• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "디지털 트윈"에 대한 통합 검색 내용이 9,236개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
윈드리버, 블랙박스와 지능형 에지 및 클라우드 혁신 위한 파트너십 체결
지능형 에지 소프트웨어를 제공하는 글로벌 기업인 윈드리버가 디지털 인프라 전문 기업 블랙박스(Black Box)와 전략적 파트너십을 체결하고 산업·제조·소매·금융·자동차·통신 등 다양한 시장에 차세대 지능형 에지 및 프라이빗 클라우드 설루션을 제공한다고 밝혔다. 이번 협업을 통해 윈드리버는 마이그레이션 기능을 탑재한 ‘윈드리버 클라우드 플랫폼(Wind River Cloud Platform)’ 및 엔터프라이즈 리눅스인 ‘eLxr Pro’를 블랙박스의 글로벌 통합 역량 및 고객 중심 접근 방식을 결합함으로써, 디지털 인프라 전환을 가속하고 운영을 현대화하고자 하는 엔터프라이즈 고객들을 폭넓게 지원한다는 계획이다. 윈드리버 클라우드 플랫폼은 가상화 및 컨테이너화된 애플리케이션을 위한 실제 운영 수준의(production-grade) 분산형 쿠버네티스 설루션으로, 오케스트레이션, 자동화 및 분석 툴을 통해 시간을 절감할 수 있도록 돕는다. 미션 크리티컬한 환경에서 복잡한 클라우드 아키텍처를 배포하고 관리할 수 있게끔 설계된 점이 특징이다. 오픈 소스이며 엔터프라이즈급 데비안(Debian)의 파생 프로젝트인 eLxr 프로젝트를 기반으로 하는 ‘eLxr Pro’는 커뮤니티 배포판에 커머셜 엔터프라이즈 지원 및 유지 보수를 추가함으로써, 기업에서는 확장 가능하고 안전하며 신뢰성이 높은 리눅스 설루션을 채택하고, 클라우드 투 에지 배포의 복잡한 과제를 해결하도록 지원한다. 양사의 이번 전략적 파트너십은 ▲통합된 인텔리전트 에지, 강력한 디지털 및 클라우드 네이티브 인프라 ▲안전하고 확장 가능한 프라이빗 클라우드 구축 ▲수명주기 자동화 및 중앙 집중식 오케스트레이션 ▲가상 머신 및 마이그레이션, 컨테이너, AI 워크로드 지원 ▲장기적인 지원 및 보안을 제공하는 엔터프라이즈급 리눅스 등과 같은 영역에 집중되어 있다. 이번 협력의 일환으로, 블랙박스는 윈드리버와 별도의 계약을 체결해 여러 지역에서 최종 고객과의 계약을 직접 수행할 예정이다. 윈드리버와 블랙박스는 기업 고객이 가진 고유한 운영 및 규제 요구 사항에 맞춰 탄력적인 고성능 디지털 인프라를 구축할 수 있도록 지원할 계획이다. 윈드리버의 대럴 조던 스미스(Darrell Jordan-Smith) 최고 매출 책임자는 “윈드리버 클라우드 플랫폼과 eLxr Pro는 오늘날 기업들이 요구하는 확장 가능하고 안전하며 효율적인 인프라를 제공하며, 블랙박스와의 협력을 통해 이러한 기능을 대규모로 구현할 수 있게 됐다”면서, “이번 파트너십을 통해 고객은 신뢰할 수 있는 시스템 통합, 운영 지원, 배포 범위가 뒷받침되는 검증된 고성능 에지 및 클라우드 아키텍처를 더 빠르게 구현할 수 있다. 이를 통해 혁신을 가속화하고, 위험을 줄이며, 클라우드에서 에지를 잇는 전체 환경을 더 스마트하게 운영할 수 있다”고 말했다. 블랙박스의 산지브 베르마(Sanjeev Verma) 사장 겸 CEO는 “인텔리전트 에지를 위한 혁신적인 기술을 제공하는 윈드리버와 함께 통합 전문성을 결합하여 효율성을 높이고, 혁신을 앞당기며, 새로운 수익원을 창출하는데 유리한 입지를 확보하게 됐다. 블랙박스는 이번 파트너십을 통해 하이퍼컨버지드 및 에지 컴퓨팅에 진출함으로써 디지털 인프라 혁신의 선두에서 장기적인 가치를 창출하고자 한다”고 덧붙였다.
