안, 피드백) 등이 제시되었다. 특히 장비 매뉴얼 이해나 유튜브 영상 내용 파악에 유용하며, 논문 작성을 위한 참고 문헌 제안 및 형식 정리에도 활용될 수 있다고 했다 새로운 개념을 이해하고 싶을 때나 중요한 질문에 대한 핵심 자료를 만들고 싶을 때 소스 검색 기능이 유용하다고 했다. 다만 노트북LM은 과제나 태스크를 대신해주는 도구가 아니라 도와주는 어시스턴트라는 점과 좋은 소스를 제공하는 것이 중요하다는 점이 강조되었다. 쓰레기를 집어넣으면 쓰레기가 나온다는 ‘Garbage In, Garbage Out’이라는 말이 있듯이. 노트북LM만 단독으로 사용하기보다 챗GPT, 제미나이(Gemini) 등 다른 툴과 함께 사용하는 것이 더 중요하다고 생각한다고 했다. 다른 툴로 좋은 소스를 만들어서 노트북LM에 넣어 활용하는 선순환 구조를 잘 활용하면 좋다고 했다. “성공하고자 하는 의지가 강하다면, 실패 따위가 나를 압도할 수 없다.” − 정광천, 이노비즈협회 회장   다양한 스터디 그룹의 시너지 : 연결과 성장의 기회 한국미래융합연구원은 정기적인 지식 공유 모임을 통해 AI를 비롯한 다양한 분야의 최신 트렌드와 비즈니스 인사이트를 공유하는 플랫폼 역할을 하고 있다. 정종기 박사는 AI 비즈니스 전문가로서 AI 대중화 시대에 지속 가능한 미래 준비, AI 활용 능력의 중요성, 그리고 AI 트랜스포메이션에 대한 강의를 진행하며 멤버들에게 영감을 주고 있다. 그는 AI가 기업 경영의 효율화와 비용 절감에 핵심적인 역할을 하며 제조 등 다양한 산업에 영향을 미치고 있음을 강조한다. AI에게 일을 잘 시키는 사람이 능력 있는 사람이라고 했다. 미모셀은 미래 모빌리티 분야의 전문가들이 모여 업계 동향 공유와 네트워킹을 하는 그룹이다. 자율주행 기술, 센서(라이다, 레이다), SDV(Software Defined Vehicle) 등 모빌리티와 AI가 접목되는 분야의 최신 정보를 공유하고 토론한다. 어려운 시기에도 서로 힘이 되고 지지하는 관계를 형성하며 연결의 중요성을 보여준다. 미모셀의 목표는 대표님들의 어깨를 가볍게 해 드리는 것이라고 했다. 이처럼 다양한 스터디 그룹은 AI 기술 자체뿐만 아니라 기술이 비즈니스, 커리어, 그리고 사회 전반에 미치는 영향에 대해 깊이 있게 논의하고 있다. 유발 하라리 교수는 초지능 AI가 인류를 파멸로 이끌 위험이 있지만 경쟁 때문에 개발 속도를 늦추지 못하며, AI는 단순 도구가 아닌 스스로 생각하고 결정하는 주체(agent)라고 했다. AI는 인간과 달리 휴식이 필요 없어 지속적으로 활동 가능하며, 알고리즘 속도를 인간의 속도에 맞게 조절해야 한다고 했다. 또한, AI는 인간을 대체해 불평등한 사회를 초래할 가능성이 있다고 했다. 이러한 예측 속에서 AI 활용 능력은 개인과 기업의 생존에 필수라는 메시지가 반복적으로 강조된다. “AI 활용 능력이 당신의 생존입니다.” − 정종기 박사, AI 비즈니스 전문가   맺음말 : 배움과 연결을 통한 미래 준비 AI 시대는 불확실성이 높지만 지속적인 학습과 유연성 개발, 광범위한 역량 개발을 통해 기회를 잡을 수 있다고 한다. 특히 기술 변화에 대한 적응력과 개인적인 열정을 바탕으로 오픈소스 도구 등을 활용해 실습하고 실험해보는 것이 중요하다. 데이터공작소와 같은 AI 스터디 그룹, 데이터공작소 개발TFT(서울팀)에서의 실질적인 기술 학습, 미모셀에서의 산업 지식 공유, 그리고 한국미래융합연구원에서의 비즈니스 및 트렌드 통찰은 이러한 미래를 준비하는 강력한 기반이 된다. 피곤함에도 불구하고 참여했던 이 스터디 그룹들에서 필자는 AI 기술의 최신 동향과 더불어 그것이 어떻게 실제 업무와 비즈니스에 적용될 수 있는지, 그리고 개인의 역량을 어떻게 발전시켜야 하는지에 대한 실질적인 답과 영감을 얻을 수 있었다. 기술 도입을 넘어 조직 문화와 일하는 방식을 근본적으로 전환할 용기를 가지고 AI를 경쟁 상대가 아닌 협업 파트너로 받아들일 준비를 하는 것, 그리고 배움과 연결을 멈추지 않는 것이 이 급변하는 시대에 생존하고 번영하는 길임을 다시 한 번 확인했다.   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다. (블로그)     ■ 기사 내용은 PDF로도 제공됩니다. 
