• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "딥시크"에 대한 통합 검색 내용이 17개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
[신간] 돈 되는 AI 어디서부터 무엇을 어떻게 해야 할까
장동인 지음 / 2만 5000원 / 리코멘드 AI 도입, CEO의 기술 이해가 성공을 좌우한다 - 오라클·딜로이트 출신 전문가의 실전 AI 도입 전략서 출간 “기업의 AI 수준은 CEO의 AI 이해 수준을 넘을 수 없다.” ChatGPT부터 AI 에이전트까지 인공지능(AI)이 기업 경영의 핵심으로 부상했다. 기업들은 앞다투어 AI 도입에 나서고 있지만, 실질적인 성과를 내지 못하고 프로젝트가 좌초되는 사례가 속출하고 있다. 이는 시스템 구축에만 집중하고 현장과의 연동에 실패했거나, 경영진의 기술 이해 부족으로 전략을 세우지 못했기 때문이다. 국내 최고의 AI·빅데이터 전문가로 꼽히는 장동인 AIBB LAB 대표가 AI 도입의 성공 전략을 담은 책을 펴냈다. 오라클 본사, 딜로이트, 언스트앤영 등에서 30년간 글로벌 기업 컨설팅을 담당해 온 저자는 『돈 되는 AI, 어디서부터 무엇을 어떻게 해야 할까』를 통해 AI 도입을 고민하는 모든 기업인에게 실전 가이드라인을 제시한다. AI 프로젝트, 첫 문제 정의부터 실패한다 저자는 AI 프로젝트의 90%가 '첫 문제 정의 단계'에서부터 실패한다고 단언했다. 많은 기업이 AI를 도입하면 자동으로 성과가 나올 것이라 착각하지만, 명확한 문제 정의와 전략 없이는 실패를 피할 수 없다는 것이다. 이 책은 이론이 아닌 실전에 초점을 맞춰, 기업 현장에 바로 적용 가능한 구체적인 방법론을 제공한다. 특히 '돈 되는 AI' 문제 정의를 위한 4단계 필터링(문제 정의의 예리성, 데이터 연관성, AI 해결 가능 유형, ROI 산출)을 제시하고, ABCD 방법론(Analysis, Blueprint, Create, Develop)을 통해 AI 도입의 전 과정을 체계화했다. 경영진의 기술 이해가 기업의 생존을 결정한다 엔지니어 출신인 저자는 KAIST AI대학원 CAIO 과정 책임교수이자 6년간 <CEO를 위한 AI 코딩 강의>를 진행하며 경영진의 기술 이해를 강조해 왔다. 이 책에서도 경영진의 기술 이해가 AI 도입 성패를 좌우한다고 거듭 강조했다. 실무자를 위해서는 RAG(검색 증강 생성) 기술을 활용한 사내 지식 관리, AI 에이전트를 통한 업무 자동화, 기존 시스템과의 통합 방법 등 구체적인 실전 사례를 제시했다. 또한 보안이 중요한 기업 환경에 최적화된 오픈 소스 LLM, 클로즈드 소스 LLM, 하이브리드 등 다양한 AI 아키텍처를 비교 분석했다. 랭체인, 코파일럿 스튜디오 등 최신 AI 에이전트 개발 도구까지 실무 관점에서 총정리했다. 이 외에도 젠슨 황의 엔비디아 성공 비결, 딥시크(DeepSeek), 테스트 타임 스케일링, MCP(Model Context Protocol) 등 2025년 최신 AI 트렌드를 총망라해 AI 시대 비즈니스 방향을 고민하는 CEO, 임원, 기획자, 실무자 모두에게 필독서가 될 것으로 기대된다.
작성일 : 2025-10-23
[무료 다운로드] DX 시대, 샌드위치로 살아남기
설계, 데이터로 다시 쓰다 (1)   ‘DX’는 디지털 전환(Digital Transformation)을 의미한다. 2000년대 초반부터 아날로그 방식을 디지털 방식으로 전환하다는 것을 의미하다가, IT 기술이 발전함에 따라 기업들이 비즈니스 모델을 재구성하여 새로운 가치를 창출할 수 있는 과정으로 의미가 확대되었다. 디지털 시대에 성공적으로 전환한 기업은 선두 그룹에 도달했고, 등한시한 기업은 위기를 맞고 있다. 우리를 추격하던 중국은 최근 10년 간 디지털 전환에 성공하여 어느 새 선두권과 경쟁하고 있고, 우리는 샌드위치 신세로 전락하고 말았다. 앞으로 4회의 연재를 통해 선진 기업의 디지털 전환 성공 사례를 본보기 삼아, 위기에 처한 우리의 돌파구가 될 인사이트를 탐색하고자 한다.   ■ 연재순서 제1회 DX 시대, 샌드위치로 살아남기 제2회 DX 시대에서 AX 시대로 제3회 AX 시대를 위한 데이터 전략 제4회 Hello World   ■ 최병열 피도텍에서 AI 기반 Data-driven Design SW 개발 총괄을 맡고 있다. 한양대에서 공학박사 학위를 받았고, 20여 년간 100여건의 최적 설계 프로젝트를 주도하며 컨설팅 경험을 쌓았다. 홈페이지 | www.pidotech.com   중국의 성장 2015년 5월 19일 중국은 ‘중국제조 2025’ 정책을 발표하였다. 