작성일 : 2025-10-20
[케이스 스터디] 인더스트리 4.0을 위한 로봇 예측 유지보수의 발전
디지털 트윈과 AI가 시뮬레이션과 현실의 간극을 메우다   제조 시설은 지속적인 문제에 직면해 있다. 정비 일정은 일반적으로 실제 마모와 관계없이 3개월마다 부품을 점검하고 6개월마다 구성 요소를 교체하는 등 엄격한 일정을 따른다. 그 결과 불필요한 점검과 교체로 인한 비효율적인 시간 낭비가 발생하고, 반대로 정비 일정 전에 부품이 고장 나는 일도 생긴다. 센트랄수펠렉-파리 사클레대학교(CentraleSupélec–Université Paris-Saclay)의 지궈 젠(Zhiguo Zeng) 교수와 그의 연구팀은 디지털 트윈 기술과 딥러닝을 결합한 혁신적인 접근 방식을 통해 이 문제를 해결하고 있다. 그들의 목표는 모든 중요 부품에 센서를 배치할 필요 없이 시스템 수준의 모니터링 데이터만으로 로봇 시스템의 구성요소 수준의 고장을 감지하는 것이다. 젠 교수는 “유지보수는 공장에서 매우 큰 문제”라면서, “기계에 유지보수가 필요한 시기를 미리 안다면 주문이 적은 시기에 수리 일정을 잡을 수 있어 생산성 손실을 최소화할 수 있다”고 말했다. 그는 신뢰성 공학과 수명 예측 분야에서 풍부한 경험을 갖고 있지만, 디지털 트윈 기술은 그의 이전 연구와는 결이 다른 새로운 영역이었다. 센트랄수펠렉의 안 바로스(Anne Barros) 교수와 페드로 로드리게스-아예르베(Pedro Rodriguez-Ayerbe) 교수가 주도하는 학제 간 프로젝트인 ‘미래의 산업(Industry of the future)’에 참여하면서, 그는 디지털 트윈이 어떻게 강력한 시뮬레이션 도구를 물리적 시스템에 실시간으로 직접 연결할 수 있는지 깨달았다. 젠 교수는 “디지털 트윈은 결함 진단에 매우 유용하다. 이를 실제 기계의 데이터에 연결하여 그 데이터로 모델을 개선할 수 있다”고 설명했다.  제조업, 자동차, 항공우주 및 기타 분야로 활용 영역이 확대되면서, 디지털 트윈은 인더스트리 4.0에서 유망한 기술 중 하나로 자리잡고 있다. 물리적 객체나 시스템의 가상 복제본인 디지털 트윈(digital twin)을 생성함으로써, 조직은 운영 현황과 유지보수 필요성을 명확하게 파악할 수 있다. 또한 디지털 트윈은 예측 유지 관리 시스템 개발의 어려운 측면 중 하나인 고장 데이터의 부족에 대한 해결책을 제시한다. 젠 교수는 “현실에서는 고장이 자주 발생하는 걸 보기는 어렵다. 그래서 이제는 시뮬레이션을 통해 고장 데이터를 만들어낸다”고 설명했다.   가상과 물리의 가교 역할 디지털 트윈 프로젝트는 물리적 시스템과 가상 시스템 간의 다양한 수준의 통합을 통해 구현 옵션을 제공한다. 젠 교수의 연구팀은 세 가지 서로 다른 수준의 디지털 표현으로 작업했다. 기본 수준에서 디지털 모델은 기존 시뮬레이션처럼 작동하며, 물리적 시스템과 데이터를 교환하지 않는 정적 모델로 오프라인에서 실행된다. 그다음 단계는 디지털 섀도로, 가상 모델이 물리적 시스템의 데이터를 받아 그 행동을 미러링하지만 제어하지는 않는다. 가장 발전된 구현은 데이터와 정보의 양방향 흐름을 갖춘 진정한 디지털 트윈이다. 여기서 모델은 관찰을 바탕으로 스스로 업데이트하고 물리적 시스템을 제어하는 실시간 결정을 내린다. 연구팀은 테스트용으로 ArmPi FPV 교육용 로봇을 선택했다. 이 로봇은 5개의 관절과 하나의 엔드이펙터로 구성되며, 6개의 서보 모터로 제어된다. 결함 진단의 기초가 될 만큼 정확한 디지털 트윈을 만드는 것은 어려운 일이었다. 또한 기존 모니터링 접근 방식의 한계를 해결해야 했다. 젠 교수는 “대부분의 산업 사례에서 베어링을 진단하려면 베어링 수준의 센서가 필요하며, 이는 쉽지 않은 일이다. 내부에 베어링이 있는 큰 기계를 상상해보면 센서를 설치하기 위해서는 기계를 분해해야 하는데 때로는 공간이 충분하지 않을 때도 있다”고 말했다.   그림 1. ArmPi FPV 교육용 로봇(출처 : 센트랄수펠렉)   그들의 접근 방식은 시스템 수준 데이터(로봇 엔드 이펙터의 이동 궤적)를 사용하여 구성 요소 수준의 오류(개별 모터 문제)를 진단하는 것이었다. 또한 디지털 트윈을 사용하여 관찰할 수 있는 것과 감지해야 할 것 사이의 격차를 해소하고자 했다. 연구팀은 시뮬링크(Simulink)와 심스케이프 멀티바디(Simscape Multibody)를 사용하여 디지털 트윈을 구축했으며, 구성요소와 시스템 수준 동작을 모두 나타내는 계층적 모델을 만들었다. 젠 교수는 “모든 것은 시뮬레이션 모델을 설계하는 것으로 시작한다. 