작성일 : 2025-07-01
CAD&Graphics 2025년 7월호 목차
  INFOWORLD   Editorial 17 AI로 국가를 다시 짜는 시대   New Product  18 HP Z북 울트라 G1a 리뷰 / 최석영 AI 크리에이터와 3D 작업을 위한 최적화 22 HP Z북 울트라 G1a 리뷰 / 노병수 설계 엔지니어 관점에서 본 고성능 노트북 26 스마트 제조의 실현 위한 물류 디지털 트윈 설루션 PINOKIO 31 더욱 빠르고 스마트한 시각화 콘텐츠 제작 지원 언리얼 엔진 5.6 60 이달의 신제품   Focus  36 PLM/DX 베스트 프랙티스 컨퍼런스 2025, 제조 혁신을 위한 PLM과 AI 전략을 짚다 44 다쏘시스템, ‘3D익스피리언스 콘퍼런스’ 통해 AI 버추얼 트윈 시대의 혁신 비전 제시 47 가상제품개발연구회, 춘계 심포지엄에서 AI 전환 시대의 제품 개발 방향 논의 50 AI 기반 시뮬레이션 전략의 현주소, ‘ATC 코리아 2025’에서 확인하다   On Air 52 캐드앤그래픽스 CNG TV 지식방송 지상중계 AI 시대, 지식과 경험의 디지털 트윈 전략과 도구   Column 54 현장에서 얻은 것 No. 20 / 류용효 AI 스터디그룹(데이터공작소)에서 답을 찾다 58 디지털 지식전문가 조형식의 지식마당 / 조형식 인공지능 시대의 창의성 증폭, 협력과 영감, 깨달음의 격차   Case Study 67 유니티로 구현된 VR 자동차 수리 학습 경험 게임 기술이 충돌 수리 교육을 혁신하는 방법   62 New Books  64 News   Directory  123 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 70 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 파이썬 버전 라이브러리 p5 기반 3D 데이터 시각화 74 새로워진 캐디안 2025 살펴보기 (8) / 최영석 유틸리티 기능 소개 Ⅵ 77 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2026 (4) / 천벼리 CAD에서 유기적인 BIM 및 DWG 도면 작업   Mechanical 80 제품 개발 혁신을 가속화하는 크레오 파라메트릭 11.0 (14) / 김주현 크레오 시뮬레이션 라이브의 개선사항   Manufacturing 86 제조산업의 경쟁력 강화를 위한 디지털화 전략 / 오병준 글로벌 제조업의 핵심, 포괄적 디지털 트윈   Reverse Engineering 90 시점 – 사물이나 현상을 바라보는 눈 (7) / 유우식 집단 관찰   Analysis 97 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (23) / 나인플러스IT 피델리티 LES로 항공 음향 예측의 속도와 정확성 가속화 100 최적화 문제를 통찰하기 위한 심센터 히즈 (5) / 이종학 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 114 1D 열 관리를 위한 KULI의 신규 기능 업데이트 / 이대형 파이썬 활용 강화 및 p-h 선도 업그레이드   PLM 106 산업 디지털 전환을 가속화하는 버추얼 트윈 (4) / 최형완 항공/방위 산업의 스마트 유지보수 및 MRO 구현 110 BPMN을 활용하여 제품 개발의 소통과 협업 극대화하기 (5) / 윤경렬, 가브리엘 데그라시 클라우드 서버 환경에서 BPMN을 연결하는 설루션 탐구   Visualization 118 AI 크리에이터 시대 : 영상 제작의 새로운 패러다임 (4) / 최석영 AI 특수효과와 후반작업 마스터하기   캐드앤그래픽스 2025년 7월호 - 제조 혁신을 위한 PLM과 AI 전략 짚은 PLM/DX 베스트 프랙티스 컨퍼런스 from 캐드앤그래픽스   캐드앤그래픽스 당월호 책자 구입하기   캐드앤그래픽스 당월호 PDF 구입하기
작성일 : 2025-06-27
[온에어] 설계를 바꾸는 솔리드웍스의 AI 전략
캐드앤그래픽스 지식방송CNG TV 지상 중계   CNG TV는 5월 12일 ‘AI는 어떻게 설계를 바꾸는가 – SOLIDWORKS의 전략에서 답을 듣다’를 주제로 웨비나를 진행했다. 이번 방송에서는 글로벌 제조 설루션 기업이 AGI(범용 인공지능) 시대를 맞아 펼치고 있는 AI 전략을 살펴보고, 다쏘시스템의 솔리드웍스(SOLIDWORKS)를 통해 실제 사용 환경과 고객 요구, 핵심 기능까지 함께 탐색해 보는 시간이 마련됐다. 자세한 내용은 다시보기를 통해 확인할 수 있다. ■ 박경수 기자   이번 웨비나는 디원 류용효 상무가 사회를 맡고, 다쏘시스템코리아 이승철 팀장이 발표자로 참여했다. 다쏘시스템 솔리드웍스는 AI 기술을 접목해 설계 생산성을 극대화하고 반복 작업을 최소화하며, 가상의 조언자를 통해 창의적인 설계를 지원하는 전략을 추진하고 있다. 이승철 팀장은 웨비나에서 “솔리드웍스는 설계자를 돕는 기능이라면 AI 여부와 관계 없이 계속 진화해왔다”고 강조하며, AI 기반의 주요 기능과 활용 방향을 소개했다. 솔리드웍스가 제시한 인공지능(AI) 전략은 단순한 기능의 추가를 넘어, 설계 환경 전반을 근본적으로 변화시키는 데 그 목적이 있다. 특히 이번 웨비나에서는 ‘설계 생산성 향상’, ‘생성형 경험’, ‘가상의 조언자’라는 세 가지 핵심 방향을 중심으로 AI가 설계를 어떻게 진화시키고 있는지에 대해 구체적으로 소개했다.   ▲ 다쏘시스템코리아 이승철 팀장   설계 생산성 향상 - 반복 업무를 AI가 대신한다 첫 번째 축은 설계자의 작업 효율을 높이는 것이다. AI 기반의 디자인 어시스턴트 기능은 반복적인 클릭 작업을 최소화하고, 설계자가 보다 빠르게 작업할 수 있도록 돕는다.예를 들어, ‘셀렉션 헬퍼’ 기능은 기어 톱니 하나만 선택해도 나머지 유사 객체를 자동으로 감지해 함께 선택하고, ‘메이트 헬퍼’는 하나의 홀만 선택해도 유사한 형태의 부품을 자동으로 연결시킨다. 일부 영역을 스케치한 후 자동으로 복사해 붙이는 기능도 제공한다. 또한 명령 예측기(Command Predictor)는 설계자의 이전 행동을 학습해, 이후 필요할 가능성이 높은 명령을 미리 제안한다. 이를 통해 설계자는 매번 메뉴를 뒤질 필요 없이 직관적으로 작업을 이어갈 수 있다. Sourcing & Standardization(부품 표준화) 기능도 주목할 만하다. 이 기능은 회사의 방대한 부품 라이브러리를 AI가 스스로 분류하고 유사 부품을 그룹화해 시각적으로 정리해 준다. 설계자는 해당 부품이 맞는지만 확인하면 되고, 결과적으로 조직 전체의 설계 표준화를 유도할 수 있다.   