• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "로코드"에 대한 통합 검색 내용이 96개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
CAD&Graphics 2025년 11월호 목차
  INFOWORLD   Editorial 17 AI와 CAE의 융합, ‘지능형 시뮬레이션’ 시대를 연다    Hot Window 18 말하면 설계하는 시대를 향해 – AI로 그리는 설계의 미래 / 한명기 21 리얼타임을 통한 디지털 트랜스포메이션의 진화 / 권오찬   Focus 26 AWS, 산업 혁신 이끄는 AI 에이전트 비전과 전략 공개 28 AEC/MFG 산업의 미래는? 지더블유캐드코리아, CAD/CAM/CAE 통합 플랫폼 비전 제시 30 유니티, “게임 엔진 넘어 AI·디지털 트윈 시대의 산업 기반 기술로”   Case Study 33 핵융합 실험을 위한 3D 시뮬레이션 플랫폼 개발 유니티로 구현한 핵융합 디지털 트윈, V-KSTAR 36 인더스트리 4.0을 위한 로봇 예측 유지보수의 발전 / 이웅재 디지털 트윈과 AI가 시뮬레이션과 현실의 간극을 메우다   People&Company 40  지더블유캐드코리아 최종복 대표이사 CAE·PDM까지 라인업 확장… ‘가성비’ 넘어 AI·성능으로 승부   New Product 42 HP Z2 미니 G1a 리뷰 / 이민철 BIM 엔지니어의 실무 프로젝트 성능 검증 50 3D 설계 환경에 통합된 전문 CAE 시뮬레이션 ZW3D Structural & Flow 54 접촉·포스 성능 향상 및 MFBD 후처리, 산업별 툴킷 기능 강화 리커다인 2026 57 실시간 3D 시각화 워크플로의 생산성 향상 트윈모션 2025.2 74 이달의 신제품   On Air 62 캐드앤그래픽스 CNG TV 지식방송 지상중계 AI와 BIM의 융합, 건축 설계의 패러다임을 바꾸다 64 캐드앤그래픽스 CNG TV 지식방송 지상중계 제조 산업에서의 사이버 보안과 위기 상황 대응 방안 65 캐드앤그래픽스 CNG TV 지식방송 지상중계 시뮬레이션의 미래 : AI와 디지털 트윈이 주도하는 제조 혁신   Column 66 디지털 지식전문가 조형식의 지식마당 / 조형식 인공지능 시대의 서바이벌 노트 : 인공지능 마인드세트와 원칙 69 현장에서 얻은 것 No. 23 / 류용효 나만의 AI 에이전트 필살기 Ⅲ – 본질에 집중하는 삶   76 New Books 78 News   Directory 147 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 81 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 코드로 강력한 수학 그래픽 애니메이션을 만드는 매님 84 새로워진 캐디안 2025 살펴보기 (12) / 최영석 유틸리티 기능 소개 Ⅹ 88 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2026 (8) / 천벼리 아레스 커맨더의 동적 블록과 트리니티 블록 라이브러리   Reverse Engineering 91 시점 – 사물이나 현상을 바라보는 눈 (11) / 유우식 무엇을 믿을 것인가?   Mechanical 98 제품 개발 혁신을 돕는 크레오 파라메트릭 12.0 (4) / 박수민 모델 기반 정의 개선사항   Analysis 104 앤시스 워크벤치를 활용한 해석 성공 사례 / 장형진 앤시스 LS-DYNA S-ALE를 활용한 폭발 성형 해석 방법 108 최적화 문제를 통찰하기 위한 심센터 히즈 (9) / 이종학 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 118 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (27) / 나인플러스IT 차세대 다중물리 CFD 설루션의 ‘4A’ 122 설계, 데이터로 다시 쓰다 (2) / 최병열 DX 시대에서 AX 시대로 126 로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (4) / 윤경렬, 김도희 로코드를 활용하여 시뮬레이션 데이터 분석을 따라해 보자 132 가상 제품 개발을 위한 MBSE 및 SysML의 이해와 핵심 전략 (1) / 오재응 디지털 모델 중심 시스템 설계로의 전환 전략   Manufacturing 138 자율제조를 위한 데이터 표준화와 사이버 보안 강화 전략 (2) / 차석근 산업 사이버 위협을 돌파하기 위한 IEC 62443   PLM 144 산업 디지털 전환을 가속화하는 버추얼 트윈 (8) / 이희라 부품 공용화 및 표준화를 위한 AI 기반 3D 형상 분석 설루션
작성일 : 2025-10-31
유아이패스-스노우플레이크, 에이전틱 자동화와 코텍스 AI 결합 위한 파트너십 체결