동적 시스템과 그 제어기를 모델링하고 싶다면 시뮬링크는 매우 강력하다”고 말했다. 연구팀은 시뮬링크를 사용해 모터 제어기를 PID 제어기로 모델링하면서 실험적으로 조정한 게인 값을 활용했다. 또한, 시뮬링크의 시각화 기능을 적극적으로 활용해 시뮬레이션 데이터와 실제 로봇의 센서 데이터를 연동할 수 있는 인터페이스를 구축하고, 실시간 모니터링 환경을 구성하였다. ROS 툴박스(ROS Toolbox)는 로봇 하드웨어와의 연결에서 유용한 역할을 했다. 젠 교수는 “로봇 운영 체제(Robot Operating System : ROS)를 사용하려면 일반적으로 ROS와 파이썬(Python) 환경을 별도로 구성하고 모든 연결을 직접 처리해야 한다”면서, “ROS 툴박스를 사용하면 이런 설정이 자동으로 관리되기 때문에 많은 노력을 아낄 수 있다”고 설명했다. 연구팀은 AI 모델 학습을 위한 데이터 준비 과정에서는 두 가지 접근 방식을 시도하였다. 먼저, 로봇에 입력되는 모터 명령과 그에 따른 그리퍼(gripper)의 움직임 패턴과 같은 원시 계측값을 기반으로 데이터를 수집하였다. 이후에는 디지털 트윈을 활용한 방식을 도입하였다. 시뮬레이션을 통해 로봇이 명령에 따라 어떻게 움직여야 하는지를 예측하고, 이 결과를 실제 움직임과 비교함으로써 예상과 실제 간의 차이를 도출하였다. 이러한 차이는 미세한 고장을 감지하는 데 유용한 지표로 작용하였다.   그림 2. 심스케이프 멀티바디의 로봇 팔에 대한 시뮬링크 모델(출처 : 센트랄수펠렉)   연구팀은 딥 러닝 툴박스(Deep Learning Toolbox)를 사용하여 장단기 메모리(Long Short-Term Memory : LSTM) 신경망을 훈련하여 특정 실패를 나타내는 패턴을 식별했다. 모델 아키텍처에는 각각 100개의 숨겨진 단위가 있는 두 개의 LSTM 계층, 그 사이의 드롭아웃 계층 및 완전히 연결된 분류 계층이 포함된다. 연구팀은 매트랩 앱 디자이너(MATLAB App Designer)를 사용하여 각 모터의 위치, 전압 및 온도를 포함한 실시간 데이터를 수집하는 그래픽 사용자 인터페이스를 설계했다. 이 인터페이스를 통해 로봇의 상태를 모니터링하고 오류 진단 모델의 예측을 검증할 수 있었다. 이러한 통합 도구들이 원활하게 함께 작동하면서, 연구팀은 소프트웨어 호환성 문제와 씨름하기보다는 효율적으로 기술적 과제 해결에 집중할 수 있었다.   현실 격차에 도전하다 연구팀은 실제 로봇에서 훈련된 모델을 테스트했을 때 연구원들이 ‘현실 격차’라고 부르는 시뮬레이션과 현실 세계 간의 불일치에 직면했다. 결함 진단 모델은 시뮬레이션에서 98%의 정확도를 달성하여 모터 고장의 위치와 유형을 모두 정확하게 식별했지만, 실제 로봇에서 테스트했을 때 성능은 약 60%로 떨어졌다. 젠 교수는 “시뮬레이션이 현실과 일치하지 않는 이유를 분석하고 있다”고 말하며, “실제 세계를 시뮬레이션 상에서 표현할 때 고려하지 못한 요소들이 있다”고 설명했다. 젠 교수와 그의 연구팀은 통신 신뢰성 문제, 시뮬레이션에서 고려되지 않은 모터 노이즈, 제어 명령과 모니터링 활동 간의 동기화 문제 등 성능 격차에 기여하는 여러 요인을 확인했다.   그림 3. 정상 상태 오류에서 로봇 팔의 애니메이션 및 관련 혼동 매트릭스(출처 : 센트랄수펠렉)   이러한 과제는 디지털 트윈 애플리케이션의 광범위한 문제를 반영한다. 현실은 가장 정교한 시뮬레이션보다 더 복잡하다. 연구팀은 낙담하기보다는 실제 노이즈 패턴을 시뮬레이션 하는 모듈을 디지털 트윈에 추가하고 전이 학습에 도메인 적응 기술을 적용하는 등 이러한 격차를 해소하기 위한 방법을 개발했다. 젠 교수는 “디지털 트윈 모델을 개발할 때 보정 테스트를 하긴 하지만, 이 역시 통제된 환경에서 이루어진다”고 말했다. 이어서 “하지만 산업 현장에 모델을 실제로 적용하면 훨씬 더 많은 노이즈가 포함된 데이터를 접하게 된다. 이처럼 현실의 노이즈를 알고리즘 관점에서 어떻게 보정할 것인가는 매우 도전적인 연구 주제”라고 설명했다. 이러한 수정을 통해 연구팀은 실제 세계 정확도를 약 85%까지 개선했다. 이는 실용적 구현을 향한 중요한 진전이다.   소규모 실험실에서 스마트 공장으로 연구팀의 작업은 단일 로봇을 넘어서 확장되고 있다. 이들은 다수의 로봇이 협업하며 생산 라인을 구성하는 소규모 스마트 공장 환경을 구축하고 있으며, 이를 통해 고장 진단 알고리즘을 보다 실제에 가까운 조건에서 실험하고자 한다. 젠 교수는 “우리는 미니 스마트 공장을 구축하려고 한다”면서, “생산 설비와 유사한 환경을 만들어 로봇에 알고리즘을 적용해, 실제 생산 스케줄링에 통합될 수 있는지를 실험하고 있다”고 설명했다. 