• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "다중물리"에 대한 통합 검색 내용이 102개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
프로세스 자동화Ⅱ - 모터 설계 최적화
최적화 문제를 통찰하기 위한 심센터 히즈 (7)   심센터 히즈(Simcenter HEEDS)는 제품 설계 과정에서 발생하는 다양한 문제에 대해서 최적화 방법론을 적용하고 올바른 결과를 도출하는 데에 도움을 준다. 이번 호에서는 모터의 성능 최적화를 위해 심센터 E-머신 디자인(Simcenter E-Machine Design)을 사용하여 모터 시뮬레이션의 자동화 워크플로를 구성하고 최적화를 진행하는 과정을 소개한다.   ■ 연재순서 제1회 AI 학습 데이터 생성을 위한 어댑티브 샘플링과 SHERPA의 활용 제2회 근사모델 기반의 최적화 vs. 직접 검색 기반의 최적화 제3회 수집 또는 측정된 외부 데이터의 시각화 및 데이터 분석 제4회 산포특성을 가지는 매개변수의 상관성 및 신뢰성 분석 제5회 실험 측정과 해석 결과 간의 오차 감소를 위한 캘리브레이션 분석 제6회 프로세스 자동화 Ⅰ – 구조 설계 최적화 제7회 프로세스 자동화 Ⅱ – 모터 설계 최적화 제8회 프로세스 자동화 Ⅲ – 유로 형상 설계 최적화 제9회 프로세스 자동화 Ⅳ – 다물리 시스템 최적화 제10회 프로세스 자동화 Ⅴ – 제조 공정 효율성 최적화   ■ 이종학 지멘스 디지털 인더스트리 소프트웨어에서 심센터 히즈를 비롯하여 통합 설루션을 활용한 프로세스 자동화와 데이터 분석, 최적화에 대한 설루션을 담당하고 있다. 근사최적화 기법 연구를 전공하고 다양한 산업군에서 15년간 유한요소해석과 최적화 분야의 기술지원과 컨설팅을 수행하였다. 홈페이지 | www.sw.siemens.com/ko-KR   심센터 E-머신 디자인(EMD)은 전기기기(e-machine) 설계를 위한 통합 설루션이다. EMD는 모터 및 발전기 설계 과정에서 요구되는 다양한 토폴로지(topology)를 지원하고, 자동화된 전처리/후처리 환경, 전자계-열 연동 해석, 시스템 및 다분야 설계 연계를 위한 확장성을 제공한다.   그림 1   EMD는 대표적으로 <그림 2>와 같은 토폴로지(SM : 동기모터, IM : 유도모터, SRM : 스위치드 릴럭턴스 모터, DCM : 직류모터, AFM : 축 플럭스 모터)를 모두 지원해, 실제 산업 현장에서 필요한 다양한 형태의 전기기기 개발을 한 플랫폼에서 수행한다.   그림 2   설계 과정 전반에 걸쳐 자동화된 전처리(pre-processing)와 후처리(post-processing) 도구를 제공해, 모델 설정에서 결과 해석까지 반복적인 수작업 부담을 최소화한다. 사용자는 빠른 모델링, 자동 메시 할당, 결과 데이터의 즉시 시각화 등 효율적인 설계 프로세스를 구현할 수 있다.   그림 3   전자계 분석과 열 해석을 연동할 수 있으므로, 전자기적 성능뿐만 아니라 실제 운전 조건에서의 온도 및 열적 거동까지 정밀하게 평가한다. 필요에 따라 시스템 해석(Amesim, FMU 등)을 병행해 구동 특성 및 제어 연계 분석도 확장할 수 있다.   그림 4   EMD는 상세 전자기 해석(detailed Emag), 열 및 유동 해석(thermal CFD), 진동 소음(NVH) 해석, 구조 해석 등 지멘스 심센터(Siemens Simcenter) 포트폴리오 내의 다양한 다분야/다중물리 해석 설루션과 직접 연동할 수 있다. 이를 통해 실제 제품 설계 환경에서 요구되는 복잡한 다중물리 연계 및 시스템 수준 평가까지 단일 워크플로에서 처리가 가능하다.   그림 5   종합적으로, 심센터 EMD는 전기기기 설계의 생산성, 신뢰성, 확장성을 극대화하며, 설계 초기 단계부터 상세 검증, 및 시스템 통합까지 모든 프로세스를 통합적으로 지원하는 강력한 모터 설계 검증 설루션이다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
시높시스, 앤시스 인수 완료… 반도체부터 시스템까지 통합 제품 개발 역량 강화
시높시스(Synopsys)가 앤시스(Ansys) 인수를 완료했다고 발표했다. 2024년 1월에 양사의 합병이 발표된 후 이번에 인수 작업이 완료되면서, 시높시스와 앤시스는 실리콘 설계, IP 및 시뮬레이션·해석 분야의 선도 기술을 결합해 제공할 수 있게 됐다. 시높시스는 앤시스와 통합으로 고객이 AI 기반 제품을 신속하게 혁신할 수 있도록 지원하고, 310억 달러 규모로 추산되는 전체 시장에서 우위를 점할 수 있을 것으로 보고 있다. 시높시스는 제품이 실제 환경에서 어떻게 작동할지에 대해 강화된 통찰력을 제공함으로써 엔지니어들이 제품을 혁신하고, 출시 기간과 비용을 단축하며, 제품 품질을 개선할 수 있도록 꾸준히 지원할 계획이다. 또한 앤시스와 통합을 통해 반도체, 하이테크, 자동차, 항공우주, 산업 등 다양한 산업 분야의 고객에게 전체론적인 시스템 설계 설루션을 제공할 수 있을 것으로 보고 있다. 