생성형 경험 - 설계는 AI가 먼저 제안한다 두 번째 방향은 ‘생성형 경험(Generative Experience)’이다. 이는 설계자가 결과물을 일일이 만들지 않아도 AI가 먼저 결과를 제안하고, 설계자는 이를 수정해 나가는 방식이다. 가장 대표적인 기능은 2D 자동 도면 생성이다. 설계자가 클라우드에 올린 3D 데이터를 기반으로 AI가 2D 도면을 자동으로 작성하고, 설계자에게 초안을 제공한다. 반복적이고 시간이 많이 드는 도면 작업을 획기적으로 줄여줄 수 있다. 또 다른 기능인 위상(토폴로지) 최적화는 설계자가 최대 외형만 설정해두면, 하중 및 구속 조건 등을 고려해 불필요한 형상을 제거하고 경량화된 설계를 자동으로 제안해 준다. 이는 특히 구조물이나 항공우주 등 경량화가 중요한 분야에서 유용하게 활용될 수 있다. 뿐만 아니라, 사진 기반 모델링 기능도 새롭게 주목받고 있다. 시험 문제나 손으로 그린 스케치를 사진으로 촬영해 업로드하면, AI가 이를 3D 모델로 자동 변환해준다. 향후 리버스 엔지니어링이나 아이디어 구체화에 있어 강력한 도구가 될 수 있다는 평가다.   ▲ 솔리드웍스 AI   가상의 조언자, AURA - AI와 대화하며 설계하는 시대 마지막 전략은 ‘가상의 조언자(Virtual Companion)’다. 솔리드웍스는 이를 아우라(AURA)라는 AI 채팅 인터페이스로 구현하고 있다. 설계자는 아우라와 채팅창을 통해 대화하며 필요한 부품을 추천받고, 이를 자동으로 모델에 배치하거나 특정 조건에 맞는 변경 절차를 안내받을 수 있다. 아우라는 단순한 질문에 답하는 수준을 넘어, 기업 내부의 설계 절차나 라이브러리까지 연동해 실제 설계 흐름을 매끄럽게 이어주는 역할을 한다. 특히 설계 경험이 부족한 신입 엔지니어도 아우라의 안내를 받으며 자연스럽게 업무에 적응할 수 있어, 조직 내 기술 격차 해소에도 기여할 수 있을 것으로 기대된다. 이처럼 솔리드웍스는 AI를 단순히 ‘기능’으로 도입하는 것을 넘어, 설계자의 업무 전반을 ‘전환’하는 방식으로 접근하고 있다. 이승철 팀장은 웨비나를 마무리하며 “AI는 설계를 대체하지 않는다. 인간은 더 창의적인 설계를 하고, 귀찮은 작업은 AI가 맡는 시대가 될 것”이라고 강조했다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-06-04
[칼럼] 데이터 연결이 곧 경쟁력이다– 팔란티어의 미래 플랫폼 전략
트렌드에서 얻은 것 No.25   “과거를 연결하고, 미래를 실행하라.” – 류용효 기업은 늘 데이터를 말한다. 그러나 정작 데이터를 연결해 실행 가능한 인사이트를 만들어내는 기업은 드물다. 레거시 시스템으로 불리는 PLM, ERP, MES, CRM은 여전히 기업의 정보를 최일선에서 책임지고 있다. 팔란티어는 이 최일선의 정보로부터 디지털 스레드로 연결하듯이 ‘데이터 연결 기반 실행 플랫폼’을 제시한다. 이번 호에서는 팔란티어가 어떻게 온톨로지 개념으로 기업에게 새로운 시각을 가질 수 있도록 기업의 실행력을 혁신하는지 살펴본다. “가장 위험한 말은 ‘우리는 늘 이렇게 해 왔다’이다.” – 그레이스 호퍼   문제 제기 레거시 시스템(PLM, ERP, MES, CRM)만으로는 불확실한 미래 대응이 불가능해지는 이유가 있다. 전통적인 기업 IT 시스템은 계획(plan) – 생산(do) – 분석(check) – 개선(action)의 순환을 지원하기 위해 발전해 왔다. 대표적인 것이 PLM(제품 수명주기 관리), ERP(전사적 자원 관리), MES(생산 실행 시스템), CRM(고객 관계 관리)이다. 이들 시스템은 각자의 목적에 맞게 기업의 방대한 데이터를 수집하고 관리하지만, 서로 연결되어 실시간 실행까지 이어지지는 않는 근본적인 한계를 안고 있다. 이는 마치 부서마다 다른 언어를 사용하는 것과 같다. 제품 설계 부서와 제조 부서가 서로 다른 시스템, 다른 데이터 구조, 다른 용어를 사용하면서 진정한 협업과 실행은 요원해진다. 데이터는 많은데 연결과 실행이 안 되는 기업의 현실에서, 많은 기업이 이미 데이터를 축적하고 있다. 하지만 축적된 데이터는 실시간으로 연결되어 의미를 만들어내지 못하고, 결국 ‘묵혀두는 데이터 자산’으로 남는다. 경영진은 “우리에겐 데이터가 충분하다”고 말하지만, 정작 그 데이터를 기반으로 한 ‘즉각적 실행’은 불가능하다고 느끼는 경우가 대부분이다. 팔란티어가 주목한 것은 바로 이 ‘연결되지 않은 데이터’, ‘실행되지 않는 인사이트’의 문제였다. 그리고 그 해법을 데이터 연결(data integration)과 실행 자동화(operational AI)에서 찾았다. “데이터는 새로운 석유가 아니라 새로운 물이다.” – 앤드류 응   팔란티어가 등장한 이유 팔란티어는 원래 정보기관과 국방을 위해 태어났다. 9·11 테러 이후 정부 기관 간 데이터 연결 부재가 위기의 원인 중 하나였음을 인식한 미국 정부는, 흩어진 데이터를 연결해 테러를 사전에 예방할 수 있는 시스템을 원했다. 팔란티어는 이런 배경 속에서 데이터 통합과 분석, 실행의 기술을 고도화해 왔다. 이후 팔란티어는 정부기관을 넘어 기업 시장으로 눈을 돌렸다. 기업 역시 조직, 부서, 시스템 간 데이터 사일로에 갇혀 있었기 때문이다. 그리고 팔란티어는 이를 해결할 수 있는 네 가지 플랫폼을 제시했다. 바로 고담(Gotham), 파운드리(Foundry), 아폴로(Apollo) 그리고 AI 실행 플랫폼 AIP(Artificial Intelligence Platform)다. 고담은 데이터 연결과 분석을 통해 위협을 식별하고 행동을 지원하는 국방/정보기관용 플랫폼이다. 파운드리는 기업 내부 시스템의 데이터를 연결해 의사결정을 지원하는 산업/상업용 플랫폼이다. 아폴로는 이러한 플랫폼을 실시간 운영/배포/유지보수하는 클라우드 기반 운영 플랫폼이다. 그리고 AIP는 수집된 데이터를 바탕으로 인간의 개입 없이도 업무 실행을 자동화하는 차세대 AI 실행 플랫폼이다. 이처럼 팔란티어는 데이터의 ‘수집 – 해석 – 실행’ 전 과정을 아우르는 미래형 데이터 경영체계를 만들어 왔다.   ▲ 팔란티어 기업 전략 맵(Map by 류용효) (클릭하면 큰 그림으로 볼 수 있습니다.)   챗GPT의 도움을 받아 팔란티어의 기업 전략 맵을 만들었다. 팔란티어는 독특한 철학과 기술을 바탕으로 빠르게 주목받고 있지만, 여전히 많은 기업이 팔란티어가 정확히 무엇을 하는 기업인지, 기존 시스템과 어떻게 다르고 어떤 가치를 주는지를 이해하는 데 어려움을 느끼고 있다. 