에이전틱 자동화 기업인 유아이패스가 AI 데이터 클라우드 기업 스노우플레이크와 파트너십을 통해 에이전틱 자동화 플랫폼(UiPath Agentic Automation)과 스노우플레이크 코텍스 AI(Snowflake Cortex AI)를 결합한다고 발표했다. 이번 협력으로 기업은 데이터 인사이트를 기반으로 더 빠르고 지능적으로 작동하는 자율형 프로세스를 구축해, 엔터프라이즈 전반에서 조직의 비전을 실질적인 성과로 이어갈 수 있게 됐다. 유아이패스 에이전틱 자동화 플랫폼과 스노우플레이크 코텍스 에이전트(Cortex Agents)의 결합으로, 기업은 엔터프라이즈급 자동화 플랫폼과 데이터 플랫폼을 통합해 활용할 수 있게 됐다. 이번 통합을 통해 유아이패스 마에스트로(UiPath Maestro)는 로코드·노코드 등 다양한 특화 에이전트를 오케스트레이션할 수 있는 범위를 확장했으며, 고객은 스노우플레이크 내 정형·비정형 데이터에서 도출한 인사이트를 즉시 실행하는 새로운 유형의 데이터 에이전트를 활용할 수 있다.   스노우플레이크 코텍스 에이전트는 조직이 엔터프라이즈 전반의 데이터를 연결해 인사이트를 도출하는 강력한 AI 에이전트를 구축할 수 있도록 지원한다. 이 에이전트는 정형 데이터 분석을 위한 코텍스 애널리스트(Cortex Analyst)와 비정형 데이터 검색을 위한 코텍스 서치(Cortex Search)의 정확도를 토대로, AI 모델과 데이터 간의 간극을 메운다. 이를 통해 기업은 복잡한 질문에도 비즈니스 맥락에 맞는 정확한 답변을 얻을 수 있다. 유아이패스 에이전트는 이러한 인사이트를 활용해 기존 프로세스를 효율화하고 새로운 프로세스를 생성하며, 기존 레거시 시스템이나 워크플로를 변경하지 않고도 이를 실행할 수 있다.   스노우플레이크의 베리스 굴테킨(Baris Gultekin) AI 부사장은 “데이터는 모든 지능형 기업의 핵심 기반”이라며, “스노우플레이크 플랫폼을 유아이패스의 에이전틱 자동화 설루션과 결합하면, 기업은 데이터 인사이트를 자연스럽게 실행으로 이어갈 수 있다. 양사는 기업이 데이터를 실시간으로 이해하고 정확하게 실행할 수 있도록 지원함으로써 혁신을 촉진하고 운영 효율을 높이며, 실질적인 비즈니스 성과를 창출하고 있다”고 말했다.   유아이패스의 그레이엄 쉘든(Graham Sheldon) 최고제품책임자(CPO)는 “데이터의 진정한 가치는 인사이트가 의사결정으로 이어질 때 드러난다”면서, “스노우플레이크 코텍스 AI를 유아이패스 플랫폼과 결합하면, 기업은 기존 시스템을 변경하지 않고도 신뢰할 수 있는 인사이트를 즉시 활용할 수 있다. 또한 유아이패스 플랫폼은 특정 벤더에 종속되지 않아, 기업이 각자의 환경에 맞게 에이전틱 자동화를 유연하고 안전하게 확장할 수 있다”고 말했다.
작성일 : 2025-10-23
데이터 분석 로코드 설루션을 배워보자 Ⅱ
로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (3)   지난 호에서는 로코드 분석 솔루션인 KNIME(나임)에 대해 알아보고 전력 판매량(Electric Power Sales) 예측에 대한 따라하기를 진행해 보았다. KNIME을 통해 ‘데이터 불러오기’와 ‘데이터 병합’에 대한 분석을 진행하였다. 이를 통해 KNIME이 어떻게 동작하는지 그리고 어떻게 데이터 분석을 시작할 수 있는지 대략적으로는 파악할 수 있었을 것으로 생각하고 있다. 이번 호에서는 지난 호에 이어서 나머지 전력 판매량 예측 따라하기 부분을 완성해 보도록 하겠다.   ■ 연재순서 제1회 데이터 분석에 로코드 설루션이 필요한 이유 제2회 데이터 분석 로코드 설루션을 배워보자 Ⅰ 제3회 데이터 분석 로코드 설루션을 배워보자 Ⅱ 제4회 로코드를 활용하여 시뮬레이션 데이터 분석을 따라해 보자 제5회 데이터 분석 로코드 설루션을 클라우드로 확장해 보자   ■ 윤경렬 현대자동차 연구개발본부 책임연구원   ■ 김도희 잘레시아 DX 프로   규칙 엔진과 데이터 전처리   그림 1   우선 진행해야 할 부분은 Rule Engine(규칙 엔진)이다. Rule Engine이 무엇이고 어떤 데이터 노드인지 알아보자.   그림 2   KNIME 왼쪽 상단의 info 탭을 클릭해서 Rule Engine에 대한 설명을 찾아보도록 하자. 대략의 내용을 읽어보면 Rule Engine은 사용자가 정의할 수 있는 규칙(Rule) 목록을 설정하는 기능인데, 해당 규칙에 매칭이 이루어지면 칼럼(Column)이 새롭게 추가된다. 여기서 규칙은 해당 라인(line)별로 정의되어야 하며, 해당 칼럼은 $name$로 표현되어야 한다.   그림 3   Rule Engine을 통해 시간대별 발전량에서 발전량이 있는 경우를 1, 없는 경우를 0으로 분류하고 ‘is_y_positive’라는 칼럼을 생성하였다. Rule은 $9H$ > 0 => 1로 설정하면 되고, Append column = is_y_positive로 입력한다.   그림 4   노드를 실행(Excute)해 보면 ‘is_y_positive’라는 칼럼이 추가된 것을 알 수 있다.   그림 5   이제 is_y_positive 컬럼이 추가되었으니, 우선 발전량이 있는 경우와 없는 경우로 나누어 각각 얼마나 되는지 카운트해보자.(Value counter 노드)   그림 6   노드를 실행(Excute)해보면 <그림 7>과 같이 발전량이 없는 경우가 12건이 있고, 발전량이 있는 경우는 1448건이라는 것을 알 수 있다.   그림 7     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
[포커스] 알테어, 제조 현장의 핵심 기술로 자리 잡는 AI 비전 소개