시높시스는 2026년 상반기까지 멀티다이(multi-die) 첨단 패키징을 포함해 전체 EDA 스택에 걸쳐 다중물리(멀티피직스)를 융합하는 첫 통합 기능을 제공할 것으로 예상한다. 통합 로드맵에는 자동차 및 기타 산업을 위한 복잡한 지능형 시스템의 테스트 및 가상화를 발전시키기 위한 통합 설루션도 포함된다.     시높시스의 사신 가지(Sassine Ghazi) CEO는 “수십 년 동안 시높시스는 칩 혁신을 이끌어온 실리콘 설계 및 IP 분야에서 획기적인 발전을 이뤄왔다. 지능형 시스템 개발의 복잡성이 증가함에 따라 AI로 강화되고 전자공학과 물리학이 더 깊이 통합된 설계 설루션이 요구된다”면서, “앤시스의 선도적인 시스템 시뮬레이션 및 분석 설루션을 시높시스의 일부로 통합함으로써, 엔지니어링 팀의 역량을 폭넓게 극대화하고 실리콘에서 시스템에 이르는 혁신에 불을 지필 수 있게 됐다”고 전했다. 합병아 완료되면서 앤시스의 아제이 고팔(Ajei Gopal) 전 CEO와 앤시스 이사회 멤버였던 라비 비자야라가반(Ravi Vijayaraghavan)은 시높시스 이사회에 합류하게 된다. 고팔은 “반세기 동안 앤시스는 여러 산업의 혁신가들이 시뮬레이션 및 분석의 예측 능력을 통해 한계를 뛰어넘을 수 있도록 지원해왔다”면서, ”두 회사는 공통의 문화 및 성공적인 파트너십을 공유하며, 이제 혁신가들이 인류 발전을 이끌도록 힘을 실어준다는 공동의 사명을 갖게 됐다. 시높시스 이사회의 일원으로서 이 사명을 수행하게 되기를 기대하며, 신속하고 성공적인 통합을 예상한다”고 말했다.
작성일 : 2025-07-21
앤시스, “엔비디아 GH200으로 CFD 시뮬레이션 속도 110배 향상”
앤시스가 엔비디아의 GH200 그레이스 호퍼 슈퍼칩(Grace Hopper Superchips)을 적용한 대규모의 전산유체역학(CFD) 시뮬레이션 결과를 소개하면서, “CFD 시뮬레이션 속도를 기존 대비 110배 높이고, 전체 실행 기간을 4주에서 6시간으로 단축하는 등 성과를 거두었다”고 전했다.  대규모 CFD 시뮬레이션은 다중물리 상호작용, 복잡한 기하학적 설계 및 실제 데이터를 반영한 고해상도 결과물을 필요로 하기 때문에 작업 과정이 복잡하며 많은 시간을 필요로 한다. 전통적인 CPU 기반 시뮬레이션의 경우 최소 며칠에서 몇 주까지 소요되며 모델 정밀도를 높일수록 추가적인 처리 시간과 연산 자원이 요구되는 것이 특징이다. 앤시스는 “GPU 기술을 도입한 앤시스 플루언트는 대규모 모델에서도 적은 자원으로 높은 예측 정확도를 유지하며 핵심적인 인사이트를 도출할 수 있다”고 밝혔다. 앤시스는 엔비디아와의 협력을 통해 텍사스 첨단 컴퓨팅 센터(TACC)의 고성능 컴퓨팅(HPC) 역량을 활용, 24억 셀 규모의 자동차 외부 공기역학 시뮬레이션을 수행했다. 작업 과정에서 예측 정확도를 유지하면서 시뮬레이션 속도를 단축했으며, 전체 시뮬레이션 속도를 떨어뜨리지 않으면서 매개변수를 추가해 정확도를 개선할 수 있도록 했다.     엔비디아의 퀀텀-2 인피니트밴드(Quantum-2 InfiniBand)를 통해 멀티 노드 확장된 320개의 GH200 그레이스 호퍼 슈퍼칩은 2048개의 CPU 코어를 사용할 때보다 110배 빠른 속도를 제공하며, 약 22만 5390개의 CPU 코어에 맞먹는 성능을 구현한다. 또한, 일반적인 GPU 환경에서 실행한 벤치마크 결과에 따르면 32개의 GPU를 사용할 경우 엔비디아의 GH200 그레이스 호퍼 슈퍼칩 한 대가 약 1408개의 CPU 코어와 동일한 성능을 제공하는 것으로 나타났다. 한편, 앤시스는 엔비디아의 가속 라이브러리, AI 프레임워크, 옴니버스 테크놀로지를 통합한 레퍼런스 워크플로인 ‘옴니버스 블루프린트(Omniverse Blueprin)’를 최초로 도입한 바 있다. 이를 통해 앤시스의 애플리케이션은 실시간으로 상호작용 가능한 물리 시각화 기능을 구현, 사용자가 복잡한 물리적 현상을 직관적으로 이해하고 즉각적으로 조정할 수 있는 환경을 제공하고 있다. 앤시스의 셰인 엠스윌러(Shane Emswiler) 제품 총괄 수석 부사장은 “앤시스는 고객들에게 더욱 높은 수준의 시뮬레이션 정밀도와 인사이트를 제공할 수 있도록 역량 강화에 총력을 기울이고 있다”면서, “제품의 시장 출시 속도가 중요해진 만큼, 최신 GPU 기술로의 업그레이드가 개발 과정 전반에서 에너지 소비를 크게 줄여 고객들에게 비용 절감과 자원 효율화라는 두 가지 혜택을 동시에 제공하는 것에 주안점을 두고 있다”라고 말했다. 엔비디아의 팀 코스타(Tim Costa) HPC 및 양자 컴퓨팅 부문 이사는 “엔비디아의 GH200 그레이스 호퍼 슈퍼칩은 고객들이 시뮬레이션 모델의 한계를 넘어설 수 있도록 돕는다”면서, “엔비디아 HPC와 앤시스 설루션의 결합은 사용자들에게 자동차, 항공우주, 제조 등의 산업 전반에서 복잡한 엔지니어링 문제를 해결하고 출시 기간을 단축하는 강력한 시뮬레이션 툴을 제공하게 될 것”이라고 말했다.