이러한 접근 방식은 교육적 효과도 크다. 센트랄수펠렉의 공학과 학생들은 수업과 프로젝트를 통해 디지털 트윈, 로보틱스, 머신러닝 기술을 실습 기반으로 학습하고 있다. 젠 교수는 “학생들이 처음부터 가상 공간에서 모델을 직접 설계하고 이를 점차 실제 로봇과 연결해가는 과정을 보면, 그들이 이 과정을 진심으로 즐기고 있다는 걸 알 수 있다”고 전했다. 이 연구는 제조업뿐 아니라 물류, 스마트 창고 등 다양한 산업 분야로의 확장이 가능하다. 예를 들어 스마트 창고에서는 로봇이 정해진 경로를 따라 이동하지만, 장애물이 나타나면 이를 인식하고 경로를 유동적으로 조정해야 한다.   그림 4. 여러 로봇이 소규모 스마트 공장 환경의 생산 라인에서 협력하여 작동한다.(출처 : 센트랄수펠렉)   젠 교수는 “스마트 창고에서 로봇은 사전 정의된 규칙을 따르지만, 패키지가 떨어지고 경로가 막히는 등 경로를 리디렉션하고 다시 프로그래밍해야 하는 경우가 있을 수 있다. 이런 경우 로봇을 조정하기 위해 각 로봇의 실시간 위치를 알아야 하기 때문에 디지털 트윈 시스템이 필요하다”고 설명했다. 연구팀은 구성요소가 고장 날 때 로봇의 움직임을 조정하는 것과 같은 내결함성 제어를 포함한 추가 응용 프로그램을 모색하고 있다. 또한 연구자들은 에너지 소비만 고려하는 것이 아니라, 궤적 최적화 모델에서 각 모터의 성능 저하 수준과 잔여 유효 수명도 고려하는 건전성 인식 제어를 개발하고 있다. 그들의 코드, 모델, 데이터 세트를 깃허브 저장소(GitHub repository)를 통해 자유롭게 공개하고 있으며, 다른 연구자들이 이를 바탕으로 연구를 확장해 나가기를 기대하고 있다. 목표는 개선의 출처가 어디든 간에, 보다 나은 고장 진단 시스템을 구축하는 것이다. 젠 교수는 “누군가 우리보다 더 나은 결과를 만들어낸다면 정말 기쁠 것”이라고 전했다. 중국 제조업 현장에서 일하던 부모님의 영향을 받아 공학자의 길을 걷게 된 젠 교수에게 이번 연구는 단순한 학문적 탐구를 넘어선 개인적인 사명이기도 하다. 젠 교수는 “어릴 때 제조업에서 일하는 것이 얼마나 힘든 일인지 직접 보며 자랐다”면서, “내가 그렸던 비전은 그런 육체 노동을 로봇이 대체하게 해 사람들이 보다 나은 삶을 살 수 있도록 하는 것이었다”고 전했다.   ■ 이웅재 매스웍스코리아의 이사로 응용 엔지니어팀을 이끌고 있으며, 인공지능·테크니컬 컴퓨팅과 신호처리·통신 분야를 중심으로 고객의 기술적 성공을 지원하는 데 주력하고 있다. LG이노텍과 LIG넥스원에서 연구개발을 수행하며 신호처리와 통신 분야의 전문성을 쌓아왔다.     ■ 기사 PDF는 추후 제공됩니다.
작성일 : 2025-10-20
한국산업지능화협회, ‘중견기업 디지털혁신형 사업전환 교육’ 개최
한국산업지능화협회는 10월 17일 서울 위플레이스 강남교육장에서 중견기업을 대상으로 ‘디지털혁신형 사업전환 교육’을 개최했다고 밝혔다. 이번 교육은 중견기업 핵심인재 육성 아카데미의 일환으로, 산업 구조 변화에 대응해 디지털 기술을 기반으로 한 기존 사업 고도화 역량을 강화하기 위해 마련됐다. 교육은 ▲산업전환 정책 동향과 구조적 사업전환의 필요성 ▲국내외 중견기업의 전환 성공사례를 중심으로 진행됐으며, ▲디자인 씽킹을 활용한 기존사업 재해석 ▲가치사슬 재편 ▲디지털 프로세스 개선 등 실무 중심의 전략을 중점적으로 다루었다. 이어 디지털 전환 수준 진단 워크숍을 통해 자가진단 툴을 활용한 조직 내 디지털 준비도 점검과 변화 인식 진단이 이뤄졌고, 데이터 기반 신사업 기획 세션에서는 참가자들이 자사 상황에 맞는 시장 탐색, 고객 분석, MVP 기획 등을 구체화해보는 실습도 진행했다. 또한 AI·IoT·RPA 등 기술 공급기업의 협력 사례와 정부 연계사업 활용방안이 공유되었으며, 참가자들은 자사 중심의 사업전환 전략을 수립하고 전문가의 1:1 피드백을 통해 실질적인 개선 방향을 모색했다.     한국산업지능화협회 추현호 센터장은 “이번 교육이 중견기업이 디지털 기술을 활용해 기존 사업을 고도화하고, 새로운 성장 방향을 모색하는 데 실질적 도움이 되었기를 바란다”며, “협회는 앞으로도 현장 중심의 교육과 연계를 통해 중견기업의 디지털혁신 역량 강화를 지속 지원하겠다”고 밝혔다. 한편 협회는 이번 교육에 이어 오는 10월 23일 ‘산업일자리전환 우수기업 벤치마킹’, 10월 24일 ‘중견DX 커넥티드 데이’를 개최해 중견기업 간 디지털 혁신성과 공유와 협력 네트워킹을 이어갈 예정이라고 전했다.