알테어는 9월 5일 ‘2025 추계 AI 워크숍’을 진행했다. ‘엔지니어를 위한 AI’를 주제로 진행된 이번 워크숍에서 알테어는 AI를 활용해 제품 개발 프로세스를 가속화하고 의사결정의 정확성을 높이며, 지능형 디지털 트윈을 완성한다는 비전을 선보였다. 또한 AI 기반 시뮬레이션, 생성형 AI, AI 에이전트, 지식 그래프 등 최신 AI 기술의 실제 적용 사례와 활용 방안을 소개했다. ■ 정수진 편집장     한국알테어의 김도하 지사장은 개회사를 통해 AI 기술이 산업 고객의 현장에서 빠르게 내재화되며 동반 성장하고 있다면서, “이는 고객들이 명확한 비전과 단계별 로드맵을 가지고 각자의 환경에 맞춰 AI를 접목하고 있기 때문”이라고 설명했다. 또한, 국가 AI 프로젝트가 시작되어 1만 4000 장의 GPU가 1차 도입되는 등 정부가 주도하는 ‘소버린 AI’ 시대가 열리고 있는 점에 주목하면서, “AI를 통한 제조 산업의 르네상스가 도래하고 있으며, 알테어 또한 시장과 함께 성장하기 위해 준비하고 있다”고 전했다.   엔지니어링 언어를 학습하는 AI 알테어의 케샤브 선다레시(Keshav Sundaresh) 디지털 전환 총괄 시니어 디렉터는 “AI는 더 이상 개념이 아니라 실제 현장의 핵심 기술”이라면서, 엔지니어링 수명주기 전반에 걸친 로코드·고효율 AI 접근법을 구현해야 한다고 짚었다. MIT의 연구에 따르면, 기업의 생성형 AI 파일럿 프로젝트 가운데 95%가 실질적인 재무 성과를 내는 데 실패하고 있는 것으로 나타났다. 그 원인으로는 ▲특정 결과에 편중된 데이터 ▲단편적이고 사일로화된 데이터 ▲값비싼 컴퓨팅 자원 ▲도메인 지식과 AI 기술 간 격차 ▲기존 시스템과의 통합 및 신뢰성 문제 등이 꼽힌다. 선다레시 시니어 디렉터는 이런 현실적 장벽을 극복할 수 있도록 알테어와 지멘스의 기술 역량을 결합해 AI 기반의 통합 설루션 포트폴리오를 제공할 수 있다는 점을 강조했다. “제품의 요구사항 정의부터 폐기에 이르는 모든 과정에서 AI를 활용하고, 단절된 디지털 스레드를 통합하여 데이터 기반의 신속한 의사결정을 지원하겠다”는 것이다. 이를 위한 핵심 전략은 ‘AI에게 엔지니어링 및 제조의 언어’를 가르치는 것이다. 기존의 LLM(대규모 언어 모델)이 텍스트나 이미지 등 일반 데이터에 강점을 보인다면, 지멘스와 알테어는 기계 설계, 전기/전자, BOM(Bill-of-Materials), 시뮬레이션 데이터 등 산업 특화 데이터를 학습시켜 신뢰도 높은 ‘산업용 파운데이션 모델(Industrial Foundation Model)’을 구축하고 있다는 것이 선다레시 시니어 디렉터의 설명이다.   AI 확산으로 제조 혁신의 속도 높인다 AI 비전을 구체화하는 방법론으로 알테어는 ‘라이프사이클 인텔리전스(Lifecycle Intelligence)’ 프레임워크를 제시했다. 이 프레임워크는 AI 도입의 장벽을 낮추고 모든 엔지니어가 AI를 손쉽게 활용해 혁신을 가속화할 수 있도록 하는 데에 중점을 두고 있다. 선다레시 시니어 디렉터는 ▲반복 작업의 자동화 및 대규모 데이터 분석으로 인간 전문가의 역량을 강화하고 ▲기존 워크플로와 도구에 AI 기능을 통합하여, 학습 부담 없이 자연스러운 AI 활용을 도우며 ▲코딩 지식과 관계 없이 모든 사용자가 AI를 구축하고 배포할 수 있는 환경을 제공하는 세 가지 접근법을 통해 AI 도입을 가속화한다는 로드맵을 소개했다. 이 프레임워크를 활용하면 전처리 영역에서는 형상 인식 AI 기술로 부품 분류 및 군집화를 자동화하거나, 자연어 처리(NLP) 기반 코파일럿을 통해 모델 정리부터 전체 해석 설정까지 대화형으로 수행할 수 있다. 솔빙 영역에서는 기존의 시뮬레이션 데이터를 학습해 CAD 또는 메시 단계에서 물리 현상을 빠르게 예측할 수 있고, 시스템 레벨의 시뮬레이션 속도를 높일 수 있다. 후처리 영역에서는 AI가 핫스폿이나 파손 영역을 자동 식별해 결과 분석을 돕는다. 이 프레임워크의 기술적 기반은 분산된 데이터를 연결하는 ‘데이터 패브릭’과 AI 모델을 개발·운영하는 ‘AI 팩토리’의 결합이다. 선다레시 시니어 디렉터는 알테어의 데이터 분석/AI 플랫폼인 래피드마이너(RapidMiner)와 로코드 앱 개발을 지원하는 지멘스 멘딕스(Mendix)를 통해 라이프사이클 인텔리전스를 구현할 수 있다고 설명했다.     엔지니어링 AI의 혁신 동력 에이전틱 AI(Agentic AI), 지식 그래프(Knowledge Graph), 생성형 AI 등 최신 AI 기술이 R&D부터 설계와 제조까지 엔지니어링 전반의 혁신을 가속화하고 있다. 알테어는 이들 기술이 개별적으로도 강력하지만, 서로 결합하면서 데이터 기반의 신속한 의사결정을 지원하고 기존 워크플로를 지능적으로 전환하는 핵심 동력으로 작용한다고 소개했다. AI 에이전트는 사용자를 대신해 특정 목표를 이해하고 자율적으로 판단 및 실행하는 ‘지능형 디지털 대리인’이다. 단순 반복 작업을 자동화하는 것을 넘어서, 여러 에이전트가 협업하는 다중 에이전트 구조를 통해 복잡한 과업을 수행하는 것이 최근의 흐름이다. 엔지니어링 현장에도 공정 상 발생한 문제에 대해 자연어로 질문하면 해결 방법을 제시하거나, 생산 라인의 다운타임 원인을 분석하고 관련 데이터를 종합해 보고하는 등의 AI 에이전트가 도입되고 있다. 알테어는 시각적 워크플로 설계 도구를 통해 이러한 AI 에이전트를 쉽게 구축하고 AI 클라우드 프로세스와 원활하게 연결하는 방법을 제시했다. 지식 그래프는 다양한 출처(소스)에 분산된 데이터를 하나의 의미 계층(semantic layer)으로 통합해서 데이터 간의 숨겨진 관계를 파악하게 하는 기술이다. 