작성일 : 2024-11-25
헥사곤-프라운호퍼 연구소, 새로운 전기화학 시뮬레이션 설루션으로 배터리 설계 가속화
헥사곤 매뉴팩처링 인텔리전스는 새로운 배터리 셀 설계 설루션을 출시했다고 발표했다. 이 설루션은 독일의 프라운호퍼 연구소(프라운호퍼 ITWM)의 전기화학 시뮬레이션 기술과 헥사곤의 멀티피직스 및 측정 소프트웨어를 결합한 것이다. 헥사곤은 새로 출시한 배터리 설계 설루션이 이 설루션이 새로운 배터리 셀 연구 개발 프로그램을 가속화할 수 있을 것으로 기대하고 있으며, 이를 통해 국내 배터리 산업의 기술 향상과 글로벌 시장 내 경쟁력 강화를 적극 지원할 계획이다. 헥사곤은 “가상 실험실을 통한 비용 절감, 생산성 향상, 다양한 배터리 전기화학 반응에 대한 시뮬레이션 능력 등을 제공함으로써 국내 기업들의 기술 경쟁력을 한층 높일 것”이라고 전했다. 새로운 배터리 셀 개발은 복잡하고 시간이 많이 소요되는 과정이다. R&D 단계에서는 이론 원리에 기반한 실험계획법(DoE)의 과정이 필요하며, 이는 많은 시행착오와 반복작업이 요구되는 실험실에서의 실제 테스트를 통해 검증된다. 또한, 셀 제조 과정의 여러 단계가 불량률과 배터리 성능에 영향을 미칠 수 있어 세심한 관리가 요구된다. 헥사곤의 새로운 전기화학 배터리 설계 설루션은 프라운호퍼 ITWM의 배터리 및 전기화학 시뮬레이션 도구(Battery and Electrochemistry Simulation Tool : BEST) 솔버를 헥사곤의 디지털 재료 제품군 중 하나인 디지매트(Digimat)에 통합한다. 이를 통해 다양한 배터리 유형에 대해 내부 구조와 성분을 자세히 시뮬레이션하고, 제조 공정의 영향을 고려한 효율적인 다중물리 기반 셀 설계 탐색을 지원한다. 또한 배터리 설계에 필요한 다양한 재료 정보를 제공하고, CT 스캔을 통해 배터리 내부를 분석할 수 있는 기능을 통해 배터리의 물리적 특성 분석 및 배터리 설계 과정을 효율적으로 수행할 수 있도록 지원한다.     새로운 설루션을 활용한 가상 실험실은 ▲입자 크기 분포와 탄소 바인더 분포 등 적절한 재료와 구성 최적화를 통한 에너지 효율, 수명, 최적 충전 프로토콜 등 성능 향상 ▲헥사곤의 산업용 3D 측정 소프트웨어인 ‘VGSTUDIO Max’를 활용하여 제조된 셀의 내부 구조를 CT 스캔하여 역설계하고, 이를 통해 제조 공정이 셀 미세구조에 미치는 영향을 검토 ▲배터리 에이징 및 셀 설계의 안전성 영향 조사를 통한 배터리 관리 시스템의 최적 충전 프로토콜 개발 등과 같은 주요 기능을 제공한다. 배터리 셀의 설계와 개발은 소재, 전기화학반응 설계, 기계적 설계, 제조 공정 간의 복잡한 상충 관계로 인해 상당한 어려움이 있는 영역이다. 헥사곤은 프라운호퍼 ITWM과의 파트너십을 통해 R&D 팀이 더 나은 성능의 배터리 셀을 설계하고, 프로토타입 단계에서 빠른 피드백을 받아 더 신속하게 개발할 수 있도록 도울 수 있게 됐다고 설명했다. 이를 통해 복잡한 과정의 많은 부분을 시행착오에 의존하던 개발 프로세스를 개선할 수 있다는 것이다. 헥사곤 매뉴팩처링 인텔리전스의 수밤 셋(Subham Sett) 멀티피직스 부문 부사장은 “배터리 성능과 품질은 특히 자동차 시장에서의 제품 경쟁력에 큰 영향을 미치는 차별화 요소”라며, “헥사곤은 열 관리 및 열폭주 시뮬레이션에 투자해오고 있으며, 이번 설루션 출시로 인해 많은 제조기업에서 배터리 셀 내 다중물리 상호작용에 대해 전체적인 관점의 분석을 가능하게 한다”고 말했다. 프라운호퍼 ITWM의 요헨 차우슈(Jochen Zausch) 박사는 “우리는 헥사곤의 혁신적인 재료 모델링 소프트웨어에 프라운호퍼 ITWM의 신뢰도 높은 BEST 배터리 전기화학 솔버 기능을 도입하기 위해 훌륭한 기술 협력을 이뤘다”면서, “이러한 포괄적인 시뮬레이션 워크플로를 통해 새로운 배터리 혁신이 빠르게 추진되기를 기대한다”고 말했다.