작성일 : 2025-10-17
어도비, 기업용 LLM 옵티마이저 출시… AI 기반 챗 서비스 및 브라우저 전반 가시성 제고
어도비가 ‘어도비 LLM 옵티마이저(Adobe LLM Optimizer)’의 정식 출시를 발표했다. 새로운 기업용 애플리케이션은 생성형 AI 기반 인터페이스가 빠르게 확산되는 시대에 기업이 브랜드의 연관성과 영향력을 확보할 수 있도록 지원한다. LLM 옵티마이저를 통해 기업은 생성형 엔진 최적화(GEO : Generative Engine Optimization)를 위한 포괄적인 설루션을 활용할 수 있다. 가령, AI 기반 트래픽을 모니터링하고 브랜드 가시성을 벤치마킹할 수 있으며, 자사 디지털 채널은 물론 브랜드가 인용되는 서드 파티 디지털 채널에서 발견 가능성을 향상시키기 위한 방법을 취할 수 있다. AI 기반 챗 서비스와 브라우저는 소비자들이 제품을 검색하고 조사하는 데 필수적인 툴이 되었다. 어도비의 최신 데이터에 따르면, 기업들이 디지털 존재감을 재정비해야 할 필요성이 그 어느 때보다 커지고 있다. 2025년 9월 기준, 어도비는 미국 소매 웹사이트로 유입된 AI 트래픽이 전년 대비 1100% 증가한 것을 확인했다. 생성형 AI 소스를 통한 방문자는 비 AI 트래픽(유료 검색, 제휴사 및 파트너, 이메일, 오가닉 검색, 소셜 미디어 등) 유입 대비 체류 시간 및 페이지 뷰 등과 같은 참여도는 12%,  전환율은 5% 각각 더 높게 나타났다. 이는 디지털 행동의 근본적인 변화를 시사하는 것으로, AI가 제품 검색 단계에서 더 많은 정보를 가진 소비자를 만들어내는 만큼 기업은 뒤처지지 않도록 대비해야 한다는 것이 어도비의 설명이다.     기업용 어도비 LLM 옵티마이저는 ▲AI 기반 트래픽, 인용 측정 및 벤치마킹 ▲가시성 향상을 위한 콘텐츠 및 코드 최적화 ▲비즈니스 가치 입증 등의 기능을 제공한다. LLM 옵티마이저는 AI 인터페이스가 사용자 질의에 대한 응답을 제공하는 데 활용하는 자사 콘텐츠를 식별할 수 있다. 이를 통해 LLM이 우선시하는 디지털 채널(예 : 특정 웹 페이지)을 파악하고 AI 추천의 변화를 모니터링할 수 있다. 또한 벤치마킹을 통해 가치가 높은 질의에서 경쟁사 대비 가시성을 평가할 수 있다. LLM 옵티마이저의 초기 고객 분석 결과, 80%가 AI 접점이 주요 제품 정보나 리뷰에 접근하지 못하는 문제를 안고 있었다. 이를 해결하기 위해 LLM 옵티마이저 내 추천 엔진은 브랜드 가시성 격차를 감지하고, 웹페이지와 FAQ 같은 자사 채널 및 위키피디아, 공개 포럼 등의 외부 채널 전반을 아우르는 개선 사항을 제안한다. 여기에는 콘텐츠 최적화뿐 아니라 누락되거나 잘못된 메타데이터 같은 기술적 수정 사항이 포함되며, LLM이 인식하지 못하는 웹 사이트 영역을 자동 감지해 콘텐츠 가시성을 높이는 조치도 해당된다. 이를 통해 팀은 한 번의 클릭으로 최적화 방안을 검토, 승인 및 배포할 수 있어 인사이트를 실질적인 성과로 전환할 수 있다.   또한, LLM 옵티마이저는 AI 가시성을 사용자 행동과 비즈니스 성과로 연결하는 기여도 기능을 제공한다. 이로써 참여도 및 전환율에 미치는 영향을 입증할 수 있고, 즉시 사용 가능한 리포트 기능을 활용해 조직 전반에 인사이트를 빠르게 공유할 수 있다. LLM 옵티마이저는 단독 애플리케이션으로 제공되며, 콘텐츠 관리 시스템인 어도비 익스피리언스 매니저 사이트(Adobe Experience Manager Sites)와 네이티브 통합된다. 또한 에이전트 투 에이전트(A2A) 및 모델 컨텍스트 프로토콜(MCP)과 같은 업계 표준을 지원해, 다양한 서드파티 설루션 워크플로와의 원활한 상호운용성을 제공한다. 어도비는 누구나 쉽게 AI 가시성 인사이트를 활용할 수 있도록 LLM 옵티마이저 기반 무료 크롬 확장 프로그램 ‘Is Your Webpage Citable?’도 출시했다. 이 도구를 통해 LLM이 웹사이트에서 인식하는 내용과 놓치는 부분을 확인할 수 있어,  AI 가시성의 숨겨진 격차를 발견할 수 있다. LLM 옵티마이저는 이 같은 기본 인사이트를 바탕으로 엔터프라이즈급 측정, 최적화 및 보고 기능을 포함한 종합 설루션을 제공한다. 어도비의 로니 스타크(Loni Stark) 익스피리언스 클라우드 전략 및 제품 부문 부사장은 “생성형 엔진 최적화는 경영진의 주요 관심사로 급부상하고 있으며, 선도 기업들은 이미 다양한 AI 채널에서 영향력을 구축하고 경쟁 우위를 확보하고 있다”면서, “어도비 LLM 옵티마이저는 자사 사이트 및 타 채널에서의 브랜드 성과 인사이트를 바탕으로 자동으로 최적화 조치를 취하는 즉각적인 가치를 제공함으로써, 기업이 급변하는 환경 속에서 두각을 드러낼 수 있도록 지원한다”고 전했다.
작성일 : 2025-10-17
빌딩스마트협회 ‘빌드스마트 콘퍼런스 2025’ 개최
빌딩스마트협회는 10월 28일 건설회관에서 BIM 및 스마트건설 콘퍼런스인 ‘빌드스마트 콘퍼런스 2025(buildSMART CONFERENCE 2025)’를 개최한다고 밝혔다. 이번 콘퍼런스는 ‘AI를 품은 미래건축과 건설 : 로봇과 모빌리티’를 주제로 빌딩스마트협회와 한국스마트건설융합학회, 희림건축이 공동 주최한다. 기조강연에서는 싱가포르 기술디자인대학교의 모한 라제쉬 엘라라(Mohan Rajesh Elara) 교수가 ‘도시와 로봇의 만남 : 도시 로봇공학의 기반 구축’을, 그림쇼(Grimshaw)의 정윤희 수석이 ‘적응형 도시 구축 : 재생 인프라를 위한 프레임워크’를, 경희대학교 황경은 교수가 ‘로봇 친화형 건축물 설계 시공 및 운영 관리 핵심기술 개발’을 주제로 발표한다.  주제발표에는 AI(인공지능), 디지털 트윈, 로봇, UAM(도심 항공 모빌리티) 등 다양한 분야에서의 업계, 학계 전문가가 발표를 진행한다. 엑스와이지 황성재 대표, 희림건축 최현철 수석, 와이앤스페이드 이종걸 대표, 무브먼츠 윤대훈 대표, 연우에이치티 최준혁 대표, 인천대학교 이슬비 교수, 한국건설기술연구원 이상윤 연구위원, 조우아건축사사무소 김원준 소장이 다양한 주제로 발표할 예정이다. 또한, 이번 콘퍼런스에서는 지난 10월 2일 발표한 ‘BIM 어워즈 2025(BIM AWARDS 2025)’ 수상작에 대한 시상식을 진행하며, 수상 작품에 대한 전시도 함께 진행한다. 자세한 내용은 빌드스마트 콘퍼런스 2025 행사 페이지에서 확인할 수 있다.  
