• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "공학"에 대한 통합 검색 내용이 3,277개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
[칼럼] 로봇 기반 제조 자동화와 디지털 트윈
디지털 트윈과 산업용 메타버스 트렌드   영화 매트릭스가 개봉된 지 20년이 더 지난 2020년대에 이러한 가상 세상은 영화가 아닌 실제 산업 현장에서 구현되어 산업 혁신을 주도하고 있다. 바로 ‘디지털 트윈 (Digital Twin)’이다 이 글에서는 디지털 트윈의 의미와 제조 산업 특히 로봇 기반 자동화에서 디지털 트윈이 어떻게 제조현장을 혁신하는지 실증 사례를 기반으로 소개한다.   장영재 교수 / 카이스트  “헬기를 몰 줄 알아요?” 남자 요원이 동행한 여자 요원에게 물었다. “아니요. 아직은요. 잠시만 기다리세요.” 그리고 즉시 여자 요원은 무전로 본부에 연락해, 헬기 시뮬레이션 교육프로그램을 업로드 해달라 본부에 요청했다. 본부에서는 즉시 시뮬레이션 교육프로그램을 가속으로 돌려 헬기 조정 능력을 여자 요원의 머리에 업로드하였다. 여자요원은 불과 몇 초 사이에 수백시간 걸릴 헬기훈련을 마친 베터랑 헬기 조정사 능력을 가지게 되었다. 그리고 여자 요원은 외쳤다. “빨리 헬기를 몰고 도망칩시다!” 그리고 여자 요원은 능숙한 솜씨로 헬기를 몰고 남자요원과 함께 탈출한다. 1999년 개봉된 영화 매트릭스의 한 장면이다. 가상의 세상과 실제 세상을 오가며 과연 무엇이 진실이며 실제 (real)이란 무엇일까란 질문을 던지는 매우 철학적인 영화다 .  영화 매트릭스가 개봉된 지 20년이 더 지난 2020년대에 이러한 가상 세상은 영화가 아닌 실제 산업 현장에서 구현되어 산업 혁신을 주도하고 있다. 바로 ‘디지털 트윈 (Digital Twin)’이다. 본 특집에서는 디지털 트윈의 의미와 제조 산업 특히 로봇 기반 자동화에서 디지털 트윈이 어떻게 제조현장을 혁신하는지 실증 사례를 기반으로 소개한다.   1. 시뮬레이션과 디지털 트윈의 차이 우리나라 과학기술정보 통신부에서는 디지털 트윈을 다음과 같이 정의하고 있다.  “가상세계에서 실제 사물의 물리적 특징을 동일하게 반영한 쌍둥이 (Twin)을 3D 모델로 구현하고 제 사물과 실시간으로 동기화 및 시뮬레이션을 통해 관제, 분석, 예측 등 현실의 의사결정에 활용하는 기술” 그러나 이러한 정의만으로는 구체적으로 디지털 트윈을 파악하기에 모호하다. 시뮬레이션과 디지털 트윈의 차이가 무엇인지, 실시간 동기화가 왜 필요한지, 관제, 분석, 예측은 이미 다양한 방식으로도 가능한데 디지털 트윈이 제공하는 또 다른 가치가 있는지 설명이 부족하다. 최근 디지털 트윈 관련 이슈가 많다 보니 기업들도 앞 다투어 디지털 트윈을 기술을 확보했다는 등의 보도자료를 통해 기술 홍보를 하기도 한다. 이런 대부분은 공장의 가공 로봇이 움직임을 실시간 3D 애니메이션으로 구현해서 실제 로봇의 움직임을 컴퓨터에 시연하는 정도다. 그러나 이러한 시연을 보면 대부분 사람들의 반응은 “이것으로 무엇을 하지요?” “굳이 거액을 들여 실물의 움직임을 컴퓨터 그래픽으로 그대로 보여줄 필요 있나요? 그저 CCTV 하나 설치하면 컴퓨터에서 영상으로 볼 수 있는 것을 굳이 컴퓨터 그래픽 3D영상으로 구현할 필요가 있나요?” 등의 반응이다. 그렇다면 우선 시뮬레이션과 디지털 트윈의 차이가 무엇일까? 2. 디지털 트윈이 과연 무엇인가?   시뮬레이션은 가상의 시나리오를 기반으로 그 결과를 재현해 보는 것을 의미한다. 내가 A란 결정을 했을 때 그 결과가 어떻게 나올지를 유추해 보는 것이 시뮬레이션이다. 우리가 일반적으로 잘 알고 있는 시뮬레이션이 컴퓨터 시뮬레이션이다. 즉 컴퓨터가 구현한 상황에서 특정 의사결정에 대해 그 결과를 컴퓨터를 통해 산출하는 것이다. 컴퓨터 시뮬레이션 활용의 대표적인 예가 워 게임 (War Game)이다. 군에서는 전략전술 교본이나 전술, 그리고 무기 체계 설계를 할 때 컴퓨터를 통한 시뮬레이션을 활용한다. 평가나 실험을 위해 실제 전투나 전쟁을 치를 수 없기에 컴퓨터를 통해 가상의 적군과 전투를 하며 훈련을 하거나 전술 평가에 활용한다. 실제 컴퓨터 시뮬레이션 활용에 대한 연구가 가장 활발히 이뤄지는 분야가 국방 시뮬레이션 분야인 이유다.  우리 일상 생활에서도 이러한 시뮬레이션이 실제 많이 활용된다. 대표적인 예가 바로 자동차 네비게이션이다. 10년전 네비게이션을 떠올리면 전형적인 시뮬레이션 장비라 할 수 있다. 목적지를 입력하면 내 위치에서 목적지까지 수많은 대안 경로 중 최적 경로를 제안해 준다 . 그러나 당시 네비게이션은 실시간 교통정보를 경로 탐색에 담지 않았다. 그러다 보니 출퇴근 교통혼잡이나 사고로 인한 교통 체증과 같은 상황에서도 일반 상황과 동일한 이동경로 시간 산출과 경로를 제시하는 한계가 있었다. 최근 자동차 네비게이션이나 스마트폰 차량 맵은 실시간 교통정보를 포함해 다양한 대안 경로를 제시한다. 즉 실시간 GPS 정보를 통해 내 차량의 위치는 클라우드의 컴퓨터로 전송이 되고 또한 다양한 교통정보를 기반으로 실시간으로 대안경로를 찾고 도착시간을 지속해서 업데이트 한다. 그리고 내차의 이동 경로와 교통 상황은 사용자가 직관적으로 파악할 수 있도록 컴퓨터 그래픽으로 전달된다. 즉 실시간 교통정보를 기반으로 지속적인 업데이트된 경로를 제공하는 스마트폰 네비 앱이 디지털 트윈의 가장 대표적인 사례다. 학문에서는 디지털 트윈의 조건을 아래로 정의한다. 1. 실물과 가상의 시스템이 거의 실시간 (near real-time)으로 연동되어야 한다. 2. 다양한 상황의 시나리오를 검토하고 대안을 제시할 수 있어야 한다. 3. 사용자의 의사결정을 지원하며 사용자가 쉽게 의사결정 상황을 직관적으로 파악할 수 있는 인터페이스를 제공해야 한다.   스마트폰 네비는 위 조건을 모두 만족한다. 실시간으로 차량의 위치가 GPS로 전송되고 교통정보도 활용한다는 점에서 1번 조건을 만족하며, 다양한 대안경로를 검토함으로 2번 조건을 만족하며, 사용자의 최적경로를 제안하며 이러한 경로를 그래픽으로 전달하는 방식으로 3번 조건을 만족한다. 즉 스마트폰 네비가 우리 생활의 디지털 트윈이라 할 수 있다. 이런 의미를 보면 굳이 디지털 트윈이 현실과 매우 흡사한 고퀄리티 네비를 제공해 줄 의무는 없고 3D그래픽을 제공하는 것도 조건은 아니다. 사람의 의사결정을 직관적으로 지원해 줄 수 있는 정도면 기능이 충분하다 할 수 있다. 3. 로봇 기반 제조 운영에서의 디지털 트윈   이러한 디지털 트윈 활용의 가장 대표적인 예가 제조 물류 자동화 시스템 설계 및 운영이다. 최근 제조 시스템의 가장 큰 변화 중의 하나는 컨베이어 벨트가 없는 자동화(Beltless Automation)로 표현되는 군집 로봇 기반 물류 자동화다. 1916년 포드 T모델이 컨베이어 방식으로 생산되며 제조 자동화 혁명을 가져왔다. 이후 컨베이어 벨트 기반 물류 자동화는 공장 자동화의 표준 생산이 되었다. 그러나 이러한 컨베이어 방식은 단일 품종 대량 생산에는 적합하지만 다품종 소량 생산과 같은 현대 소비 시장의 욕구를 충족하는 데는 한계가 있다. 차량 모델이 바뀔 때 마다 공장을 세우고 컨베이어 벨트와 설비 위치를 재 조정해야 하는 등 상당한 재투자가 필요하다. 카이스트 산업 및 시스템 공학과 졸업생들이 2020년에 창업하여 카이스트 및 네이버가 투자한 다임리서치는 디지털 트윈 기술을 기반으로 AGV나 ARM의 이동을 관제하고 제어하는 솔루션을 개발하여 LG전자뿐만 아닌 국내 반도체 및 2차전지 기업에 공급하고 있다.      상세 내용은 PDF로 제공됩니다.    