이는 AI 모델의 가장 큰 문제점으로 꼽히는 환각(hallucination) 현상을 최소화하고, 장기적인 맥락을 이해하는 메모리로 기능하면서 신뢰성 높은 AI 에이전트를 구현할 수 있게 돕는다. 엔지니어링 분야에서 지식 그래프는 여러 AI 에이전트가 일관된 지식 베이스를 공유하게 해서 협업의 효율을 높이고, 공장 문제 해결 시 여러 데이터베이스에 동적으로 접근하여 질문에 답하는 아키텍처를 구현하는 데 쓰인다.   PLM과 AI의 시너지로 더 큰 혁신도 가능 알테어는 지난 3월 지멘스와의 합병을 완료했다. 제조 기술에 강점을 가진 지멘스와 엔지니어링 및 AI 기술에 집중해 온 알테어의 시너지에 대해, 이번 워크숍에서 한 가지 실마리를 발견할 수 있었다. 알테어는 AI와 PLM(제품 수명주기 관리)의 결합이 제조업의 패러다임을 바꿀 것으로 보았다. 한국알테어 최병희 본부장은 “많은 기업이 PLM 시스템에 제품의 설계부터 생산, 운영까지 대량의 데이터를 축적하고 있지만, 이를 제대로 활용하지 못하고 있다. 이 PLM 데이터를 AI로 분석해 기업의 핵심 자산으로 만들고, 경험에 의존하던 사후 대응 방식의 업무 환경을 미래가 예측하고 문제를 예방하는 예측 기반의 업무 환경으로 혁신할 수 있다”고 소개했다. 지멘스의 PLM 설루션인 팀센터(Teamcenter)가 제품의 모든 역사를 기록한 단일 진실 공급원(single source of truth)이라면, 알테어의 래피드마이너는 코딩 지식이 없이도 AI 모델을 개발할 수 있는 ‘똑똑한 AI 분석가’라고 할 수 있다. 두 설루션을 통합하면 래피드마이너가 팀센터의 데이터를 분석해 숨겨진 패턴과 인사이트를 찾아내고, 이를 바탕으로 미래 예측 모델을 생성할 수 있다. 그리고 이 예측 결과를 다시 팀센터에 전달해 시스템 전체가 똑똑해지는 선순환 구조를 만든다. 최종적으로는 현실을 명확히 이해하고 미래를 예측하는 ‘지능형 디지털 트윈’을 완성할 수 있다는 것이 최병희 본부장의 설명이다. 이 외에 공급망 최적화, 품질 이상의 조기 탐지, 고객 피드백의 반영 등 다양한 분야로 시너지를 확장할 수 있는 가능성도 점칠 수 있다. 최병희 본부장은 “PLM 데이터를 시작으로 ERP, MES, CRM 등 분산된 기업 데이터를 통합하면 더 큰 범위의 업무 혁신이 가능하다”고 전했다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-10-01
CAD&Graphics 2025년 10월호 목차
  INFOWORLD    Editorial 17 AI 기반 스마트홈, 엔지니어링의 새로운 도전과 기회   Focus 18 코리아 그래픽스 2025, AI로 가속하는 산업과 크리에이티브의 변화를 짚다 24 헥사곤, 스마트 제조의 미래 비전 제시… “DX를 넘어 AX로” 26 알테어, 제조 현장의 핵심 기술로 자리 잡는 AI 비전 소개   Case Study 29 포지FX가 VR 훈련 설루션을 만드는 방법 확장현실로 건설 장비의 사용 교육과 운영 효율 강화 32 자동차 HMI 기술 브랜드 실리 아우토 언리얼 엔진으로 향상된 HMI 경험 구현   People&Company 34 앤시스 패드메쉬 맨들로이 부사장, 월트 헌 부사장, 앤시스코리아 박주일 대표 시높시스와 통합 시너지 강화… AI로 엔지니어링 혁신 이끈다 37 글로텍 이재홍 센터장, 한국철도기술연구원 박영곤 수석연구원 BIM 기반의 철도 인프라 통합 운영 설루션 연구·개발   On Air 49 캐드앤그래픽스 CNG TV 지식방송 지상중계 소버린 AI를 주도하는 6가지 코드 50 캐드앤그래픽스 CNG TV 지식방송 지상중계 미래를 여는 비즈니스 혁신 : AI 맞춤형 안경과 3D 프린팅 52 캐드앤그래픽스 CNG TV 지식방송 지상중계 설계 효율 극대화한 PTC 크레오 12.4 업데이트 54 캐드앤그래픽스 CNG TV 지식방송 지상중계 개발 기간 단축을 위한 설계자 해석 방안   New Product 40 BIM 기반 공사비 자동 산출 설루션    NaviQ v2.0 42 HP Z2 미니 G1a 리뷰 초소형 워크스테이션의 AI·3D 실전 성능 46 이달의 신제품   Column 55 디지털 지식전문가 조형식의 지식마당 / 조형식 인공지능 기술 : 도입에서 혁신으로 58 현장에서 얻은 것 No. 23 / 류용효 나만의 AI 에이전트 필살기 Ⅱ – 코드를 이해하는 기획자, 비개발자의 바이브 코딩 입문기   62 News   Directory 139 국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 64 BIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱 요구사항 기반 바이브 코딩의 사용 방법 74 새로워진 캐디안 2025 살펴보기 (11) / 최영석 유틸리티 기능 소개 Ⅸ 78 데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2026 (7) / 천벼리 AI로 더욱 똑똑해진 CAD 어시스턴트, A3   Reverse Engineering 84    시점 – 사물이나 현상을 바라보는 눈 (10) / 유우식 무엇을 볼 것인가?   