작성일 : 2025-10-16
지멘스, 심센터 테스트랩에 AI 기능 추가해 모달 테스트 및 분석 프로세스 혁신
지멘스 디지털 인더스트리 소프트웨어가 심센터 테스트랩(Simcenter Testlab) 소프트웨어의 최신 업데이트를 발표했다. 이번 업데이트에는 AI 기반 워크플로가 새롭게 추가돼, 물리적 충격(임팩트) 테스트 수행 시 필요 인력을 줄이면서 모달(modal) 분석 프로세스를 최대 7배까지 가속화할 수 있다. 또한 자동화된 데이터 수집과 처리 기능이 강화돼 모든 테스트 단계에서 데이터 품질과 일관성을 향상시킨다. 이를 통해 엔지니어는 더욱 빠르고 스마트하게 테스트를 수행할 수 있게 됐다. 새로운 AI 지원 모달 분석은 복잡한 모드 선택과 검증을 자동화해 수동 작업과 작업자 의존도를 줄이고, 궁극적으로 모달 분석 속도를 최대 7배까지 가속화한다. 이러한 테스트 자동화 혁신의 최전선에는 AI 기반 모달 테스트 기능이 있다. 이 기능은 향상된 자동 모드 선택·검증과 전체 모달 테스트 워크플로를 간소화하는 통합 모달 분석 대시보드를 결합해 모달 분석 워크플로를 최대 700%까지 가속화한다. 또한 지능형 센서 배치와 자동 히트(hit) 선택을 통해 충격 데이터 수집 과정을 단순화하고 필요한 인력을 줄여준다.     이와 함께, 심센터 테스트랩은 향상된 테스트/분석 도구를 제공한다. Transfer Path Analysis(TPA)는 심센터 테스트랩의 새로운 자동화 기능과 처리 역량을 통해 전체 분석 시간을 40% 단축한다. 이를 통해 숙련도가 낮은 사용자도 정교한 소음·진동·불쾌감(Noise Vibration Harshness, NVH) 예측을 보다 쉽게 활용할 수 있다. 심센터(Simcenter) 물리적 테스트 하드웨어와 새로운 심센터 테스트랩 오토메이티드 컴포넌트 모델 익스트랙터(Simcenter Testlab Automated Component Model Extractor) 소프트웨어를 활용한 자동화된 컴포넌트 모델 추출 설루션을 통해, 차단력(blocked forces)과 임피던스(impedance) 주파수 응답 함수(Frequency Response Function : FRF)를 자동으로 수집한다. 결과적으로 컴포넌트 특성화에 소요되는 시간을 수 주에서 수 시간으로 단축할 수 있다. 심센터 테스트랩 스케줄 디자이너(Simcenter Testlab Schedule Designer)는 사전 정의된 시퀀스(sequence)로 데이터 처리와 검증을 자동화한다. 이를 통해 데이터 추적성을 제공하고, 불완전하거나 일관성 없는 테스트 데이터 발생 위험을 제거할 수 있다. 이번 업데이트는 스케줄 디자이너에서 정의된 테스트 계획을 심센터 SCADAS RS 데이터 수집 시스템의 Recorder App으로 원활하게 전송한다. 이 통합을 통해 작업자는 무선 태블릿 기반의 명확한 지침을 제공받을 수 있으며, 즉각적인 데이터 검증과 처리가 가능해져 오류를 줄일 수 있다. 지멘스는 심센터 SCADAS RS가 범용 또는 타사 형식으로 데이터를 내보낼 수 있으며, 이를 통해 다른 소프트웨어 플랫폼에서도 데이터 처리와 분석 수행이 가능하다고 소개했다. 지멘스 디지털 인더스트리 소프트웨어의 장클로드 에르콜라넬리(Jean-Claude Ercolanelli) 시뮬레이션 및 테스트 설루션 부문 수석 부사장은 “지멘스는 엔지니어링 수명주기 전반에 걸쳐 AI를 적극 활용해 프로세스와 워크플로를 간소화하고, 수작업을 최소화하며, 제품 출시 속도를 높이는 데 주력하고 있다. 이번 심센터 테스트랩의 최신 개선 사항은 AI를 통합해 팀이 물리적 테스트를 수행·관리·분석하는 방식을 혁신하기 위한 지멘스의 노력을 보여준다. 우리는 설계와 개발에서부터 물리적 테스트의 핵심 단계에 이르기까지 엔지니어링 관행의 중대한 변화를 이끌고 있다”고 말했다.