작성일 : 2024-11-19
알테어, 제조업 실무진 대상으로 체험형 ‘AI 워크숍’ 개최
알테어가 10월 16일 서울 과학기술회관에서 ‘AI(인공지능) 워크숍’을 개최했다고 밝혔다.  알테어는 AI 기술 도입의 중요성에 집중해 지난 4월에 이어 이번에도 AI 워크숍을 개최했다. 이번 워크숍은 AI 기술의 미래나 방향성 등 단순한 기술 전망을 넘어, 실무 중심적인 내용과 실습 자리를 함께 마련했다. 이번 행사에는 주요 제조업체 실무진 및 오피니언 리더 200여 명이 참석했다. 행사는 한국알테어 김도하 지사장의 ‘AI 기술 융합을 통한 엔지니어링 혁신’ 주제 발표를 시작으로, 매튜 킹 알테어 수석 기술 이사가 ‘항공 및 방위 산업의 AI 기반 엔지니어링 사용 사례’를 소개했다. 이어서 ▲생성형 AI를 이용한 차량 구조 형상 최적화 ▲입자가 포함된 다중물리 해석에 대한 롬AI(romAI) 활용 사례 ▲AI 전환(AX)을 위한 데이터 패브릭 ▲피직스AI(physicsAI)를 활용한 차량 부품 성능 예측 등 다양한 AI 기반 엔지니어링 기술 사례가 발표되었다. 또한, 이번 행사에서는 참가자가 직접 AI 제품을 사용해볼 수 있는 실습형 세션이 진행됐다. 참가자들은 각종 물리 현상을 AI 기술로 쉽게 예측할 수 있는 ‘알테어 피직스AI’와 데이터 분석 제품인 ‘알테어 래피드마이너’를 직접 체험했다. 특히 시뮬레이션 예측, sLLM(소형 언어 모델) 서비스 구성 등 실무에 즉시 적용 가능한 내용을 다뤘다. 알테어의 문성수 아시아태평양 수석부사장은 “이번 워크숍은 사례 발표와 실습을 결합하여 AI 기술 도입 활성화에 큰 도움이 될 것으로 기대한다”면서, “앞으로도 AI 기술의 실무 적용을 지원하는 다양한 프로그램을 매년 지속적으로 선보일 계획”이라고 밝혔다.  
작성일 : 2024-10-18
[무료다운로드] 맥스웰 및 모터캐드의 신규 연성 해석 기능
앤시스 워크벤치를 활용한 해석 성공사례   맥스웰(Ansys Maxwell)과 모터캐드(Ansys Motor-CAD)는 모터의 전자기장 해석에 자주 쓰이는 소프트웨어이다. 이번 호에서는 맥스웰과 모터캐드의 연성해석에 대해 2024년도 업그레이드 내용을 소개하겠다.   ■ 이상현  태성에스엔이 EBU-LF팀의 매니저로 전자기장 해석 기술 지원 및 교육, 용역 업무를 담당하고 있다. 홈페이지 | www.tsne.co.kr   맥스웰과 모터캐드의 비교 소개 맥스웰은 유한요소해석으로 전기기기, 전력소자, 전자기기, 케이블, 버스바(busbar) 등의 전자기장 해석 솔루션을 제공한다. 모터캐드는 모터 설계를 위한 다양한 솔루션을 제공하며 전문적인 사용자 인터페이스를 갖추고 있다.  <그림 1>은 앤시스 제품을 이용한 모터의 해석 흐름을 보여준다. 모터캐드는 물리 기반의 전문 솔루션으로, 해석을 진행하기 이전에 모터의 개념 설계(concept design)에 사용하는 것을 추천한다. 다중물리 솔루션과 열전달 솔루션의 시너지 효과와 함께 모터의 성능을 정확하고 빠르게 예측할 수 있다. 그리고 앤시스의 모터캐드와 맥스웰 해석을 이용하여 모터 설계 환경 구축 및 전자기 특성 개선을 할 수 있다. 그리고 앤시스 메커니컬(Ansys Mechanical)과 CFD를 이용하여 진동/소음, 응력, 방열 해석 등을 할 수 있고, 이는 시스템 전체 검증 및 통합 환경에 적용시킬 수 있다.   그림 1. 앤시스 제품을 이용한 모터 해석 흐름    맥스웰과 모터캐드는 모터의 전자기장 해석을 할 수 있다는 공통점이 있다. 차이점은 맥스웰은 전자기장 해석만 가능하고 모터캐드는 전자기장과 열, 구조 해석이 가능하여 다물리장을 고려한 모터 성능 예측이 가능하다. 그리고 맥스웰은 자유로운 모델링으로 모터뿐만 아니라 변압기, 인덕터, 센서, 액추에이터, 배터리 등의 다양한 제품을 해석할 수 있지만 모터캐드는 회전기기만 해석 가능하다. 추가로 모터캐드는 2D 기반의 형상을 지원하기 때문에 Radial Flux 모터만 해석이 가능하고 AFPM과 같은 Axial Flux 모터는 지원하지 않는다. 맥스웰은 2D, 3D 해석이 가능하기 때문에 모든 형태의 모터 해석이 가능하다. 대신에 모터캐드는 유한요소해석을 위한 세팅이 맥스웰에 비해서 자동으로 되어 있는 것이 많아서, 사용하기가 간편하고 해석 시간도 빠르다는 장점이 있다.   앤시스 모터캐드 2024의 업그레이드 내용 2024 업그레이드의 주된 내용은 모터 디자인과 해석 정확도, 해석 시간 단축이다. 디자인 부분에서는 파이썬(Python)을 이용하여 기존에 정해져 있던 형상을 사용자가 좀 더 자유롭게 변경 가능하고 회전자에 방사 방향으로 오일 스프레이 쿨링이 추가되었다. 