이에 팔란티어의 4대 플랫폼(고담, 파운드리, 아폴로, AIP)을 중심으로 팔란티어의 철학, 기술 구조, 실행 방식, 기존 레거시 시스템과의 연계 방안을 한눈에 볼 수 있도록 시각화한 것이 바로 이 기업 전략 맵이다. 맵을 통해 팔란티어의 전략적 차별성을 이해하고, 자사 비즈니스에 어떻게 적용할 수 있을지를 빠르게 검토할 수 있도록 돕는 것을 목적으로 한다. 복잡함은 적의 무기다. 단순함은 우리의 방패다.” – 에드워드 터플   핵심 전략 : 온톨로지 기반 경영 실행체계 기업의 ‘생각’을 ‘실행’으로 연결하는 과정에서, 팔란티어의 진정한 차별성은 단순한 데이터 분석이 아니다. 기업이 가진 데이터를 어떻게 경영 실행 체계로 연결할 것인가에 대한 해법을 제시한다는 데 있다. 이 핵심이 바로 온톨로지(ontology)다. 온톨로지는 데이터와 현실 세계를 연결하는 디지털 구조화 방법론이다. 쉽게 말해 기업의 모든 요소(제품, 설비, 공정, 사람, 조직, 규칙 등)를 개체, 속성, 관계, 규칙으로 구조화해 데이터를 살아 움직이는 경영 실행체계로 만드는 것이다. 개체(entity) : 제품, 부품, 고객, 공급업체, 직원, 설비 등 기업을 이루는 모든 요소 속성(attribute) : 각 개체의 성질과 특징(예 : 크기, 무게, 사양) 관계(relationship) : 개체 간의 연결과 상호작용(예 : 고객-주문, 제품-부품) 규칙(rule) : 업무를 실행하는 기준과 조건(예 : 승인 절차, 생산 순서) 온톨로지를 기반으로 하면 기업의 생각과 규칙을 데이터 위에 그대로 재현할 수 있고, 이를 바탕으로 모든 업무를 자동화하고 실행 가능한 시나리오로 전환할 수 있다. “인공지능은 인간의 사고를 대체하는 것이 아니라, 인간의 실행력을 확장하는 것이다.” – 사티아 나델라   AIP의 차별성 단순 AI가 아닌 업무 실행 중심 AI 플랫폼으로서의 역할로 볼 때, 팔란티어의 AIP는 단순한 AI 분석기가 아니다. 기업의 데이터를 학습하고 온톨로지 기반으로 업무 실행 시나리오를 자동화하는 것이 핵심이다. 예를 들어, 재고가 부족할 때 구매요청을 올리고 승인 절차를 거쳐 발주까지 자동으로 처리하는 일, 고객의 불만 접수를 모니터링하고 품질 개선팀과 연결해 사후조치를 지시하는 일, 이 모든 실행을 사람의 개입 없이 시스템이 스스로 판단해 실행하도록 만드는 것이 AIP의 목표다. 팔란티어 AIP는 이를 위해 다음과 같은 실행 능력을 제공한다.  실시간 데이터 연결 및 감시 경고 및 시뮬레이션 제시 최적의 실행 시나리오 자동 추천 정책에 따른 승인/실행 자동 처리 실행 내역 기록 및 학습 고도화 이런 실행력을 통해 기업은 데이터를 보는 것에 그치지 않고, 즉시 실행하는 조직으로 변신할 수 있다. “혁신은 과거를 버리는 것이 아니라, 과거를 재설계하는 것이다.” – 팀 브라운   레거시 시스템과의 통합 전략 PLM·ERP·MES 등 기존 시스템의 한계 극복 관점에서 볼 때, 팔란티어는 기존 IT 시스템을 대체하지 않는다. 오히려 기존 시스템과 연결해 진짜 가치를 끌어내는 역할을 한다. 기존의 PLM은 제품 설계를 관리하고, ERP는 자원을 관리하며, MES는 생산 현장을 통제한다. 하지만 이들 시스템은 서로 고립되어 있고, 실시간 실행까지 연결되지 않는다. 팔란티어는 이들 시스템과 데이터를 실시간으로 연결하고, 그 위에 온톨로지와 AIP를 얹어 ‘연결 – 해석 – 실행’을 하나로 엮는 경영 실행 체계를 만들어낸다. 이렇게 되면 기업은 기존 레거시 시스템의 한계를 넘어서 데이터 중심, 실행 중심 경영으로 전환할 수 있다. “미래를 예측하는 가장 좋은 방법은 미래를 직접 만들어가는 것이다.” – 앨런 케이   온톨로지 실전 적용 사례 팔란티어는 이미 글로벌 제조, 방산, 의료, 제약, 에너지 산업에서 수많은 사례를 쌓아 왔다. 대표적으로 다음과 같은 기업이 있다. 현대중공업은 선박 설계부터 건조, 납품, 유지보수까지 모든 데이터를 온톨로지로 연결해, 복잡한 협력사 네트워크를 실시간 모니터링하고 시뮬레이션 기반으로 운영을 최적화한다.  BMW는 차량 생산 과정의 부품, 공정, 품질 데이터를 연결해 생산 이상을 조기에 감지하고 공급망 리스크 대응 체계를 구축한다. 에어버스는 항공기의 설계 – 제조 – 정비 등 전체 과정을 온톨로지 기반으로 연결해 부품 이력 관리, 품질 관리, 유지보수 최적화를 실현한다. 이 외에도 수많은 하이테크 제조 기업이 제품 온톨로지, 공정 온톨로지, 고객 온톨로지, 공급망 온톨로지를 통해 실제 경영 성과를 높이고 있다. “지식은 힘이 아니다. 실행되는 지식이 힘이다.” – 데일 카네기   미래 전망과 기업의 선택 미래 경쟁력은 데이터 자산화 + 실행 자동화에 달렸다. 앞으로 기업의 경쟁력은 더 이상 얼마나 많은 데이터를 가지고 있느냐가 아니다. 그 데이터를 얼마나 잘 연결하고, 얼마나 빠르고 정확하게 실행하느냐에 달려 있다. 팔란티어는 데이터를 살아 있는 자산으로 만들고, 이 자산을 기반으로 실행 자동화까지 실현하는 미래형 경영 실행체계를 제시한다. 기업은 지금이야말로 “우리 데이터는 연결되어 있는가?”, “우리는 데이터를 실행까지 옮길 수 있는가?”를 진지하게 자문해야 할 시점이다. “가장 위험한 말은 ‘우리는 늘 이렇게 해 왔다’이다.” – 그레이스 호퍼    맺음말 팔란티어는 IT 설루션이 아닌 기업 경영 철학의 진화 도구이다. 팔란티어는 기업이 가진 데이터 경영 철학의 진화를 촉진하는 도구다. 과거의 방식을 고수할 것인가?, 연결과 실행 중심의 미래로 도약할 것인가? 앞으로 당신의 기업은 무엇을 연결하고, 무엇을 실행할 것인가?   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다. (블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-06-04
CAD&Graphics 2025년 6월호 목차