독일의 ‘Industry 4.0’을 벤치마킹하여 저임금/조립 중심의 제조업에서 첨단 제조 강국으로의 전환을 이루고자 하였다. 기존 ‘메이드 인 차이나’의 값싼 저품질 이미지에서 탈피하고, 미국과의 경쟁에서 살아남기 위해 강력한 국가 주도로 진행되었다.   그림 1. ‘중국제조 2025’의 10대 전략 산업 분야(출처 : MFG)   정책만 수립한 것이 아니었다. ‘중국제조 2025’가 수립되기 전 2008년부터 ‘천인계획’이라고 불리는 인재 확보 전략을 수립하였다. 우수한 자국 인재는 물론 해외 인재까지 유지하려는 노력이었다.   그림 2. 중국의 인재 정책 ‘천인계획’의 성과(출처 : 조선일보)   최근 KBS 다큐멘터리 ‘인재전쟁 : 공대에 미친 중국, 의대에 미친 한국’에서 그 결실을 충분히 파악할 수 있다. 현재는 중국의 과학기술계 위상이 전 세계적으로 바뀌어서 ‘네이처 인덱스 2025 연구기관 순위’에서 1위는 물론 10위권내에 8개 순위를 중국이 차지하였다. 아쉽게도 한국의 서울대와 KAIST는 52위와 82위를 차지하였는데, ‘의대 우선, 공대 천시’ 문화의 예정된 결과로 보인다. 인재를 위한 중국의 투자 성과는 딥시크(DeepSeek) 설립자인 량원펑의 사례로 잘 이해할 수 있다. 그는 저장대에서 석사까지 마쳤고, 헤지펀드를 만들어 80억 달러 규모의 자산을 운용할 만큼 금전적으로 성공하였다. 이후 주변 천재들과 함께 딥시크를 설립하였다. 막대한 투자금에 중국 정부, 지방 정부의 인재 발굴 시스템과 대학, 연구기관과의 기술적 협업, 이 세 가지를 기반으로 세계 시장과 어깨를 겨룰 수 있는 AI(인공지능) 모델을 개발하였고, 더 나아가 중국의 AI 역량을 한 단계 끌어올리는 역할을 하였다. DX 시대에서는 하드웨어보다는 소프트웨어 파워가 중요하다. 실제 제품을 만들어가면서 수정하고 개선하던 시대를 벗어나, 가상의 시뮬레이션을 통해 성능을 평가하고 개선하는 시대로 바뀐 것이다. 성능 평가를 위해 가상의 제품 시뮬레이션에 사용되는 CAE 소프트웨어는 공학 기술 노하우의 집약체이기 때문에, 단기간에 따라잡기 어려운 분야 중 하나이다. 하지만 중국의 CAE 수준은 투자에 걸맞게 비약적으로 발전했다. CAE 분야와 관련된 SCI 논문 수가 2020년 이후 세계 1~2위권을 다투고 있고, 소프트웨어 알고리즘과 병렬처리, 디지털 트윈 등 CAE 관련 특허도 연간 1000건 이상 출원되며 2015년 대비 3배로 증가하고 있다. 이러한 성과를 토대로 해외 시장에서 경쟁하는 중국산 CAE 소프트웨어 개발도 활발히 이루어지고 있다. 중국 광저우에 본사를 두고 ZWCAD, ZW3D 등을 개발하는 ZW소프트(ZWSoft), 중국 창사에 본사를 두고 있는 적층 제조 소프트웨어를 개발하는 파순 테크놀로지(Farsoon Technology) 등이 있으며, 중국계 대표가 설립한 터보타이즈(TurboTides inc.)에서는 터보 기계 해석 및 설계 플랫폼인 터보타이즈(TurboTides)를 개발하여 세계 시장으로 도약하고 있다. 중국 정부는 2015년 이후로 ‘중국제조 2025’ 정책에 최소 230억 달러(약 31조 원) 규모의 금융·재정 투자를 진행한 것으로 발표하고 있다. 하지만 추산이 어려운 보조금 등의 규모를 따져 보면 발표액의 10배 정도의 규모가 투입되었을 것으로 추산하고 있다. 성과는 분명했다. 중국은 세계 시장 점유율을 끌어올리는 데에 성공했고, 그중 대표적인 6개 분야를 소개하면 다음과 같다.   그림 3. ‘중국 제조 2025’의 성과(ChatGPT로 제작)   전기차 시장에서는 비와이디(BYD)가 테슬라를 제치고 판매량 1위를 달성하였고, 세계 전기차 판매량 1위 국가라는 타이틀도 보유하게 되었다. 태양광 분야에서는 론지(LONGi), JA 솔라(JA Solar) 등이 주도하여 세계 태양광 모듈 생산의 75% 이상을 담당하였다. 2000년대 초반 한국이 주도하던 LCD 분야는 2019년을 기점으로 중국에 왕좌를 내주고 말았다. 상업용 드론 시장은 DJI가 세계 시장 점유율 82%(2022년 기준)를 차지할 만큼 주도하고 있고, AI 기술로 무장한 중국의 스타트업들이 무섭게 성장하고 있다. CATL, BYD 등이 중심이 된 리튬이온 배터리도 전 세계의 60% 이상을 차지하며, 그 뒤를 쫓는 한국과 일본을 위협하고 있다. 로봇청소기 시장은 중국 기업과 중국이 아닌 기업들의 점유율로 시장 성장 추세를 파악할 정도로 중국의 성장이 무섭다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-10-02