해석 정확도 부분에서는 맥스웰의 자기장 해석 결과를 모터캐드의 랩 모듈(Lab Module)로 불러와서 효율맵 해석이 가능해졌다. 이 기능은 영구자석형 모터와 권선계자형 모터, SynRM 이 세 가지 모터만 현재까지 가능하다. 그리고 모달(Modal) 해석에서 강성, 고유 진동수, 댐핑 계수의 값을 튜닝할 수 있게 추가되어 실제 측정 데이터나 다른 해석 결과 데이터를 기반으로 튜닝할 수 있다. 마지막으로 해석 속도를 더 증가시키고자 멀티스레딩(multi-threading) 설정이 랩 모듈에도 추가되었다. 이 기능은 Emag 모듈에만 있었는데 랩 모듈에도 추가되면서 효율맵을 만들 때 좀 더 빠르게 계산이 가능하다. 맥스웰이나 앤시스의 다른 툴은 멀티 코어 해석 시 따로 HPC 라이선스가 필요하지만, 모터캐드는 기본으로 사용 가능하다. Thermal Transient 해석 솔버도 알고리즘을 업데이트하여 기본적인 해석 속도가 향상되었다. 이번 호에서는 해석 정확도에서 맥스웰과 모터캐드 연성해석 부분을 다룬다. <그림 2>는 모터캐드와 맥스웰의 연성해석으로 효율맵을 출력하는 흐름을 나타낸다. 가장 먼저 맥스웰에서 모터(Motor) 해석이 가능한 디자인을 먼저 만들어 놓고, 모터캐드에서 맥스웰 파일을 불러온다. 불러온 후 몇 가지 세팅을 한 다음에 ‘Build Model’을 누르면 자동으로 맥스웰 파일이 실행되면서 변수화 해석을 진행하게 된다. 변수화 해석이 종료되면 맥스웰 결과 데이터를 모터캐드로 자동으로 불러와서 효율맵을 출력해준다.   그림 2. 모터캐드와 맥스웰 연성해석 흐름     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-08-05
앤시스, ‘옵틱스 테크 서밋 2024’에서 광학 시뮬레이션 및 설계 소프트웨어 소개
앤시스코리아는 5월 29일 수원 컨벤션센터에서 ‘앤시스 옵틱스 테크 서밋(Ansys Optics Tech Summit) 2024’를 개최한다고 밝혔다. 이번 행사는 갈수록 그 중요도가 증대함과 동시에 하루가 다르게 급변하고 있는 광학 산업 내에서 제품 개발 가속화에 기여할 수 있는 앤시스의 광학 솔루션에 대한 유용한 정보와 인사이트를 공유하기 위해 마련됐다. 앤시스코리아는 올해로 세 번째를 맞이한 이번 행사에서 자동차, 하이테크, 항공우주 및 방위, 멀티피직스 등 다양한 최신 산업 현황 및 사례와 함께 앤시스의 주요 광학 시뮬레이션 및 설계 소프트웨어인 ▲앤시스 루메리컬(Ansys Lumerical) ▲앤시스 지맥스(Ansys Zemax) ▲앤시스 스피오스(Ansys Speos)를 소개할 예정이다.     앤시스 광학 솔루션은 고급 물리 솔버 제품군을 통해 나노 규모에서 매크로 규모까지 정밀한 다중규모 시스템 설계를 지원하는 사용자 친화적인 워크플로를 제공하여 다양한 산업에서 애플리케이션을 설계할 수 있도록 지원하고 있다. 다중물리 광자 모델링 솔루션인 앤시스 루메리컬은 광학, 전기, 열 현상의 상호 작용을 고려한 포토닉스 모델링 소프트웨어로, 설계자가 어려운 포토닉스 문제를 효과적으로 모델링할 수 있게 돕는다. 또한, 제품군 간의 유연한 상호 운용성을 통해 다중물리 시뮬레이션, 시스템 레벨의 광집적회로 시뮬레이션, 파이썬(Python) 기반의 자동화와 포토닉스 파운드리를 위한 컴팩트 모델 라이브러리(CML)를 지원한다. 광학 부품 모델링 솔루션인 앤시스 지맥스는 광학 산업 전반의 선도 기업과 전 세계 대학의 광학, 조명 및 레이저 시스템 설계를 위한 표준 소프트웨어다. 결상, 조명, 레이저 시스템 광학계를 하나의 시스템으로 제공할 수 있는 솔루션으로 다중물리 시뮬레이션 지원, 실제 광학 시스템 제조를 위한 설계 및 회절 광학 통합을 위한 포괄적인 기능을 제공한다. 또한 광학 설계의 시뮬레이션, 최적화 및 공차 분석을 모두 수행할 수 있다. 시스템 설계 및 검증 솔루션인 앤시스 스피오스는 국제조명위원회(CIE)의 CIE 171:2006 테스트를 통해 정확성을 인증 받은 광학 설계 소프트웨어로, 시스템의 광 전파 설계 및 측정에 주로 사용된다. 가시광선, 자외선 및 원적외선 스펙트럼 영역까지 분석이 가능하며 조도 및 광학 성능을 예측해 프로토타입 제작 시간과 비용을 절감한다. 이외에도 직관적이고 포괄적인 사용자 인터페이스를 제공하며, GPU를 사용한 시뮬레이션 미리 보기와 앤시스 다중물리 에코시스템에 대한 간편한 액세스를 통해 생산성을 높일 수 있다. 앤시스코리아의 박주일 대표는 “앤시스코리아는 광기술의 발전과 광학 엔지니어를 위한 정확하고 고성능의 광학 설계 및 시뮬레이션 기능을 제공하기 위해 계속해서 혁신의 한계를 뛰어넘고 있다”면서, “이번 행사는 다양한 분야 간 융합의 핵심으로서 광기술의 중요성을 확인하는 시간이 될 것으로 기대한다”고 밝혔다.