작성일 : 2025-10-16
슈나이더 일렉트릭, 실시간 모터 관리 설루션으로 해양산업 효율 향상 지원
슈나이더 일렉트릭이 조선·해양 산업의 설비 운용 효율과 안정성을 높일 수 있는 방법으로 자사의 실시간 모터 관리 설루션인 ‘테시스 테라(TeSys Tera)’를 제시했다. 조선·해양 산업에서 모터는 전기 에너지를 회전 및 기계 에너지로 변환하는 핵심 장비로, 전체 전력 소비의 약 80%를 차지할 만큼 에너지 소모가 큰 설비다. 때문에 모터의 안정적인 운전과 체계적인 유지관리는 산업 전반의 효율과 직결되며, 최근에는 친환경 규제 강화 및 스마트 선박 기술 도입에 따라 더욱 정교한 모터 관리 설루션의 필요성이 부각되고 있다. 슈나이더 일렉트릭의 테시스 테라는 이러한 산업 트렌드에 부합하는 디지털 기반의 고도화된 모터 관리 시스템이다. 테시스 테라는 지정된 통신 버스를 통해 모터의 상태, 운전 전류, 전압, 전력, 역률, 외부 냉각 팬 동작까지 실시간으로 수집·모니터링하며, 인더스트리 4.0 표준을 충족해 중앙 제어 시스템과의 연동을 지원한다. 슈나이더 일렉트릭은 “특히 모터 권선과 베어링, 본체 온도를 측정하는 외부 센서를 통해 과열이나 냉각 이상 등 이상 징후를 사전에 감지할 수 있어 치명적인 고장을 예방하고 유지보수 비용을 절감에도 기여한다. 또한 고조파까지 정밀하게 측정할 수 있는 기능은 슈나이더 일렉트릭의 고도화된 전력 관리 기술력을 잘 보여준다”고 소개했다.     진단 기능과 관련해서는 각 보호 기능별 트립(차단) 횟수를 개별적으로 기록하며, 최대 100개의 이벤트를 시간 정보와 함께 순차적으로 저장하는 FIFO(선입선출) 방식 로그 기능을 지원한다. 더불어 열 메모리, 선 전류, 접지 전류 등 20개의 상세 고장 로그를 기록해 고장 원인 분석과 시스템 개선에 유용한 데이터를 제공한다. 시동 전류 곡선은 최대 250포인트까지 기록할 수 있어, 실제 운전 조건에 따른 보호 설정(Trip Class 등)을 최적화할 수 있으며, 시간 기반의 로그 데이터는 공정 정지나 시스템 장애 발생 시 정확한 사건 순서(SOE)를 파악할 수 있게 해준다. 이는 24시간 가동이 필수적인 조선·해양 현장에서 더욱 높은 신뢰성과 운영 효율성을 확보하는 데 도움이 된다. 아울러 테시스 테라는 온도 센서를 활용해 모터 권선, 베어링, 본체 각각에 대해 개별적인 보호 기능을 제공해 과열로 인한 손상을 사전에 방지한다. 모든 보호 기능은 활성화/비활성화, 경보 및 차단 수준 설정, 자동 또는 원격 리셋 기능(시간 지연 포함) 등 사용자가 공정 환경에 맞춰 완벽하게 구성할 수 있다. 또 외부 디지털·아날로그 입력도 고장 조건으로 인식하도록 설정 가능하다. 사용자 친화적인 소프트웨어 인터페이스도 특징이다. 윈도우 기반의 다국어 지원 소프트웨어는 메뉴와 아이콘 중심의 직관적인 UI를 제공한다. 동일 기능 내 여러 데이터를 한 화면에서 탐색할 수 있도록 안내형 내비게이션을 지원함으로써, 복잡한 설정이나 진단 과정도 간소화했다. 또한 별도의 HMI(Human-Machine Interface)를 통해 현장에서 직접 제어기 구성 및 파라미터 변경이 가능하며, 제어 키패드가 내장된 HMI는 상태 확인과 제어 명령을 로컬에서 즉시 수행할 수 있어 네트워크 연결이 원활하지 않은 환경에서도 독립적인 운용이 가능하다. 슈나이더 일렉트릭 코리아 파워 프로덕트 사업부의 김은지 본부장은 “슈나이더 일렉트릭의 디지털 모터 관리 설루션 테시스 테라는 실시간 디지털 모니터링과 정밀한 보호 기능을 통해 모터의 성능 저하와 고장을 사전에 방지함으로써 조선 및 해양 산업의 안전성과 생산성을 높이는 필수적인 설루션으로 주목받고 있다”고 말했다. 한편 슈나이더 일렉트릭 코리아는 오는 10월 21일부터 부산 벡스코에서 개최되는 조선·해양 산업 전문 전시회인 ‘코마린(KORMARINE) 2025’에 참가해 테시스 테라를 선보일 예정이라고 전했다.
작성일 : 2025-10-16
캐디안, 3D 도면·디자인 뷰어 업그레이드 출시
  캐디안은 자사의 3D 뷰어인 ‘캐디안 3D 뷰어 2026(CADian 3D Viewer 2026)’를 출시했다고 밝혔다. 이번 버전은 속도 개선과 안정성 강화로 다양한 형식의 3D 도면 파일을 실시간으로 확인하고 검증할 수 있는 기능을 제공한다. 캐디안 3D 뷰어는 2010년 처음 선보인 이후 도면·디자인 특허 출원 및 심사를 위한 도구로 쓰여 왔다. 캐디안은 “특히 국내 특허청의 3D 디지털 도면 제출 기준에 최적화된 호환성과 기능을 갖추고 있으며, 국제적으로도 그 실용성을 인정받고 있다”고 소개했다. 이번 2026 버전은 DWG, DXF, DWF(오토캐드), 3DS(3D 맥스), 3DM(라이노), IGS(IGES), STP(STEP), STL(3D 프린팅), OBJ(Wavefront OBJ) 등 다양한 CAD 포맷을 지원하며, 특허청 제출용으로 요구되는 6면도(정면·배면도, 좌·우측면도, 평면·저면도)와 사시도(아이소메트릭)를 자동으로 생성하는 기능이 강화되었다. 캐디안 3D 뷰어는 고가의 CAD 및 디자인 소프트웨어가 없이도 도면을 실시간으로 검토할 수 있기 때문에, 시간과 장소의 제약 없이 손쉽게 3D 도면을 확인하고 제출할 수 있는 환경을 제공한다. 이를 통해 사용자가 어떤 CAD 프로그램을 이용했든, 3D 디자인 파일만 있으면 자동으로 6면도와 사시도를 추출하고 실시간으로 다양한 3D 파일을 자유롭게 뷰잉할 수 있다는 것이 캐디안의 설명이다. 캐디안은 향후에도 전 세계 디자인 특허 출원 환경에 최적화된 도구로 3D 뷰어의 기능을 지속 확장해 나갈 계획이다. 캐디안의 박승훈 대표는 “새로운 3D 저작 도구에서 생성되는 포맷도 지속적으로 추가 지원할 예정”이라면서, “캐디안 3D 뷰어가 디자인 출원의 필수 도구로 자리매김할 수 있도록 기술 개발을 이어갈 것”이라고 밝혔다.