델, AI 서버 ‘파워엣지 XE7740’에 인텔 가우디 3 PCIe 가속기 탑재
델 테크놀로지스가 인텔 가우디 3(Intel Gaudi 3) PCIe 가속기를 통합 구성한 ‘델 파워엣지 XE7740 (Dell PowerEdge XE7740)’ 서버를 출시했다고 밝혔다. ‘델 파워엣지 XE7740’은 파워엣지 R 시리즈의 통합 용이성과 XE 시리즈의 성능 및 확장성을 결합한 4U 폼팩터 서버로서 성능, 비용 효율, 유연성을 바탕으로 기업들이 엔터프라이즈 AI에 대한 접근성을 높일 수 있도록 설계되었다. 델 파워엣지 XE7740 서버는 기존 데이터센터에 원활하게 구축할 수 있는 최적화된 규모의 설루션을 제공한다. 동시에 LLM(대규모 언어 모델)의 미세 조정 및 고성능 추론을 포함한 광범위한 AI 워크로드의 배포와 운영을 간소화해 엔터프라이즈 AI의 가격 대비 성능 측면을 고려했다.     이번 신제품은 최대 8개의 더블 와이드 또는 PCIe 가속기를 수용할 수 있는 유연한 구성을 제공한다. 최대 8개의 개별 가우디 3 가속기를 탑재할 수 있으며, 옵션으로 2개의 4-웨이(4-way) 브리지 가속기 그룹을 구성하는 것도 가능하다. RoCE(RDMA 오버 컨버지드 이더넷) v2를 통한 4-웨이(4-way) 가우디 3 PCIe 가속기 브리지 연결은 대규모 AI 모델과 더 큰 메모리 공간을 지원하며, 워크플로의 확장성과 유연성을 제공한다. 또한 8개의 표준 높이 PCIe 슬롯과 통합 OCP 네트워킹 모듈을 통해 가속기와 네트워크 인터페이스 카드(NIC)를 최대 1:1 비율로 매칭할 수 있는 유연한 네트워킹을 제공한다. 기존 인프라에 원활하게 통합 가능한 델 파워엣지 XE7740은 많은 기업들이 직면하고 있는 랙당 전력 한계를 극복하여 기존 데이터 센터에서 일반적으로 사용되는 최대 10kW 랙에서 효율적으로 작동한다. 엔터프라이즈 AI를 위한 제품으로서 기존의 공냉식 랙에 장착할 수 있는 XE7740은 ‘델 스마트 쿨링(Dell Smart Cooling)’ 설루션이 적용됐다. 또한 라마4(Llama4), 라마3(Llama3), 딥시크(Deepseek), 파이4(Phi4), 쿠엔3(Qwen3), 팔콘3(Falcon3) 등과 같은 인기 모델에 최적화되어 원활한 AI 워크플로 통합을 지원한다. 다양한 기존 모델 카탈로그와 함께 가우디 3를 사용하면 기업에서 손쉽게 AI 도입을 가속화할 수 있으며, 큰 비용이 소모되는 전력 및 냉각 업그레이드 없이도 높은 성능을 보장한다. 델은 파워엣지 XE7740가 ▲LLM(대규모 언어 모델) 추론 및 미세 조정 ▲이미지 및 음성 인식과 같은 멀티 모달 AI 애플리케이션 ▲데이터 집약적인 의료 분석 및 유전체 염기서열 분석 ▲금융 서비스 사기 탐지 및 위험 완화 ▲유통 및 전자상거래의 실시간 개인화 등 다양한 AI 워크로드를 지원해 엔터프라이즈 AI에 최적화되어 있다고 전했다. AI 워크로드가 증가함에 따라 기업이나 기관들은 사용량 기반으로 과금하는 GPU 가속기 구독 비용이나 클라우드 데이터의 외부 전송(egress) 비용에 부담을 느끼고 있다.  델은 “파워엣지 XE7740은 이런 비용을 절감하면서도 뛰어난 성능과 데이터 보안을 확보해 온프레미스 AI 프로젝트를 간소화하는데 특화된 설루션”이라고 전했다.  한국 델 테크놀로지스의 김경진 총괄사장은 “현재의 경쟁력을 유지하고 AI 미래에 대비하기 위해서는 확장이 용이하고 적응력이 뛰어난 인프라를 확보해 유연한 준비 태세를 갖추어야 한다. 검증된 AI 설계와 기존 에코시스템과의 원활한 통합이 가능한 XE7740은 경쟁이 치열한 시장에서 특히 주목할 만한 제품”이라고 말했다.
작성일 : 2025-09-22
엔비디아, ‘젯슨 토르’ 출시로 로보틱스·피지컬 AI 혁신 가속
엔비디아가 에지 환경에서 실시간 AI 추론을 수행할 수 있는 엔비디아 젯슨 토르(NVIDIA Jetson Thor) 모듈을 출시했다. 젯슨 토르는 연구와 산업 현장의 로봇 시스템에서 두뇌 역할을 수행하며, 휴머노이드와 산업용 로봇 등 다양한 로봇이 보다 스마트하게 동작하도록 지원한다. 로봇은 방대한 센서 데이터와 저지연 AI 처리를 요구한다. 실시간 로봇 애플리케이션을 실행하려면 여러 센서에서 동시 발생하는 데이터 스트림을 처리할 수 있는 충분한 AI 컴퓨팅 능력과 메모리가 필요하다. 현재 정식 출시된 젯슨 토르는 이전 모델인 엔비디아 젯슨 오린(Orin) 대비 AI 컴퓨팅이 7.5배, CPU 성능이 3.1배, 메모리 용량이 2배 향상돼 이러한 처리를 디바이스에서 가능하게 한다. 이러한 성능 도약은 로봇 연구자들이 고속 센서 데이터를 처리하고 에지에서 시각적 추론을 수행할 수 있도록 한다. 