Mechanical 69 제조업의 미래를 위한 ZW3D 2026 / 지더블유캐드코리아 통합 3D CAD/CAM 설루션의 전략적 가치 90 제품 개발 혁신을 돕는 크레오 파라메트릭 12.0 (3) / 김주현 크레오 시뮬레이션 라이브를 활용한 제품 설계 최적화   Analysis 97 앤시스 워크벤치를 활용한 해석 성공 사례 / 한성훈 터보기기 해석을 위한 플루언트 터보 워크플로 102 최적화 문제를 통찰하기 위한 심센터 히즈 (8) / 이종학 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 111 산업 디지털 전환을 가속화하는 버추얼 트윈 (7) / 신효주 스티뮬러스의 모델 기반 요구사항 검증 방법 116 성공적인 유동 해석을 위한 케이던스의 CFD 기술 (26) / 나인플러스IT 고충실도 제트 유동 시뮬레이션으로 항공우주 산업 혁신 120 설계, 데이터로 다시 쓰다 (1) / 최병열 DX 시대, 샌드위치로 살아남기 126 로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (3) / 윤경렬, 김도희 데이터 분석 로코드 설루션을 배워보자 Ⅱ   Manufacturing 134 자율제조를 위한 데이터 표준화와 사이버 보안 강화 전략 (1) / 차석근 제조 혁신의 열쇠, 4M2E 생산자원 데이터 표준화     2025-10-aifrom 캐드앤그래픽스     캐드앤그래픽스 당월호 책자 구입하기   캐드앤그래픽스 당월호 PDF 구입하기
작성일 : 2025-09-26
멘딕스, 메가존과 파트너십 맺고 국내 로코드 기반 디지털 혁신 가속화
지멘스 디지털 인더스트리 소프트웨어의 사업부인 멘딕스는 한국 시장에서 입지를 확대하기 위해 AI·클라우드 기업 메가존클라우드의 모회사인 메가존과 전략적 파트너십을 맺었다고 밝혔다. 이번 파트너십은 시장 개발, 고객사 공동 대응 및 기술 지원 등을 제공하기 위한 포괄적인 프레임워크를 구축하여, 현지 전문성과 지원 체계를 바탕으로 디지털 혁신 전략을 가속화하고자 하는 국내 기업들이 세계적 수준의 로코드(low-code) 개발 역량을 활용할 수 있도록 지원하기 위한 것이다. 멘딕스는 “스튜디오 프로(Studio Pro)에 통합된 마이아(Maia)를 통해서 AI 에이전트 시대를 선도함과 동시에 이번 파트너십을 통해 한국 시장에서 로코드 애플리케이션 개발 역량을 대중화하고, 글로벌 확장 전략을 강화하는 데 중요한 이정표를 수립했다”고 평가했다. 메가존은 한국 시장에 대한 전문성과 견고한 유통망을 바탕으로, 국내 기업이 멘딕스의 포괄적인 개발 플랫폼을 보다 손쉽게 활용해 아이디어를 실효성 있는 애플리케이션으로 구현하는 동시에, 엔터프라이즈급 보안과 거버넌스를 유지할 수 있도록 지원할 예정이다. 멘딕스는 자사의 플랫폼이 고객에게 생성형 AI(GenAI) 기술에 대한 턴키 액세스를 제공하는 GenAI 리소스 팩(GenAI Resource Pack)과 고급 AI 기반 개발 툴과 같은 최신 개선 기능을 통해 애플리케이션 개발 프로세스에 AI를 활용하고자 하는 한국 기업들에게 상당한 가치를 제공할 것으로 기대하고 있다. 멘딕스의 역량과 메가존의 현지 시장에 대한 전문성 및 지원 인프라가 결합됨으로써 한국 시장에 로코드 도입을 가속화할 수 있는 기반이 마련되었다는 것이 멘딕스의 평가이다. 메가존은 멘딕스의 공식 총판 파트너로서 파트너 생태계 개발과 세일즈 활성화를 비롯해 시장 개발을 위한 마케팅, 티어-2 리셀러 리크루팅, 기술 지원 등을 지멘스와 함께 적극 리드할 예정이다. 이를 위해 리셀러 발굴·영입, 과천 사옥 및 역삼 센터 내 전문 교육 프로그램 운영, 세일즈 역량 강화, 제품 인증 제공뿐 아니라 세일즈 프로세스 관리, 공동 제안서 작성, 고객 서비스 지원 등을 수행하며, 연간 매출 목표 달성과 협력적 성장 전략을 통해 비즈니스 성과를 견인하는데 기여할 것으로 보고 있다. 이번 협력의 핵심은 전략적 접근방식을 통해 공동 마케팅 및 세일즈 개발을 가속화하기 위한 것이다. 양사는 한국 시장에서 멘딕스 브랜드의 인지도를 높이고 비즈니스 성과를 강화하기 위한 구체적인 계획을 수립하고, 함께 협력할 예정이다. 공동 세미나와 웨비나 개최는 물론, 성공 사례 개발 및 디지털 캠페인에 이르기까지, 공동의 마케팅 활동을 통해 고객과의 상호작용 및 시장 확장을 위한 다양한 접점을 창출할 계획이다. 지멘스 디지털 인더스트리 소프트웨어의 오병준 한국 지사장은 “메가존과의 파트너십은 멘딕스가 아태지역에서 지속적으로 사업을 확장하는데 중요한 이정표가 될 것”이라면서, “한국은 기업들이 최신 개발 설루션을 도입하는데 매우 역동적이고 혁신적인 시장이다. 멘딕스는 메가존의 검증된 현지 전문성과 시장을 선도하는 파트너 네트워크를 활용하여, 국내 기업들이 로코드 개발 방식의 혁신적인 잠재력을 실현하고, 디지털 중심 경제에서 성장을 가속화할 수 있도록 지원하는 보다 효과적인 서비스를 제공하게 될 것”이라고 말했다. 메가존의 조영국 부사장은 “국내 기업들은 현대적이고 민첩한 개발 설루션을 도입하는데 상당히 적극적이다. 메가존은 멘딕스의 로코드 플랫폼을 통해 국내 기업들의 역량 강화를 지원할 수 있는 최적의 위치에 있다”면서, “메가존은 한국 시장 전반에 걸쳐 최첨단 디지털 설루션을 신속하게 공급하고, 안정적으로 지원할 수 있는 입증된 실적을 바탕으로, 기술 도입 격차를 해소할 수 있는 핵심 강점을 보유하고 있다. 앞으로도 기업들이 멘딕스를 효과적으로 활용하여 디지털 혁신 목표를 가속화하고, 전략적 비즈니스 목표를 달성할 수 있도록 원활한 도입 프로세스를 지원하는데 주력할 것”이라고 밝혔다.