작성일 : 2025-05-09
[특별기고] 디지털 트윈 발전 전망
디지털 트윈과 산업용 메타버스 트렌드   데이터 기반 서비스 관점에서의 디지털 트윈의 역할은 실 체계에서 수집한 실제 데이터와 디지털 트윈 시뮬레이션으로 얻어진 가상 데이터의 융합을 통하여 실제 시스템 관련 문제 해결에 유용한 빅 데이터 생성이라 할 수 있다.  디지털 트윈 활용은 안정성에 부담이 적고 신속/가시적 성공사례 확보가 가능한 스마트시티, 스마트 팩토리, 스마트SOC(도로, 철도, 항만, 공항, 등) 등이 대상이지만 기술성숙도가 높아지고 안정성이 보장됨에 따라 자율주행, 의료/인공장기, 식물공장 등으로 확대될 전망이다.   ▲ 철도 네트워크의 디지털 트윈 구축하는 독일 디지털 철도(이미지 출처 : 엔비디아)   1. 디지털 전환과 디지털 트윈 디지털 전환(Digital Transformation: DX)은 비즈니스 전 과정에 ICT 기술을 도입하여 전사적 업무, 생산 기술, 제품 등을 디지털화 한 후 이를 기반으로 가상 실험이 가능한 디지털 환경을 구축하는 것이다.  디지털 전환의 궁극적 목적은 기업 이윤 극대화에 필요한 업부/생산 효율성 및 제품 부가 가치 증대를 위한 다양한 창의적 대안들을 가상 실험을 통해 평가한 후 그 결과를 비즈니스 전 과정에 활용하는 것이다. 예를 들어, 스마트 팩토리의 디지털 전환은 조달 시스템, 생산 시스템, 물류 시스템 등 스마트 팩토리 구성요소들의 자원 할당 및 운용에 대한 다양한 대안들을 가상 실험을 통해 평가할 수 있는 환경을 구축하여야 한다. 그렇다면, 비즈니스 전 과정을 가상 실험하기 위해서는 무엇이 필요할까?  가상 실험을 하기 위해서는 먼저 가상 실험 대상(예: 제조 공장)을 선정하고, 다음으로, 가상 실험 시나리오(예:새로운 제조 장비 도입)가 필요하며 시나리오를 수행할 모델(예: 제조 공정 시뮬레이션 모델)이 필요하다. 이러한 가상 실험을 위한 모델이 디지털 트윈이며 이런 이유로 많은 사람들이 디지털 트윈을 DX의 Key(Richard Marchall, 2017), DX의 Enablers(Reterto Saracco, 2019), DX의 Central(Vijay Ragjumathan, 2019), DX의 Steppingstone(Harry Forbes, 2020), DX의 Pillar(Fransesco Belloni, 2020)라고 지적하였다.   2. 디지털 트윈의 정의 디지털 트윈은 물리적 자산, 프로세스 및 시스템에 대한 복제본으로 정의[Wiki 사전]되며, 복제본이란 대상 체계의 운용 데이터, 지형/공간/형상 정보 및 동작/운용 법(규)칙을 컴퓨터 속에 디지털화 해 놓은 것을 의미한다. 예를 들면, 제조 공장의 디지털 트윈은 제조 공장의 운용 데이터, 제조 공장의 공간/형상 정보, 그리고 제조 장비 동작 및 공정 모델이 컴퓨터 속에 복제된 것이 될 것이다. 디지털 트윈과 대상 체계가 쌍둥이기 때문에 쌍둥이 중 누가 먼저 태어났느냐에 따라 디지털 트윈의 이름을 다르게 붙이기도 한다. 대상 체계가 존재하기 전에 만들어진 디지털 트윈을 디지털 트윈 프로토타입(Prototype) 그리고 대상 체계가 만들어진 후 복제된 디지털 트윈을 디지털 트윈 인스턴스(Instance)라고 부른다. 디지털 트윈 프로토타입은 대상 체계 설계 단계에서 활용되며 디지털 트윈 인스턴스는 대상 체계의 운용 분석에 활용되는 것이 일반적이다. 디지털 트윈 인스턴스(실 체계의 복제본)와 디지털 트윈 프로토타입(실 체계의 설계 모델)이 모두 존재할 수도 있지만 디지털 트윈 프로토타입 없이 디지털 트윈 인스턴스만 존재할 수도 있다. 디지털 트윈 프로토타입과 인스턴스가 모두 존재한다면 인스턴스는 프로토타입에 실 체계 운용 정보가 반영되어 진화(성장)된 트윈으로 볼 수 있다. 3. 디지털 트윈 구축 목적 디지털 트윈의 구축 목적은 대상 실 체계와 디지털 트윈을 연동 운용함으로써 실 체계 관련 이해 당사자에게 지혜 수준의 혁신적 서비스를 제공할 수 있는 핵심 도구/수단으로 활용하기 위함이다. 데이터 기반 서비스 관점에서의 디지털 트윈의 역할은 실 체계에서 수집한 실제 데이터와 디지털 트윈 시뮬레이션으로 얻어진 가상 데이터의 융합을 통하여 실제 시스템 관련 문제 해결에 유용한 빅 데이터 생성이라 할 수 있다. 융합 빅 데이터는 AI-통계/공학 분석도구들을 이용하여 실 세계의 구성요소인 자산, 사람, 운용 프로세스들의 다양한 결합에 대한 분석/예측 및 체계 운용 최적 대안(최적화)을 찾는데 활용될 수 있다. 아울러, 융합 빅 데이터는 실 세계를 가상 환경에서 현실감 있게 표출할 수 있는 다양한 장비/장치와 VR/AR/XR/메타버스 관련 ICT 기술과의 융합 인터페이스를 통해 오락, 관광, 교육 훈련, 체험 등에 활용될 수 있다.     디지털 트윈의 복제 대상은 실 체계의 운용 데이터, 공간/형상 정보 및 실 체계에 포함된 객체들의 행위 모델 등 3가지이다. 운용 데이터는 실 체계에 설치된 IoT 장비로부터 획득이 가능하다. 공간/형상 정보는 서비스 목적에 따라 GIS, BIM 혹은 3D CAD 중 한 가지 이상을 결합하여 사용한다. 객체 행위 모델은 다양한 시나리오를 가상 실험하기 위한 시뮬레이션 모델을 사용하지만 서비스 목적에 따라서는 운용 데이터를 학습한 데이터 모델을 사용할 수도 있다. 구성요소 중 일부만을 사용한 디지털 트윈은 나머지 구성요소를 사용하지 않음으로 인한 한계점에 봉착하게 된다. 예를 들면, 실 체계 운용 데이터 복제만으로 구성된 IoT 기반 디지털 트윈은 수집된 데이터를 분석할 수는 있지만, 실 체계를 시각화한 지형/공간 상에 데이터를 표출할 수 없을 뿐만 아니라 실 체계와는 다른 가상 데이터를 입력한 시뮬레이션을 수행할 수 없다. 