이는 기존에는 동적인 실제 환경에서 실행하기에는 속도가 너무 느려 실행하기 어려웠던 워크플로이다. 이로써 휴머노이드 로보틱스와 같은 멀티모달 AI 애플리케이션의 새로운 가능성을 열어주고 있다.   ▲ 엔비디아 젯슨 AGX 토르 개발자 키트   휴머노이드 로보틱스 기업인 어질리티 로보틱스(Agility Robotics)는 자사의 5세대 로봇인 디지트(Digit)에 엔비디아 젯슨을 통합했다. 이어서 6세대 디지트에는 온보드 컴퓨팅 플랫폼으로 젯슨 토르를 채택할 계획이다. 이를 통해 디지트는 실시간 인식과 의사결정 능력을 강화하고 점차 복잡해지는 AI 기술과 행동을 지원할 수 있게 된다. 디지트는 현재 상용화됐으며, 창고와 제조 환경에서 적재, 상차, 팔레타이징(palletizing) 등 물류 작업을 수행하고 있다. 30년 넘게 업계 최고 수준의 로봇을 개발해온 보스턴 다이내믹스(Boston Dynamics)는 자사 휴머노이드 로봇 아틀라스(Atlas)에 젯슨 토르를 탑재하고 있다. 이를 통해 아틀라스는 이전에는 서버급에서만 가능했던 컴퓨팅, AI 워크로드 가속, 고대역폭 데이터 처리, 대용량 메모리를 디바이스 내에서도 활용할 수 있게 됐다. 휴머노이드 로봇 외에도, 젯슨 토르는 더 크고 복잡한 AI 모델을 위한 실시간 추론을 통해 다양한 로봇 애플리케이션을 가속화할 예정이다. 여기에는 수술 보조, 스마트 트랙터, 배송 로봇, 산업용 매니퓰레이터(manipulator), 시각 AI 에이전트 등이 포함된다. 젯슨 토르는 생성형 추론 모델을 위해 설계됐다. 이는 차세대 피지컬 AI 에이전트가 클라우드 의존도를 최소화하면서 에지에서 실시간으로 실행될 수 있도록 한다. 차세대 피지컬 AI 에이전트는 대형 트랜스포머 모델, 비전 언어 모델(vision language model : VLM), 비전 언어 행동(vision language action : VLA) 모델을 기반으로 구동된다. 젯슨 토르는 젯슨 소프트웨어 스택으로 최적화돼 실제 애플리케이션에서 요구되는 저지연과 고성능을 구현한다. 따라서 젯슨 토르는 모든 주요 생성형 AI 프레임워크와 AI 추론 모델을 지원하며, 탁월한 실시간 성능을 제공한다. 여기에는 코스모스 리즌(Cosmos Reason), 딥시크(DeepSeek), 라마(Llama), 제미나이(Gemini), 큐원(Qwen) 모델과 함께, 로보틱스 특화 모델인 아이작(Isaac) GR00T N1.5 등이 포함된다. 이를 통해 개발자는 손쉽게 로컬 환경에서 실험과 추론을 실행할 수 있다. 젯슨 토르는 생애 주기 전반에 걸쳐 엔비디아 쿠다(CUDA) 생태계의 지원을 받는다. 또한 젯슨 토르 모듈은 전체 엔비디아 AI 소프트웨어 스택을 실행해 사실상 모든 피지컬 AI 워크플로를 가속화한다. 여기에는 로보틱스를 위한 엔비디아 아이작, 영상 분석 AI 에이전트를 위한 엔비디아 메트로폴리스(Metropolis), 센서 처리를 위한 엔비디아 홀로스캔(Holoscan) 등의 플랫폼이 활용된다. 이러한 소프트웨어 도구를 통해 개발자는 다양한 애플리케이션을 손쉽게 구축하고 배포할 수 있다. 실시간 카메라 스트림을 분석해 작업자 안전을 모니터링하는 시각 AI 에이전트, 비정형 환경에서 조작 작업을 수행할 수 있는 휴머노이드 로봇, 다중 카메라 스트림 데이터를 기반으로 외과의에게 안내를 제공하는 스마트 수술실 등이 그 예시이다. 젯슨 토르 제품군에는 개발자 키트와 양산용 모듈이 포함된다. 개발자 키트에는 젯슨 T5000 모듈과 다양한 연결성을 제공하는 레퍼런스 캐리어 보드, 팬이 장착된 액티브 방열판, 전원 공급 장치가 함께 제공된다. 엔비디아는 젯슨 생태계가 다양한 애플리케이션 요구사항과 고속 산업 자동화 프로토콜, 센서 인터페이스를 지원해 기업 개발자의 시장 출시 시간을 단축한다고 전했다. 하드웨어 파트너들은 다양한 폼팩터로 유연한 I/O와 맞춤형 구성을 갖춰 생산에 준비된 젯슨 토르 시스템을 개발하고 있다. 센서 및 액추에이터 업체들은 엔비디아 홀로스캔 센서 브릿지(Sensor Bridge)를 활용하고 있다. 이 플랫폼은 센서 융합과 데이터 스트리밍을 간소화하며, 카메라, 레이더, 라이다 등에서 발생한 센서 데이터를 초저지연으로 젯슨 토르 GPU 메모리에 직접 연결할 수 있게 해준다. 수천 개의 소프트웨어 기업들은 젯슨 토르에서 구동되는 다중 AI 에이전트 워크플로를 통해 기존 비전 AI와 로보틱스 애플리케이션 성능을 향상시킬 수 있다. 그리고 200만 명 이상의 개발자들이 엔비디아 기술을 활용해 로보틱스 워크플로를 가속화하고 있다.