  INFOWORLD   Editorial 17 챗GPT 이후, 생성형 AI는 어디로 가는가   Case Study 18 산업 제조 전문 기업 뵐링거 그룹의 금속 3D 프린팅 혁신      서포트 구조 최적화로 설계 자유도 확장 및 지속 가능한 제조 실현 20 실시간 3D 엔진 기반의 전기자동차 HMI 개발      별에서 영감을 받은 지리 갤럭시 E8의 스마트 콕핏 24 디지털 트윈으로 어트랙션 디자인하기      몰입형 협업을 위한 3D 시각화 및 애셋 관리 간소화   Focus 28 아비바코리아, 산업 지능 기반 디지털 트윈 전략과 미래 제시 33 AWS 서밋 서울 2025, “생성형 AI와 클라우드 혁신으로 산업 디지털 전환 가속화” 36 오토폼, “한국 금형 산업의 디지털 전환 및 AI 기반 혁신 도울 것” 38 트림블코리아, AI와 기술 혁신으로 건설 산업의 디지털 전환 제시 40 한국BIM학회, 정기학술대회에서 ‘AI 전환과 미래의 BIM’ 조망   People&Company 30 아비바 그레그 파다 엔지니어링 총괄 부사장 데이터 중심의 효율적인 협업 및 산업 디지털 전환 이끈다   On Air 45 캐드앤그래픽스 CNG TV 지식방송 지상중계 제조 산업의 미래를 바꾸는 PLM 혁신과 AX 전략 제시 46 캐드앤그래픽스 CNG TV 지식방송 지상중계 설계를 바꾸는 솔리드웍스의 AI 전략 58 캐드앤그래픽스 CNG TV 지식방송 지상중계 디지털 기술이 이끄는 치과 혁신과 교정 치료의 미래   Column 48 디지털 지식전문가 조형식의 지식마당 / 조형식 디지털 온톨로지와 디지털 트윈화 54 트렌드에서 얻은 것 No. 25 / 류용효 데이터 연결이 곧 경쟁력이다 – 팔란티어의 미래 플랫폼 전략   New Products 42 이달의 신제품   54 New Books 56 News   Directory 115 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 59 새로워진 캐디안 2025 살펴보기 (7) / 최영석 유틸리티 기능 소개 Ⅴ 62 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 인공지능 AI 에이전트 표준 프로토콜 MCP의 사용, 분석 및 개발 69 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2026 (3) / 천벼리 2D & 3D CAD 기능 업데이트   Reverse Engineering 72 시점 – 사물이나 현상을 바라보는 눈 (6) / 유우식 개별 관찰   Visualization 78 AI 크리에이터 시대 : 영상 제작의 새로운 패러다임 (3) / 최석영 소셜 미디어 최적화 AI 영상 제작 전략   Mechanical 82 제품 개발 혁신을 가속화하는 크레오 파라메트릭 11.0 (13) / 김성철 클리어런스 및 크리피지 분석 소개   Analysis 88 산업 디지털 전환을 가속화하는 버추얼 트윈 (3) / 황하나 CFD와 머신러닝을 활용한 공력 성능 예측 프로세스 개발 91 앤시스 SI웨이브를 이용한 MTTF 해석 / 배현진 DC 전류 밀도 분포를 이용한 PCB 수명 계산 94 최적화 문제를 통찰하기 위한 심센터 히즈 (4) / 이종학 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 104 MBSE를 위한 아키텍처–1D 모델 연계의 중요성 및 적용 전략 (2) / 오재응 사례로 살펴 보는 아키텍처 모델과 1D 모델의 연계 112 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (22) / 나인플러스IT 피델리티 LES로 터보 기계의 정확도 및 설루션 시간 향상   PLM 100 BPMN을 활용하여 제품 개발의 소통과 협업 극대화하기 (4) / 윤경렬, 가브리엘 데그라시 간단한 제품 개발 프로세스를 디자인해보기   캐드앤그래픽스 2025년 6월호 목차 - AI·클라우드 기술을 통한 산업 디지털 전환 가속화 from 캐드앤그래픽스     캐드앤그래픽스 당월호 책자 구입하기   캐드앤그래픽스 당월호 PDF 구입하기
작성일 : 2025-05-28
[칼럼] 실용형 AI, 제조의 미래를 바꾸다
트렌드에서 얻은 것 No. 23   “AI는 모든 산업에 새로운 가능성을 열어 준다. 중요한 것은 기술이 아니라, 그것을 어떻게 활용하느냐이다.” – 사티아 나델라(Satya Nadella), 마이크로소프트 CEO 마이크로소프트는 생성형 AI를 다양한 산업에 통합하며, 기술의 활용 방식에 중점을 두고 있고,  나델라의 말은 기술 도입보다 전략적 활용이 중요하다는 점을 강조한다.   생성형 AI와 함께 설계하고, 시뮬레이션하고, 개선하라 지금 이 이야기를 한국의 제조기업에 가서 한다면, 이상한 사람 취급을 받을 수 있다. 당장, 어떻게 할 수 있는지 이야기할 수 있느냐? 우리도 그렇게 하고 싶은데, 어떻게 할 수 있는지 제대로 나온 것도 없고, 사례가 있는지 등의 얘기가 자연스럽게 나온다. 맞는 말이다. 하지만, 지금은 레이스의 출발선에서 모두 같은 상황일 것이다. 다만, 전체를 제어하고 미래를 설계하는 혜안이 있는 사람이나 조직 유무에 따라 회사들의 달리기 속도는 분명 차이가 날 것이다.  우리는 그런 시대를 살아가고 또 지나가고 있다. 뉴스에서 다른 회사의 소식을 들으면서 탄식을 하고 있을 것인가, 아니면 고통스럽더라도 뭔가 해 보는 것이 낫지 않느냐의 갈림길에 있다. “그럼에도 불구하고, 우리는 설계할 수 있다.” 그렇다. ‘생성형 AI로 설계하고, 시뮬레이션하고, 개선하라’는 말은 지금의 제조 현장에선 거대한 간극처럼 느껴진다. 공장의 열기와 노하우 속에서 살아온 실무자에게는 뜬구름 잡는 이야기처럼 들릴 수 있다. “AI가 좋다는데, 어디까지 해봤나?”, “누가 이걸 설계에 실제로 썼대?” 이런 질문은 당연한 것이고, 오히려 현실을 잘 아는 사람일 수록 더 조심스러운 반응을 보인다. 그러나 지금, 우리는 모두 레이스의 출발선에 서 있다. 완성된 길도, 검증된 답도 아직 없다. 그러니 이 때 필요한 건 기술보다 먼저 혜안을 가진 사람, 구조를 설계할 수 있는 리더다. 단 한 줄의 프로토타입이라도 그려보려는 엔지니어, 익숙한 보고서보다 새로운 질문을 고민하는 팀장, 시행착오를 감수하고 방향을 잡으려는 임원이 지금 이 시대의 속도를 결정짓는다. 그리고 그 ‘혜안’은 거창한 청사진이 아닐 수도 있다. 단 하나의 설계 데이터를 기반으로 AI에게 첫 도면을 그리게 해보는 실험, 실시간 현장 일지에서 이상 징후를 요약하게 해 보는 시도, 현장의 사진 데이터로 품질 검사 자동화를 위한 검출 모델을 훈련해 보는 도전 등이 현 시점에서 예상해 볼 수 있는 가까운 미래 모습일 것 같다. “우리는 예상치 못한 상황을 목격하고, 예상된 상황을 보고하며, 결국 승리할 것입니다.” – 알렉스 카프, 팔란티어 CEO 카프는 AI를 활용한 제조업의 혁신이 불확실성을 극복하고 성공으로 이끄는 열쇠라고 보고 있으며, 이는 생성형 AI를 통한 제조업의 미래를 긍정적으로 전망한다.    그림 1. 실용형 AI 맵 ‘제조 미래를 바꾸다’(Map by 류용효) (클릭하면 큰 이미지로 볼 수 있습니다.)   제조, AI를 다시 만나다 “설계는 끝났지만, 고객은 원하지 않는다.”  “시뮬레이션은 끝났지만, 현장은 여전히 오류를 반복한다.”  “보고서는 쌓이지만, 문제는 여전히 현재진행형이다.” 이 문장들은 지금도 수많은 제조 현장에서 반복되고 있다. 전통적인 제조 프로세스는 분업과 효율을 중심으로 설계되었지만, 급변하는 고객의 요구와 복잡해진 제품 환경은 기존 체계의 민첩성과 창의성에 한계를 드러낸다. 이제 제조기업은 하나의 질문 앞에 서 있다. “우리는 더 빠르고 똑똑한 공장을 가질 준비가 되었는가?” 생성형 AI는 단순한 자동화 기술이 아니다. 설계자의 의도를 읽고 CAD 모델을 생성하며, 수십 개의 시뮬레이션으로 프로세스 병목을 알려주고, 품질 이상을 예측할 뿐 아니라 원인을 유추해주는 ‘설계적 사고를 하는 AI’가 등장하고 있다. 이는 기술의 도입이 아니라 제조기업의 ‘운영 철학’ 자체가 전환되는 순간이다. 제조기업이 생성형 AI와 함께 앞으로 어떻게 설계하고, 시뮬레이션하고, 개선할 수 있을지를 구체적으로 조망한다. “AI는 인류가 만든 가장 중요한 기술이다. 우리는 그것을 책임감 있게 개발하고 활용해야 한다.” – 순다르 피차이(Sundar Pichai), 구글 CEO 구글은 AI 개발에 있어 윤리적 책임과 사회적 영향을 고려하고 있으며, 피차이의 말은 기술 발전과 함께 그에 따른 책임도 중요하다는 점을 상기시켜 준다.   디자인의 재정의 - AI는 창의적인 엔지니어인가? 전통적인 제조 설계 과정은 복잡한 조건 설정, 반복적인 수정, 협업 간의 커뮤니케이션 비용 등으로 인해 수많은 시간과 리소스를 요구해왔다. 하지만 이제, 생성형 AI는 텍스트 한 줄로 설계를 시작하게 한다. “3개의 모듈로 구성된 소형 드론 프레임을 설계해 줘. 탄소 섬유 기반으로 무게는 150g 이하로.” 이 한 문장으로 AI는 초기 설계안을 생성하고, 다양한 대안 모델을 제공하며, 사용자 요구조건에 따라 자동 최적화를 제안한다. AI는 도면을 '그리는 도구'가 아니라, '제안하고 비교하는 동료 엔지니어'로 진화하고 있다. 예를 들어, 오토데스크의 퓨전 360(Fusion 360), 엔톱(nTop), 다쏘시스템의 3D익스피리언스 웍스(3DEXPERIENCE Works)는 이미 생성형 디자인 기능을 내장하고 있다.  디자이너는 아이디어를 제공하고, AI는 그에 기반한 설계 패턴을 도출한다. 이는 ‘무에서 유를 만드는’ 것이 아니라, 수많은 설계 데이터를 학습한 AI가 새로운 패턴과 조합을 도출해내는 방식이다. 결과적으로 설계자는 더 이상 반복적인 CAD 작업자가 아니다. 이제 디자이너는 ‘기획자’이자 ‘비평가’, 그리고 ‘AI와 협력하는 설계 전략가’가 된다. 또한, 이러한 생성형 설계는 대량 맞춤형 생산(mass customization)과의 결합으로 그 진가를 발휘한다. 기존에는 옵션이 제한된 범용 제품만이 경제성이 있었지만, 생성형 AI는 고객의 요구사항을 빠르게 읽고 즉시 설계에 반영할 수 있다. 이는 ‘고객이 참여하는 설계’, 즉 코디자인(co-design) 시대의 도래를 가능하게 한다. 기업은 더 빠르게 시장에 대응하고, 고객은 더 높은 만족도를 경험한다. 이처럼 생성형 AI는 설계를 단순히 ‘빠르게’ 만드는 기술이 아니라, 설계의 개념 자체를 ‘재정의’하는 도구이자 기업의 창의성과 기민함을 확장하는 전략 자산이 되고 있다. “퍼플렉시티(Perplexity)는 단순한 답변 엔진에서 행동 엔진으로 전환하고 있다. 이제는 단순히 질문에 답하는 것을 넘어, 사용자에게 행동을 제안하고 실행하는 단계로 나아가고 있다.” – 아라빈드 스리니바스(Aravind Srinivas), 퍼플렉시티 AI CEO 아라빈드의 말은 AI 기술이 단순한 정보 제공을 넘어, 사용자와의 상호작용을 통해 실제 행동을 유도하고 실행하는 방향으로 발전하고 있음을 의미한다.   시뮬레이션의 혁신 - 빠른 판단과 적은 비용 과거의 시뮬레이션은 전문 소프트웨어와 고성능 컴퓨팅 자원, 그리고 숙련된 엔지니어의 직관과 경험에 크게 의존해 왔다. CAE는 분명 설계 검증과 최적화의 핵심이었지만, 조건 설정 → 모델링 → 결과 해석 → 반복이라는 고비용 순환은 여전히 제품 개발의 병목으로 작용해왔다. 그러나 생성형 AI는 이 병목을 타파하는 새로운 접근을 제시한다. 자연어로 “강풍 조건에서 뒤틀림이 가장 적은 하우징 구조를 찾아줘”라고 지시하면, AI는 자동으로 물리 조건을 추론하고, 유사 데이터 기반의 시뮬레이션 템플릿을 구성하며, 수십 개의 대안 시나리오를 병렬 생성해 ‘예측 – 설명 – 추천’이라는 삼중 루프를 빠르게 수행한다. 이러한 기술은 시뮬레이션의 대중화(simulation democratization)를 이끈다. 기술 전공자가 아니어도, 제품 매니저나 품질 담당자가 AI의 도움으로 설계안의 응력 분포나 유동 조건에 대해 인사이트를 얻을 수 있다. 이는 실무자가 더 빠르게 결정을 내릴 수 있도록 돕고, 의사결정의 지연 대신, 다중 시나리오 기반의 ‘실험적 사고’를 가능하게 만든다. 대표적인 사례로는 알테어의 AI 기반 인스파이어 플랫폼(AI-driven Inspire Platform), 앤시스의 AI 기반 시뮬레이션 자동화, 그리고 다쏘시스템의 솔리드웍스 생성형 시뮬레이션(Generative Simulation for SOLIDWORKS)이 있다. 이들은 기존 FEM/CFD 분석의 시간과 비용을 줄이는 동시에, 경험 기반 의사결정에서 데이터 기반 최적화로의 전환을 이끌고 있다. 궁극적으로 생성형 AI는 단순히 ‘더 빠른 계산’을 넘어서, “어떤 시나리오를 먼저 고려해야 하는가?”, “이 조건에서 실패할 가능성은 무엇인가?”라는 전략적 질문에 답하는 보조 엔진이 되어 준다. 이는 시뮬레이션을 단지 제품 검증의 도구가 아니라, 경영 의사결정과 R&D 전략 수립의 인공지능 파트너로 진화시키는 변화의 시작점이다.  “AI는 우리가 상상하는 것보다 훨씬 더 빠르게 발전하고 있다. 자율주행차는 그저 시작일 뿐이다.” – 일론 머스크(Elon Musk), 테슬라 CEO 테슬라는 자율주행 기술 개발에 AGI 수준의 AI를 활용하고 있으며, 이는 단순한 기능 향상을 넘어 차량 설계와 운행 방식 전반을 재정의하는 접근이다.   업무 분석과 프로세스 개선 - 데이터는 말하고 AI는 듣는다 제조 현장의 데이터는 언제나 풍부했다. 작업자 일지, 설비 로그, 유지보수 메모, 품질검사 리포트, 현장 사진과 동영상, 고객 클레임 이메일… 하지만 이들 대부분은 정형화되지 않은 ‘텍스트’와 ‘문서’ 형태로 존재하며, 기존 시스템은 이를 ‘기록’하는 데에만 집중했고, 의미를 해석하고 연결하는 능력은 인간의 몫이었다. 이제 생성형 AI는 이 방대한 비정형 데이터의 숲에서 맥락을 이해하는 나무를 찾는다. 