작성일 : 2025-10-15
지멘스-두카티, 모터사이클 기술 연구 개발 통합 및 최적화 위해 파트너십 확대
지멘스 디지털 인더스트리 소프트웨어가 두카티 코르세와의 기술 파트너십 협약을 향후 2년간 갱신한다고 발표했다. 더불어 지멘스 엑셀러레이터(Siemens Xcelerator) 플랫폼이 더욱 강력하고 안전하며 지속 가능한 모터사이클을 만들고자 하는 두카티의 사명을 달성하는데 어떠한 중요한 역할을 해왔는지 소개했다. 두카티의 연구개발팀이 채택한 지멘스 엑셀러레이터에는 다양한 소프트웨어와 기능이 포함된다. 폴라리온(Polarion) 소프트웨어는 요구사항 파악과 관리 기능을 제공하며, 디자인센터 NX(Designcenter NX) 소프트웨어는 혁신적인 설계를 지원한다. 팀센터(Teamcenter) 소프트웨어는 설계 및 엔지니어링 데이터를 두카티의 ERP(전사 자원 관리) 시스템에 연결하는 디지털 스레드 백본 역할을 수행함으로써 부서 간 협업과 중앙집중식 데이터 동기화를 가능하게 한다. 심센터(Simcenter) 소프트웨어와 심센터 테스트랩(Simcenter Testlab) 소프트웨어를 통해 두카티 코르세는 가상 시뮬레이션을 수행하고 디지털 시뮬레이션을 주말 레이스 동안 트랙에서 수집한 데이터와 물리적 테스트 과정과 통합할 수 있게 됐다. 아울러 지멘스의 설루션은 설계 및 엔지니어링을 생산 단셰로 연결하는 데에도 중요한 역할을 하는데, 지멘스의 파이버심(Fibersim) 소프트웨어는 복잡한 카본 파이버(탄소섬유) 부품의 개발 기간을 단축할 수 있도록 지원한다. 두카티는 모터사이클 레이싱 트랙에서 우위를 점유하는 것은 물론, 지멘스 엑셀러레이터를 통해 모터 레이싱과 일반 도로용 바이크 사업을 연결하고 있다. 팀센터는 이 둘을 하나로 연결하는 중추 역할을 하고 있다.     두카티 모터 홀딩의 피에트로 마파(Pietro Mappa) CAD/PLM 매니저는 “지멘스 엑셀러레이터 덕분에 레이싱 세계의 데이터를 일반 도로용 바이크 세계로 완벽히 공유해 개발 시간을 단축할 수 있었다. 일반 모터사이클과 레이싱 양쪽의 기계, 전자, 소프트웨어 팀은 협업과 데이터 공유를 위한 단일 도구를 갖게 됐다. 더 이상 부서 간 장벽은 존재하지 않으며, 트랙 엔지니어와 차량 설계 엔지니어가 함께 협업할 수 있는 단일 통합 환경을 구축하게 됐다”고 설명했다. 두카티 모터 홀딩의 마시밀리아노 베르테이(Massimiliano Bertei) CTO는 “지멘스와의 파트너십은 현재의 당면과제를 해결하는 데 도움이 됐을 뿐만 아니라 레이스 트랙과 글로벌 시장에 대한 앞으로의 도전에도 완벽하게 대비할 수 있는 기반을 마련해 줬다. 우리는 혁신을 기본 원칙으로 삼아, 항상 최고의 경쟁력을 유지할 수 있는 기술 파트너와 함께 꾸준히 성공을 이어나갈 준비가 돼 있다. 레이싱 세계에서는 마지막 순간까지 바이크를 수정할 수 있는 능력이 매우 중요하다. 예를 들어, 경기가 있는 주말에는 지멘스의 기술을 사용해 원격으로 새로운 부품을 설계한 다음, 이를 트랙으로 보내 3D 프린터로 출력할 수 있다”고 말했다. 지멘스 디지털 인더스트리 소프트웨어의 프랑코 메갈리(Franco Megali) 이탈리아, 이스라엘, 그리스 지역 부사장 겸 CEO는 “두카티와의 협업은 디지털 전환이 레이싱 트랙을 위한 최첨단 기술을 개발하고 이러한 인사이트를 더욱 광범위한 산업 분야에 신속히 적용하는 데 어떻게 기여하는 지를 보여주는 사례이다. 이는 여러 분야의 팀이 협업해 기업 전체에서 놀라운 속도로 혁신을 달성할 수 있도록 지원하는 지멘스 엑셀러레이터의 힘을 보여주는 완벽한 예시”라고 말했다.
작성일 : 2025-10-15