작성일 : 2025-08-29
엔비디아, 개인용 AI 슈퍼컴퓨터 ‘DGX 스파크’ 국내 예약 주문 시작
엔비디아가 차세대 개인용 AI 슈퍼컴퓨터 ‘엔비디아 DGX 스파크(NVIDIA DGX Spark)’의 국내 예약 주문을 시작한다고 밝혔다. DGX 스파크는 책상 위에 올려 놓을 수 있는 크기의 AI 슈퍼컴퓨터로 생성형 AI, 거대 언어 모델(LLM), 고속 추론 등 다양한 AI 워크플로를 로컬 환경에서 효율적으로 구현할 수 있도록 설계됐다. AI 개발이 고도화됨에 따라, 조직은 데이터 보안 강화와 지연 최소화, 배포 유연성 등을 고려해 로컬 환경에서 직접 AI 모델을 개발하고 실행할 수 있는 시스템을 요구하고 있다. DGX 스파크는 이러한 수요에 대응해 데스크톱 환경에서도 데이터 크기나 위치, 모델 규모에 제약 없이 민첩하고 효율적인 AI 개발이 가능하도록 지원한다.     DGX 스파크는 데스크톱 폼팩터에 최적화된 엔비디아 GB10 그레이스 블랙웰 슈퍼칩(Grace Blackwell Superchip)을 탑재해 FP4 정밀도 기준, 최대 1페타플롭의 AI 성능을 제공한다. 또한, 고성능 엔비디아 커넥트-X(Connect-X) 네트워킹으로 두 대의 엔비디아 DGX 스파크 시스템을 연결해 최대 4,050억 개 파라미터의 AI 모델을 처리할 수 있다. DGX 스파크는 128GB 메모리를 탑재했으며, 엔비디아 AI 소프트웨어 스택이 사전 설치돼 있다. 이를 통해 딥시크, 메타, 구글 등에서 선보인 최대 2000억 개 파라미터의 최신 AI 모델도 로컬 환경에서 직접 프로토타이핑, 미세 조정, 추론할 수 있다. 또한, 사용자는 파이토치(PyTorch), 주피터(Jupyter), 올라마(Ollama) 등 익숙한 개발 도구를 사용할 수 있으며, 이를 DGX 클라우드나 가속화된 데이터센터 환경으로 손쉽게 확장할 수 있다. 이와 함께 엔비디아 NIM 마이크로서비스와 엔비디아 블루프린트(Blueprint)에 대한 액세스를 통해 AI 애플리케이션을 더욱 빠르게 개발하고 배포할 수 있도록 지원한다. 엔비디아는 “DGX 스파크는 올해 엔비디아 연례 개발자 콘퍼런스인 GTC와 컴퓨텍스(COMPUTEX)에서 공개된 이후 큰 관심을 받아왔으며, 이번 국내 예약 주문을 계기로 본격적인 보급이 기대된다”고 전했다. DGX 스파크의 국내 예약 주문은 엔비디아 공식 홈페이지를 통해 진행된다. 국내 주요 파트너사 중 원하는 업체를 선택해 예약할 수 있으며, 대량 구매도 가능하다. 공식 파트너사로는 에즈웰에이아이, 비엔아이엔씨, 디에스앤지, 아이크래프트, 리더스시스템즈, 메이머스트, MDS테크, 유클릭, 씨이랩, 제스프로가 있다.
작성일 : 2025-07-29
[에디토리얼] AI로 국가를 다시 짜는 시대
2025년, AI는 단순한 기술을 넘어 국가 시스템의 설계 도구로 진화하고 있다. ‘AI가 인간을 대체할 것인가’라는 질문은 더 이상 중요하지 않다. 이제는 ‘AI를 국가가 어떻게 작동하게 만들고, 체제를 어떻게 다시 쓰는가’가 핵심 의제가 되었다. 중국과 미국은 이미 이 싸움에 돌입했고, 한국도 새 정부가 들어서면서 ‘AI 세계 3대 강국’을 1호 공약으로 내세우며 AI를 국가 전략으로 삼겠다는 의지를 보이고 있다. 그러나 지금의 준비와 방향이 충분한지는 냉정히 따져봐야 한다.   AI 통치 실험을 가속하는 중국과 미국 중국은 2025년 1월 말, 자국 스타트업 딥시크(DeepSeek)가 공개한 추론 모델 R1을 통해 세계적으로 주목을 받았다. 고성능 GPU 없이 오픈AI의 챗GPT 대비 95% 낮은 비용으로 구현된 이 모델은 기술력보다 시스템 설계 전략의 힘을 입증한 사례다. 중국은 이미 ‘차세대 AI 발전계획’과 ‘중국제조 2025’를 통해 AI를 중심으로 한 통치 구조를 설계해왔다. 초·중등 AI 교육 의무화, 칭화대·베이징대 AI 인재 트랙, 4700개 기업의 테스트베드 구조는 그 일환이다. AI는 기술이 아닌 국가의 신경망으로 작동하고 있다. 미국은 이와 다른 방식으로 움직이고 있다. 민간이 기술 혁신을 주도하고 정부는 방향을 잡는다. 챗GPT, 클로드, 제미나이, 소라 등 세계 최고 AI는 모두 미국 기업의 손에서 나왔다. 정부는 AI 규제와 윤리 가이드라인을 빠르게 마련하며, AI를 국가 안보의 핵심 요소로 인식하고 있다. DARPA를 통한 국방 R&D, 스탠퍼드 AI 인덱스 같은 연구 생태계, 그리고 엔비디아 중심의 반도체 인프라까지, 미국은 민간·정부·산업이 유기적으로 연결된 AI 생태계를 보유하고 있다.   한국, 산업 중심을 넘어 체제 설계로 갈 수 있을까? 이재명 대통령은 100조원 규모의 민관 공동 투자를 통한 AI 산업 육성을 주요 어젠다로 삼고 있다. ‘AI 인프라와 R&D 투자 확대’, ‘법·제도 정비를 통한 규제 기반 마련’, ‘산업 현장 중심의 AI 인재 양성’이라는 세 축의 균형 있는 추진을 강조하고 있다. 그러나 지금까지 공개된 전략은 산업 성장을 중심으로 한 기술·시장 중심 접근에 머물러 있다. 문제는 이 방향으로는 중국이나 미국을 따라잡기 어렵다는 데 있다. 