작성일 : 2024-05-22
멀티피직스 해석, 전기전자 해석, 플라스마 해석, VizGlow
멀티피직스 해석, 전기전자 해석, 플라스마 해석, VizGlow   주요 CAE 소프트웨어 소개   ■ 개발 : Esgee Technologies, www.esgeetech.com ■ 자료 제공 : 경원테크, 031-706-2886, www.kw-tech.com VizGlow는 비평형 플라스마 해석을 위한 소프트웨어이다. VizGlow는 전자기장, 유동, 파티클 등의 여러 해석 모듈을 사용하여 복잡한 다중물리(Multiphysics) 문제에 대해 다양한 방법의 해결방법을 제공한다. VizGlow는 수십 mTorr의 저압 영역에서부터 대기압 부근, 고압 스트리머까지 다양한 범위의 압력 영역에서의 플라스마 현상을 해석하는데 사용할 수 있다. VizGlow는 완전한 병렬 연산 모듈을 제공하여 복잡한 형상의 3D 모델 플라스마 해석에도 사용될 수 있다. 1. 제품의 주요 특징 (1) 1-D/2-D/3-D 비평형 플라스마 해석 제공 (2) 완전한 병렬 연산(MPI Parallel) 모듈 제공 (3) 정렬/비정렬 혼합 격자(Mesh) 작성 모듈 제공 (4) 복잡한 격자(Mesh)에서의 가속화된 강력한 솔버 제공 (5) 통합 개발 환경 GUI 제공 (6) 다양한 조건에 따른 플라스마 계산 옵션 제공 1) Self-consistent/quasi-neutral 2) Multi-species, Multi-temperature formulation (7) 공정용 화학반응 데이터 다수 구축 (8) 표면 화학반응인 식각(etching), 증착(Deposition) 제공 (9) 광범위한 압력 영역에서 플라스마 해석(수 mTorr~수 atm) (10) 전자기장, 유동, 파티클 등의 모델이 결합된 다중물리(Multiphysics) 해석 (11) 표면에서의 이온 에너지 및 입사각 분포 확인 기능 (12) 외부 회로 모델(전원 및 전압 제어) 2. 주요 활용 분야 (1) 반도체 비평형 플라스마 해석 툴인 VizGlow를 사용하여 반도체 장비 및 집적회로(IC) 제조 산업의 장비를 분석하고 공정을 개선하며 새로운 장비를 개발하는 업무에 VizGlow를 활용할 수 있다. IC 제조업체는 VizGlow를 사용하여 제조 프로세스를 최적화하고, 프로세스 이상을 식별 및 수정하여 필요에 따라 새로운 장비를 설계할 수 있다. (2) 디스플레이/태양전지 디스플레이/태양전지 분야에서는 VizGlow, VizGrain 등을 사용하여 전자기학, 유체흐름, 입자모델링 등을 해석할 수 있다. 이 분야에서는 기존 장비 설계를 분석하고 공정의 균일성, 필름 품질 등을 개선하고 새로운 장비 개념을 개발하는데 VizGlow, VizGrain 등을 활용할 수 있다. 최근 대형화되는 디스플레이/태양전지 분야의 플라스마 해석에 대응하기 위해, VizGlow에서 제공하는 병렬 연산 모듈을 활용하는 것은 신제품 개발에 커다란 이점이 될 것이다. (3) 자동차 자동차 분야에서는 비평형 플라스마, 열 플라스마, 전자기학, 연소 및 열 반응 등의 분야를 활용할 수 있다. VizGlow, VizSpark 등의 도구를 사용하여 현재 점화장치의 설계 점검 및 차세대 점화장치 설계 등에 활용할 수 있다. (4) 항공우주 항공우주 해석에는 다양한 물리 현상에 대한 해석이 필요하다. VizGlow 시뮬레이션은 이러한 다양한 물리 현상을 다각도로 해석할 수 있는 여러가지 도구를 제공하고 있다. VizFlow를 통해 외부 기류 해석, VizGrain을 통한 희박기체 거동 해석 및 Charge-up 해석, VizGlow/VizSpark를 통한 추진기 해석 등 다양한 각도의 해석을 지원한다. 3. 주요 고객 사이트 ■ 삼성전자, SK hynix, 명지대학교, 충북대학교 등  