작성일 : 2025-09-19
알테어, ‘2025 추계 AI 워크숍’에서 국내 기업의 AI 활용 성과 공개
알테어가 9월 5일 서울 과학기술회관에서 ‘2025 추계 AI 워크숍’을 진행했다고 밝혔다. 2024년부터 매년 춘·추계로 진행되는 이번 행사에는 400여 명의 제조업 실무진과 산업 전문가가 참석해 인공지능(AI) 기술의 실무 적용 방안을 논의했다.   행사는 김도하 한국알테어 지사장의 개회사로 시작했으며, 이어 알테어 케샤브 선다레시 디지털 전환 총괄 시니어 디렉터가 ‘엔지니어링을 위한 라이프사이클 인텔리전스 : 로코드 고효율 접근법’을 주제로 제조업 혁신을 가속화할 수 있는 방안을 발표했다.     이후 국내 기업의 AI 활용 사례가 소개됐다. 한국항공우주산업(KAI)의 김범준 선임연구원은 ‘AI 스튜디오를 활용한 고정익 항공기 조종면 유격 검사 데이터 처리 프로그램 개발’을 발표했다. 그는 “기존에 수작업으로 진행되던 검사 데이터 처리를 자동화·표준화했으며, 노코드·로코드 기반 AI 스튜디오를 통해 코딩 지식이 없는 설계자도 데이터 분석 프로그램을 직접 개발할 수 있다”고 설명했다.   특히 이번 행사에서는 알테어와 지멘스가 제조업 분야에서 축적한 경험과 전문성을 바탕으로 디지털 전환을 가속화하는 방안이 소개됐다. 알테어의 최병희 본부장은 지멘스의 PLM(제품 수명 주기 관리)과 알테어의 AI 기술 결합 방안을 발표했으며, 지멘스 강철 전무는 제조업의 AI 도입 동향과 로코드 기반 개발 환경의 시너지 효과를 강조했다.   이 밖에도 ▲에이전틱 AI 실현을 위한 온톨로지 기반 데이터 패브릭 전략 ▲예측 AI, LLM(대형 언어 모델) 기반 생성형 AI, 지식 그래프, AI 에이전트를 통한 엔지니어링 및 제조 혁신 ▲AI 기반 HPC(고성능 컴퓨팅)로 제품 개발팀의 시장 출시 속도 가속화 등 다양한 발표가 다뤄졌다.   한국알테어의 김도하 지사장은 “올해 춘계에 이어 추계 워크숍을 개최하면서 AI 기술이 빠르게 발전하고 있을 뿐만 아니라, 국내 고객사들의 AI 적용 사례가 실제 현장에서 빠르게 확산되고 있음을 체감하고 있다”면서, “알테어는 이러한 경험을 기반으로 국내 제조업체들이 AI 도입 아이디어를 얻고 실무 혁신을 실현할 수 있도록 적극 지원하겠다”고 전했다.
작성일 : 2025-09-05
데이터 분석 로코드 설루션을 배워보자 Ⅰ
로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (2)   지난 호에서는 로코드 분석 설루션이 필요한 이유에 대해 알아보았다. 또한 데이터 분석이 일반적으로 거치는 과정에 대해서도 살펴 보았는데, 이러한 과정에 파이썬(Python)과 같은 프로그래밍 언어가 활용되는 상황 또한 정리해 보았다. 이번 호에서는 로코드 분석 설루션인 KNIME(나임)에 대해 알아보고, 전력 판매량 예측에 대한 분석 과제를 따라하기 과정을 통해 완성해 보도록 하겠다.   ■ 연재순서 제1회 데이터 분석에 로코드 설루션이 필요한 이유 제2회 데이터 분석 로코드 설루션을 배워보자 Ⅰ 제3회 데이터 분석 로코드 설루션을 배워보자 Ⅱ 제4회 로코드를 활용하여 시뮬레이션 데이터 분석을 따라해 보자 제5회 데이터 분석 로코드 설루션을 클라우드로 확장해 보자   ■ 윤경렬 현대자동차 연구개발본부 책임연구원   ■ 김도희 잘레시아 DX 프로   지난 호에서 살펴본 일반적인 데이터 분석 과정은 다음과 같다.   요청 접수 → 데이터 확보 → 데이터 검토(칼럼/누락/이상치 확인) → 분석 전략 수립 → 데이터 정제 및 가공 → 분석 수행 및 시각화 → 결과 공유   이전에 강조한 바와 같이, 아무리 쉬운 코딩 언어라고 할지라도 데이터 분석을 요청받은 데이터 과학자(data scientist)가 이를 실제 업무에 적용하여 원하는 결과를 빠르고 정확하게 구현해내는 것은 어려운 일이다. 또한 코딩에 능숙한 데이터 과학자라고 해도 깃허브(Github) 및 인터넷 상에 공유된 소스코드를 다운받아 재활용 및 가공하여 사용하는 경우가 많은데, 이때 악성 코드 등에 대한 보안 이슈도 문제가 될 소지가 있다. 사실 데이터 과학자는 수학 및 통계적 지식을 활용하여 빠르게 정확하게 데이터 분석을 하고 싶은 것이고, 이를 위해 효율적인 툴을 사용하고자 한다. 우리는 이러한 현상을 극복해 나가고자 로코드 분석 설루션(low code analytics solution)을 대안으로 검토하였고, 이를 활용하여 데이터 분석을 수행해 나가는 과정을 따라가 보고자 한다. 지난 호에서 유관부서로부터 전력 판매량(electric power sales) 예측에 대한 분석 과제를 요청 받은 상태이고, 언제나처럼 기한은 촉박한 상황의 시민 데이터 과학자(citizen data scientist)로 가정하여 주어진 과제 목표를 달성하였다. 우리에게 주어진 데이터는 발전소 데이터, 기상 정보 데이터, 날짜 및 요일 데이터 등 세 가지로 이를 처리하기 위해 파이썬으로 코드를 작성한 사례를 공유하였고, 동일한 내용을 로코드 분석 설루션인 KNIME을 활용하여 처리한 사례도 공유하였다.   