중국은 국가 전체를 실험실 삼아 정책-교육-산업이 정렬되어 있고, 미국은 민간의 창의성과 국가 전략이 분리 없이 흘러간다. 반면 한국은 산업과 정부, 교육과 규제 간 연결 고리가 느슨하다. 정부는 정책을 던지고, 산업은 기술을 개발하며, 교육은 아직 뒤처져 있는 구조다. 또 AI 윤리, 노동시장 변화, 데이터 주권 등 민감한 사회적 이슈에 대한 국가적 프레임도 부재하다. 기술은 지금도 진화 중이다. 그러나 국가 전략은 선택이다. 한국이 AI 시대에 주도권을 가지려면 ‘기술’이 아니라 ‘방향’을 고민해야 한다. 이제는 ‘AI가 어디까지 갈 수 있을까’라는 물음 대신, 이렇게 물어야 한다. “우리는 AI로 어디까지 갈 준비가 되어 있는가?”   ■ 박경수 캐드앤그래픽스 기획사업부 이사로, 캐드앤그래픽스가 주최 또는 주관하는 행사의 진행자 겸 사회자를 맡고 있다. ‘플랜트 조선 컨퍼런스’, ‘PLM/DX 베스트 프랙티스 컨퍼런스’, ‘CAE 컨퍼런스’, ‘코리아 그래픽스’, ‘SIMTOS 컨퍼런스’ 등 다수의 콘퍼런스 기획에 참여했고,행사의 전반적인 진행을 담당해 왔다. CNG TV 웨비나의 진행자 겸 사회자로, IT 분야의 취재기자로도 활동 중이다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-07-01
[칼럼] 디지털 온톨로지와 디지털 트윈화
디지털 지식전문가 조형식의 지식마당   지난 1월호 칼럼인 ‘디지털 철학과 디지털 지속가능성을 시작하다’부터 2025년은 디지털 전환을 지나서 인공지능 전환의 시대에 더 근본적으로 접근해 보기로 했다. 디지털 철학은 너무 범위가 넓어서 그 중에 디지털 온톨로지(digital ontology) 또는 객체 지향 존재론(object-orientd ontology)으로 국한해서 생각해 봤다. 그리고 이것은 현재 인공지능과 함께 지속적으로 진화하는 디지털 트윈의 상관관계 관점에서 생각해 보았다. 현재 인공지능의 발전은 그동안 물리적 트윈의 거울 이미지가 강했던 디지털 트윈에게 새로운 진화의 방향을 제시한다. 최근까지 디지털 트윈은 다양한 목적으로 사용될 수 있는 물리적 자산 또는 물리적 트윈, 프로세스 및 시스템의 디지털 복제본을 의미했다.   그림 1. 팔란티어의 온톨리지 전략(출처 : Palantir)   그러나 디지털 트윈은 계속 진화해, 이제는 이론적으로 이 세상에 존재하는 추상적이거나 물리적으로 존재하는 모든 실체(entity)에 대해서 디지털 트윈이 존재할 수 있다. 수상한 기업인 팔란티어(Palantir)는 자신의 디지털 트윈 전략에서 추상적인 데이터에 대해 디지털 트윈화(digital twinlization)를 했고, 미래에는 조직을 디지털 트윈화한다는 야심찬 목표를 세우고 있다. 모든 실체를 디지털 트윈화하기 위해서 자연어 처리(natural language processing) 인공지능이 정확하게 이해할 수준의 컴퓨터 온톨로지(computer ontology)가 필요하다. 이것은 팔란티어의 온톨로지 전략과 유사하다. 이런 접근은 이전에 시맨틱 웹(semantic web)에서 시도됐으나, 최근 인공지능 자연어 처리의 폭발적인 발전으로 다시 각광을 받고 있는 것 같다. 팔란티어의 전략에서 디지털 트윈은 데이터를 현실 세계와 동기화하는 ‘두뇌’ 역할을 한다. 가장 중요한 것은 인공지능을 이용해서 데이테에게 의미를 부여하는 것이며, 여기에서 디지털 온톨로지가 중요한 역할을 할 수 있다. 예를 들어서, 의료 디지털 트윈 분야에서 백신을 가장 빨리 개발하는 방법은 대상(object) 바이러스를 디지털 트윈화한 후, 다음 단계의 진화를 예상하고 대상 바이러스의 안티 디지털 트윈(anti digital twin)을 만들어서, 백신을 미리 완성하거나 아주 짧은 시간에 개발할 수 있는 역량을 갖추는 것이다. 그런 관점에서 이 세상은 모든 것을 디지털 트윈화하거나 역 디지털 트윈화할 수 있다. 이것은 최근 급격히 발전한 인공지능, 특히 생성형 인공지능의 역할이 크다고 할 수 있다. 디지털 트윈은 기존의 시뮬레이션과 비슷해 보인다. 하지만, 디지털 트윈은 양방향이고 실시간으로 이전의 시뮬레이션의 추론 결과를 다시 디지털 트윈의 입력 자료에 재입력하여 더 강화된 결과를 지속적으로 얻을 수 있다.   그림 2. 노트북LM 시작 화면(출처 : Google)   최근에는 다양한 인공지능 도구와 환경으로 우리의 추상적인 지식이나 경험을 디지털 트윈화할 수 있다. 예를 들어서 구글의 노트북LM(NotebookLM)이나 LM스튜디오(LM Studio)는 질문만 하는 챗GPT, 딥시크, 제미나이에서 진화해 더 복잡한 자료를 입력할 수 있고, 다양한 방법으로 추론해서 요약 음성까지 출력할 수 있는 지식의 디지털 트윈을 만들 수 있다. 현재에도 이런 강력한 AI 도구가 20개 정도 유료로 사용 가능하며, 거대한 기본 모델을 다양한 방법으로 결합하고 자동화할 수 있는 도구가 지속적으로 만들어지고 있다. 이런 가운데 기존 IT 기업들의 고민도 커질 수 있다. 