작성일 : 2024-02-12
케이던스, GPU 컴퓨팅과 CFD 솔버 결합한 다중물리 턴키 솔루션 발표
케이던스 디자인 시스템즈는 디지털 트윈의 다중물리(멀티피직스) 시스템 설계 및 분석을 가속화할 수 있는 ‘케이던스 밀레니엄 엔터프라이즈 다중물리 플랫폼(Cadence Millennium Enterprise Multiphysics Platform)’을 발표했다. 1세대 플랫폼인 케이던스 밀레니엄 M1(Cadence Millennium M1)은 하드웨어 및 소프트웨어 솔루션을 결합해 고성능 CFD(전산유체역학) 시뮬레이션을 가속화한다. GPU를 탑재한 HPC 하드웨어와 최적화된 GPU 가속화(Acceleration) 및 생성형 AI를 활용할 수 있는 케이던스 고성능 피델리티 CFD(Cadence high-fidelity CFD) 소프트웨어가 턴키로 포함된 것이 특징이다. 밀레니엄 M1은 통합 클러스터로 융합하여, 복잡한 기계 시스템을 시뮬레이션할 때 빠른 TAT(Turnaround Time)과 거의 선형에 가까운 확장성을 고객에게 제공하는 것이 목표이다. 자동차, 항공우주 및 방위산업, 에너지 및 터보기계 등 산업에서는 성능과 효율면에서 새로운 차원의 기계 시스템을 설계하는 것이 핵심적인 우선 과제가 되었다. 자동차 설계자들은 성능을 최적화하고 온실가스를 줄이기 위해 연비 개선, 항력 및 소음 감소, 전기 자동차 주행 거리 연장에 집중하고 있다. 또한 A&D 및 터보기계 설계 엔지니어들에게는 효율 향상, 탄소 배출량 감소, 유지보수 빈도를 줄이는 것이 중요하다. 이런 목표를 달성하기 위해서는 다중물리 시뮬레이션 기술의 발전이 필수적이다. 속도, 정확성, 용량 및 계산 속도를 가속화하는 것은 디지털 트윈 시뮬레이션에 필수 요소로서, 프로토타입을 개발하고 테스트하기에 앞서 의도한 대로 작동할 수 있다는 확신을 줄 수 있는 설계 혁신의 원동력이 된다.   ▲ 이미지 출처 : 케이던스 웹사이트   GPU 내장 CFD 솔버와 전용 GPU 하드웨어를 결합한 케이던스 밀레니엄 플랫폼은 최대 1000개의 CPU 코어로 GPU당 슈퍼컴퓨터급의 처리량을 제공한다. 동급 CPU 대비 향상된 에너지 효율로 몇 주가 걸리던 처리 시간을 몇 시간으로 단축할 수 있게 지원한다.  케이던스 피델리티 CFD 솔버는 복잡한 시뮬레이션 문제를 해결할 수 있으며 높은 정확도를 제공한다. 밀레니엄 플랫폼은 확장형 아키텍처와 유연성을 갖춘 피델리티 솔버를 통해 여러 GPU 노드에서 선형에 가까운 확장성을 제공한다. 또한, 생성형 AI를 접목한 디지털 트윈은 고품질의 다중물리 데이터를 빠르게 생성하고, 생성형 AI가 최적의 시스템 설계 솔루션의 디지털 트윈 시각화를 안정적으로 생성할 수 있다. 케이던스는 밀레니엄 플랫폼이 주요 공급업체의 GPU를 바탕으로 클라우드 환경에서 8개 이상의 GPU를 구성하거나 온프레미스 환경에서 최소 32개 GPU를 구성할 수 있으며, 고객이 원하는 구성 방식을 적용할 수 있는 유연하고 확장성 높은 솔루션을 제공한다고 소개했다. 케이던스의 밴 구(Ben Gu) 다중물리 시스템 분석 R&D 부사장은 “케이던스는 35년의 역사를 통해 매우 어려운 컴퓨팅 분야에서 정확성을 유지하면서 동시에 계산 속도를 향상시키는데 주력해 왔다. 알고리즘 처리량은 여전히 핵심 우선순위이며 이제 우리는 생성형 AI를 활용하여 방대한 양의 설계 및 시뮬레이션 데이터에서 정보를 추출하고 있다”면서, “밀레니엄 플랫폼은 디지털 트윈 및 AI 애플리케이션의 가속화와 확장성을 제공하는 거대한 도약이며, CFD는 성능과 효율이 향상되면서 아주 유용하게 활용될 준비를 마쳤기 때문에 밀레니엄 M1의 뛰어난 성능은 빠른 제품을 출시를 해야 하는 산업계에 혁신을 가져올 것”이라고 전했다.