마찬가지로, 지형/공간 정보 만으로 구성된 디지털 트윈은 실 체계에서 일어나는 지형/공간 정보의 변화를 실 시간으로 반영할 수 없으며 시뮬레이션을 통한 실 체계의 현상 분석 및 미래 예측이 불가능 하다.      디지털 트윈의 효율적인 활용을 위해서는 위의 세 가지 구성요소 모두를 개발 및 운용할 수 있는 통합 플랫폼이 바람직하지만 국내외적으로 표준화된 디지털 트윈 플랫폼은 존재하지 않는다. 디지털 트윈의 특성 상 3가지의 디지털 트윈 구성요소 각각을 개발하는 독립적인 플랫폼을 사용하여 구성요소를 개발한 후 이들을 연동하여 운용하는 것이 효율적이다.  구체적으로는, 먼저, 디지털 트윈 개발 목적에 맞게 운용 데이터를 수집하는 IoT 플랫폼, 지형/공간 정보를 구축하는 지형/공간정보 플랫폼 및 모델링 시뮬레이션 플랫폼들을 이용하여 각 구성요소를 개발한다. 다음으로, 개발된 세 가지 구성요소를 실행하는 플랫폼들을 연동 운용하는 PoP(Platform of Platforms) 구조를 사용할 수 있다. PoP 구조는 디지털트윈의 목적에 부합되는 모든 디지털트윈을 개발/운용할 수 있는 플랫폼으로써 신뢰성 및 경제성(개발 기간 및 비용) 면에서 효율적인 구조이다. PoP 구조를 사용할 경우 플랫폼들 사이의 연동을 위한 데이터 모델과 API의 국제적인 표준화가 요구되며 데이터 모델의 표준은 대상 시스템에 따라 달라질 수 있다.  디지털 트윈을 실제 시스템에 대한 문제 해결 목적으로 사용하기 위해서는 대상 시스템에 대한 다양한 질문의 답을 디지털 트윈을 통해서 얻을 수 있는 서비스가 제공되어야 한다. OR 이론의 창시자 중 한 명으로 경영 과학 이론가인 R.L.Ackoff 교수는 사람이 생각하는 내용을 데이터, 정보. 지식, 지혜 등 4가지로 분류하였다. 데이터는 단순한 심벌(숫자나 문자)을 말하지만 정보는 ‘who’, ‘what’, ‘where’, ‘when’을 답할 수 있고, 지식은 ‘how’를 답할 수 있고, 지혜는 ‘why’를 답할 수 있어야 한다고 정의하였다. 디지털 트윈의 서비스 수준을 Ackhoff 교수의 분류법에 매핑 시킨다면 정보 수준 서비스는 시스템 분석(현상, 기능 등), 지식 수준 서비스는 시스템 예측(행위, 성능 등) 그리고 지혜 수준 서비스는 시스템 최적화(운용 최적화 등) 및 진단(수명 진단 등)에 해당한다. 예를 들어, 교통 시스템에 대한 다양한 질문을 답하기 위해 교통 디지털 트윈을 만들었다고 하자. 정보 서비스의 예는 현재 교통 시스템의 현상을 분석하는 것으로 어느 위치의 현재 시간대에 단위 시간당 교차로 통과 차량 대수가 얼마인지에 대한 답을 하는 서비스이다. 지식 서비스의 예는 현재 출발지에서 목적지까지의 소요 시간이 얼마가 되는지를 예측하는 질문에 대한 답을 하는 서비스이다. 지혜 서비스의 예는 현재 출발지에서 목적지까지의 소요 시간이 최소가 되는 최적화된 경로가 어떤 것인지의 질문에 대한 답을 하는 서비스이다.    4. 디지털 트윈의 구성요소 디지털 트윈의 3 가지 구성요소 중 행위 모델은 목적에 따라 데이터 모델과 시뮬레이션 모델로 대별된다. 데이터 모델은 실 체계에서 수집된 데이터들 사이의 상관관계를 기계학습하여 얻어진 모델(예: 인공신경망)로서 지식 서비스를 위한 시스템 행위 예측에 한계점을 가지고 있다. 구체적으로, 데이터 모델은 학습된 데이터 영역에서는 미래 예측이 가능하지만 학습된 영역 밖의 데이터에 대한 예측은 불가능 하다. 뿐만 아니라 학습 시와 예측 시의 시스템 운용 조건이 달라질 경우에도 예측이 불가능하다. 앞서 예시한 교통 디지털 트윈으로 데이터 모델을 사용할 경우 학습 시 도로 상황(운행 시간, 사고 발생 유무 등)이 예측 시 도로 상황과 동일하지 않으면 소요 시간 예측의 정확도가 보장되지 않는다. 더욱이, 시스템 변수 사이의 상관 관계로 표현된 데이터 모델은 변수 사이의 인과 관계가 필요한 시스템의 최적화 및 고장 진단 등에는 활용할 수 없다. 이러한 데이터 모델의 서비스 한계를 극복하기 위해서는 시뮬레이션 모델을 사용할 수 있다. 시뮬레이션 모델은 구축은 대상 시스템에 대한 도메인 지식과 이를 표현하는 지배 법칙에 대한 수학적/논리적 표현 방법을 이해해야 하므로 데이터 모델에 비해 고 비용이 요구된다. 따라서, 디지털 트윈의 행위 모델은 대상 시스템의 서비스 목적과 수준에 따라 다르게 선택될 수 있다.    5. 디지털 트윈의 발전 전망  디지털 트윈의 향후 발전 전망은 문제 해결과 가상 체험 및 빅 데이터 분야로 대별할 수 있다. 문제 해결 분야에서 디지털 트윈의 대상은 분석, 예측, 최적화/진단 대상이 되는 모든 시스템 분야로서 산업(제조, 생산, 물류, 식물공장 등), 공공(교통, 환경, 금융 등), 의료(진단, 인공장기, 가상수술 등), 재난안전(안전점검, 피해분석, 대피훈련 등), 국방(군사훈련, 국방분석, 무기체계 획득 등)등을 포함한다.  현재 디지털 트윈 활용은 안정성에 부담이 적고 신속/가시적 성공사례 확보가 가능한 스마트시티, 스마트 팩토리, 스마트SOC(도로, 철도, 항만, 공항, 등) 등이 대상이지만 기술성숙도가 높아지고 안정성이 보장됨에 따라 자율주행, 의료/인공장기, 식물공장 등으로 확대될 전망이다.  가상 체험 분야는 디지털 트윈이 실 세계 혹은 가상 세계를 움직이는 다양한 시나리오를 정형화한 지배 법칙(모델)을 실행(시뮬레이션)하는 수단으로 활용될 전망이다. 이러한 지배법칙 실행은 실제 세계와 가상 세계의 구별 없는 가상 체험을 목표로 하는 메타버스의 서비스 콘텐츠를 제공한다. 따라서, 메타버스 발전을 위해서 메타버스의 서비스 컨텐츠를 제공하는 디지털 트윈 발전이 필수적으로 향후 메타버스와 디지털 트윈은 동시에 발전할 전망이다.  빅 데이터 분야에서는 디지털 트윈의 가상 실험을 통해 실 체계에서는 물리적/경제적 이유로 수집 불가능한 다양한 빅 데이터를 생성하는데 활용될 전망이다. 유의미한 빅 데이터 생성을 위해서는 실 체계에서 수집 가능한 데이터를 사용하여 디지털 트윈 모델의 검증이 선행된 후 실 체계에서 수집 불가능한 데이터 생성을 위한 가상 실험이 설계되어야 한다. 디지털 트윈을 사용한 빅 데이터 생성은 시스템 기능 검증, 예지 진단 및 기계학습 등과 같은 부가가치가 높은 데이터 생성에 집중되어 미래 데이터 구독 시장 활성화에 기여할 전망이다.   김탁곤 명예교수  KAIST 전기전자공학부  