작업자가 남긴 “라인 3에서 어제도 제품 정렬이 안 맞았고, 자동 이젝터가 두 번 멈췄다”는 기록은, AI에겐 단순한 텍스트가 아니라 ‘패턴’과 ‘이상’의 시그널이다. LLM은 이런 문장을 분석해 작업 단계별 이벤트를 분해하고, 관련된 설비 로그와 품질 데이터를 연결하여 문제 지점을 도출한다. 이제 업무는 ‘기록하고 보고하는 일’이 아니라, ‘데이터가 스스로 분석하고 말하는 환경’으로 바뀌고 있다. 대표적인 활용 사례는 다음과 같다. 업무 요약 자동화 : 업무 일지를 요약해 경영진에게 핵심 이슈를 전달 프로세스 병목 식별 : 여러 부서의 텍스트 기반 보고서에서 공통 키워드와 불만 분석 문서 자동 생성 : SOP(표준작업지침서), 회의록, 개선안 보고서 등의 자동 초안 작성 협업 인텔리전스 : 여러 팀 간의 커뮤니케이션 데이터를 분석해 협업 지연 포인트 도출 실제로 지멘스는 AI 기반 자연어 처리 기술(Natural Language Processing : NLP)을 통해 디지털 작업지시서와 실시간 현장 대응 리포트를 자동 생성하는 기능을 도입했고, 보쉬는 AI를 통해 품질 클레임 문서에서 반복 출현하는 원인 유형을 추출하여 품질 개선의 단초로 활용하고 있다. 핵심은 이것이다. 현장의 수많은 대화와 기록이 AI에게 ‘말을 거는 데이터’가 되었고, AI는 그 말을 듣고, 요약하고, 통찰을 제시하며, 업무 개선을 스스로 제안하는 존재가 되었다는 점이다. 이제 우리는 묻지 않을 수 없다. 우리는 AI에게 말 걸 준비가 되어 있는가? 그리고 그 대답을 조직이 들을 준비는 되었는가? “가장 큰 위험은 아무런 위험도 감수하지 않는 것이다. 모든 것이 급변하는 시대에서 위험을 회피하는 전략은 반드시 실패로 이어진다.” — 마크 저커버그, 메타 CEO 저커버그는 변화와 혁신의 시대에 기존의 방식을 고수하며 위험을 회피하려는 태도가 오히려 더 큰 실패를 초래할 수 있음을 경고한다.   품질 관리의 진화 - AI는 예지적 감각을 가질 수 있는가 품질 관리는 제조업의 마지막 방어선이자, 가장 정교한 신경망이다. 그러나 지금까지의 품질 관리는 주로 사후 대응(postdefect 대응)에 집중되어 있었다. 불량이 발생한 후 원인을 찾고, 재발 방지책을 수립하고, 문서를 정리하는 ‘후행적 품질 관리’가 일반적이었다. 이제 생성형 AI는 이 전통적 프레임을 근본부터 흔들고 있다. AI는 ‘불량을 감지’하는 것이 아니라, ‘불량을 설명하고 예측’하려 한다. 예를 들어, 제품 표면의 이미지를 기반으로 한 비전 검사 시스템은 단순히 OK/NG를 판단하는 데서 그치지 않고, “이 영역의 텍스처 패턴은 온도 편차에 의한 수축 변형일 가능성이 높습니다”라고 말할 수 있는 설명형 모델로 진화하고 있다. 나아가, 생성형 AI는 텍스트, 이미지, 센서 데이터를 통합적으로 분석해 복합적인 이상 징후를 감지하고, 불량의 '가능성'과 '잠재 원인'을 추론해낸다. 예를 들어 다음과 같은 조합이 가능해진다. 작업자 일지 : “이틀 전부터 용접기압이 다소 약한 것 같다.” 센서 로그 : 오전 9~11시에 기압 편차 발생 불량 이미지 : 비드 형성 불균형 AI는 이를 연결해 “용접 조건의 경미한 변화가 반복 불량의 근본 원인일 수 있다”고 보고한다. 이는 단순한 예측모델이 아니다. ‘설명 가능한 품질 관리(Explainable Quality)’, 즉 AI가 품질 이슈에 대해 왜 그런 판단을 했는지를 근거와 함께 제시함으로써, 품질팀은 더 이상 직감이나 경험에만 의존하지 않고 데이터 기반의 합리적 개선 프로세스를 수립할 수 있다. 이미 보쉬, 토요타, GE 항공 등은 ▲AI 기반 비전 검사 시스템에서 ‘불량 예측 + 원인 설명’을 제공하는 모델을 구축 중이고 ▲ISO 9001과 연동되는 AI 품질 리포트 자동화 시스템을 테스트하고 있다. 이는 곧 ‘AI가 품질 시스템의 일원으로 공식 포함되는 시대’가 오고 있음을 뜻한다. 품질의 정의는 바뀌고 있다. 과거의 품질은 발견과 수정의 문제였지만, 앞으로의 품질은 예지와 설득의 문제다. AI는 이제 불량을 찾아내는 것이 아니라, 불량이 만들어지지 않도록 ‘생산 과정 그 자체를 개선하자’고 제안하는 동료가 되어가고 있다. “AI는 전기를 발견한 것과 같은 혁신이다. 모든 산업에 스며들 것이며, 그 영향을 무시할 수 없다.” – 앤드류 응(Andrew Ng), AI 전문가 앤드류 응은 AI의 보편성과 산업 전반에 미치는 영향을 강조하고 있다. 그의 말은 제조업에서도 AI의 통합이 필수임을 시사한다.   경고와 제언 - 생성형 AI는 도입이 아니라 전환이다 많은 제조기업이 생성형 AI에 주목하고 있다. 설계 자동화, 시뮬레이션 최적화, 업무 요약, 품질 예측… 도입 사례는 늘고 있지만, 도입이 곧 성공을 의미하진 않는다. 생성형 AI는 단순한 툴이 아니라, 운영 철학의 변화를 요구한다. 기존의 프로세스는 ‘정해진 절차와 역할’ 속에서 최적화를 추구해왔지만, 생성형 AI는 ‘질문을 던지고 시나리오를 비교하며 판단을 내리는 유연한 사고방식’을 요구한다. 즉, 기술만 바꾸는 것이 아니라 조직의 사고 체계와 역할 구조 자체를 재설계해야 하는 것이다. 예를 들어 <표 1>과 같은 전환이 필요하다.   표 1   하지만 문제는 기술이 아니다. 가장 큰 장벽은 조직이 AI를 받아들일 준비가 되어 있느냐는 것이다. 임원은 AI를 단순히 ‘자동화 툴’로 간주하는 경향이 많고, 현장은 여전히 ‘내 일을 뺏는 존재’로 AI를 경계한다. 이 간극을 메우지 않으면, AI는 시연 단계에서 멈추고, 조직은 변화의 본질을 놓친다. 따라서 다음과 같은 전환 전략이 필요하다. 파일럿이 아닌 전환 설계 특정 부서에서 테스트하는 것이 아니라, 조직 전체의 프로세스 전환 시나리오를 기획해야 한다. ‘도입 교육’이 아닌 ‘공감 설계’ 기술 사용법이 아니라, 왜 이 기술이 필요한지에 대한 비즈니스 관점에서의 스토리텔링이 필요하다. AI Co-Worker 관점 전환 AI는 도구가 아니라, 함께 판단하고 실험하는 동료로 봐야 한다. 이를 위해 직무 정의서(JD)도 다시 써야 한다. 성과 기준의 재정립 AI 도입 이후에는 ‘정확도’보다 ‘학습 속도’와 ‘적응력’이 핵심 성과 지표가 된다. 결국, 생성형 AI는 ‘도입해야 할 기술’이 아니라 ‘다르게 일하고, 다르게 생각하고, 다르게 운영하는 기업’으로 전환하기 위한 촉매제다. 이제 경영진에게 남은 질문은 단 하나다. “우리는 기술을 도입할 준비가 되었는가?”가 아니라, “우리는 조직을 전환할 용기를 가졌는가?”