작성일 : 2024-02-05
대규모 와류 시뮬레이션에 유용한 피델리티 찰스 솔루션
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (6)   대규모 와류 시뮬레이션(LES)은 복잡성과 컴퓨팅 자원의 요구 등 제약이 극복되면서 유용한 난류 시뮬레이션 기술로 떠오르고 있다. 이번 호에서는 최신 수치 및 GPU 가속을 통해 LES 시뮬레이션을 더 저렴하고 쉽게 사용할 수 있는 케이던스의 피델리티 찰스(Fidelity CharLES) 솔루션에 대해 살펴본다.   ■ 자료 제공 : 나인플러스IT   모든 시스템의 공기역학 또는 유동장을 설계할 때 엔지니어는 난기류의 영향을 고려해야 한다. 전산 유체 역학(CFD)의 난류 모델을 사용하면 실제 시나리오에서 발생하는 유체 흐름의 혼란을 포함할 수 있다. 난류를 모델링하기 위해 레이놀즈-평균 나비에-스토크스(Reynolds-Averaged Navier-Stokes : RANS) 방정식이 널리 사용되어 왔으며 컴퓨팅 리소스가 제한되어 있을 때 선호된다. 그러나 이러한 시간 평균 방정식은 연소, 음향, 공기 역학 등과 같은 광범위한 애플리케이션에 필요한 정확도를 제공하지 못한다. 이러한 경우 대규모 와류 시뮬레이션(Large Eddy Simulation : LES)이 유용하다. 시뮬레이션의 복잡성과 대규모 컴퓨팅 요구 사항으로 인해 지난 40년 동안 대부분의 산업 분야에서 LES는 비실용적이었다. 하지만, 오늘날에는 최신 수치 및 GPU 가속을 통해 LES 시뮬레이션이 더 쉽게 접근 가능하고 저렴해졌다.   케이던스 캐스케이드 테크놀로지스의 LES 모델링 역사 1980년 케이던스 캐스케이드 테크놀로지스(Cadence Cascade Technology)의 창립자인 Parviz Moin은 난류 모델링에 관한 획기적인 연구를 수행했다. 당시에는 난기류를 실험적으로 조사하기 위한 수많은 연구가 진행 중이었다. <그림 1>은 경계층에서 수소 기포를 사용하여 수행한 실험을 보여준다. 이 실험은 난기류 속에서 아름답고 일관된, 그러나 혼란스러운 구조를 연구하기 위한 것이었다.   그림 1. 시뮬레이션 결과(Moin & Kim, 1981)(왼쪽)와 실험 결과(Kim, Klein & Reynolds, 1970)  (오른쪽)   Parviz와 그의 동료들은 1981년 미국 물리학회 컨퍼런스에서 NASA Ames 기지의 ILLIAC IV 15MFlops 컴퓨터로 계산한 시뮬레이션을 발표했다. 그 결과 나비에-스토크스 방정식을 시간에 따라 정확하게 예측하여 난기류의 역학과 통계를 모두 포착할 수 있다는 것을 보여주었다. 오늘날 고성능 컴퓨팅의 성능은 1980년 M플롭에서 2023년 1E플롭/s로 크게 발전했으며, 프론티어는 상위 500대 기업 중 선두를 달리고 있다. 최신 솔버 기술과 확장성을 바탕으로 자동차, 항공우주 및 기타 산업에서 충실도 높은 LES의 실제 적용이 증가하고 있다.   오늘날 LES를 가능하게 하는 기술 고충실도 LES의 실제 적용을 가능하게 하는 4가지 차별화 기술은 다음과 같다. 그리드 이산화(Grid Discretization) : 시간에 따라 달라지는 시뮬레이션에서 고품질의 상대적으로 등방성인 그리드의 중요성은 아무리 강조해도 지나치지 않다. 벽 근처에 약간의 이방성이 있으면 도움이 될 수 있지만, 그리드는 시뮬레이션 내내 일관된 품질을 유지해야 한다. 수치적 방법(Numerical Methods) : 강력하고 비선형적으로 안정적인 수치적 방법과 유동 물리학을 정확하게 표현하는 고급 물리 모델을 사용하는 것이 필수적이다. 데이터 분석(Data analytics) : 광범위한 데이터 세트를 생성하게 되므로 이 데이터를 빠르게 시각화하고 이해하는 것이 중요하다. GPU 가속(GPU Acceleration) : GPU에서만 실행되는 최신 CFD 솔버인 GPU 상주 솔버는 필요한 비용 효율적이고 높은 처리량의 시뮬레이션을 제공한다.   그림 2. 1990년부터 2023년까지 성능 개발 목록   수년 동안 LES 모델링의 철학은 저소산 수치 체계가 필요하다는 것이었다. 그러나 이러한 저손실 방식은 다중물리 애플리케이션과 복잡한 지오메트리에서 구축하기 어렵다. 높은 레이놀즈 수 흐름에서 실제 손실은 낮지만, 일반적인 CFD 코드의 수치 손실은 매우 높다. 하지만 피델리티 찰스 솔버(Fidelity CharLES Solver)를 사용하면 안정적인 저손실 수치 체계를 가질 수 있다. 메시 생성의 경우, 피델리티 찰스 솔버는 다양한 해상도의 영역과 그 사이의 전환을 가진 다면체 메시를 생성하는 메시 생성기를 사용한다. 이 메시는 특정 포인트 세트를 중심으로 생성된 3D 보로노이 다이어그램(Voronoi Diagram)이다. 이러한 점을 체계적으로 도입하면 높은 수준의 균일성을 가진 메시가 생성된다. 따라서 피델리티 찰스 솔버는 LES용 메시를 생성하는 데 편리하다.   ■ 상세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-02-02