작성일 : 2025-05-05
카티아 VMU를 활용한 설계 검증 혁신
산업 디지털 전환을 가속화하는 버추얼 트윈 (2)   이번 호에서는 VMU(가상 목업)의 개념과 기술적 특성, 주요 산업 사례, 그리고 VMU의 혁신적 가치와 향후 확장 가능성에 대해 살펴본다.    ■ 최윤정 다쏘시스템의 기술 컨설턴트로 디자인&엔지니어링 팀에서 3DEXPERIENCE CATIA 제품을 담당하고 있다. 자동차 산업을 위한 고급 서피스 모델링 및 가상 검증 영역을 전문으로 하고 있으며, 제조업의 VMU 도입 효과성 관련 학술연구 또한 수행 중에 있다. 홈페이지 | www.3ds.com/ko   가상 시뮬레이션 기술이 점차 고도화됨에 따라, 제품 개발 전 과정에서 디지털 모델을 활용하여 제품 품질과 개발 효율성을 높이려는 시도가 활발하게 이루어지고 있다. VMU(Virtual Mock-Up, 가상 목업) 기술은 3D익스피리언스 카티아(3DEXPERIENCE CATIA)에 기반한 가상 검증 프로세스로, 설계 오류와 품질 상의 문제점을 조기에 식별·개선하고 개발 비용과 시간을 절감하는 혁신적 방식으로 주목받고 있다. 제품의 실물을 제작하지 않고도 고품질 렌더링을 통해 시각적·감성적 요소를 평가할 수 있기 때문에, 다양한 산업 분야에서 VMU의 필요성이 커지고 있다.   그림 1. 카티아 설계 데이터 화면   그림 2. 카티아에서 재질을 적용한 설계 데이터 화면   VMU의 개념과 기술적 특징 VMU는 고품질 렌더링 기술을 활용해 설계 데이터를 가상 환경에서 실물과 유사하게 재현하여, 설계 오류와 품질 상의 문제점을 조기에 식별·개선하는 기술이다. 이 프로세스는 실물 목업을 제작하지 않고도 제품 외관을 정확히 시뮬레이션함으로써 제품 개발 시간과 비용을 단축한다. 기존의 DMU(Digital Mock-up, 디지털 목업)는 주로 설계 과정에서 형상과 구조 검증에 초점을 둔다. 즉, 3D 설계 데이터 상에서 간섭 검사, 조립 순서·공정 시뮬레이션, 각 부품의 형상 적합성 등을 확인하는 용도로 사용된다. 한편, VMU는 DMU에서 한발 더 나아가, 광학 특성(반사·굴절), 질감, 점등 이미지 등 외관 품질을 실사 수준으로 구현하며, 인체공학 기반의 휴먼 모델(human model)을 연계해 실제 사용 환경에서의 조작성, 시야 확보성 등을 종합적으로 검토할 수 있다. XR(확장현실) 기술과의 융합을 통해 몰입형 품평 환경도 제공된다. 자동차 외장 램프처럼 미세한 빛의 반사·굴절을 예측 및 검증해야 하는 제품은 VMU를 활용할 경우 실물 목업 없이 외관 이미지를 높은 정확도로 검토함으로써 개발 리스크를 크게 줄일 수 있다. 기존에 카티아를 기반으로 제품 설계를 하고 있는 다양한 산업군에서 VMU는 이미 필수 프로세스로 자리매김하고 있다. 설계, 렌더링, 검증 및 품평을 하나의 일관된 프로세스로 결합함으로써 제품 개발 방식에 혁신적인 변화를 가져올 수 있다. 데이터 변환이나 별도 인터페이스가 필요 없이 동일 플랫폼에서 모든 단계가 이뤄지므로, 데이터 손실이나 형상 왜곡을 최소화하고 기존에 없던 빠르고 유연한 협업 환경을 구축할 수 있다. 이를 통해 제품의 완성도와 품질을 높이는 긍정적 효과가 입증되었다.    표 1. 실물 목업 및 기존 렌더링 툴과의 비교   3D익스피리언스 카티아 기반의 VMU 프로세스 적용 사례 자동차 외장 램프 품질 검증 사례 자동차 외장 램프는 외관과 점등 이미지가 모두 중요하여, 시각적 품질 검증이 설계 단계에서 핵심 과제로 부각된다. 기존에는 정확도를 높이기 위해 실물 금형과 목업을 제작했으나, 이 방식은 과도한 시간과 비용 투자를 요구했다. 대체 방법으로 3D 프린팅 등의 기술을 이용하기도 했지만, 정밀도가 부족하다는 한계가 있었다. 이 문제를 해결하기 위해 최근 카티아 기반 VMU 프로세스를 적용한 디지털 선행 검증이 주목을 받고 있다. 미세 광학 요소와 복잡한 반사·굴절 특성을 지닌 램프를 고정밀 시뮬레이션할 수 있어, 점등·비점등 시의 실제 이미지를 실물 목업 수준으로 재현한다. 특히 스캔을 통해 확보한 시편 데이터의 정확한 물성을 설계 데이터에 적용함으로써 곡률에 따른 왜곡이나 광원으로 인한 반사를 사실적으로 재현하고, 실차에 장착했을 때 예상되는 품질 이슈까지 가상 환경에서 검토할 수 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
변화와 흐름의 관찰
시점 – 사물이나 현상을 바라보는 눈 (5)   지난 호에서는 ‘정적 이미지’와 ‘동적 이미지’에 관하여 정의하고 두 이미지의 차이를 살펴보았다. 이미지 센서의 입장에서 바라본 ‘관찰의 시점과 관점’에 관한 몇 가지 사례를 들어가며 구체적으로 생각해 보았다. 또한 정적 이미지에 시간 요소를 비롯한 새로운 차원의 요소를 추가하는 방법의 고안과 활용의 필요성을 강조하였다. 이번 호에서는 정적 이미지와 동적 이미지의 활용이라는 측면에서 ‘변화와 흐름의 관찰’ 방법과 관찰된 결과를 가시화 및 시각화하는 구체적인 사례를 함께 생각해 보기로 한다. 변화와 흐름의 본질부터 응용에 이르기까지 구체적인 사례를 소개한다.   ■ 연재순서 제1회 호기심 제2회 암중모색 제3회 관찰의 시점과 관점 제4회 정적 이미지와 동적 이미지 제5회 변화와 흐름의 관찰 제6회 개별 관찰 제7회 집단 관찰 제8회 확률과 통계 제9회 작용, 반작용, 상호작용 제10회 무엇을 볼 것인가? 제11회 무엇을 믿을 것인가? 