이다. “지금은 스타트업의 시대… 세상은 여전히 변화의 가능성에 잠들어 있다.” – 샘 올트먼, 오픈에이아이 CEO 올트먼은 기술 혁신의 시기에 기존 기업들이 변화에 둔감해질 수 있음을 경고하며, 새로운 도전과 변화를 추구하는 조직만이 미래를 선도할 수 있다는 메시지를 담고 있다.   맺음말 : 생성형 AI 시대의 제조 기업, 당신은 어떤 그림을 그리고 있는가 미래의 공장은 단지 더 정교하고, 더 빠르며, 더 자동화된 곳이 아니다. 그곳은 데이터를 읽고, 상황을 이해하고, 사람과 함께 결정하는 공장이다. 문제를 발견하기 전에 감지하고, 작업자를 지원하며, 스스로 최적의 방식을 제안하는 공장이다. 그리고 그 공장의 핵심 파트너는 인간의 상상력을 확장하는 생성형 AI다. 이제 중요한 질문은 이것이다. “우리는 어떤 그림을 그리고 있는가?” 기술은 빠르게 진화한다. 생성형 AI는 설계와 시뮬레이션, 업무 분석과 품질 관리까지 제조의 전 과정을 유기적으로 연결하며 ‘스마트’를 넘어 ‘지능적’으로 만들고 있다. 하지만 진정한 경쟁력은 기술의 채택이 아닌, 기술과 함께 일하는 방식의 변화에서 비롯된다. 아직 많은 제조기업은 ‘가능성 탐색’ 단계에 머물러 있다. 하지만 머뭇거릴 시간이 없다. AI는 이미 조직 구조, 업무 정의, 리더십의 방식까지 영향을 미치기 시작했다. 이제는 기술을 배우는 것이 아니라, 기술과 함께 일할 조직을 설계해야 할 때다. 생성형 AI 시대의 제조 기업은 세 가지 질문에 답할 수 있어야 한다. 우리는 상상할 수 있는가? 생성형 AI는 ‘주어진 문제를 해결’하는 것이 아니라 ‘가능성을 확장’한다. 제조기업의 조직은 아직도 문제만 찾고 있는가, 아니면 새로운 기회를 그리고 있는가? 우리는 받아들일 수 있는가? AI는 사람의 영역을 침범하지 않는다. 다만 그 옆에 선다. 우리는 전환할 수 있는가? 우리는 그것을 파트너로 받아들일 준비가 되어 있는가? AI 도입은 기술의 문제가 아니라, 사고방식과 리더십의 전환이다. 과연 지금의 조직은 그 전환을 감당할 수 있는가? 미래의 공장은 말하고 있다. “나는 설계하고, 시뮬레이션하고, 개선할 준비가 되어 있다. 너는 나와 함께 걸을 준비가 되어 있는가?”   ■ 류용효 디원의 상무이며 페이스북 그룹 ‘컨셉맵연구소’의 리더로 활동하고 있다. 현업의 관점으로 컨설팅, 디자인 싱킹으로 기업 프로세스를 정리하는데 도움을 주며, 1장의 빅 사이즈로 콘셉트 맵을 만드는데 관심이 많다.(블로그)     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-05-02
CAD&Graphics 2025년 5월호 목차
  INFOWORLD   Editorial  17 로봇이 달리는 시대, 인간은 어디로 달려가는가?   Hot Window  18  캐드앤그래픽스 디지털 트윈 설문조사 분석 : 디지털 트윈에 대한 기대 속에 실질적 도입과 확산 위한 노력 필요   Case Study  24 노트르담 대성당의 영광스러운 복원을 선보인 언리얼 엔진 라이팅 리얼타임 3D 기술을 도입하여 한층 발전된 프로젝션 매핑 구현 27 미래 모빌리티를 위한 자율주행 시뮬레이터, 모라이 심 실시간 3D 엔진을 활용해 더욱 현실적인 시뮬레이션 구축   People & Company  30 AWS 황민선 파트너 세일즈 매니저, 에티버스 김준성 전무 AI와 산업 전문성 결합해 클라우드 기반 제조 혁신 도울 것   Focus  34 DN솔루션즈, 금속 3D 프린터 'DLX 시리즈'로 제조 혁신 선도한다 37 유니티, “게임을 넘어 다양한 산업으로, 3D 시각화와 AI 통해 혁신 지원” 40 델, ‘AI PC 시대’ 주도 선언… 통합 브랜드 제품 대거 출시   New Products  43 이달의 신제품   On Air 44 캐드앤그래픽스 CNG TV 지식방송 지상중계 공기업 BIM 적용 지침에 따른 설계·시공 프로세스 변화와 대응 전략 46 캐드앤그래픽스 CNG TV 지식방송 지상중계 디지털 공급망 관리로 산업 건설 프로젝트의 비효율 해소 47 캐드앤그래픽스 CNG TV 지식방송 지상중계 의료 AI를 활용한 가상현실 기반 임상 실습 교육 소개   Column 48 트렌드에서 얻은 것 No. 23 / 류용효 실용형 AI, 제조의 미래를 바꾸다   54 New Books    Directory  131 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA    Visualization  84 AI 크리에이터 시대 : 영상 제작의 새로운 패러다임 (2) / 최석영 AI 기반 크리에이티브 워크플로 혁신   AEC 56 새로워진 캐디안 2025 살펴보기 (6) / 최영석 유틸리티 기능 소개 Ⅳ 60 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 오픈마누스 AI 에이전트의 설치, 사용 및 구조 분석 68 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2026 (2) / 천벼리 오토캐드 전환 지원과 AI 기반 생산성   범용 CAD  71 오토캐드 2026의 새로운 기능과 개선사항 / 양승규 AI 기반 기능 및 성능이 향상된 오토캐드 2026   Reverse Engineering  78 시점 - 사물이나 현상을 바라보는 눈 (5) / 유우식 변화와 흐름의 관찰   Mechanical  91 산업 디지털 전환을 가속화하는 버추얼 트윈 (2) / 최윤정 카티아 VMU를 활용한 설계 검증 혁신 94 제품 개발 혁신을 가속화하는 크레오 파라메트릭 11.0 (12) / 박수민 도면 기호 생성하기   Analysis  100 앤시스 워크벤치를 활용한 해석 성공 사례 / 김혜영 앤시스 LS-DYNA의 리스타트 기능 및 활용 방법 104 최적화 문제를 통찰하기 위한 심센터 히즈 (3) / 이종학 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 110 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (21) / 나인플러스IT 차세대 자동차 설계를 위한 DNS, LES, RANS 시뮬레이션 115 MBSE를 위한 아키텍처–1D 모델 연계의 중요성 및 적용 전략 (1) / 오재응 아키텍처 모델과 1D 모델의 전략적 연계   PLM  126 BPMN을 활용하여 제품 개발의 소통과 협업 극대화하기 (3) / 윤경렬, 가브리엘 데그라시 비즈니스 프로세스 모델링을 배워보자       캐드앤그래픽스 당월호 책자 구입하기   캐드앤그래픽스 당월호 PDF 구입하기
작성일 : 2025-04-24