그림 1   이번 호에서는 KNIME에 대해 알아보고 전력 판매량 예측에 대한 분석과제를 따라하기 과정을 통해 완성해 보도록 하겠다. 우선 구글 제미나이(Google Gemini)에게 KNIME에 대한 역사와 특징에 대해 알려 달라고 해보자.(그림 2~4)   그림 2   그림 3   그림 4   가트너(Gatner)의 피어 인사이트(Peer insight) 리뷰를 확인해 보았는데, 평점(rating)이 상당히 높은 편이고 사용자의 반응도 높다는 것을 확인하였다. 또한 오픈소스 기반 소프트웨어로서 기업에서도 무료로 자유롭게 설치하여 사용할 수 있다는 측면에서(KNIME Analytics Platform) 로코드 분석 설루션으로 선택하기에 부족함이 없다는 것을 확인하였다.   그림 5   현재 KNIME은 데이터 사이언스를 위한 최적의 설루션을 위해 세 가지 서비스를 제공하고 있다. 이번 호에서는 KNIME Analytics Platform을 활용하여 전력 판매량 예측에 대한 분석 과제를 따라해보고자 한다.   그림 6     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
CAD&Graphics 2025년 9월호 목차
  18ㅤTheme. PLM과 AI로 가속화하는 제조 디지털 전환의 미래 Ⅱ 제조산업의 미래, 산업 AI 트렌드와 과제 / 조영임 AI 혁신을 기회로 : SAP의 통합형 PLM 전략 / 고건 미래 제조 패러다임의 전환 : SDM 기반 자율 제조의 도래 / 박한구 엔비디아 옴니버스만 가능한 디지털 트윈의 비즈니스 실현 / 김건우 패스트 포워드 디지털 전환과 제품 개발 / 윤중근 소프트웨어 정의 자동화가 바꾸는 산업의 미래 / 김건   Infoworld   Editorial 17ㅤAI 시대, 그래픽 산업과 한국 기업의 대응 전략은?   People&Company 39ㅤ헥사곤 매뉴팩처링 인텔리전스 성 브라이언 사장ㅤ시뮬레이션·디지털 트윈·AI 결합해 제품 개발의 미래 제시 42ㅤ한국기계가공학회 안동규 회장ㅤ뿌리기술로 미래 제조 혁신 이끈다   Case Study 44ㅤKAI의 언리얼 엔진 기반 차세대 시뮬레이션 에코시스템ㅤ비행 훈련부터 제품 개발·운영까지 아우르는 핵심 인프라를 목표로 47ㅤ가상 커미셔닝으로 산업 과제를 해결하는 스피라텍ㅤ개방형 커미셔닝과 협업 혁신으로 제조업을 재정의하다   Focus 50ㅤ넥스트콘 2025에서 만난 건설 디지털 전환의 미래   New Product 52ㅤ사용자 경험 혁신하는 3D CAD/CAE/CAM 소프트웨어ㅤZW3D 2026 57ㅤAI·스마트 자동화 기반의 차세대 디지털 엔지니어링 설루션ㅤ앤시스 2025 R2 60ㅤ이달의 신제품   On Air 63ㅤ캐드앤그래픽스 CNG TV 지식방송 지상중계ㅤAI로 혁신하는 3D 시각화와 산업의 미래   Column 70ㅤ디지털 지식전문가 조형식의 지식마당 / 조형식ㅤ인생 디지털 스레드 : 삶의 모든 ‘오늘’을 연결하는 새로운 패러다임 72ㅤ현장에서 얻은 것 No. 22 / 류용효ㅤ나만의 AI 에이전트 필살기 Ⅰ – 나만의 지식 지도를 그리다   64ㅤNew Books 66ㅤNews   Directory 123ㅤ국내 주요 CAD/CAM/CAE/PDM 소프트웨어 공급업체 디렉토리   CADPIA   AEC 75ㅤ새로워진 캐디안 2025 살펴보기 (10) / 최영석ㅤ유틸리티 기능 소개 Ⅷ 78ㅤ데스크톱/모바일/클라우드를 지원하는 아레스 캐드 2026 (6) / 천벼리ㅤ모바일 CAD 아레스 터치의 새로운 기능 116ㅤBIM 칼럼니스트 강태욱의 이슈 & 토크 / 강태욱ㅤ바이브 코딩 지원 멀티 에이전트 코덱스의 사용법   Mechanical 80ㅤ제품 개발 혁신을 돕는 크레오 파라메트릭 12.0 (2) / 김성철ㅤ부품 모델링 개선 사항   Reverse Engineering 86ㅤ시점 - 사물이나 현상을 바라보는 눈 (9) / 유우식ㅤ작용, 반작용, 상호작용   Analysis 93ㅤ앤시스 워크벤치를 활용한 해석 성공 사례 / 박건ㅤ포토닉스 소자 시뮬레이션을 위한 앤시스 루메리컬 98ㅤ산업 디지털 전환을 가속화하는 버추얼 트윈 (6) / 이현충ㅤ시뮬리아 웨이브6를 활용한 환경 소음 시뮬레이션 100ㅤ로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (2) / 윤경렬, 김도희ㅤ데이터 분석 로코드 설루션을 배워보자 Ⅰ 106ㅤ최적화 문제를 통찰하기 위한 심센터 히즈 (7) / 이종학ㅤ프로세스 자동화 Ⅱ – 모터 설계 최적화 113ㅤ성공적인 유동 해석을 위한 케이던스의 CFD 기술 (25) / 나인플러스ITㅤ처리 시간이 10시간 미만인 LES 워크플로         캐드앤그래픽스 당월호 책자 구입하기   캐드앤그래픽스 당월호 PDF 구입하기
작성일 : 2025-08-31
데이터 분석에 로코드 설루션이 필요한 이유