제12회 가설, 모델, 이론의 설득력의 시대성   ■ 유우식 웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다. 홈페이지 | www.wafermasters.com    그림 1. 당구공 움직임 궤적의 가시화   변화와 흐름의 본질‘변화’는 사물의 성질, 모양, 상태 따위가 바뀌어 달라지는 것을 의미하고, ‘흐름’은 흐르는 것, 또는 한 줄기로 잇따라 진행되는 현상을 비유적으로 이르는 말로 일상적으로 사용된다. 두 가지 개념 모두 시간과 관계가 있다. 시간 역시 흐름의 하나이다. 다만 시간은 불가역적으로 과거로 돌아갈 수 없다. 시간이 실재하는 것인가 하는 것은 철학적인 이야기에 가깝다. 다만 시간의 특성을 이해하고 여러 가지 현상을 관찰하면 변화와 흐름을 발견하게 된다. 우리도 시간의 흐름과 더불어 나이를 먹고 늙어 간다. 모든 생명체에게 공통된 현상이다. 눈으로 확인하기도 어려운 현상이나 추상적인 주제에 관해서 설명하기보다는 눈으로 확인할 수 있는 것이 이해하기 쉽다.  당구는 경도가 높은 압축 플라스틱 재질로 만든 공을 사용하는 경기이다. 당구공은 충돌 시의 반발계수가 1에 가까운 완전 탄성체이다. 따라서 당구공끼리 충돌하는 것은 두 물체가 부딪친 후에도 운동 에너지의 합이 변하지 않는 ‘완전 탄성충돌’에 가깝다. 정면에서 충돌할 경우 운동량 보전 법칙이 성립하여 공이 서로의 속도를 교환한다. 물리법칙을 이해하고 공을 치는 방향과 힘을 조절해서 다른 공을 맞히는 게임이다. 공을 치게 되면 공이 움직이게 되니 시시각각으로 위치와 속도가 달라진다. 즉 시간에 따른 위치 변화와 흐름이 발생한다.  <그림 1>은 당구대의 위쪽에 고정된 카메라로 노란 당구공을 쳐서 초록색 당구공을 오른쪽 위 귀퉁이에 넣는 장면을 촬영한 동영상에서 적당한 시간 간격으로 프레임을 발췌하여 합성한 이미지를 소개하였다. 하나의 이미지에서는 같은 시간 간격으로 프레임을 발췌하여 합성한 것이므로, 여러 개의 노란색 공의 위치는 같은 시간 간격으로 촬영된 것이다. 녹색 공 또한 마찬가지이다. 같은 색 공 사이의 간격이 넓은 것은 공의 이동 속도가 빨랐다는 것을 의미하고, 간격이 좁은 것은 그 공의 이동 속도가 빠르지 않았음을 의미한다. 공과 공 사이의 거리를 측정해서 프레임 간의 시차로 나누면 해당 구간의 속도를 구할 수도 있다. 고속으로 촬영해서 이미지를 합성하면 공이 전부 연결되어 공이 지나간 궤적을 그려낼 수 있을 것이다. 이러한 이미지를 합성해서 변화와 흐름을 시각화하는 방법을 포함해서 다양한 방법이 활용되고 있으며, 앞으로도 새로운 개념의 방법도 나타날 것으로 기대한다. 어떤 방법들이 고안되었으며 활용되고 있는지 살펴보도록 한다.   일상적으로 사용되는 흐름을 측정하는 기기 흐름에는 무엇이 있을까? 바람이 불면 공기의 흐름이 있고 강에는 물이 흐른다. 보도에는 사람들의 흐름이 있고 도로에는 차량의 흐름이 있다. 비가 오거나 눈이 내리는 것도 자연스러운 물의 순환(흐름)이다. 일상생활에서도 흐름을 측정하는 기기들이 셀 수 없이 많이 있다. 전류계, 전력량계(적산전력계), 수도 계량기, 도시가스 계량기, 온수 미터 등이다.(그림 2) 실험용 전류계는 실시간으로 흐르는 전하량을 전류로 표시하고 있다. 전체적으로 얼마나 사용했는지는 알 수 없다. 전류가 흐르지 않으면 그 순간 0을 표시하기 때문이다. 전체적인 흐름의 양을 알려고 하면 시시각각의 흐름을 적산해서 표시해야 한다. 전력량계(적산전력계), 수도 계량기, 도시가스 계량기, 온수 미터는 사용량을 적산하는 방식을 채용하여 사용량에 맞춰 요금을 부과하는 방식이다.  흥미롭게도 여기에서 소개한 흐름을 측정하는 모든 기기는 전선이나 배관을 통해서 흐르는 것이다. 전기는 누전되지 않는 한 전선을 벗어나서 흐르는 일이 없다. 물과 가스 또한 누수 또는 가스의 누출이 없는 상태에서 사용한다. 즉 모든 흐름의 측정은 폐쇄회로에서 이루어진다. 그런 의미에서 <그림 1>의 당구대 평면 상의 당구공 위치 변화를 동영상 정보를 바탕으로 추적한 사례는 특이한 경우로 볼 수 있다.    그림 2. 주변에서 흔히 볼 수 있는 흐름을 측정하는 기기     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
오픈마누스 AI 에이전트의 설치, 사용 및 구조 분석
BIM 칼럼니스트 강태욱의 이슈 & 토크   생성형 AI 에이전트는 목표 달성을 위해 세상을 관찰하고 스스로 행동하는 자율적인 애플리케이션으로, 행동과 의사결정을 위한 인지 아키텍처를 갖추고 있다. 이번 호에서는 오픈소스 AI 에이전트인 오픈마누스(OpenManus)를 통해 AI 에이전트의 동작 메커니즘이 어떻게 구현되는지 분석해 본다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 페이스북 | www.facebook.com/laputa999 블로그 | http://daddynkidsmakers.blogspot.com 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | www.facebook.com/groups/digestpodcast   최근 AI 에이전트 기술이 크게 발전하고 있다. 구글의 에이전트 백서를 보면, 생성형 AI 에이전트는 목표 달성을 위해 세상을 관찰하고 스스로 행동하는 자율적인 애플리케이션으로 설명한다. 명시적인 지시가 없어도 스스로 판단하고 능동적으로 목표에 접근할 수 있다. 이러한 에이전트는 행동과 의사결정을 위한 인지 아키텍처를 갖추며, 핵심 구성 요소는 <그림 1>과 같이 사용자 입력에 대한 추론 역할을 하는 모델(보통은 GPT와 같은 LLM), 입력에 대해 필요한 기능을 제공하는 도구(tools), 그리고 어떤 도구를 호출할지 조율하는 오케스트레이션의 세 가지로 이루어진다.   