결론적으로 인공지능 시대에 지식 및 경험의 디지털 트윈을 가진 조직과 개인만이 경쟁력을 가지는 것이고, 이를 가능하게 하는 핵심은 디지털 온톨로지의 지식과 의미 있는 데이터로 디지털 트윈을 만들 수 있는 역량이라고 할 수 있다. 이제는 단순히 인공지능 모델을 잘 사용하는 것만으로는 충분하지 않다. 그 모델을 사용해서 자신의 비즈니스 모델이나 문제 해결에 필요한 디지털 트윈으로 특정 데이터에 의미를 부여하는 디지털 온톨로지가 정말 필요한 시점이다.   ■ 조형식 항공 유체해석(CFD) 엔지니어로 출발하여 프로젝트 관리자 및 컨설턴트를 걸쳐서 디지털 지식 전문가로 활동하고 있다. 현재 디지털지식연구소 대표와 인더스트리 4.0, MES 강의, 캐드앤그래픽스 CNG 지식교육 방송 사회자 및 컬럼니스트로 활동하고 있다. 보잉, 삼성항공우주연구소, 한국항공(KAI), 지멘스에서 근무했다. 저서로는 ‘PLM 지식’, ‘서비스공학’, ‘스마트 엔지니어링’, ‘MES’, ‘인더스트리 4.0’ 등이 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-06-04
[무료강좌] 오픈마누스 AI 에이전트의 설치, 사용 및 구조 분석
BIM 칼럼니스트 강태욱의 이슈 & 토크   생성형 AI 에이전트는 목표 달성을 위해 세상을 관찰하고 스스로 행동하는 자율적인 애플리케이션으로, 행동과 의사결정을 위한 인지 아키텍처를 갖추고 있다. 이번 호에서는 오픈소스 AI 에이전트인 오픈마누스(OpenManus)를 통해 AI 에이전트의 동작 메커니즘이 어떻게 구현되는지 분석해 본다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   최근 AI 에이전트 기술이 크게 발전하고 있다. 구글의 에이전트 백서를 보면, 생성형 AI 에이전트는 목표 달성을 위해 세상을 관찰하고 스스로 행동하는 자율적인 애플리케이션으로 설명한다. 명시적인 지시가 없어도 스스로 판단하고 능동적으로 목표에 접근할 수 있다. 이러한 에이전트는 행동과 의사결정을 위한 인지 아키텍처를 갖추며, 핵심 구성 요소는 <그림 1>과 같이 사용자 입력에 대한 추론 역할을 하는 모델(보통은 GPT와 같은 LLM), 입력에 대해 필요한 기능을 제공하는 도구(tools), 그리고 어떤 도구를 호출할지 조율하는 오케스트레이션의 세 가지로 이루어진다.   그림 1. AI 에이전트의 구성 요소(Agents, Google, 2024)   이번 호에서는 AI 에이전트의 동작 메커니즘을 분석하기 위한 재료로, 딥시크(DeekSeek)와 더불어 관심이 높은 마누스(Manus.im)에서 영감을 받아 개발된 오픈마누스(OpenManus) 오픈소스 AI 에이전트를 활용하겠다. 오픈마누스는 메타GPT(MetaGPT)라는 이름으로 활동 중인 중국인 개발자가 공개한 AI 에이전트이다. 개발자는 오픈마누스가 연결된 다양한 도구를 LLM으로 조율하고 실행할 수 있다고 주장하고 있다. 깃허브(GitHub) 등에 설명된 오픈마누스는 다음과 같은 기능을 지원한다. 로컬에서 AI 에이전트 실행 여러 도구 및 API 통합 : 외부 API, 로컬 모델 및 자동화 도구를 연결, 호출 워크플로 사용자 지정 : AI가 복잡한 다단계 상호 작용을 효율적으로 처리 여러 LLM 지원 : 라마(LLaMA), 미스트랄(Mistral) 및 믹스트랄(Mixtral)과 같은 인기 있는 개방형 모델과 호환 자동화 향상 : 내장 메모리 및 계획 기능을 통해 코딩, 문서 처리, 연구 등을 지원   <그림 2>는 이 에이전트가 지원하는 기능 중 일부이다. 프롬프트 : “Create a basic Three.js endless runner game with a cube as the player and procedurally generated obstacles. Make sure to run it only in browser. If possible also launch it in the browser automatically after creating the game.”   그림 2   오픈마누스는 이전에 중국에서 개발된 마누스에 대한 관심을 오픈소소로 옮기는 데 성공했다. 오픈마누스는 현재 깃허브에서 4만 2000여 개의 별을 받을 정도로 관심을 받고 있다.    그림 3. 오픈마누스(2025년 4월 기준 42.8k stars)   필자는 오픈마누스에 대한 관심이 높았던 것은 구현된 기술보다는 에이전트 분야에서 크게 알려진 마누스에 대한 관심, 오픈소스 버전의 AI 에이전트 코드 공개가 더 크게 작용했다고 생각한다. 이제 설치 및 사용해 보고, 성능 품질을 확인해 보자. 그리고 코드 실행 메커니즘을 분석해 본다.    오픈마누스 설치 개발 환경은 이미 컴퓨터에 엔비디아 쿠다(NVIDIA CUDA), 파이토치(PyTorch) 등이 설치되어 있다고 가정한다. 