로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (1)   이번 호부터 로코드(low code) 설루션을 활용하여 데이터 분석을 활용하는 방법에 대해 설명하고자 한다. 앞으로 4회에 걸쳐 데이터 분석을 위한 로코드 분석 설루션이 어떤 장점을 가지고 있으며 어떻게 활용될 수 있는지 살펴보고, 간단한 데이터 분석 예제를 따라해 보면서 활용하는 방법을 배워보도록 하겠다.   ■ 연재순서 제1회 데이터 분석에 로코드 설루션이 필요한 이유 제2회 데이터 분석 로코드 설루션을 배워보자 제3회 로코드를 활용하여 시뮬레이션 데이터 분석을 따라해 보자 제4회 데이터 분석 로코드 설루션을 클라우드로 확장해 보자   ■ 윤경렬 현대자동차 연구개발본부 책임연구원   ■ 김도희 잘레시아 DX 프로   머신러닝 및 딥러닝 기술의 급격한 발전에 힘입어 최근 몇 년사이에 데이터 분석 시장은 폭발적으로 성장해 왔다. 데이터의 분석을 통해서 패턴을 찾고 이를 통해 행동을 예측할 수 있는 사례는 많은 이들의 관심을 불러 일으켰고, 파이썬(Python) 언어와 관련 라이브러리의 사용법을 배우는 강좌도 덩달아 큰 인기를 누리게 되었다. 이는 지식의 저변 확대와 관련 산업의 활성화라는 측면에서 상당히 좋은 방향이지만, 실제 현장에서는 상대적으로 쉽다고 알려져 있는 파이썬 언어도 교육 강좌를 수강한 이후 막상 본인의 업무에 적용하려고 하면 적지 않은 어려움에 직면하게 된다. 이유는 파이썬 언어의 사용이 어려워서라기보다는 CDS(Citizen Data Scientist : 시민 데이터 과학자)에게는 익숙하지 않기 때문이다. 특히 프로그래밍 언어를 이용한 코딩은 텍스트에 기반한 정보이기 때문에 직관적이지 않고 시행착오를 반복해야 어느 정도 활용 레벨에 올라갈 수 있다. 최근 이러한 문제를 해결하기 위해 로코드 분석 설루션(low code analysis solution)이 대안으로 시도되고 있으며 유의미한 결과를 보여주고 있다.   일반적인 데이터 분석 과정 데이터 분석은 보통 요청을 접수하는 것부터 시작되며, 이 단계에서는 무엇을 분석해야 하는지, 분석의 목적은 무엇인지 명확히 파악하는 것이 중요하다. 분석 대상과 기대하는 결과가 정해지면 그에 필요한 관련 데이터를 확보하게 된다. 이 때 데이터는 내부 시스템, 데이터베이스, 외부 파일 등 다양한 경로를 통해 수집될 수 있다. 다음은 확보한 데이터를 개괄적으로 파악하는 과정인데, 이 때 주요 칼럼과 데이터의 값을 확인하고 누락된 값 또는 이상치가 있는지 등을 점검하게 된다. 데이터의 품질을 빠르게 진단하는 이 단계는 이후 분석의 방향에 큰 영향을 미치게 되기 때문에 아주 중요하다. 이렇게 데이터의 상태를 파악하고 난 뒤에는 분석 전략을 수립하게 되는데, 여기서는 어떤 방식으로 데이터를 다루는 것이 좋을지, 어떤 분석 기법을 적용하는 게 좋을지를 구체적으로 준비하게 된다. 세 번째 단계로는 그 동안 수립한 분석 계획에 따라 본격적인 데이터 정제 작업을 시작하게 된다. 구체적으로는 전처리, 필터링, 파생 변수 생성 등의 작업을 포함하여 분석에 적합한 형태로 데이터를 정돈하는 단계로 볼 수 있다. 다음은 실제 분석을 수행하고 필요한 시각화를 통해 인사이트를 도출하는 것으로 통계 분석, 머신러닝 모델링, 상관관계 파악 등 다양한 방법이 이 부분에 포함된다. 마지막으로 분석 결과는 보고서 형태로 문서화하거나 대시보드로 시각화하여 공유되며, 이는 분석 요청자 또는 조직 내 이해관계자가 쉽게 결과를 활용하여 의사결정을 수행하도록 지원할 수 있다. 요청 접수 → 데이터 확보 → 데이터 검토(칼럼/누락/이상치 확인) → 분석 전략 수립 → 데이터 정제 및 가공 → 분석 수행 및 시각화 → 결과 공유   파이썬 코딩과 로코드 기반 분석의 비교 이제부터 본격적으로 데이터 분석을 진행하기 위해, 우리는 데이터 분석에 대한 요청을 받은 CDS라고 가정을 해 보자. 우리는 유관부서로부터 전력 판매량(Electric Power Sales) 예측에 대한 분석을 요청 받은 상태이고, 언제나처럼 기한은 촉박한 상황이다. 우리에게 주어진 데이터는 발전소 데이터, 기상 정보 데이터, 날짜 및 요일 데이터 등 세 가지로 다행스럽게도 소스 데이터는 엑셀 형태로 정리되어 입수한 상태이다. 우선 ‘발전소 데이터’를 살펴 보면 일자별로 특정 발전소에서 일일 발전량이 자세하게 표시되어 있다. 결국 첫 번째 데이터는 Electricity_sales로, 발전소 명칭, 측정 일자(년, 월, 일), 시간대별 전력 판매량으로 구성되어 있는데 이는 머신러닝에서 예측하게 될 Y값(종속변수)이 포함된 핵심 데이터 영역이다.   그림 1. 발전소 데이터   다음은 ‘기상 정보 데이터’로 일자별로 특정 지역의 날씨 정보가 정리되어 있다. 발전소 위치에 따른 기상 정보로 일시, 평균기온, 강수량, 풍속, 습도, 일사량 등의 정보가 담겨 있다.    그림 2. 기상 정보 데이터   마지막으로 ‘날짜 및 요일 데이터’는 일자별로 요일을 숫자로 매핑한 데이터이다. 날짜 데이터에 매핑 가능한 공휴일 정보가 담겨 있는 데이터 영역이다.   그림 3. 날짜 및 요일 데이터   결국 요청 받은 데이터 분석을 완료하기 위해서는 입수한 데이터에 전처리를 수행하고 이를 기반으로 다중 회귀 분석을 수행하여 머신러닝 예측 모델을 구성해야 한다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-08-04