그림 1. AI 에이전트의 구성 요소(Agents, Google, 2024)   이번 호에서는 AI 에이전트의 동작 메커니즘을 분석하기 위한 재료로, 딥시크(DeekSeek)와 더불어 관심이 높은 마누스(Manus.im)에서 영감을 받아 개발된 오픈마누스(OpenManus) 오픈소스 AI 에이전트를 활용하겠다. 오픈마누스는 메타GPT(MetaGPT)라는 이름으로 활동 중인 중국인 개발자가 공개한 AI 에이전트이다. 개발자는 오픈마누스가 연결된 다양한 도구를 LLM으로 조율하고 실행할 수 있다고 주장하고 있다. 깃허브(GitHub) 등에 설명된 오픈마누스는 다음과 같은 기능을 지원한다. 로컬에서 AI 에이전트 실행 여러 도구 및 API 통합 : 외부 API, 로컬 모델 및 자동화 도구를 연결, 호출 워크플로 사용자 지정 : AI가 복잡한 다단계 상호 작용을 효율적으로 처리 여러 LLM 지원 : 라마(LLaMA), 미스트랄(Mistral) 및 믹스트랄(Mixtral)과 같은 인기 있는 개방형 모델과 호환 자동화 향상 : 내장 메모리 및 계획 기능을 통해 코딩, 문서 처리, 연구 등을 지원   <그림 2>는 이 에이전트가 지원하는 기능 중 일부이다. 프롬프트 : “Create a basic Three.js endless runner game with a cube as the player and procedurally generated obstacles. Make sure to run it only in browser. If possible also launch it in the browser automatically after creating the game.”   그림 2   오픈마누스는 이전에 중국에서 개발된 마누스에 대한 관심을 오픈소소로 옮기는 데 성공했다. 오픈마누스는 현재 깃허브에서 4만 2000여 개의 별을 받을 정도로 관심을 받고 있다.    그림 3. 오픈마누스(2025년 4월 기준 42.8k stars)   필자는 오픈마누스에 대한 관심이 높았던 것은 구현된 기술보다는 에이전트 분야에서 크게 알려진 마누스에 대한 관심, 오픈소스 버전의 AI 에이전트 코드 공개가 더 크게 작용했다고 생각한다. 이제 설치 및 사용해 보고, 성능 품질을 확인해 보자. 그리고 코드 실행 메커니즘을 분석해 본다.    오픈마누스 설치 개발 환경은 이미 컴퓨터에 엔비디아 쿠다(NVIDIA CUDA), 파이토치(PyTorch) 등이 설치되어 있다고 가정한다. 이제, 다음 명령을 터미널에서 실행해 설치한다.   conda create -n open_manus python=3.12 conda activate open_manus git clone https://github.com/mannaandpoem/OpenManus.git cd OpenManus pip install -r requirements.txt playwright install   오픈마누스가 설치하는 패키지를 보면, 많은 경우, 기존에 잘 만들어진 LLM, AI Agent 라이브러리를 사용하는 것을 알 수 있다. 여기서 사용하는 주요 라이브러리는 다음과 같다.  pydantic, openai, fastapi, tiktoken, html2text, unicorn, googlesearch-python, playwright, docker     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-05-02
앤시스코리아, 대학생·대학원생 대상 시뮬레이션 경진대회 개최
앤시스코리아가 대학생 및 대학원생을 대상으로 시뮬레이션 경진대회인 ‘앤시스 시뮬레이션 챌린지 2025’를 개최한다고 밝혔다. 올해 처음 치러지는 ‘앤시스 시뮬레이션 챌린지’는 미래의 엔지니어를 꿈꾸는 대학생 및 대학원생을 위해 앤시스코리아가 기획한 아카데믹 경진대회다. 참가자들은 앤시스의 시뮬레이션 소프트웨어 중 하나 이상을 활용해 기술적인 문제를 해결하는 경험과 함께, 수상할 경우 다양한 특전을 받게 된다. 참가 신청은 이공계 및 공학을 전공한 대학생, 대학원생이라면 누구나 가능하다. 공식 홈페이지를 통해 오는 5월 23일까지 개인 또는 최대 3인의 팀 자격으로 지원서를 접수하면 된다. 참가 부문은 ▲구조 해석 ▲전자기 해석 ▲유체 해석 ▲열 해석 및 멀티피직스 ▲광학 해석 ▲최적 설계 및 AI 활용의 6개 부문으로 복수 선택이 가능하다. 신청 시 제목과 설명을 포함 국문 500자 이내의 연구 초록 등록이 필요하다. 접수 마감 이후 5월 26일부터 6월 20일까지는 챌린지 예선 기간으로, 참가자들은 해당 기간 내에 연구에 대한 최종 결과를 PPT 형식으로 작성해 제출해야 한다. 제출된 PPT를 바탕으로 심사가 이루어지며, 본선 진출자에 개별 연락하여 본선에 대해 안내할 예정이다. 본선은 7월 첫째 주에 치러지며 당일 발표 및 수상자 발표가 이어진다. 대상 수상 1팀에게는 장학금 300만 원과 함께 앤시스코리아 3개월 인턴십 기회 그리고 오는 9월 개최되는 시뮬레이션 콘퍼런스인 ‘앤시스 시뮬레이션 월드 코리아 2025’에서 발표자로 설 기회가 주어진다. 이외 최우수 혁신상 수상 1팀은 장학금 100만 원, 우수 해석상 수상 3팀은 장학금 50만 원을 각각 받을 수 있다. 또한, 본선 참가자 전원에게 앤시스 관련 기념품과 앤시스 시뮬레이션 월드 코리아 2025 내 전시 기회를 제공할 계획이다. 앤시스코리아의 박주일 대표는 “장래 엔지니어를 목표로 정진하고 있는 대학생과 대학원생들에게 앤시스의 시뮬레이션을 활용한 연구 기회와 함께 다양한 혜택을 드릴 수 있도록 본 챌린지를 마련하게 됐다”면서, “오늘날 당면한 다방면의 도전을 해결하기 위해 시뮬레이션은 필수로 자리매김한 만큼, 보다 많은 대학생 및 대학원생이 챌린지에 참가해 특별한 경험을 쌓을 수 있기를 바란다”고 밝혔다.  