이제, 다음 명령을 터미널에서 실행해 설치한다.   conda create -n open_manus python=3.12 conda activate open_manus git clone https://github.com/mannaandpoem/OpenManus.git cd OpenManus pip install -r requirements.txt playwright install   오픈마누스가 설치하는 패키지를 보면, 많은 경우, 기존에 잘 만들어진 LLM, AI Agent 라이브러리를 사용하는 것을 알 수 있다. 여기서 사용하는 주요 라이브러리는 다음과 같다.  pydantic, openai, fastapi, tiktoken, html2text, unicorn, googlesearch-python, playwright, docker     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
공작기계 산업, AI 자율제조로 혁신 가속화
AI의 비약적인 발전은 제조업을 비롯한 산업 전반의 디지털 전환을 가속화하고 있다. 지난 4월 8일, 한국공작기계산업협회와 한국산업지능화협회가 공동 주관한 ‘공작기계 산업의 AI 자율제조 세미나’에서도 AI 기술이 이끄는 제조업 패러다임의 전환을 확인할 수 있었다. 이번 세미나는 공작기계 산업의 디지털 전환 전략을 공유하기 위해 마련되었으며, ▲생성AI가 촉발시킨 AX 혁명 ▲AI기술 동향:공작기계 적용과 SDM 기반 기술 동향 ▲AI 자율제조 핵심기술과 구축 사례 ▲AI 자율제조 추진정책 및 정부지원 프로그램을 주제로, 업계 전문가들의 발표와 사례 중심 강연으로 진행되었다.   1.  생성AI가 촉발한 AX 혁명 첫 번째 세션에서는 한국생성AI파운데이션 송세경 회장이 ‘생성AI가 촉발한 AX(Autonomous Transformation) 혁명’을 주제로 강연을 펼쳤다. 송 회장은 “딥시크(DeepSeek)와 같은 초거대 AI의 등장이 미국 중심의 AI 기술 패권을 흔들고 있으며, 이는 글로벌 공급망(GVC)과 제조 생태계 전반에 큰 변화를 예고하고 있다”며, “제조업은 이제 생성AI를 통해 새로운 성장과 확장의 전환점을 맞이하고 있다”고 강조했다. 2.  AI 기술 동향 : 공작기계 적용과 SDM 기반 기술 동향 이어진 발표에서 DN솔루션즈 엄재홍 상무는 ‘AI 기술 동향 : 공작기계 적용과 SDM(Software Defined Manufacturing) 기반 기술 동향’을 주제로 제조업의 디지털 혁신 흐름을 소개했다. 엄 상무는 공작기계 산업 내 AI 활용 흐름을 스마트 디지털 제조(SDM: Smart Digital Manufacturing)로 설명하며, 이를 스마트팩토리(Smart Factory), 라이트하우스팩토리(Lighthouse Factory), 다크팩토리(Dark Factory)로 구분했다. 이 중 다크팩토리는 사람 없이 인공지능과 로봇만으로 운영되는 완전 무인화 공장이라고 부연했다. 또한 그는 “AI가 인간의 지능을 초월하는 단계까지 발전하고 있으며, 이를 제조업에 적용할 경우 암흑공장(Dark Factory) 실현도 가능하다”며, “오픈소스 생태계의 확산을 통해 산업 전반에 공유와 협업의 기반이 강화되어야 한다”고 강조했다. 3.  AI 자율제조 핵심기술과 구축 사례: 공작기계 중심으로 인터엑스 박정윤 대표는 'AI 자율제조 핵심기술과 구축 사례: 공작기계 중심으로'를 주제로 발표를 이어갔다. 박 대표는 프레스, 사출, 정밀가공 등 생산제조 현장에 AI를 적용하는 트렌드를 소개하며, 기존 하드웨어 중심 운영 방식에서 소프트웨어 기반 맞춤형 디지털 서비스 제공으로 진화하는 자율제조 시스템을 설명했다. 특히 그는 자율제조 시스템의 진화가 모든 요소를 소프트웨어로 정의하고 제어하는 SDX(Software Defined Anything) 개념으로 확장되고 있다고 강조했다. 이와 함께 박 대표는 “지능 자율화 기반 제조 경쟁력을 확보하기 위해서는 고성능 AI 인프라, 즉 SDX 개념이 필수적”이라며, 실제 사출공정, 프레스머신, CNC 가공라인 등에 적용된 다양한 사례를 소개했다. 이와 함께 제조 데이터 표준화, 스마트센서 활용 등 구체적인 도입 전략을 통해 자율제조의 실현 가능성을 제시했다. 4. AI 자율제조 추진정책과 지원 프로그램 마지막 세션에서는 한국산업지능화협회 노성록 센터장이 정부의 AI 자율제조 추진정책과 지원 프로그램에 대해 발표했다. 노 센터장은 산업통상자원부가 추진하는 10대 과제를 중심으로 한 AI 자율제조 선도 프로젝트 진행 현황을 공유하고, 관련 기업들이 정책 지원을 적극 활용할 것을 당부했다. 이를 통해 단순한 자동화를 넘어, 산업 전반의 혁신을 견인하는 전략적 도구로 부상한 AI 기반 자율제조의 효과적인 도입 방안을 제시했다. 이번 세미나는 AI 기술이 실제 제조현장에 본격적으로 확산되고 있음을 확인하는 의미 있는 자리였다. 특히 AI 기반 가공 최적화, 예지보전(Predictive Maintenance), 디지털 트윈(Digital Twin) 등 디지털 혁신 기술의 현장 적용 사례가 참석자들의 높은 관심을 끌었다.  
작성일 : 2025-04-30