충실도 흐름 솔버로 항공 엔진의 시뮬레이션 정확도 업그레이드
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (24)
현재의 컴퓨팅 성능은 전례 없는 수준이다. 덕분에 더 큰 시스템을 시뮬레이션하고 복잡한 현상을 더 정확하게 예측할 수 있는 고급 계산 기법이 개발되었다. 그러나 터보 기계 시스템의 시뮬레이션은 각 구성 요소를 개별적으로 시뮬레이션하는 현재의 관행으로 인해 구성 요소 간의 상호 작용을 고려하지 못하기 때문에 여전히 과제를 안고 있다. 이 문제를 해결하고 효율성, 신뢰성, 저배출 측면에서 항공 엔진 설계를 개선하기 위해 피델리티 플로우(Fidelity Flow) 유동 솔버의 레이놀즈-평균 나비에-스토크스 방정식을 기반으로 새로운 방법론이 개발되었다. 이 접근 방식을 사용하면 단일 코드를 사용하여 전체 엔진의 완전 결합 시뮬레이션이 가능하다.
이번 호에서는 새로운 방법론인 유동 솔버 기술과 그 구현을 통해 얻은 결과에 대해 설명한다.
■ 자료 제공 : 나인플러스IT, www.vifs.co.kr
그림 1. KJ66 MGT의 레이아웃 : ① 임펠러, ② 디퓨저, ③ 연소실, ④ HPT 노즐, ⑤ HPT 로터, ⑥ LPT 노즐, ⑦ LPT 로터, ⑧ 디월 베인, ⑨ 배기 후드
방법론
완전한 항공 엔진 및 가스 터빈 시스템에 대해 안정적이고 시간이 정확하며 완전히 결합된 시뮬레이션을 수행하기 위한 새로운 접근 방식이 개발되었다. 이 방법은 비선형 고조파(NLH) 기법을 사용하여 불안정한 효과를 포착하여 계산 시간을 절약할 수 있다. 이 접근법의 연소 프로세스는 효율적이고 신뢰할 수 있는 화염 생성 매니폴드(FGM)에 의존한다. 비활성 시뮬레이션에 비해 연소 과정을 모델링할 때 발생하는 계산 오버헤드는 약 50%에 불과하다. 또한 스마트 인터페이스 접근 방식은 전체 시스템에서 스칼라의 이동을 피하기 위해 구현되어, 흐름이 반응하는 곳에서만 연소 이동 변수를 해결함으로써 계산 오버헤드를 최소화한다.
유동 솔버
이 연구는 압력 기반 및 밀도 기반 설루션 체계로 구성된 케이던스 충실도 유동 솔버를 사용하여 수행된다. 유동 솔버 패키지에는 터보 기계 모델링, 대형 와류 시뮬레이션(LES), 공액 열전달(CHT), 유체-구조 상호작용(FSI), 스프레이용 라그랑지안 모듈, 캐비테이션, 복사, 다상 유동 및 연소 모델을 포함한 광범위한 물리 모델이 탑재되어 있다. 혼합 평면, 프로즌 로터, 슬라이딩 메시와 같은 표준 접근 방식이 터보 기계 모듈에 구현되어 있다. 또한 다음에서 설명하는 터보 기계 애플리케이션의 불안정한 흐름을 효율적으로 계산하기 위해 비선형 하모닉 방법을 사용할 수 있다.
비선형 고조파 방법(NLH)
NLH 방법은 시간 평균 흐름에 대한 불안정성의 영향을 고려하는 비선형 접근 방식이다. 이러한 효과는 결정론적 스트레스로, 주기적 변동의 시간 평균 곱으로 나타난다. NLH 방법의 장점은 계산 효율에 있다. 평균 유동장에 대한 정상 상태 해와 사용자가 해결하기로 선택한 각 고조파의 실수 및 가상 부분에 대한 정상 상태 해만 결정하면 된다. 설루션 정확도는 고조파의 수에 따라 달라지지만, 일반적으로 불안정한 효과를 포착하는 데에는 몇 개의 고조파만 필요하다.
피델리티 플로우의 NLH 모듈은 인접한 행과 인접한 행 사이의 상호작용을 상대 회전 속도에 관계 없이 모델링할 수 있는 랭크 2 효과를 설명한다. 즉, NLH 모듈은 더 복잡하고 불안정한 상호작용을 설명할 수 있다. 랭크 2 설루션을 사용하면 포스트 프로세싱 모드에서 클로킹의 효과를 연구할 수 있다. 또한 피델리티 플로우의 NLH 모듈은 각 블레이드 행에서 사용할 고조파 수를 유연하게 정의할 수 있어, 시뮬레이션 프로세스를 더욱 맞춤화할 수 있고 효율적으로 만들 수 있다.
그림 2. 혼합 평면과 NLH 방식을 사용한 회전자-회전자 상호작용 비교
■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-08-04