작성일 : 2025-04-28
2025년 AI 산업 경제와 기술 트렌드 전망
이 글에서는 최신 자료와 연구를 바탕으로 2025년 AI 산업 경제와 주요 기술 트렌드를 전망하고자 하며, 이를 통해 AI가 제공할 기회와 해결해야 할 도전 과제를 균형 있게 분석하고자 한다.   2025년은 인공지능(AI)이 경제와 기술 전반에 걸쳐 혁신을 주도하며, 산업 구조와 일상생활에 깊은 영향을 미칠 것이며, 전 세계 산업 경제와 기술 혁신의 중심축으로 자리 잡는 해가 될 것이다. 코로나19 팬데믹 이후 가속화된 디지털 전환과 AI 기술의 융합은 사회 전반에 큰 변화를 가져왔다. 특히, 제조, 금융, 헬스케어, 물류, 교육 등 다양한 산업 분야에서 AI는 단순히 비용 절감 도구를 넘어 새로운 가치를 창출하고, 기존 비즈니스 모델을 재정의하고 있다. 최근 예측 자료에 의하며, AI 에이전트, 엣지 AI, AI 사이버 보안, AI 기반 로봇 등이 성장세에 위치하고 있다.    1. AI 산업 경제 전망 2025년은 경제 성장의 주도 동력으로서의 AI, 글로벌 AI 기술 ,그리고 AI가 가져올 고용과 직업의 변화 등에서 다양한 AI 산업 경제 변화를 예상해 볼 수 있다.  IDC의 보고서에 따르면, 2025년 전 세계 기업들의 AI 솔루션 지출은 약 3,070억 달러에 달할 것으로 예상되며, 이는 2028년까지 연평균 29.0%의 성장률로 6,320억 달러에 이를 것으로 전망하였다. 이러한 투자는 AI 기술이 다양한 산업 분야에서 핵심적인 역할을 할 것임을 시사한다.  글로벌 컨설팅 기업 PwC의 보고서에 따르면, AI는 2030년까지 세계 GDP를 약 15.7조 달러를 증가시킬 것이며, 이는 연평균 14% 이상의 성장률에 해당된다고 예측했다. 이는 AI 기술이 단순히 비용 절감 도구를 넘어 새로운 부가가치를 창출하는 데 중요한 역할을 하고 있음을 보여주는 예측이다.  PwC는 보고서에서 AI에 대해 몇 가지 강조한 점이 있는데, 첫째, AI는 글로벌 경제의 생산성과 GDP 잠재력을 변화시킬 수 있으며. 이를 실현하기 위해서는 다양한 유형의 AI 기술에 대한 전략적 투자가 필요하다고 하였다. 둘째, 노동 생산성 향상이 초기 GDP 증가를 주도할 것이며, 기업들은 AI 기술을 활용해 노동력의 생산성을 ‘증강(augment)’시키고 일부 작업과 역할을 자동화하려 할 것이라고 하였다. 셋째, 2030년까지 전체 경제적 이익의 45%는 제품 개선에서 비롯될 것이며, 이는 소비자 수요를 자극하게 되어 AI가 더 다양한 제품을 제공하고, 시간이 지남에 따라 개인화, 매력도, 경제성을 높이기 때문이라고 하였다. 넷째, AI로 인한 가장 큰 경제적 이익은 중국(2030년 GDP 26% 증가)과 북미(14.5% 증가)에서 발생할 것이며, 이는 총 10.7조 달러에 달해 전 세계 경제적 영향의 약 70%를 차지할 것으로 전망하였다. 특히, 스마트 팩토리, 자동화 물류 시스템, 지능형 고객 서비스 등이 AI 기술 적용의 대표적인 사례로 들 수 있다. 예를 들어, 독일의 Siemens는 자사의 스마트 팩토리에서 AI를 활용해 제조 공정을 최적화하여 생산성을 20% 이상 향상시켰으며, 물류 업계에서는 Amazon이 자율주행 로봇과 AI 기반 물류 분석을 통해 배송 시간을 단축시킨 바 있다.   ***상세 내용은 PDF로 제공됩니다.   조영임 교수 / 가천대 컴퓨터공학
작성일 : 2025-04-18
웨스턴디지털, 대규모 HDD 희토류 리사이클링 프로그램 착수
웨스턴디지털이 마이크로소프트, 크리티컬 머티리얼스 리사이클링(CMR), 페달포인트 리사이클링과 함께 하드디스크 드라이브(HDD) 희토류 리사이클링 파일럿 프로그램에 착수한다고 발표했다. 클라우드 데이터센터 인프라의 핵심 구성 요소인 HDD는 재료 과학, 기계 공학, 물리학이 융합된 정밀 디바이스다. HDD는 데이터를 정밀하게 읽고 쓰기 위해 네오디뮴(Nd), 프라세오디뮴(Pr), 디스프로슘(Dy) 등 자기적 특성이 뛰어난 희토류 원소를 사용한다. 하지만 기존의 재활용 방식은 이러한 자원의 극히 일부만 회수할 수 있어 대부분의 희토류는 그대로 폐기되고, 이는 곧 자원 손실로 이어진다. 이러한 문제를 해결하기 위해 웨스턴디지털과 세 파트너사는 이번 파일럿 프로그램으로 약 2만 2700kg에 이르는 폐 HDD, 마운팅 캐디 및 기타 자원을 고부가가치 자원으로 전환하는 데 성공했다고 밝혔다. 이러한 과정은 환경에 미치는 영향을 최소화하는 동시에 새로운 정밀 분리 시스템을 구축하며, 산을 사용하지 않는 친환경 공정을 통해 희토류 원소뿐 아니라 금(Au), 구리(Cu), 알루미늄(Al), 철강(steel)과 같은 금속을 회수하여 미국 내 공급망에 다시 투입됐다. 이 자원들은 전기차, 풍력 터빈, 첨단 전자기기 등 다양한 산업 분야에서 활용될 예정이다. 웨스턴디지털은 “이 리사이클링 프로세스가 전 세계적으로 확대된다면 기존 자원 회수 방식과 비교해 훨씬 높은 효율로 희토류를 미국 내 공급망에 재투입할 수 있으며, 인류와 환경에 큰 영향을 미치는 신규 채굴의 필요성도 크게 줄일 수 있을 것”이라고 기대했다. 전 세계 희토류 생산량의 85% 이상이 미국 외 지역에서 생산되며, 미국 내 리사이클링 비율은 10% 미만에 그치고 있는 것으로 알려져 있다. 이번 파일럿 프로그램에 사용된 자원은 미국 내 마이크로소프트 데이터 센터에서 수집됐다. 웨스턴디지털이 밝힌 내용에 따르면 이 프로그램은 경제성과 실행 가능성을 입증했으며, 미국 내 공급망에서 활용할 수 있는 희토류 및 자원의 약 90%에 달하는 회수율을 기록했다. 고도화된 화학 공정과 정밀한 부품 분리를 통해 공급 원료의 약 80%를 질량 기준으로 회수하는데 성공했으며, 이를 통해 폐기될 수 있었던 자원을 다시 활용 가능한 자원으로 전환하는 데 성공했다. 생애주기분석(Life Cycle Analysis) 기준으로 볼 때, 해당 공정은 기존의 채굴 및 가공 공정과 비교해 온실가스 배출을 약 95% 절감하는 것으로 분석됐다. 전체 희토류 산화물(Rare Earth Oxide) 생산을 미국 내에서 완료함으로써 운송 과정에서 발생하는 탄소 배출을 줄이고 미국 공급망의 탄력성을 높이는데 기여하고 있다. 웨스턴디지털은 이 프로그램을 통해 고순도이면서 지속 가능한 방식으로 확보된 자원을 다양한 산업에 공급함으로써, 데이터센터를 포함한 희토류 의존 산업의 환경 영향을 줄이는 데 기여할 수 있다고 밝혔다. 웨스턴디지털의 재키 정(Jackie Jung) 글로벌 운영 전략 및 기업 지속가능성 담당 부사장은 “이번 프로젝트는 데이터 스토리지 관리의 사용 후 관리를 새롭게 정의하는 기준이 될 것”이라며, “빠르게 변화하는 데이터 환경에서 단순히 디바이스 수명 주기를 넘어선 혁신이 중요해지고 있다. 웨스턴디지털은 파트너들과 함께 수명이 다한 스토리지 디바이스를 미래를 위한 핵심 자원으로 전환하고 있으며, 동시에 환경 보호는 물론 미국 경제와 공급망을 강화하는데 앞장서고 있다. 이번 프로젝트는 단순한 이정표를 넘어 필수 금속 및 소재의 대규모 재활용을 실현하기 위한 청사진이 될 것”이라고 강조했다. 마이크로소프트의 척 그레이엄(Chuck Graham) 클라우드 소싱·공급망·지속가능성 및 보안 사업부문 수석 부사장은 “이번 파일럿 프로젝트는 모든 관계자들이 보여준 노력의 결실이며, 지속 가능하면서도 경제적인 HDD 사용 후 관리가 충분히 가능하다는 사실을 입증했다”면서, “HDD는 데이터센터 인프라의 필수적인 요소이며, 마이크로소프트는 순환형 공급망 구축에 집중하고 있다”고 전했다. 크리티컬 머티리얼스 이노베이션의 톰 로그라소(Tom Lograsso) 이사는 “친환경, 비산성 중성 용해 재활용(ADR) 기술을 실험실 수준에서 8년 만에 상용화 단계까지 확장한 것은 놀라운 성과”라며 “AI의 확산으로 HDD 스토리지 수요가 전 세계적으로 증가할 것으로 전망되는 만큼, 이 프로젝트가 갖는 의미는 상당하다”고 밝혔다. 페달포인트 리사이클링의 브라이언 디셀호스트(Brian Diesselhorst) CEO는 “이번 프로젝트는 전략적 주요 금속 확보 및 회수라는 우리 회사의 미션을 실현한 사례”라며, “기업 간 협업이 자원 회수와 재활용에 미칠 수 있는 긍정적인 영향을 명확히 보여주는 결과”라고 말했다.
작성일 : 2025-04-18
태성에스엔이, 위성·발사체 개발 기술 세미나 개최
태성에스엔이는 4월 24일 대전테크노파크 어울림플라자에서 첨단 항공우주 시뮬레이션 전략강화를 위한 ‘2025 태성에스엔이 위성·발사체 개발 기술 세미나’를 개최한다고 밝혔다. 이번 세미나는 ‘K-우주시대를 선도하기 위한 시뮬레이션 기술’을 주제로, 급변하는 글로벌 우주개발 시장 속에서 기술 경쟁력을 확보할 수 있는 다양한 해석 설루션과 시뮬레이션 전략을 공유하고, 위성 및 발사체, 광학 시스템, 멀티피직스 해석 등 우주 산업 전반의 설계 및 시뮬레이션 기술이 폭넓게 다뤄질 예정이다.  항공우주 산업 분야 위성 및 발사체 업계 종사자를 대상으로 한 이번 세미나에서는 한국항공우주연구원 소속 위성 및 발사체 분야의 전문가 강연을 통해 국내 우주개발의 현황과 발전 방향을 심도 있게 조망한다. 또한, 각 분야별 전문 엔지니어가 참여해 실제 산업 현장에서 활용되는 기술 사례와 설루션을 소개할 예정이다. 주요  발표로는 ▲우주탐사 개발 현황 및 전망 ▲우주발사체에서의 3D 프린팅 부품 개발 현황 ▲우주 산업을 위한 디지털 미션 엔지니어링 ▲우주 공학을 위한 시뮬레이션 설루션 등의 발표가 준비되어 최신 정보와 기술 인사이트가 공유된다. 태성에스엔이 관계자는 “이번 세미나는 우주 산업의 현재와 미래를 잇는 실질적인 기술 인사이트를 제공하는 자리가 될 것이며, 국내 항공우주 분야의 경쟁력 강화를 위한 다양한 기술적 대안이 공유될 것으로 기대한다”고 밝혔다.  
작성일 : 2025-04-16
다쏘시스템-라인 베스트팔렌 아헨공대, 미래 인재의 시스템 엔지니어링 역량 강화 위한 파트너십 체결
다쏘시스템은 독일 라인 베스트팔렌 아헨공과대학교의 ‘기계 요소 및 시스템 엔지니어링 연구소(MSE)’와 독일 차세대 인재의 엔지니어링 및 산업용 제품 개발 역량 강화를 위해 10년간의 협력을 체결했다고 발표했다. 연구소는 1만 3000명의 아헨공과대학교 기계공학과 학생을 위해 교육 과정에 다쏘시스템의 클라우드 기반 3D익스피리언스 플랫폼을 통합해, 3D익스피리언스 플랫폼과 모델 기반 시스템 엔지니어링(MBSE)을 교육 프로그램의 핵심 기술로 활용한다. 연구소와 협력을 맺은 학과장은 최신 버추얼 트윈 애플리케이션을 통합해 학생과 신입 엔지니어를 모델 기반 시스템 엔지니어링으로 교육한다. 다쏘시스템의 3D익스피리언스 플랫폼은 모델링을 물리적, AI 기반 시뮬레이션과 연결하여, 하나의 협업 환경에서 시스템 파라미터의 완전한 추적성을 제공한다. 학생들은 모든 산업 분야의 직무에 적용할 수 있는 실습 중심의 학습을 통해 전문 분야로의 진입이 용이한 것은 물론, 장기적인 사전 교육 없이도 빠르게 현업에 적응할 수 있다. 모델 기반 시스템 엔지니어링은 자율주행 차량, 항공기, 의료기기 및 기계, 전자, 소프트웨어 시스템을 결합한 기타 설루션을 효율적으로 개발하는 데 있어 핵심 요소로 떠오르고 있다. 아울러, 현업에서 고급 모델링 및 시뮬레이션 기술을 보유한 직원은 복잡한 제품 개발에 경험과 순환의 원칙을 도입하는 규제 및 경쟁 시장의 기업에서 경쟁우위를 차지한다.     아헨공과대학교 기계 요소 및 시스템 엔지니어링 연구소의 소장인 게오르그 야콥(Georg Jacobs) 교수는 “AI가 지원하는 원활한 디지털 제품 개발 프로세스로 전환하려면 모델 기반 시스템 엔지니어링 방법과 툴에 대한 교육을 받은 엔지니어가 필요했고, 이는 필연적으로 다쏘시스템 3D익스피리언스 플랫폼을 사용하는 것으로 이어졌다”면서, “다쏘시스템과의 파트너십은 주력 기술대학교 중에서는 가장 큰 규모이며, 이는 향후 업계의 혁신역량을 강화할 것”이라고 말했다. 다쏘시스템의 발레리 페레(Valérie Ferret) 교육 경험 부문 부사장은 “시스템 엔지니어링을 완벽하게 숙지하는 생성형 경제에서 산업 혁신을 위한 필수 요소”라면서, “아헨공과대학교 기계 요소 및 시스템 엔지니어링 연구소 및 시스템 엔지니어링(CSE) 연구소와의 파트너십을 통해 미래 엔지니어링 전문가에게 적합한 기술을 교육함으로써, 독일의 기술 격차를 해소하고 학생들의 취업률을 높이며 산업 혁신을 가속화하는데 기여할 것”이라고 말했다.
작성일 : 2025-04-14